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Clauser-Horne inequality for three-state systems
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We show a new Bell-Clauser-Horne inequality for two entangled three-dimensional quantum sfsiems
called qutrit3. This inequality is not violated by a maximally entangled state of two qutrits observed through
a symmetric three-input- and three-output-port beam splitter only if the amount of noise in the system is greater
than (11-6+/3)/2~0.308. This result is in a perfect agreement with the previous numerical calculations
presented in Kaszlikowslet al.[Phys. Rev. Lett85, 4418(2000]. Moreover, we prove that for noiseless case,
the necessary and sufficient condition for the threshold quantum efficiency of detectors below which there is no
violation of local realism for the optimal choice of observables is equal to 6@53)/59~0.821. This
efficiency result again agrees with the numerical predictions.

DOI: 10.1103/PhysRevA.65.032118 PACS nuntber03.65.Ud, 03.67a

[. INTRODUCTION observed via symmetric six-port beam splitters, the inequal-
ity is violated by quantum mechanics. Using the inequality,

It is well known that the sufficient and necessary condi-we calculate the threshold noise admixture and critical quan-
tion for the lack of existence of a local realistic description oftum efficiency of detectors that confirm the numerical results
two entangled qubits in an experiment in which Alice andpresented in Ref$4,5]. We give final conclusions in Sec. IIl.
Bob measure two dichotomic observables is the violation of-inally, in Appendix B, we prove that the calculated critical
at least one out of four Clauser-Hor@H) [1-3] inequali- quantum efficiency of detectors is also a sufficient condition
ties. However, for a system of two entangled three-for the existence of local realism for the considered choice of
dimensional quantum objectso-called qutrits there has oObservables.
hitherto been no such inequality, i.e., the inequality giving
necessary and sufficienbnditions for the existence of local II. INEQUALITY
realism. Numerical calculations based on the method of lin-
ear programing, which give necessary and sufficient condi- In a Bell-type experiment with two qutrits Alice and Bob
tions[4,5] (as well as the analytical proof presented in Ref.measure one of the two trichotomithree possible out-
[6] for the choice of observables giving the same violation asome$ observablesA; or A, for Alice and B, for B, for
the numerical calculationglearly demonstrates that the vio- Bob. The outcomes of the measurement of observaile
lation of local realism for qutrits is stronger than for qubits. (k=1,2) at Alice’s side is denoted by, (a,=1,2,3)

In general, the numerical calculatiop$5] as well as the  whereas the outcomes of the measurement of obserable
analytical proof confirming their validity6] still do not al-  (I1=1,2) at Bob's side is denoted Hty (b,=1,2,3). For each
low us to appreciate fully the nature of quantum correlationgair of observableg\,,B,; (k,I=1,2) we calculate the joint
and the possibility of their local and realistic description. Inquantum probabilitie?SM(ak;b,), i.e., the probabilities of
this paper, we present the set of Bell inequalities that seem tebtaining by Alice and Bob simultaneously the resaltsand
be a straightforward extension of the CH inequalities to &, (coincidence “clicks” of detectofsand single quantum
bipartite system consisting of two qutrits. We do not have %robabilitiesP'{?M(ak),Q'QM(b|), i.e., the probabilities of ob-
proof that this set of inequalities gives us sufficient and nectaining the result, by Alice irrespective of Bob’s outcome
essary condition for local realiswe prove only the neces- and resulth, by Bob irrespective of Alice’s result.
sary condition. However, it correctly reproduces numerical A |ocal realistic description is equivalent to the existence

results for N=3 obtained in Refs[4,5] concerming the of 4 joint probability distributiorP(a;,a,;b;,b,), in which
threshold noise admixture above which there is a local realthe so-called marginals

istic description as well as the critical efficiency of detectors

below which quantum correlations can be simulated classi- 3 3
cally (i.e., by local hidden variablgsThis strongly suggests P(a,:b)= > > P(ay,a,by,by),
that we also have sufficiency condition. a1=1 b 1=1
The paper is organized as follows. In Sec. |, we give the
set of nine inequalities for bipartite system of qutrits, the 3 3 3
proof for which is given in Appendix A. In Sec. Il, we show Pa)= > 2 > P(a;,a,;b;,by), (1)
that for the experiment with the maximally entangled qutrits A1=1by=1by=1
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wherek+1 andl+1 are modulo 2, recover quantum prob- & |‘I’> H s

abilities, i.e., PGy(ac;b) =P (ax;b), P&u(a)=P*(ay _ _ _ _
andQlQM(b|) :Ql(b|)- With these formulagEq. (1)] one can FIG. 1. Experiment with two six-port beam splitters. Two spa-

. . o . tially separated six-port devices are fed with a two-photon-beam
Enrg;/'??fg z[r(tahgbf\(/)igzvsvllyn?nzztpg;gf ién\?g"t:je_‘““éef which at entangled stat€3). Each local experimenter has three phases in the

beams that define the observable that is measured. Also, at each site,
there are three photon detect@§ andDP that register photons in
plta 1*5(2+x; 1+y)+ plta 2+,3(2+ x;1+Y) the output ports of the device.

—P2TaltB24x:1+y)+ P22t B2+ x;1+y) CH inequality without single detection probabilities and with
the termP1%(2;2) replaced byP'%(1;1).
+ Pl B(14x;24y)+ P2t B(14x;2+y)

—P2reltB(14x;2+4y)+ P22 A(1+x;2+y) IIl. VIOLATION OF THE INEQUALITY

+ Pt a B Ly o4 y)+ P2 (14 x: 1+y) We now show that the above inequality is violated by
quantum mechanics. To this end, let us consider the follow-

—P2ralt B4 x;24y) + PETA2TA(2 4 x:2+y)— P11 ing Bell experiment. The source produces maximally en-
tangled staté) of two qutrits

+x)— P2+ x) - Q¥ A(1+y)

—-Q?"A(2+y)=0, 2 1
|¢>:ﬁ(|1>A|1>B+|2>A|2>B+|3>A|3>B)! ()]

where x,y=0,1,2; «,8=0,1 and where the addition is

modulo 3 forx,y and modulo 2 fora,8.* The proof is _ _ _

straightforward but laborious and it is given in the AppendixWhere|k), and|k)g describekth basis state of the qutri

A. The above inequality is the necessary condition for theandB, respectively. Such a state can be prepared with pairs

existence of a local and realistic description of the considof photons using parametric down-conversisee Ref[9]),

ered experiment. It is interesting to notice that each of thén which case ketgk), and|k)g denotes photons propagat-

above inequa”ties is the sum of two CH inequa”ties anding to Alice and Bob in modé. Starting with this State, Alice

some additional term. For instance, fory=0, we have the and Bob measure one of two trichotomic observables defined

following two CH inequalities: P(2;1)+P%2;1) by a six-port beam splittefthree input and three output

—P24(2:1)+ P?2(2;1)— P}(2)— Q%(1), PlY(1;2) ports. The extended theory of such devices can be found in
+P(1:2)— P?(1:2)+ P?4(1:2)— PY(1)— Q2(2) and the Ref.[9]. A brief description is provided below.
term  P(2:2)+P¥%(1:1)— P?{(2:2)+P?2:2), which The unbiasedsix-port beam splittef9] is a device with

bears a resemblance to an incomplete CH inequality, i.e., th& following property: if a photon enters any single input
port (out of the threg there is equal probability that it leaves

one of the three output ports. In fact, one can always con-

Uit is possible to obtain additional inequalities from the existing StUct @ special six-port beam splitter with the distinguishing
ones using the freedom in the labeling of the results as well as thtrait that the elements of its unitary transition matfTx,are
local settings of the measuring apparatus. However, this freedom igolely powers of the complex numberg=exp(27/3),
the labeling is of little importance here. First, if one searches for thenamely, T,;= (1/y/3)a* D=1 |t has been shown in Ref.
maximal violation of the inequality, this is equivalent to testing all [9] that any six-port beam splitter can be constructed from
possible unitary transformations of the local observation bés®s the above-mentioned one by adding appropriate phase
sociated with alternative local observatipnSuch unitary transfor-  shifters at its exit and input portand by a trivial relabeling
mations also include detecttutcome, eigenfunctiongelabelings.  of the output ports If the output beams of the beam splitter
Furthermore, in order to obtain a global maximum, one should scag, .o directly fed into detectors, as it will be in the case under
all possible local setting@vhich in turn can be used to parametrize consideration, the exit phase shifts can be, of course, ne-
the local unitary transformations of the bases of the local Observglected. The phase shifters in front of the input ports of the
ableg. This effectively includes the permutation on the settings of eam splitter can be tunable and used to change the phase of

the two alternative local observations in the inequalities. Second, - . .
present, there is no proof that the full set of inequalities, which caﬁ e incoming photoriFig. 1. The full set of the three phase

be generated from E@2) by all such relabelings, forms a sufficient shifts in front of the input ports of a beam splitter, which we

condition for a local realistic description of the probabilities. There-denote for convenience as a “vector” of phase shifts
fore, there is no practical need whatsoever to find a minimal subset (¢1,%2,¢3), can be treated as the set macroscopic local
of the inequalities in our discussion that would in any sense form garameters that can be arbitrary controlled by the observer,
complete sefe.g., a full set of linearly independent conditipns and which define the observable that is measured. Therefore,
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a six-port beam splitter, together with the three phase shift
devices, performs the unitary transformatiﬁn(]i;) with the
entriesU, =T, exp(¢,).

We calculate quantum probabilities in a standard way, i.e.,

Bk A1 kI F
Pom(ak:b)=(1 F)PQM(ak,b|)+9,

PEm(a)=Pou(ay),

PSv(ai;by) N
omieie ™ Qb (b)) =Qlu(by). ®)

Let us now assume that Alice measures two observables
defined by the following sets of phase shift§>1
=[0,(27/3),— (47/3)] and (2;22(0,77,#), whereas Bob
=Tr(Il, ®1| ¢><¢,|),Q'QM(b,)=Tr(| ® Iy [)(¢]) measures two observables defined by the sets of phase shifts

6,=[0,(57/6),(77/6)] and 6,=[0,(7/2),(37/2)]. It can

be verified numericallyanalytical verification is too difficult
- ) . . because one has to find the maximum of a twelve-variable
whered, denotes the set of phase shifts at Alice’s side whemynction defined on some bounded twelve-dimensional re-
she measures the observablg, 6, denotes the set of phase gion) that for these phase shifts we get the strongest violation
shifts at Bob’s side when he measures the obsenBpdnd  of the inequality(2). This is independent confirmation of the
I, Il are projectors on the statés),| b)), respectively. results presented in Ref5]. Straightforward calculations
One has give the following values of the probabilities for each experi-
ment(note that we give only the probabilities fér=0):

=TrIl, ® 11, U(d) @ U6 )] 0T( )

®07(6)),P&u(ax)

3 2

mzl exfli (pp+ S 1U mil i

L 1
ki . —
Pou(axib) =3 Pou(1:1)=PE(2;:2)=Pg(3;3) =Py (1:1)= >,

3
=57|3122 cos(cbﬂ}—@&)}, @ Pom(3:3)=Pgu(3:3)=Pgu(1:1)=Pgu(3:3)
4+243
where®y|= o1+ g+ [m(a+b,—2)](27/3). These prob- T T o7

abilities have the property that if the suap+ b, is the same
modulo 3 then they are equal, i.eP'gM(l;Z)= PSM(Z;l)

11 .9\ _ pl2 1)\ — p2l .9\ _ p22 .
=PSM(3;3), etc. Thus, they can be divided into three Pom(2:2)=Pqu(1:1)=Pqu(2;2)=Pqu(2:2)

equivalence classes and it is enough to provide only a repre- 4-23
sentative member of each class, for instance in the example = i (7)
above,Pg(1;2). 27

Following Ref.[4], we define the amount of violation of
local realism as the minimal noise admixtiltg, to the state _ . . s ; :
(3) below which the measured correlations cannot be delM0 the inequality(2), we find that it is not violated if
scribed by local realism for the given observables. Therefore= (11~ 61/3/2)=Fy,, [7]. This result is consistent with nu-

we assume that Alice and Bob perform their measurement&€rical result presented in Refd,5] as well as the analyti-
on the following mixed stat@e : cal proof presented in Reff5,8].
We can also use the CH inequalig) obtained here to

calculate the threshold value of quantum efficiency of detec-
pe=(1—F)|){ ]+ Fpnoises (5) tors above which there does not exist local and realistic de-
scription of the experiment for whick=0 (no noise¢. To

where 0<F=1 and wherep, ;. is a diagonal matrix with this end, we replace the probabiliti€d by probabilities de-

entries equal to 1/9. This matrix is a totally chaotic mixturenoted by bar Pom(axib) =7"Pgu(ac;b);  Pou(ad
(noise. For F=0 (pure maximally entangled statea local = nPéM(ak), GEM(bo: anM(bo, where  (0<#y=<1)
realistic description does not exist whereas For1 (pure  denotes the quantum efficiency of detectdis simplicity,
noise it does. Therefore, there exists some threshold valugve assume that the efficiency is the same for all detectors
of F, which we denote byF,, such that for everyF Putting these probabilities into Eq2), we get 5.,=6(15
<F,, a local realistic description is not valid. The bigger the —4/3)/59. Furthermore, in Appendix B we show that there
value of Fy,,, the stronger the violation of local realism is exists a local realistic model reproducing quantum-

All the single probabilities are equal th. Putting Eq.(7)

according to the measure defined here. mechanical probabilities for the experiment, provided that
The quantum probabilities calculatédenoted with tildg  the quantum efficiency of detectors is not greater than that
on Eq.(5) acquire the form calculated herey,, . In this way, we prove thai.,=6(15
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—4./3)/59 is the necessary and sufficient condition for the
existence of a local hidden variablgR)]. This may suggest
that the CH inequality for qutrits presented here is also a
sufficient condition for the existence of local realistic de-
scription of quantum correlations.

IV. CONCLUSIONS

We have derived 3of which 32 are independenin-
equalities as a necessary condition for the probabilities of
correlations observed in two three-dimensional physical sys-
tems to be describable in terms of local realism. We have
shown that these inequalities are violated by maximally en-
tangled state of two qutrits and the strength of violation de-
fined as the minimal noise admixtufg,,, hiding nonclassi-
cal nature of quantum correlations agrees with the numerical
results presented in previous papet®d]. Using the derived
inequalities, we calculated the critical quantum efficiency of
detectorsy., below which there exists a local realistic de-
scription of the investigated quantum system, which again
perfectly agrees with the numerical computati¢sk

As the numerical results give necessary and sufficient
conditions for violating local realism, the fact that inequali-
ties presented here give correct value$gf, and 7., at the
same time is consistent with the hypothesis that they are also
sufficient conditions for local realistic description.

We should mention here that after the inequality presented
in this paper had been made availapl®], in Ref.[8], a
series of Bell inequalities reproducing the threshold values of
noise admixture for arbitrary dimensidw confirming to a
very high accuracy the numerical results from Rg#5]
was presented. However, it can be checked easily that these
inequalities give overestimated values of threshold quantum
efficiencies of detectors needed to violate local realism.
Thus, these inequalities are only a necessary condition for
local realism. Indeed, it can be shoytl] that the inequality
for qutrits given in Ref[8] can be derived from the inequal-
ity (2) in this paper but the converse is not true.
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3 3 3 3
I(CH1=ZZ (2);1n)+ Z 2 P(2/;m,1)
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=

3 3 3 3
I(CHZ):Z,l nzl P(l,I;2,n)+Z, Z P(1,):m,2)

3 3 3 3
-3 S pk12zn+ S S P(k,1:m,2)
k=1 n=1 k=1 m=1

1n

3 3 3
-2 > 2 P(1);mn)

I=1 m=1n=1

3
]

3
> P(k,I:m,2),

m=1

Mw
M

=
I

s
I

=

3 3 3
2 P(2,I;2,n)+|2 E P(1);m,1)
n= =1 m=1

IIMw

3 3 3 3
-2 2 P22+ X 3 P(k2m,2).

k=1 n=1

Please notice that GHand CH are Clauser-Horne inequali-
ties for pairs of detectors 1 for Alice 2 for Bob and 2 for

Alice and 1 for Bob, respectively. By summing every terms
and rearranging if necessary, we get the following expres-
sion:
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APPENDIX A

In this appendix, we sketch the proof of inequalig) for
a=B=0 andx=y=0. For other values of, B, x, andy,
the proof is exactly similar. Let us consider the left-hand side
of the inequality. It can be written as a sum of three parts,
which we denote by(CH;), Z(CH,) andZ(G) (we use the
fact that probabilities appearing in the inequality can be writ-
ten as marginals of the joint probability distributjon

—[(P(1,1;1,)+P(1,1;1,3+P(1,1;2,9+P(1,1,2,3
+P(1,1;3,9+P(1,1;3,3+P(1,2;1,)+P(1,2;1,2
+2P(1,2;1,3+P(1,2;2,3+P(1,2;2,3+P(1,2;3,3
+P(1,3;1,)+P(1,3;1,2+P(1,3;1,3+P(1,3;3,)
+P(1,3;3,2+P(1,3;3,3+P(2,1;2,)+P(2,1;2,2
+P(2,1;2,3+P(2,1;3,)+P(2,1;3,2+P(2,1;3,3
+P(2,2;1,2+P(2,2;1,3+P(2,2;2,2+P(2,2,2,3
+P(2,2;3,2+P(2,2;3,3+P(2,3;1,2+P(2,3;2,2
+P(2,3;3,)+2P(2,3;3,2+P(2,3;3,3+P(3,1;1,)
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+2P(3,1;2,)+P(3,1;2,2+P(3,1;2,3+P(3,1;3,)
+P(3,2;1,)+P(3,2;1,2+P(3,2;1,3+P(3,2;2,)
+P(3,2;2,2+P(3,2;2,3+P(3,3;1,) +P(3,3;1,2
+P(3,3;2,)+P(3,3;2,2+P(3,3;3,)+ P(3,3;3,2 ],
(A2)

which due to the positivity of the joint probability distribu-
tion P(a;,a,;by,b,) is always negative or identically zero.
This completes the proof.

APPENDIX B

To prove thaty.,=6(15-43)/59 is also a sufficient
condition for the existence of local hidden variables, we
show that there exists a local hidden variable model repro-
ducing quantum probabilities fory,. Obviously, such a
model must account for the fact that there are probabilities of
nondetection events. The full quantum probabilities for each
pair of the experiments k,I read BSM(ak;b,)
= 7°Pu(ach) for ag,bi#0, PGy(ax:0)=Qgu(0;:by)
=1 7(1— 7) for a,,b#0 andP¥,(0;0)=(1— 7)?, where
0 denotes the lack of detection. In this case, the existence of
a local realistic description of the experiment is equivalent to
the existence of a joint probability distributidgalso denoted
by bar to distinguish it from the joint probability distribution
for the perfect caseP(a;,a,;b;,b,) with a;,a,,b;,b,
=0,1,2,3 that returns quantum probabilities as marginals,
ie.,

3 3
Pow(acb)= > X P(aj,ay;by,by), (B

a+1=0 by 1=

wherek+1 andl+1 are modulo 2. The model for,,

PHYSICAL REVIEW 85 032118
P(0,0;0,0=(1— 7,

P(3,3;3,3=P(3,3;2,3=P(3,2;3,3=P(3,2;3,)
=P(1,3;2,3=P(1,3;2,2=P(1,1;1,2
=P(1,1;2,2=P(2,1;1,0=P(2,1;1,2

2
Ner

=P(2,2;3,0=P(2,2,;1,)= 57

P(3,3;1,3=P(3,1;3,3=P(3,1:3,2=P(3,1;1,3

=P(3,1;1,2=P(3,2;3,2=P(1,3;2,)
=P(1,1;3,2=P(1,2;3,)=P(1,2;3,2
=P(1,2;2,0=P(1,2;2,2=P(2,3;1,3
=P(2,3;1,0=P(2,3;2,3=P(2,3;2,)

7e(4—243)

=P(2,1;1,3=P(2,2;2,) = o1

P(0,3;2,3=P(0,1;1,2=P(0,2;3,1=P(3,0;3,3

=P(3,3;0,3=P(3,2;3,0=P(1,0;2,2
=P(1,3;2,0=P(1,1,0,2=P(2,0;1,)
=P(2,1;1,0=P(2,2,09= %(1— er) ot -

(B2)

=6(15-4+/3)/59 is given belowprobabilities equal to zero It can be checked directly that the quantum probabilities

are not shown Pu(ax;by) are recovered using E¢B2).
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