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Clauser-Horne inequality for three-state systems
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We show a new Bell-Clauser-Horne inequality for two entangled three-dimensional quantum systems~so-
called qutrits!. This inequality is not violated by a maximally entangled state of two qutrits observed through
a symmetric three-input- and three-output-port beam splitter only if the amount of noise in the system is greater
than (1126A3)/2'0.308. This result is in a perfect agreement with the previous numerical calculations
presented in Kaszlikowskiet al. @Phys. Rev. Lett.85, 4418~2000!#. Moreover, we prove that for noiseless case,
the necessary and sufficient condition for the threshold quantum efficiency of detectors below which there is no
violation of local realism for the optimal choice of observables is equal to 6(1524A3)/59'0.821. This
efficiency result again agrees with the numerical predictions.
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I. INTRODUCTION

It is well known that the sufficient and necessary con
tion for the lack of existence of a local realistic description
two entangled qubits in an experiment in which Alice a
Bob measure two dichotomic observables is the violation
at least one out of four Clauser-Horne~CH! @1–3# inequali-
ties. However, for a system of two entangled thre
dimensional quantum objects~so-called qutrits!, there has
hitherto been no such inequality, i.e., the inequality givi
necessary and sufficientconditions for the existence of loca
realism. Numerical calculations based on the method of
ear programing, which give necessary and sufficient con
tions @4,5# ~as well as the analytical proof presented in R
@6# for the choice of observables giving the same violation
the numerical calculations! clearly demonstrates that the vio
lation of local realism for qutrits is stronger than for qubi

In general, the numerical calculations@4,5# as well as the
analytical proof confirming their validity@6# still do not al-
low us to appreciate fully the nature of quantum correlatio
and the possibility of their local and realistic description.
this paper, we present the set of Bell inequalities that see
be a straightforward extension of the CH inequalities to
bipartite system consisting of two qutrits. We do not hav
proof that this set of inequalities gives us sufficient and n
essary condition for local realism~we prove only the neces
sary condition!. However, it correctly reproduces numeric
results for N53 obtained in Refs.@4,5# concerning the
threshold noise admixture above which there is a local r
istic description as well as the critical efficiency of detecto
below which quantum correlations can be simulated cla
cally ~i.e., by local hidden variables!. This strongly suggests
that we also have sufficiency condition.

The paper is organized as follows. In Sec. I, we give
set of nine inequalities for bipartite system of qutrits, t
proof for which is given in Appendix A. In Sec. II, we show
that for the experiment with the maximally entangled qutr
1050-2947/2002/65~3!/032118~5!/$20.00 65 0321
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observed via symmetric six-port beam splitters, the inequ
ity is violated by quantum mechanics. Using the inequal
we calculate the threshold noise admixture and critical qu
tum efficiency of detectors that confirm the numerical resu
presented in Refs.@4,5#. We give final conclusions in Sec. III
Finally, in Appendix B, we prove that the calculated critic
quantum efficiency of detectors is also a sufficient condit
for the existence of local realism for the considered choice
observables.

II. INEQUALITY

In a Bell-type experiment with two qutrits Alice and Bo
measure one of the two trichotomic~three possible out-
comes! observables:A1 or A2 for Alice and B1 for B2 for
Bob. The outcomes of the measurement of observableAk
(k51,2) at Alice’s side is denoted byak (ak51,2,3)
whereas the outcomes of the measurement of observabBl
( l 51,2) at Bob’s side is denoted bybl (bl51,2,3). For each
pair of observablesAk ,Bl (k,l 51,2) we calculate the joint
quantum probabilitiesPQM

kl (ak ;bl), i.e., the probabilities of
obtaining by Alice and Bob simultaneously the resultsak and
bl ~coincidence ‘‘clicks’’ of detectors! and single quantum
probabilitiesPQM

k (ak),QQM
l (bl), i.e., the probabilities of ob-

taining the resultak by Alice irrespective of Bob’s outcome
and resultbk by Bob irrespective of Alice’s result.

A local realistic description is equivalent to the existen
of a joint probability distributionP(a1 ,a2 ;b1 ,b2), in which
the so-called marginals

Pkl~ak ;bl !5 (
ak1151

3

(
bl 1151

3

P~a1 ,a2 ;b1 ,b2!,

Pk~ak!5 (
ak1151

3

(
b151

3

(
b251

3

P~a1 ,a2 ;b1 ,b2!, ~1!
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KASZLIKOWSKI, KWEK, CHEN, ŻUKOWSKI, AND OH PHYSICAL REVIEW A 65 032118
Ql~bl !5 (
a151

3

(
a251

3

(
bl 1151

3

P~a1 ,a2 ;b1 ,b2!,

wherek11 and l 11 are modulo 2, recover quantum pro
abilities, i.e., PQM

kl (ak ;bl)5Pkl(ak ;bl), PQM
k (ak)5Pk(ak)

andQQM
l (bl)5Ql(bl). With these formulas@Eq. ~1!# one can

prove that the following set of 36 inequalities~of which at
most 32 are obviously independent! is valid:

P11a 11b~21x;11y!1P11a 21b~21x;11y!

2P21a 11b~21x;11y!1P21a 21b~21x;11y!

1P11a 11b~11x;21y!1P11a 21b~11x;21y!

2P21a 11b~11x;21y!1P21a 21b~11x;21y!

1P11a 11b~21x;21y!1P11a 21b~11x;11y!

2P21a 11b~21x;21y!1P21a 21b~21x;21y!2P11a~1

1x!2P11a~21x!2Q21b~11y!

2Q21b~21y!<0, ~2!

where x,y50,1,2; a,b50,1 and where the addition i
modulo 3 for x,y and modulo 2 fora,b.1 The proof is
straightforward but laborious and it is given in the Append
A. The above inequality is the necessary condition for
existence of a local and realistic description of the cons
ered experiment. It is interesting to notice that each of
above inequalities is the sum of two CH inequalities a
some additional term. For instance, forx5y50, we have the
following two CH inequalities: P11(2;1)1P12(2;1)
2P21(2;1)1P22(2;1)2P1(2)2Q2(1), P11(1;2)
1P12(1;2)2P21(1;2)1P22(1;2)2P1(1)2Q2(2) and the
term P11(2;2)1P12(1;1)2P21(2;2)1P22(2;2), which
bears a resemblance to an incomplete CH inequality, i.e.

1It is possible to obtain additional inequalities from the existi
ones using the freedom in the labeling of the results as well as
local settings of the measuring apparatus. However, this freedo
the labeling is of little importance here. First, if one searches for
maximal violation of the inequality, this is equivalent to testing
possible unitary transformations of the local observation bases~as-
sociated with alternative local observations!. Such unitary transfor-
mations also include detector~outcome, eigenfunctions! relabelings.
Furthermore, in order to obtain a global maximum, one should s
all possible local settings~which in turn can be used to parametriz
the local unitary transformations of the bases of the local obs
ables!. This effectively includes the permutation on the settings
the two alternative local observations in the inequalities. Secon
present, there is no proof that the full set of inequalities, which
be generated from Eq.~2! by all such relabelings, forms a sufficien
condition for a local realistic description of the probabilities. The
fore, there is no practical need whatsoever to find a minimal su
of the inequalities in our discussion that would in any sense for
complete set~e.g., a full set of linearly independent conditions!.
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CH inequality without single detection probabilities and wi
the termP12(2;2) replaced byP12(1;1).

III. VIOLATION OF THE INEQUALITY

We now show that the above inequality is violated
quantum mechanics. To this end, let us consider the follo
ing Bell experiment. The source produces maximally e
tangled stateuc& of two qutrits

uc&5
1

A3
~ u1&Au1&B1u2&Au2&B1u3&Au3&B), ~3!

whereuk&A and uk&B describekth basis state of the qutritA
andB, respectively. Such a state can be prepared with p
of photons using parametric down-conversion~see Ref.@9#!,
in which case ketsuk&A and uk&B denotes photons propaga
ing to Alice and Bob in modek. Starting with this state, Alice
and Bob measure one of two trichotomic observables defi
by a six-port beam splitter~three input and three outpu
ports!. The extended theory of such devices can be found
Ref. @9#. A brief description is provided below.

The unbiasedsix-port beam splitter@9# is a device with
the following property: if a photon enters any single inp
port ~out of the three!, there is equal probability that it leave
one of the three output ports. In fact, one can always c
struct a special six-port beam splitter with the distinguish
trait that the elements of its unitary transition matrix,T̂, are
solely powers of the complex number,a5exp(i2p/3),
namely,Tkl5(1/A3)a (k21)(l 21). It has been shown in Ref
@9# that any six-port beam splitter can be constructed fro
the above-mentioned one by adding appropriate ph
shifters at its exit and input ports~and by a trivial relabeling
of the output ports!. If the output beams of the beam splitte
are directly fed into detectors, as it will be in the case un
consideration, the exit phase shifts can be, of course,
glected. The phase shifters in front of the input ports of
beam splitter can be tunable and used to change the pha
the incoming photon~Fig. 1!. The full set of the three phas
shifts in front of the input ports of a beam splitter, which w
denote for convenience as a ‘‘vector’’ of phase shiftsfW
5(f1 ,f2 ,f3), can be treated as the set macroscopic lo
parameters that can be arbitrary controlled by the obser
and which define the observable that is measured. There
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FIG. 1. Experiment with two six-port beam splitters. Two sp
tially separated six-port devices are fed with a two-photon-be
entangled state~3!. Each local experimenter has three phases in
beams that define the observable that is measured. Also, at each
there are three photon detectorsDk

A andDl
B that register photons in

the output ports of the device.
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a six-port beam splitter, together with the three phase s
devices, performs the unitary transformationÛ(fW ) with the
entriesUkl5Tkl exp(ifl).

We calculate quantum probabilities in a standard way,

PQM
kl ~ak ;bl !

5Tr Pak
^ Pbl

Û~fW k! ^ Û„uW l uc&^cuÛ†~fW k!

^ Û†~uW l !…,PQM
k ~ak!

5Tr~Pak
^ I uc&^cu!,QQM

l ~bl !5Tr~ I ^ Pbl
uc&^cu!

,

wherefW k denotes the set of phase shifts at Alice’s side wh
she measures the observableAk , uW l denotes the set of phas
shifts at Bob’s side when he measures the observableBl and
Pak

,Pbl
are projectors on the statesuak&,ubl&, respectively.

One has

PQM
kl ~ak ;bl !5

1

3U (m51

3

exp@ i ~fA
m1fB

m!#UmkUmlU2

5
1

27F312 (
m.n

3

cos~Fkl
m2Fkl

n !G , ~4!

whereFkl
m[fA

m1fB
m1@m(ak1bl22)#(2p/3). These prob-

abilities have the property that if the sumak1bl is the same
modulo 3 then they are equal, i.e.,PQM

kl (1;2)5PQM
kl (2;1)

5PQM
kl (3;3), etc. Thus, they can be divided into thre

equivalence classes and it is enough to provide only a re
sentative member of each class, for instance in the exam
above,PQM

kl (1;2).
Following Ref.@4#, we define the amount of violation o

local realism as the minimal noise admixtureFthr to the state
~3! below which the measured correlations cannot be
scribed by local realism for the given observables. Theref
we assume that Alice and Bob perform their measurem
on the following mixed staterF :

rF5~12F !uc&^cu1Frnoise, ~5!

where 0<F<1 and wherernoise is a diagonal matrix with
entries equal to 1/9. This matrix is a totally chaotic mixtu
~noise!. For F50 ~pure maximally entangled state!, a local
realistic description does not exist whereas forF51 ~pure
noise! it does. Therefore, there exists some threshold va
of F, which we denote byFthr , such that for everyF
<Fthr a local realistic description is not valid. The bigger t
value of Fthr , the stronger the violation of local realism
according to the measure defined here.

The quantum probabilities calculated~denoted with tilde!
on Eq.~5! acquire the form
03211
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P̃QM
kl ~ak ;bl !5~12F !PQM

kl ~ak ,bl !1
F

9
,

P̃QM
k ~ak!5PQM

k ~ak!,

Q̃QM
l ~bl !5QQM

l ~bl !. ~6!

Let us now assume that Alice measures two observa
defined by the following sets of phase shiftsfW 1

5@0,(2p/3),2(4p/3)# and fW 25(0,p,p), whereas Bob
measures two observables defined by the sets of phase
uW 15@0,(5p/6),(7p/6)# and uW 25@0,(p/2),(3p/2)#. It can
be verified numerically~analytical verification is too difficult
because one has to find the maximum of a twelve-varia
function defined on some bounded twelve-dimensional
gion! that for these phase shifts we get the strongest viola
of the inequality~2!. This is independent confirmation of th
results presented in Ref.@5#. Straightforward calculations
give the following values of the probabilities for each expe
ment ~note that we give only the probabilities forF50):

PQM
11 ~1;1!5PQM

12 ~2;2!5PQM
21 ~3;3!5PQM

22 ~1;1!5
1

27
,

PQM
11 ~3;3!5PQM

12 ~3;3!5PQM
21 ~1;1!5PQM

22 ~3;3!

5
412A3

27
,

PQM
11 ~2;2!5PQM

12 ~1;1!5PQM
21 ~2;2!5PQM

22 ~2;2!

5
422A3

27
. ~7!

All the single probabilities are equal to13 . Putting Eq.~7!
into the inequality~2!, we find that it is not violated ifF
<(1126A3/2)5Fthr @7#. This result is consistent with nu
merical result presented in Refs.@4,5# as well as the analyti-
cal proof presented in Refs.@6,8#.

We can also use the CH inequality~2! obtained here to
calculate the threshold value of quantum efficiency of det
tors above which there does not exist local and realistic
scription of the experiment for whichF50 ~no noise!. To
this end, we replace the probabilities~7! by probabilities de-
noted by bar P̄QM

kl (ak ;bl)5h2PQM
kl (ak ;bl); P̄QM

k (ak)

5hPQM
k (ak), Q̄QM

k (bl)5hQQM
k (bl), where h (0<h<1)

denotes the quantum efficiency of detectors~for simplicity,
we assume that the efficiency is the same for all detecto!.
Putting these probabilities into Eq.~2!, we get hcr56(15
24A3)/59. Furthermore, in Appendix B we show that the
exists a local realistic model reproducing quantu
mechanical probabilities for the experiment, provided th
the quantum efficiency of detectors is not greater than
calculated here,hcr . In this way, we prove thathcr56(15
8-3
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24A3)/59 is the necessary and sufficient condition for
existence of a local hidden variables@10#. This may sugges
that the CH inequality for qutrits presented here is als
sufficient condition for the existence of local realistic d
scription of quantum correlations.

IV. CONCLUSIONS

We have derived 36~of which 32 are independent! in-
equalities as a necessary condition for the probabilities
correlations observed in two three-dimensional physical s
tems to be describable in terms of local realism. We h
shown that these inequalities are violated by maximally
tangled state of two qutrits and the strength of violation
fined as the minimal noise admixtureFthr hiding nonclassi-
cal nature of quantum correlations agrees with the numer
results presented in previous papers@4,5#. Using the derived
inequalities, we calculated the critical quantum efficiency
detectorshcr below which there exists a local realistic d
scription of the investigated quantum system, which ag
perfectly agrees with the numerical computations@5#.

As the numerical results give necessary and suffic
conditions for violating local realism, the fact that inequa
ties presented here give correct values ofFthr andhcr at the
same time is consistent with the hypothesis that they are
sufficient conditions for local realistic description.

We should mention here that after the inequality presen
in this paper had been made available@12#, in Ref. @8#, a
series of Bell inequalities reproducing the threshold value
noise admixture for arbitrary dimensionN confirming to a
very high accuracy the numerical results from Refs.@4,5#
was presented. However, it can be checked easily that t
inequalities give overestimated values of threshold quan
efficiencies of detectors needed to violate local realis
Thus, these inequalities are only a necessary condition
local realism. Indeed, it can be shown@11# that the inequality
for qutrits given in Ref.@8# can be derived from the inequa
ity ~2! in this paper but the converse is not true.
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APPENDIX A

In this appendix, we sketch the proof of inequality~2! for
a5b50 andx5y50. For other values ofa, b, x, andy,
the proof is exactly similar. Let us consider the left-hand s
of the inequality. It can be written as a sum of three pa
which we denote byI(CH1), I(CH2) andI(G) ~we use the
fact that probabilities appearing in the inequality can be w
ten as marginals of the joint probability distribution!
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I~CH1!5(
l 51

3

(
n51

3

P~2,l ;1,n!1(
l 51

3

(
m51

3

P~2,l ;m,1!

2 (
k51

3

(
n51

3

P~k,2;1,n!1 (
k51

3

(
m51

3

P~k,2;m,1!

2(
l 51

3

(
m51

3

(
n51

3

P~2,l ;m,n!

2 (
k51

3

(
l 51

3

(
m51

3

P~k,l ;m,1!, ~A1!

I~CH2!5(
l 51

3

(
n51

3

P~1,l ;2,n!1(
l 51

3

(
m51

3

P~1,l ;m,2!

2 (
k51

3

(
n51

3

P~k,1;2,n!1 (
k51

3

(
m51

3

P~k,1;m,2!

2(
l 51

3

(
m51

3

(
n51

3

P~1,l ;m,n!

2 (
k51

3

(
l 51

3

(
m51

3

P~k,l ;m,2!,

I~G!5(
l 51

3

(
n51

3

P~2,l ;2,n!1(
l 51

3

(
m51

3

P~1,l ;m,1!

2 (
k51

3

(
n51

3

P~k,2;2,n!1 (
k51

3

(
m51

3

P~k,2;m,2!.

Please notice that CH1 and CH2 are Clauser-Horne inequali
ties for pairs of detectors 1 for Alice 2 for Bob and 2 fo
Alice and 1 for Bob, respectively. By summing every term
and rearranging if necessary, we get the following expr
sion:

2@~P~1,1;1,1!1P~1,1;1,3!1P~1,1;2,1!1P~1,1;2,3!

1P~1,1;3,1!1P~1,1;3,3!1P~1,2;1,1!1P~1,2;1,2!

12P~1,2;1,3!1P~1,2;2,3!1P~1,2;2,3!1P~1,2;3,3!

1P~1,3;1,1!1P~1,3;1,2!1P~1,3;1,3!1P~1,3;3,1!

1P~1,3;3,2!1P~1,3;3,3!1P~2,1;2,1!1P~2,1;2,2!

1P~2,1;2,3!1P~2,1;3,1!1P~2,1;3,2!1P~2,1;3,3!

1P~2,2;1,2!1P~2,2;1,3!1P~2,2;2,2!1P~2,2;2,3!

1P~2,2;3,2!1P~2,2;3,3!1P~2,3;1,2!1P~2,3;2,2!

1P~2,3;3,1!12P~2,3;3,2!1P~2,3;3,3!1P~3,1;1,1!
8-4
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12P~3,1;2,1!1P~3,1;2,2!1P~3,1;2,3!1P~3,1;3,1!

1P~3,2;1,1!1P~3,2;1,2!1P~3,2;1,3!1P~3,2;2,1!

1P~3,2;2,2!1P~3,2;2,3!1P~3,3;1,1!1P~3,3;1,2!

1P~3,3;2,1!1P~3,3;2,2!1P~3,3;3,1!1P~3,3;3,2!#,

~A2!

which due to the positivity of the joint probability distribu
tion P(a1 ,a2 ;b1 ,b2) is always negative or identically zero
This completes the proof.

APPENDIX B

To prove thathcr56(1524A3)/59 is also a sufficien
condition for the existence of local hidden variables,
show that there exists a local hidden variable model rep
ducing quantum probabilities forhcr . Obviously, such a
model must account for the fact that there are probabilitie
nondetection events. The full quantum probabilities for ea
pair of the experiments k,l read P̄QM

kl (ak ;bl)

5h2PQM
kl (ak ;bl) for ak ,blÞ0, P̄QM

kl (ak ;0)5Q̄QM
kl (0;bl)

5 1
3 h(12h) for ak ,blÞ0 andP̄QM

kl (0;0)5(12h)2, where
0 denotes the lack of detection. In this case, the existenc
a local realistic description of the experiment is equivalen
the existence of a joint probability distribution~also denoted
by bar to distinguish it from the joint probability distributio
for the perfect case! P̄(a1 ,a2 ;b1 ,b2) with a1 ,a2 ,b1 ,b2
50,1,2,3 that returns quantum probabilities as margin
i.e.,

P̄QM
kl ~ak ;bl !5 (

ak1150

3

(
bl 1150

3

P̄~a1 ,a2 ;b1 ,b2!, ~B1!

where k11 and l 11 are modulo 2. The model forhcr

56(1524A3)/59 is given below~probabilities equal to zero
are not shown!:
e
e

03211
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f
h
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P̄~0,0;0,0!5~12hcr!
2,

P̄~3,3;3,3!5 P̄~3,3;2,3!5 P̄~3,2;3,3!5 P̄~3,2;3,1!

5 P̄~1,3;2,3!5 P̄~1,3;2,2!5 P̄~1,1;1,2!

5 P̄~1,1;2,2!5 P̄~2,1;1,1!5 P̄~2,1;1,2!

5 P̄~2,2;3,1!5 P̄~2,2,;1,1!5
hcr

2

27
,

P̄~3,3;1,3!5 P̄~3,1;3,3!5 P̄~3,1;3,2!5 P̄~3,1;1,3!

5 P̄~3,1;1,2!5 P̄~3,2;3,2!5 P̄~1,3;2,1!

5 P̄~1,1;3,2!5 P̄~1,2;3,1!5 P̄~1,2;3,2!

5 P̄~1,2;2,1!5 P̄~1,2;2,2!5 P̄~2,3;1,3!

5 P̄~2,3;1,1!5 P̄~2,3;2,3!5 P̄~2,3;2,1!

5 P̄~2,1;1,3!5 P̄~2,2;2,1!5
hcr

2 ~422A3!

81
,

P̄~0,3;2,3!5 P̄~0,1;1,2!5 P̄~0,2;3,1!5 P̄~3,0;3,3!

5 P̄~3,3;0,3!5 P̄~3,2;3,0!5 P̄~1,0;2,2!

5 P̄~1,3;2,0!5 P̄~1,1;0,2!5 P̄~2,0;1,1!

5 P̄~2,1;1,0!5 P̄~2,2;0,1!5
1

3
~12hcr!hcr .

~B2!

It can be checked directly that the quantum probabilit
P̄QM

kl (ak ;bl) are recovered using Eq.~B2!.
cu,

um
se

rv-
e
s.

.
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