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Nature of the stochastic processes defined by Bohm’s momentum and quantum force
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~Received 11 May 2001; published 26 February 2002!

The nature of the stochastic process defined by Bohm’s momentum is elucidated for stationary energy
eigenstates and nonstationary states in classically nonchaotic and chaotic Hamiltonian systems. In addition, the
nature of the stochastic process defined by Bohm’s quantum force is elucidated for stationary energy eigen-
states in nonchaotic and chaotic systems, and for nonstationary states in nonchaotic systems. From these
results, the following can be concluded. For stationary energy eigenstates, the process defined by the momen-
tum is generically a stationary, Dirac-delta process in both nonchaotic and chaotic systems; in contrast, the
process defined by the quantum force is nongeneric. For nonstationary states, the processes defined by the
momentum and quantum force are both nongeneric in nonchaotic systems. Furthermore, for nonstationary
states, the process defined by the momentum is, with a high level of confidence, a stationary, stable, brown
( f 22 power spectrum! process in the chaotic kicked pendulum. It is conjectured that this is also true for other
chaotic systems. The preceding conclusion and conjecture complement those in@Phys. Rev. A63, 042105
~2001!# for the process defined by the quantum force for nonstationary states in chaotic systems.

DOI: 10.1103/PhysRevA.65.032117 PACS number~s!: 03.65.Ta, 05.40.2a
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I. INTRODUCTION

According to Bohm’s@1,2# causal or ontological interpre
tation of quantum theory, which reproduces precisely all
predictions of the Copenhagen interpretation, matter ha
well-defined trajectory independent of observers. The mo
of a particle is@1,2# governed by a first-order ordinary dif
ferential equation for the positionx(t),

dx~ t !

dt
5

1

m
“S~x,t !U

x5x~ t !

, ~1!

wherem is the particle mass andS(x,t) is the phase of the
quantum wave function, or equivalently, by a coupled fir
order ordinary differential equations for the positionx(t) and
momentump(t) of the particle that has the form of Newton
second law of motion,

dx~ t !

dt
5

1

m
p~ t !, ~2a!

dp~ t !

dt
5@2“V~x,t !2“Q~x,t !#ux5x~ t ! , ~2b!

provided that the initial momentum is subject to the co
straintp(0)5“S(x,0)ux5x(0) . Bohm @1# viewed the second
term on the right-hand side of Eq.~2b!, i.e.,2“Q(x,t), as a
physical force, which he called ‘‘quantum’’ force, that ac
on the particle at each position in addition to the exter
classical force2“V(x,t). The quantum force is derive
from the ‘‘quantum’’ potential@1,2#

Q~x,t !52
\2

2m

¹2R~x,t !

R~x,t !
, ~3!

which is determined by the amplitudeR(x,t) of the quantum
wave function.
1050-2947/2002/65~3!/032117~7!/$20.00 65 0321
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Furthermore, according to Bohm@1#, because we are ig
norant of the precise actual initial position of the particle, w
are forced to use a statistical ensemble of particles, eac
which evolves deterministically according to either Eq.~1! or
Eqs. ~2a! and ~2b!. The time evolution of the ensemble re
quires the specification of an initial wave function for a
members of the ensemble and, for each member of the
semble ~labeled by indexj!, an initial random position
x( j )(0) wherex( j )(0) is distributed according to a chose
probability density. If the position probability density of th
ensemble equalsuc(x,0)u2 initially ~this is assumed through
out this paper!, it will equal uc(x,t)u2 for all times, wherec
is the time-dependent wave function@1#. For each member o
the ensemble~labeled by indexj!, its Bohmian momentum

p~ j !~ t !5“S~x,t !ux5x~ j !~ t ! ~4!

and also the quantum force it experiences at the Bohm
position

F~ j !~ t !52“Q~x,t !ux5x~ j !~ t ! ~5!

will generally depend on its initial random positionx( j )(0).
Hence, the set of time histories from the ensemble for e
momentum component~component is labeled by subscrip
k!, $pk

( j )(t)%, defines a stochastic process, and the set of t
histories from the ensemble for each quantum-force com
nent ~component is labeled by subscriptk!, $Fk

( j )(t)%, also
defines a stochastic process. This has not been apprec
until recently@3#.

In general, a stochastic process$y( j )(t)% is either station-
ary or nonstationary. Let

Wn~y1 ,t1 ;y2 ,t2 ;...;yn ,tn! ~6!

denote thenth-order joint probability density that the rando
variabley(t1) has valuey1 , and the random variabley(t2)
has valuey2 ,..., and therandom variabley(tn) has value
yn . Thenth-order correlation is defined as@4#
©2002 The American Physical Society17-1
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BOON LEONG LAN PHYSICAL REVIEW A 65 032117
^y~ t1!y~ t2!¯y~ tn!&5E y1y2¯yn

3Wn~y1 ,t1 ;y2 ,t2 ;...;yn ,tn!

3dy1dy2¯dyn . ~7!

A stochastic process is stationary if@4#

Wn~y1 ,t11t;y2 ,t21t; ...;yn ,tn1t!

5Wn~y1 ,t1 ;y2 ,t2 ;...;yn ,tn! ~8!

for all n and t. In particular @4#, the first-order probability
density is independent of time, i.e.,W1(y1 ,t1)5W1(y1),
and the second-order probability density can only depend
the time difference, i.e.,W2(y1 ,t1 ;y2 ,t2)5W2(y1 ,y2 ,t2
2t1).

In a previous paper@3#, the nature of the stochastic pro
cess defined by Bohm’s quantum force was elucidated
nonstationary quantum states in classically chaotic Ham
tonian systems. In particular, the numerical results@3# sug-
gest that the stochastic process is a stationary, non-Gau
stable@5#, white ~flat power spectrum! process. In this paper
the nature of the stochastic process defined by Bohm’s
mentum is studied for stationary energy eigenstates and
stationary states in both nonchaotic and chaotic Hamilton
systems. Results are presented in Sec. II. In addition, ext
ing previous work@3#, the nature of the stochastic proce
defined by Bohm’s quantum force is studied for station
energy eigenstates in nonchaotic and chaotic systems,
for nonstationary states in nonchaotic systems. Results
presented in Sec. III. In Sec. IV, conclusions are drawn fr
the results of Secs. II and III, and a conjecture on the na
of the stochastic process defined by Bohm’s momentum
nonstationary states in chaotic systems is given.

II. MOMENTUM

A. Stationary energy eigenstates

Consider the set ofreal, bound-state energy eigenfun
tions fn(x) with corresponding energiesEn of a Hamil-
tonian system with a time-independent potentialV(x). Clas-
sically, such systems must have at least two degree
freedom, i.e., four-dimensional phase space, for the poss
ity of chaos. If the initial wave function is an energy eige
function fn(x), then the wave function at a later timet is

c~x,t !5fn~x!exp~2 iEnt/\!. ~9!

For all stationary energy eigenstates above, the Bohmian
mentum of each member of the ensemble given by Eq.~4! is

p~ j !~ t !50 ~10!

because the phase of the wave function is independentx.
For each momentum componentk, the stochastic proces
$pk

( j )(t)% is thus a stationary process with the followingnth-
order joint probability density,
03211
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Wn~p1 ,t1 ;p2 ,t2 ;...;pn ,tn!5d~p1!d~p2!•••d~pn!,
~11!

regardless of whether the system is classically chaotic or

B. Nonstationary states

1. Classically nonchaotic systems

Two nonchaotic Hamiltonian systems are studied he
harmonic oscillator and free particle.

For the one-dimensional harmonic oscillator, if the initi
wave function is a minimum-uncertainty Gaussian wa
packet with position standard deviationA\/2mv, then the
wave packet remains Gaussian without spreading in posi
and momentum,

c~x,t !5S mv

p\ D 1/4

expF2
mv

2\
~x2a cosvt !2G

3expH 2
i

2 Fvt1
mv

\

3~2ax sinvt2 1
2 a2 sin 2vt !G J . ~12!

For this nonstationary state that is initially centered ata in
position, the Bohmian momentum of each member of
ensemble given by Eq.~4! is @6#

p~ j !~ t !52mva sinvtux5x~ j !~ t !52mva sinvt. ~13!

The stochastic process$p( j )(t)% is thus a nonstationary pro
cess with the followingnth-order joint probability density,

Wn~p1 ,t1 ;p2 ,t2 ;...;pn ,tn!5d„p12~2mva sinvt1!…d„p2

2~2mva sinvt2!…¯d„pn

2~2mva sinvtn!…. ~14!

For the one-dimensional free particle, if the initial wav
function is a minimum-uncertainty Gaussian wave pack
then the wave packet remains Gaussian that spreads in
tion but not in momentum,

c~x,t !5S 1

2ps t
2D 1/4

expS 2x2

4s t
2 DexpH i F f ~ t !x2

4s t
2

2 1
2 tan21@ f ~ t !#G J , ~15!

wheref (t)5\t/2ms0
2, ands t

25s0
2@11 f 2(t)# is the position

variance at timet. For this nonstationary state, which re
mains centered at 0 both in position and momentum,
Bohmian position of each member of the ensemble is gi
by

x~ j !~ t !5x~ j !~0!@11 f 2~ t !#1/2. ~16!
7-2
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So the Bohmian momentum of each member of the ensem
given by Eq.~4! is

p~ j !~ t !5
\ f ~ t !

2s t
2 xU

x5x~ j !~ t !

5a~ t !x~ j !~0!, ~17!

where

a~ t !5
\ f ~ t !@11 f 2~ t !#1/2

2s t
2 . ~18!

The stochastic process$p( j )(t)% is thus nonstationary. The
first-order probability densityW1(p1 ,t1) is just the probabil-
ity density ofa(t1)x( j )(0). Given that the probability density
of the random positionx( j )(0) is uc(x( j )(0),0)u2, i.e., a
Gaussian centered at 0 with variances0

2 @see Eq.~15!#, it is
easy to show using the transformation of variable techni
that W1(p1 ,t1) is also a Gaussian centered at 0 but w
variancea2(t1)s0

2,

W1~p1 ,t1!5F 1

2pa2~ t1!s0
2G1/2

expF 2p1
2

2a2~ t1!s0
2G . ~19!

Higher-order joint probability densities (n>2) are given by

Wn~p1 ,t1 ;p2 ,t2 ;...;pn ,tn!

5W1~p1 ,t1!dS p22
a~ t2!

a~ t1!
p1D

3dS p32
a~ t3!

a~ t1!
p1D¯dS pn2

a~ tn!

a~ t1!
p1D .

~20!

For the one-dimensional free particle, if the initial wa
function is

c~x,0!5Ai ~Bx/\2/3!, ~21!

whereB is a constant and Ai is the Airy Function, then@7#

c~x,t !5Ai „~B/\2/3!~x2B3t2/4m2!…exp@ i ~B3t/2m\!

3~x2B3t2/6m2!#. ~22!

For this stationary state that propagates without spreadin
position, the Bohmian momentum of each member of
ensemble given by Eq.~4! is

p~ j !~ t !5
B3t

2mU
x5x~ j !~ t !

5
B3t

2m
. ~23!

The stochastic process$p( j )(t)% is, therefore, a nonstationar
process with the followingnth-order joint probability density
03211
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Wn~p1 ,t1 ;p2 ,t2 ;...;pn ,tn!5dS p12
B3t1

2m D dS p2

2
B3t2

2m D¯dS pn2
B3tn

2m D .

~24!

2. Classically chaotic system

Here a well-known prototypical classically chaotic Ham
tonian system: the periodically delta-kicked plane pendul
@8# is studied.

Figure 1 shows a realization of the stochastic proc
$p( j )(t)% ~p here is angular momentum! where the momen-
tum just before each instantaneous gravitational kick is p
ted. For this sample function, the system parameters aa
[mLgT50.005 andb[T/mL2550, where the kicking pe-
riod T51 ~m andL are, respectively, the mass and length
the pendulum;g is the acceleration due to gravity!. The ini-
tial wave function is a superposition of free-rotor ener
eigenstates

c~u,0!5
1

A2p
(

k52`

`

Ak~0!eiku, ~25!

where the expansion coefficientAk(0) is Gaussian centere
at k0 ,

Ak~0!5S 2s0
2

p D 1/4

exp@2s0
2~k2k0!2#exp~2 iku0! ~26!

with s050.01, u05p, and k053142. The initial Bohmian
angle is p. And we chose\50.0001 for ease of wave
function propagation. Details of the numerical integration
the time-dependent Schro¨dinger’s equation and Bohm’s
equation of motion~1!, in order to yield the momentum time
series, are given in@3#. All quantities stated above with di
mensions are in arbitrary units.

Figure 2 shows the estimated univariate probability d
sity of the univariate data set consisting of all the 25 0
momentum values in Fig. 1, together with a univariate sta

FIG. 1. A realization of the stochastic process defined
Bohm’s angular momentum~in arbitrary unit! in a prototypical clas-
sically chaotic Hamiltonian system: the periodically delta-kick
pendulum.
7-3
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probability density fit to the data using Nolan’sSTABLE pro-
gram@9#. Univariate stable distributions are characterized
four parameters: characteristic exponentaP(0,2#, skewness
bP@21,1#, scale gP(0,̀ ), and shift or location d
P(2`,`) @5#. The maximum likelihood fit@10#, based on
reliable computations of stable densities, produced the
lowing stable parameters in theS0 parametrization:a
51.628, b520.0122, g51.97631023, and d50.3142.
The closeness of the estimated data density and the fi
stable density in Fig. 2 shows that the stable fit is go
Furthermore, the variance-stabilized PP~percent-percent!
plot @10,11# in Fig. 3 also indicates a good stable fit since t
plotted points are essentially on the diagonal~the closer the
points are to the diagonal, the better the fit!.

Next, a bivariate data set, consisting, of 25 000 adjac
pairs of values obtained from the whole momentum ti
series in Fig. 1, was analyzed. First, the scalar produc
each bivariate data with a fixed two-dimensional unit vec
is formed to yield a set of univariate data. Then, for vario
anglew of the unit vector~angle is measured from the pos
tive horizontal axis; counter-clockwise angle is positiv!:
90°, 67.5°, 45°, 22.5°, 0°,222.5°,245°, 267.5°, the corre-
sponding univariate data set is fitted with a univariate sta
density using the maximum likelihood method in Nolan

FIG. 2. Univariate probability density of the univariate data
obtained from the whole sample function in Fig. 1: smoothed d
density~solid line! and fitted stable density~dotted line!. The fitted
stable density is essentially symmetric (b520.0122) with a non-
Gaussian characteristic exponenta51.628.
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STABLE program. For each of the eight angles, the dens
plot and variance-stabilized PP plot diagnostics both indic
a good univariate stable fit. The stable parameter functi
a~w!, b~w!, g~w!, andd~w! ~in the S0 parametrization! from
the fits are given in Table I. The good univariate stable d
sity fits, and the near constant value of the characteri
exponenta~w! as a function ofw implies ~see@10# for proof
of the theorem! that the bivariate probability density of th
original bivariate data is a stable density. The constant va
of the characteristic exponent, and the parameter funct
b~w!, g~w!, andd~w! completely characterize@10# a bivariate
stable density.

Each univariate data set obtained from a different par
the sample function in Fig. 1 is also stable distributed w
essentially the same stable parameters as the ones fo
data set from the whole sample function. Furthermore, e
bivariate data set obtained from a different part of the sam
function in Fig. 1 is also stable distributed with essentia
the same characteristic exponent and parameter funct
b~w!, g~w!, and d~w! as the ones for the data set from th
whole sample function. This implies@12# that the stochastic
process$p( j )(t)%, of which the sample function in Fig. 1 is
realization, is a stationary process in the wide sense@rather
than in the strict sense defined in Eq.~8!#. Furthermore, the
fitted univariate and bivariate stable probability densities
essentially the same for different sample functions cor

FIG. 3. Variance-stabilized PP~percent-percent! plot for the
univariate data set obtained from the whole sample function
Fig. 1.

t
a

tained
TABLE I. Fitted stable parameter functions for a bivariate data set of adjacent momentum values ob
from the whole sample function in Fig. 1.

Angle w
~degrees!

Characteristic
exponenta ~w!

Skewness
b ~w!

Scale
g ~w!

~units of 1023!
Shift/location

d ~w!

90 1.627 20.0123 1.976 0.3142
67.5 1.607 20.0011 1.788 0.4105
45 1.586 0.0182 1.720 0.4443
22.5 1.585 20.0037 1.768 0.4105
0 1.627 20.0123 1.976 0.3142

222.5 1.689 20.0216 2.246 0.1700
245 1.702 0.0148 2.356 21.98631025

267.5 1.675 0.0139 2.238 20.1700
7-4
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NATURE OF THE STOCHASTIC PROCESSES DEFINED . . . PHYSICAL REVIEW A65 032117
sponding to different initial Bohman angles, and, theref
@12,13#, the process$p( j )(t)% is ergodic in the wide sense
Wide ergodicity means@12# that the first-order and second
order probability densities,W1(p1) and W2(p1 ,p2 ,t22t1),
for the process can be obtained, respectively, as the prob
ity densities of univariate and bivariate data sets from
sample function. The second-order correlation function
also be obtained from a sample function: directly as a ti
average@12#, or indirectly as the Fourier transform of th
one-sided power spectrum@14#.

The natural log of the power of the sample function
Fig. 1 is plotted in Fig. 4 vs the natural log of the frequen
The one-sided power spectrum was calculated using
maximum entropy~all poles! method @14#. The excellent
straight-line fit implies that the power spectrum behaves a
power law,

P~ f !5C fn, ~27!

whereC and n are constants. The fit yieldsC58.031027

andn522.0.
All the results above were found to be typical for a varie

of system parameters and initial wave functions. For the s
tem parameters, different value ofa5mLgT and b
5T/mL2 was used such that the dimensionless productab
ranges from 1024 to 1. The productab determines the degre
of chaos in classical phase space: the transition from loca
weak chaos to global or strong chaos occurs atab'0.9716
@8#. For the initial wave function:~i! the parameterss0 , u0 ,
andk0 of the expansion coefficients in Eq.~26! were varied,
~ii ! N expansion coefficients of equal amplitude 1/AN were
used, and~iii ! different mth free-rotor energy eigenstate wa
used as the initial wave function, i.e.,Ak(0)5dkm in Eq.
~25!. In all of these diverse cases, the stochastic proc
$p( j )(t)% is thus stationary in the wide sense with first-ord
and second-order probability densities that are, respectiv
univariate and bivariate stable densities. The stable par
eters, however, generally vary with the system parame
and initial wave function. Moreover, in all cases, the proc
is a brown@15# colored process because the power spect
of a sample function obeys a power law@see Eq.~27!# with

FIG. 4. The natural-log of the power of the whole sample fun
tion in Fig. 1 vs the natural-log of the frequency~in arbitrary units!
up to the Nyquist frequency of 0.5. The Nyquist frequency is
fined @14# as 1/~2D! whereD is the sampling interval, in this case
~in arbitrary units!. The straight line is the fit.
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n522.0 ~the constantC, however, varies with system pa
rameters and initial wave function!.

III. QUANTUM FORCE

A. Stationary energy eigenstates

For the stationary state given by Eq.~9!, because the
phase is independent ofx, Eq. ~1! implies that the Bohmian
position of each member of the ensemble is constant in t

x~ j !~ t !5x~ j !~0!. ~28!

The quantum potentialQ is time independent, and
“Q(x,t)5“Q(x)52“V(x), where V is the time-
independent classical potential. Hence Eq.~5! gives a time-
independent quantum force experienced by each membe
the ensemble at its Bohmian position,

F~ j !~ t !5“V~x!ux5x~ j !~0! . ~29!

For each quantum-force componentk, the stochastic proces
$Fk

( j )(t)% is thus a stationary process because each realiza
is time independent. In general,

Fk
~ j !~ t !5 f k„x

~ j !~0!…, ~30!

where f k is either a linear or nonlinear real function of th
random positionx( j )(0). The first-order probability density
W1(F1 ,t1)5W1(F1) is just the probability density of
f k(x

( j )(0)), which can be determined, in principle@16#,
given that the probability density of the random positi
x( j )(0) is fn

2
„x( j )(0)… @recall that the initial wave function is

the real energy eigenfunctionfn(x), see Sec. II A#. Different
energy eigenfunction will lead to a differentW1(F1).
Higher-order joint probability densities (n>2) are given by

Wn~F1 ,t1 ;F2 ,t2 ;...;Fntn!5W1~F1!d~F22F1!d~F3

2F1!¯d~Fn2F1!. ~31!

B. Nonstationary states

Two nonchaotic Hamiltonian systems are studied he
harmonic oscillator and free particle.

For the one-dimensional harmonic oscillator, for the no
stationary state given by Eq.~12!, the Bohmian position of
each member of the ensemble is@6#

x~ j !~ t !5x~ j !~0!1a cosvt2a. ~32!

Therefore, Eq.~5! gives a time-independent quantum for
experienced by each member of the ensemble at its Bohm
position,

F ~ j !~ t !5mv2~x2a cosvt !ux5x~ j !~ t !5mv2@x~ j !~0!2a#.
~33!

The stochastic process$F ( j )(t)% is thus stationary. The first
order probability densityW1(F1 ,t1)5W1(F1) is just the
probability density of mv2@x( j )(0)2a#. Given that the
probability density of the random positionx( j )(0) is

-

-

7-5
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BOON LEONG LAN PHYSICAL REVIEW A 65 032117
uc„x( j )(0),0…u2, i.e., a Gaussian centered ata with variance
\/2mv @see Eq.~12!#, it is easy to show using the transfo
mation of variable technique thatW1(F1) is also a Gaussian
but centered at 0 with variance\mv3/2. Higher-order joint
probability densities (n>2) are given by

Wn~F1 ,t1 ;F2 ,t2 ;...;Fn ,tn!5W1~F1!d~F22F1!d~F3

2F1!¯d~Fn2F1!. ~34!

For the one-dimensional free particle, Eq.~5! gives, for
the nonstationary state in Eq.~15!, a time-dependent quan
tum force experienced by each member of the ensemble a
Bohmian position given by Eq.~16!,

F ~ j !~ t !5
\2

4ms t
4 xU

x5x~ j !~ t !

5b~ t !x~ j !~0!, ~35!

where

b~ t !5
\2

4ms t
3s0

. ~36!

The stochastic process$F ( j )(t)% is thus nonstationary. The
first-order probability densityW1(F1 ,t1) is just the probabil-
ity density ofb(t1)x( j )(0). Given that the probability density
of the random positionx( j )(0) is uc„x( j )(0),0…u2, i.e., a
Gaussian centered at 0 with variances0

2 @see Eq.~15!#,
W1(F1 ,t1) is also a Gaussian centered at 0 but with varia
b2(t1)s0

2. Higher-order joint probability densities (n>2) are
given by

Wn~F1 ,t1 ;F2 ,t2 ;...;Fn ,tn!

5W1~F1 ,t1!dS F22
b~ t2!

b~ t1!
F1D

3dS F32
b~ t3!

b~ t1!
F1D¯dS Fn2

b~ tn!

b~ t1!
F1D .

~37!

For the one-dimensional free particle, for the nonstati
ary state given by Eq.~22!, Eq. ~5! gives a time-independen
quantum force experienced by each member of the ense
at its Bohmian position@17#,

F ~ j !~ t !5
B3

2mU
x5x~ j !~ t !

5
B3

2m
. ~38!

The stochastic process$F ( j )(t)% is thus stationary with the
following nth-order joint probability density
03211
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Wn~F1 ,t1 ;F2 ,t2 ;...;Fn ,tn!5dS F12
B3

2mD dS F2

2
B3

2mD¯dS Fn2
B3

2mD .

~39!

IV. CONCLUSIONS AND A CONJECTURE

Section II A shows that the stochastic process defined
Bohm’s momentum is the same for all stationary ene
eigenstates, independent of whether the system is classi
nonchaotic or chaotic. In particular, the process is a stat
ary, Dirac-delta process@see Eq.~11!#.

Section II B 1 shows that, for nonstationary states, the s
chastic process defined by Bohm’s momentum is nongen
in classically nonchaotic systems@compare Eqs.~14!, ~20!,
and ~24!#.

The numerical results in Sec. II B 2 show that, for nons
tionary states, the stochastic process defined by Bohm’s
mentum is stationary in the wide sense with first-order a
second-order stable probability densities in the classic
chaotic kicked pendulum. It is, however, not possible
practice to numerically check that the process is station
and stable for all orders, i.e., in the strict sense. But ver
cation that the process is stationary and stable in the w
sense strongly suggests that it is so in the strict sens
conjecture that, for nonstationary states, the stochastic
cess defined by Bohm’s momentum is also a station
stable, brown~f 22 power spectrum! process in other classi
cally chaotic Hamiltonian systems. This conjecture is mo
vated by the fact that this class of system exhibits, for n
stationary states, generic quantum signatures in:
variances of the wave function@18–21#, the real and imagi-
nary parts of the wave function@22#, and, more relevantly,
the amplitude and phase of the wave function@23#. Recall
that the phase of the wave function essentially determines
momentum of each member of an ensemble through Eq.~4!.
Thus the generic behavior of the phase should lead to a
neric behavior in the stochastic process defined by the
mentum.

Section III A shows that, for stationary energy eigenstat
the stochastic process defined by Bohm’s quantum forc
nongeneric in both classically nonchaotic and chaotic s
tems@see Eq.~31!#.

Section III B shows that, for nonstationary states, the s
chastic process defined by Bohm’s quantum force is non
neric in classically nonchaotic systems@compare Eqs.~34!,
~37!, and~39!#.

Work in progress, to be reported elsewhere, involves
placing the ordinary differential equation~1! and Eqs.~2a!
and~2b! by their appropriate stochastic versions and deriv
from them the time-evolution equation for, respectively, t
position probability density and phase-space probability d
sity. The aim is to determine whether these time-evolut
equations agree with the corresponding ones from Boh
theory.
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