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Nature of the stochastic processes defined by Bohm’s momentum and quantum force
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The nature of the stochastic process defined by Bohm’'s momentum is elucidated for stationary energy
eigenstates and nonstationary states in classically nonchaotic and chaotic Hamiltonian systems. In addition, the
nature of the stochastic process defined by Bohm’s quantum force is elucidated for stationary energy eigen-
states in nonchaotic and chaotic systems, and for nonstationary states in nonchaotic systems. From these
results, the following can be concluded. For stationary energy eigenstates, the process defined by the momen-
tum is generically a stationary, Dirac-delta process in both nonchaotic and chaotic systems; in contrast, the
process defined by the quantum force is nongeneric. For nonstationary states, the processes defined by the
momentum and quantum force are both nongeneric in nonchaotic systems. Furthermore, for nonstationary
states, the process defined by the momentum is, with a high level of confidence, a stationary, stable, brown
(f 2 power spectrumprocess in the chaotic kicked pendulum. It is conjectured that this is also true for other
chaotic systems. The preceding conclusion and conjecture complement thidaeys Rev. A63, 042105
(2001)] for the process defined by the quantum force for nonstationary states in chaotic systems.
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[. INTRODUCTION Furthermore, according to Bohfil], because we are ig-
norant of the precise actual initial position of the particle, we
According to Bohm’q1,2] causal or ontological interpre- are forced to use a statistical ensemble of particles, each of
tation of quantum theory, which reproduces precisely all thevhich evolves deterministically according to either Ep.or
predictions of the Copenhagen interpretation, matter has Egs. (28 and(2b). The time evolution of the ensemble re-
well-defined trajectory independent of observers. The motiomjuires the specification of an initial wave function for all
of a particle is[1,2] governed by a first-order ordinary dif- members of the ensemble and, for each member of the en-

ferential equation for the positiox(t), semble (labeled by indexj), an initial random position
x1(0) wherex(0) is distributed according to a chosen
dx(t) 1 probability density. If the position probability density of the
ar EVS(X"‘) ' (D ensemble equals/(x,0)|? initially (this is assumed through-

X=x(t) out this paper, it will equal | (x,t)|? for all imes, wherey

wherem is the particle mass an§(x,t) is the phase of the is the time-dependent wave fu_ncFi[)I]. For _each member of
quantum wave function, or equivalently, by a coupled first-th® ensemblélabeled by indey), its Bohmian momentum

order ordinary differential equations for the positixft) and (1) =VS(x.t _ 4

momentunp(t) of the particle that has the form of Newton’s P (D=t @
second law of motion, and also the quantum force it experiences at the Bohmian

position
dx(t) 1 .

dt Ep(t), (29 F(J)(t): _VQ(X:t)|x:x(j)(t) (5)

dp(t) will generally depend on its initial random positiofi’(0).
T:[_VV(XII)_VQ(th):HX:X(t)! (2b) Hence, the set of time histories from the ensemble for each

momentum componerfcomponent is labeled by subscript
k), {p(k‘)(t)}, defines a stochastic process, and the set of time
histories from the ensemble for each quantum-force compo-
nent (component is labeled by subscripy, {F{’(t)}, also
defines a stochastic process. This has not been appreciated
fmtil recently[3]. _

In general, a stochastic procesd!(t)} is either station-
ary or nonstationary. Let

provided that the initial momentum is subject to the con-
straintp(0) =V S(x,0)|x-x(0) - Bohm[1] viewed the second
term on the right-hand side of E@b), i.e.,— VQ(x,t), as a
physical force, which he called “quantum” force, that acts
on the particle at each position in addition to the external
classical force—VV(x,t). The quantum force is derived
from the “quantum” potential1,2]

B hZ VZR(X,t) Wn(Y11t1;YZ’t2;---§Yn:tn) (6)
QxH=-35 R(x,t) ©  genote thenth-order joint probability density that the random
variabley(t,) has valuey,, and the random variabhg(t,)
which is determined by the amplitud¥ x,t) of the quantum has valuey,,..., and therandom variabley(t,) has value
wave function. Yn. Thenth-order correlation is defined §4]
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Wi(P1,t1:P2,to;...iPnsty) =8 1] - 0(Pn),
<y(t1)y(t2)---y(tn)>=Jy1y2-~~yn (PrtaiPafai:iPn o) =0P1) 2P2) = O(Pr) (11)

XWh(y1,t1iYa,tas..¥n,th) regardless of whether the system is classically chaotic or not.

Xdyidy; --dyy. () _
B. Nonstationary states

A stochastic process is stationary| 4] 1. Classically nonchaotic systems

Two nonchaotic Hamiltonian systems are studied here:
harmonic oscillator and free particle.
=Wn(Y1,t1:Y2,t25..3Yn,th) (8) For the one-dimensional harmonic oscillator, if the initial
wave function is a minimum-uncertainty Gaussian wave
for all n and . In particular[4], the first-order probability ~Packet with position standard de\./iatiodﬁ/me,. then the
density is independent of time, i.eW;(y;,t;)=W,(y;), Wave packet remains Gaussian without spreading in position
and the second-order probability density can only depend oand momentum,
the time difference, i.e.Wo(y1,t1;Y2,15)=Ws(y(,Y5,ts

Wﬂ(yl 1t1+ T;YZ 1t2+ Ty oen ryn ltrl+ T)

1/4
_tl) . w Mw 2
In a previous papel3], the nature of the stochastic pro- Pxt)= h exr{ B ﬁ(x—acosm)
cess defined by Bohm’s quantum force was elucidated for .
nonstationary quantum states in classically chaotic Hamil- Xexp[ ! ot 4+ Mo
tonian systems. In particular, the numerical res[@ksug- 2 h

gest that the stochastic process is a stationary, non-Gaussian
stable[5], white (flat power spectrumprocess. In this paper,

the nature of the stochastic process defined by Bohm's mo-
mentum is studied for stationary energy eigenstates and non-
stationary states in both nonchaotic and chaotic HamiltoniaiFor this nonstationary state that is initially centerechan
systems. Results are presented in Sec. Il. In addition, extenghosition, the Bohmian momentum of each member of the
ing previous work[3], the nature of the stochastic processensemble given by Ed4) is [6]

defined by Bohm’s quantum force is studied for stationary

X (2axsinwt— 3a?sin 2wt)

] . (12)

energy eigenstates in nonchaotic and chaotic systems, and  pi)(t)=—mea Sinwt|,— i1 = —Mwasinet. (13
for nonstationary states in nonchaotic systems. Results are
presented in Sec. Ill. In Sec. IV, conclusions are drawn from]-he stochastic proceétap(j)(t)} is thus a nonstationary pro-

the results of S_ecs. Il'and III,_and a conjecture on the natur@.qs with the followingnth-order joint probability density,
of the stochastic process defined by Bohm’s momentum for

nonstationary states in chaotic systems is given. .
y y g Wi(P1,t1:P2,t25...Pn th) = 8(p1— (— Mwasinwt,)) 5(p;

Il. MOMENTUM —(—measinwt,))---5(p,

A. Stationary energy eigenstates —(—mwasinwt,)). (14)

Consider the set ofeal, bound-state energy eigenfunc- . . . : -
tions ¢,(x) with corresponding energieg, of a Hamil- qu th? one—dmensmnal freg particle, 'T the initial wave
function is a minimum-uncertainty Gaussian wave packet,

tonian system with a time-independent poterkigk). Clas- en the wave packet remains Gaussian that spreads in posi-
sically, such systems must have at least two degrees F‘ vep P P
ion but not in momentum,

freedom, i.e., four-dimensional phase space, for the possibil-

ity of chaos. If the initial wave function is an energy eigen- 2

function ¢,(X), then the wave function at a later tinhés Jx.) = 1 1/4ex -x? expl i f()x
. ’ 2wt 407 407
p(X,1) = pn(x)exp( —iEqt/7). 9
—Llig !
For all stationary energy eigenstates above, the Bohmian mo- ztan [f(t)]H ' (15

mentum of each member of the ensemble given by(&qgs
_ wheref (t) =#t/2mo?, ando?= o3[ 1+ f3(t)] is the position
p(t)=0 (100 variance at timet. For this nonstationary state, which re-

mains centered at 0 both in position and momentum, the

because the phase of the wave function is independext of Bohmian position of each member of the ensemble is given

For each momentum componekit the stochastic process by

{p{)(t)} is thus a stationary process with the followinth-

order joint probability density, xD(t)y=xD(0)[1+ f2(t)]¥2 (16)
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So the Bohmian momentum of each member of the ensemble  0.36

given by Eq.(4) is

0 Af(t) 0 _,_E:’_, 0.33

P =77 X =a(t)x(0), 17) S

o-t x:x(j)(t) E
< 0.30 |
where
0.27 T T T T
2 1/2
a(t)= hf(t)[1+£ (0] (18) 0 5000 10000 15000 20000 25000
20 Kick

The stochastic proces{s',)(”(t)} is thus nonstationary. The FIG. 1. A realization of the stochastic process defined by
first-order probability densityV, (p; ,t,) is just the probabil- ~Bohm’s angular momenturiin arbitrary uniy in a prototypical clas-
ity density ofa(tl)x(”(O). Given that the probability density sically chaotic Hamiltonian system: the periodically delta-kicked
of the random positiorx(0) is |¢(x1)(0),0)?, i.e., a pendulum.
Gaussian centered at 0 with variam:é [see Eq(19)], it is B3

) X ! . 1
easy to show using the transformatlon of variable technlque W, (P1.tyiPaits; -;pn’tn):5< py— 5 )5( P,
that W,(p,,t1) is also a Gaussian centered at O but with m

variancea®(t,) o2, B3t, B3t
n
2m ) 5( Pn 2m ) '

172 —p?
ex;{ —} . (19 (24

2a%(ty)og

Wi(p1,ty)=

2ma’(ty) O'S

) o . . . 2. Classically chaotic system
Higher-order joint probability densitiesn&2) are given by , ) . )
Here a well-known prototypical classically chaotic Hamil-
We(P1ot1Partaeiprity) 'Eg?gnstsgjiteeg.m the periodically delta-kicked plane pendulum
a(ty) Figure 1 shows a realization of the stochastic process
=W1(D1,t1)5( P2 mpl) {pW(t)} (p here is angular momentymvhere the momen-
! tum just before each instantaneous gravitational kick is plot-
a(t,) ted. For this sample function, the system parametersaare
( - a(ty) Dl) =mLgT=0.005 ando=T/mL?=50, where the kicking pe-
riod T=1 (mandL are, respectively, the mass and length of
(200 the pendulumg is the acceleration due to gravityThe ini-

tial wave function is a superposition of free-rotor energy
For the one-dimensional free particle, if the initial wave eigenstates

a(ty)
X 5( p3— alty) P1

function is
(¢ 0)—L % A(0)e? (25)
(x,0)=Ai(BX/H?), (21) pio0="77= 2 Ad0e™
whereB is a constant and Ai is the Airy Function, thgn| where the expansion coefficieA{(0) is Gaussian centered
atkg,
P(x,t) = Ai((B/:23)(x— B3t?/4m?))exl i (B3t/2m#) o2 1
X(X_B3t2/6m2)] (22) Ak(0)=(7) eXF[_O'S(k_ko)Z]qu_”(eo) (26)

For this stationary state that propagates without spreading iwith o= 0.01, 6=, andky=3142. The initial Bohmian
position, the Bohmian momentum of each member of theangle is 7. And we chose=0.0001 for ease of wave-

ensemble given by Ed4) is function propagation. Details of the numerical integration of
the time-dependent Schtimger’s equation and Bohm'’s
. B3t B3t equation of motior(1), in order to yield the momentum time
pI(t)==— =—. (23)  series, are given ifi3]. All quantities stated above with di-
2m| 2m . . : .
x=x(t) mensions are in arbitrary units.

_ Figure 2 shows the estimated univariate probability den-
The stochastic procegp!)(t)} is, therefore, a nonstationary sity of the univariate data set consisting of all the 25001
process with the followingith-order joint probability density momentum values in Fig. 1, together with a univariate stable

032117-3



BOON LEONG LAN PHYSICAL REVIEW A 65032117

160 1 -

= 0.8 - .
@ 120 | '
% 0 6 i
= g,
§ 0.4 -
9] 40
& 0.2

0 T 0 T T T T T

0.30 0.31 0.32 0.33 0 0.2 04 0.6 0.8 1

Momentum Stable fit

FIG. 2. Univariate probability density of the univariate data set g\, 3. variance-stabilized PRpercent-perceptplot for the

obtained from the whole sample function in Fig. 1: smoothed datqnjvariate data set obtained from the whole sample function in
density(solid line) and fitted stable densitigdotted ling. The fitted Fig. 1.

stable density is essentially symmetrig=€ —0.0122) with a non-

Gaussian characteristic exponent 1.628. STABLE program. For each of the eight angles, the density

plot and variance-stabilized PP plot diagnostics both indicate

probability density fit to the data using NolarssABLE pro-  a good univariate stable fit. The stable parameter functions
gram[9]. Univariate stable distributions are characterized bya(¢), B(¢), Y (¢), and &¢) (in the S° parametrizationfrom
four parameters: characteristic exponent (0,2], skewness the fits are given in Table I. The good univariate stable den-
Be[—1,1], scale ye(0,), and shift or location§  sity fits, and the near constant value of the characteristic
e (—,») [5]. The maximum likelihood fif10], based on exponenta(¢) as a function ofp implies (see[10] for proof
reliable computations of stable densities, produced the folef the theoremthat the bivariate probability density of the
lowing stable parameters in th& parametrization: « original bivariate data is a stable density. The constant value
=1.628, B=—0.0122, y=1.976<x10°°, and §=0.3142. of the characteristic exponent, and the parameter functions
The closeness of the estimated data density and the fittg®(¢), ¥(¢), and&¢) completely characteriZ€l0] a bivariate
stable density in Fig. 2 shows that the stable fit is goodstable density.
Furthermore, the variance-stabilized Rpercent-percent Each univariate data set obtained from a different part of
plot[10,11] in Fig. 3 also indicates a good stable fit since thethe sample function in Fig. 1 is also stable distributed with
plotted points are essentially on the diagofthe closer the essentially the same stable parameters as the ones for the
points are to the diagonal, the better the fit data set from the whole sample function. Furthermore, each

Next, a bivariate data set, consisting, of 25000 adjacenbivariate data set obtained from a different part of the sample
pairs of values obtained from the whole momentum timefunction in Fig. 1 is also stable distributed with essentially
series in Fig. 1, was analyzed. First, the scalar product ofhe same characteristic exponent and parameter functions
each bivariate data with a fixed two-dimensional unit vectorB(¢), ¥(¢), and &¢) as the ones for the data set from the
is formed to yield a set of univariate data. Then, for variouswhole sample function. This impligd 2] that the stochastic
angle e of the unit vectorangle is measured from the posi- procesgp)(t)}, of which the sample function in Fig. 1 is a
tive horizontal axis; counter-clockwise angle is positive realization, is a stationary process in the wide sdnatner
90°, 67.5°, 45°, 22.5°, 0°-22.5°, —45°, —67.5°, the corre- than in the strict sense defined in E§)]. Furthermore, the
sponding univariate data set is fitted with a univariate stablditted univariate and bivariate stable probability densities are
density using the maximum likelihood method in Nolan's essentially the same for different sample functions corre-

TABLE I. Fitted stable parameter functions for a bivariate data set of adjacent momentum values obtained
from the whole sample function in Fig. 1.

Scale
Angle ¢ Characteristic Skewness v (@) Shift/location
(degrees exponenta (¢) B (o) (units of 10°3) S (o)
90 1.627 —0.0123 1.976 0.3142
67.5 1.607 —0.0011 1.788 0.4105
45 1.586 0.0182 1.720 0.4443
22.5 1.585 —0.0037 1.768 0.4105
0 1.627 —0.0123 1.976 0.3142
—-22.5 1.689 —0.0216 2.246 0.1700
—45 1.702 0.0148 2.356 —1.986x10°°
—-67.5 1.675 0.0139 2.238 —0.1700

032117-4



NATURE OF THE STOCHASTIC PROCESSES DEFINED. .. PHYSICAL REVIEW6A. 032117

2 n=—2.0 (the constantC, however, varies with system pa-
rameters and initial wave functign
-2
g IIl. QUANTUM FORCE
o -6
A A. Stationary energy eigenstates
c
-10 For the stationary state given by E(P), because the
phase is independent &f Eq. (1) implies that the Bohmian
14 : ‘ ; position of each member of the ensemble is constant in time
- 6 -4 2 0 . ,
8 xD(t)=x1(0). 29

In (frequency)

The quantum potentialQ is time independent, and
FIG. 4. The natural-log of the power of the whole sample func-VQ(X )=VQ(x)=—VV(x), where V is the time-
tion in Fig. 1 vs the natural-log of the frequen@y arbitrary unit$ indepéndent classical poter;tial. Hence E&).gives a time-

up to the Nyquist frequency of 0.5. The Nyquist frequency is de-. .
fined[14] as 1(2A) whereA is the sampling interval, in this case 1 independent quaptum forge eXpe.n.enced by each member of
the ensemble at its Bohmian position,

(in arbitrary unit3. The straight line is the fit.

(D(t)= ;
sponding to different initial Bohman angles, and, therefore FU=VVX)exino - 29

[12,13, the procesgp(t)} is ergodic in the wide sense. For each quantum-force componénthe stochastic process
Wide ergodicity mean$l12] that the first-order and second- (r()(t)} is thus a stationary process because each realization
order probability densitiesy;(p;) and W,(p;,p2,to—t1), is time independent. In general,
for the process can be obtained, respectively, as the probabil-
ity densities of univariate and bivariate data sets from a Ff(j)(t):fk(x(i)(o)), (30)
sample function. The second-order correlation function can
also be obtained from a sample function: directly as a timavheref, is either a linear or nonlinear real function of the
average[12], or indirectly as the Fourier transform of the random positiorx!))(0). The first-order probability density
one-sided power spectrufi4]. Wy (F,t1)=W,(F;) is just the probability density of
The natural log of the power of the sample function inf, (x()(0)), which can be determined, in principleL6],
Fig. 1 is plotted in Fig. 4 vs the natural log of the frequency.given that the probability density of the random position
The one-sided power spectrum was calculated using thgi)(0) is gbﬁ(x(j)(O)) [recall that the initial wave function is
maximum entropy(all poles method[14]. The excellent the real energy eigenfunctiay,(x), see Sec. Il A Different
straight-line fit implies that the power spectrum behaves as gnergy eigenfunction will lead to a differentvy(F,).

power law, Higher-order joint probability densities1i&2) are given by

P(f)=Cf", @7 Wi(F1,t15F o5 iFatn) = Wa(F1) 8(F,— F 1) 8(Fs
where C and n are constants. The fit yieldS=8.0x 10"’ —Fqy)8(F,—Fq). (31
andn=—2.0.

All the results above were found to be typical for a variety
of system parameters and initial wave functions. For the sys-
tem parameters, different value cA=mLgT and b Two nonchaotic Hamiltonian systems are studied here:
=T/mL? was used such that the dimensionless prodict harmonic oscillator and free particle.
ranges from 10* to 1. The producéb determines the degree For the one-dimensional harmonic oscillator, for the non-
of chaos in classical phase space: the transition from local ditationary state given by E¢12), the Bohmian position of
weak chaos to global or strong chaos occurata0.9716  €ach member of the ensemble( &

[8]. For the initial wave function(i) the parameters, 6, Dy — (i) _
andk, of the expansion coefficients in E(6) were varied, xT(t)=x7(0) +acoswt —a. (32
(ii) N expansion coefficients of equal amplitude/l/ were Therefore, Eq(5) gives a time-independent quantum force

used, andiii) differentmth free-rotor energy eigenstate was gyperienced by each member of the ensemble at its Bohmian
used as the initial wave function, i.eA(0)= 6y, in EQ.

B. Nonstationary states

osition,
(25). In all of these diverse cases, the stochastic proces%
{pW(t)} is thus stationary in the wide sense with first-order FU)(t) = mw?(X—a coswt) |y iy =Mw?[x1(0) - a].
and second-order probability densities that are, respectively, (33

univariate and bivariate stable densities. The stable param- _

eters, however, generally vary with the system parameterhe stochastic proceg& ()(t)} is thus stationary. The first-
and initial wave function. Moreover, in all cases, the proces®rder probability densityW;(F4,t;)=W,(F,) is just the

is a brown[15] colored process because the power spectrunprobability density of mw?[x(0)—a]. Given that the
of a sample function obeys a power ldgee Eq.27)] with probability density of the random positioxd(0) is
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|4(x(V(0),0)?, i.e., a Gaussian centered awith variance _ o 3
hl2mw [see Eq(12)], it is easy to show using the transfor- Wi(F1,t1F2,t25. . Fn th) = 6| Fy— om S| F2
mation of variable technique th¥¥,(F,) is also a Gaussian

but centered at 0 with variandemw?/2. Higher-order joint B? sl E B?
probability densitiesif=2) are given by “om) T om)-
(39
Wh(F1,ty;Fa o). F 0 th) =We(F1) 8(F2—F1) 6(F3
—F1)6(Fn=Fy1). (34
IV. CONCLUSIONS AND A CONJECTURE
For the one-dimensional free particle, E§) gives, for Section Il A shows that the stochastic process defined by

the nonstationary state in E¢L5), a time-dependent quan- Bohm’s momentum is the same for all stationary energy
tum force experienced by each member of the ensemble at itsgenstates, independent of whether the system is classically
Bohmian position given by Eq16), nonchaotic or chaotic. In particular, the process is a station-
ary, Dirac-delta procedsee Eq(11)].
2 Section II B 1 shows that, for nonstationary states, the sto-
2X =b(t)x1(0), (35) chastic process defined by Bohm’s momentum is nongeneric
4mo x=x()(t) in classically nonchaotic systenisompare Eqs(14), (20),
and (24)].
The numerical results in Sec. 11 B 2 show that, for nonsta-
where tionary states, the stochastic process defined by Bohm’s mo-
mentum is stationary in the wide sense with first-order and
2 second-order stable probability densities in the classically
—. (36) chaotic kicked pendulum. It is, however, not possible in
4maiog practice to numerically check that the process is stationary
and stable for all orders, i.e., in the strict sense. But verifi-

The stochastic proceds()(t)} is thus nonstationary. The cation that the process is stati_on_ary ar_1d stable .in the wide
first-order probability densityV,(F,t;) is just the probabil-  S€NSe strongly suggests that it is so in the strict sense. |

ity density ofb(tl)x(”(O). Given that the probability density conjectur_e that, for nonstationary state_s, the stochasf[ic pro-
of the random positiorx(0) is |[¢#(x1)(0),0/?, i.e., a cess defined by Bohm's momentum is also a stationary,

Gaussian centered at 0 with varianoé [see Eq.(15)], stable, bro‘.’w(ffz power spectrumproc'ess in. other C.IaSSi'.
W, (F,,t;) is also a Gaussian centered at 0 but with variancé:ally chaotic Ham|lt0n|ar_1 systems. This conjeth_lre IS moti-
b2(t,) Ug. Higher-order joint probability densitiesie 2) are vate_d by the fact that this _class of system exhibits, f(_)r.non-
given by stationary states, generic quantum signatures in: the

variances of the wave functidi8-21], the real and imagi-
nary parts of the wave functiof22], and, more relevantly,
W, (Fq,t1iFo o Fputy) the amplitude and phase of the wave funct[@3]. Recall
that the phase of the wave function essentially determines the
b(ty) momentum of each member of an ensemble through&qg.
mFl Thus the generic behavior of the phase should lead to a ge-
neric behavior in the stochastic process defined by the mo-
O o O P P mentum.
3 bty ! " bty ) Section Il A shows that, for stationary energy eigenstates,
37) the stochastic process defined by Bohm’s quantum force is
nongeneric in both classically nonchaotic and chaotic sys-
tems[see Eq(31)].

For the one-dimensional free particle, for the nonstation- Section Ill B shows that, for nonstationary states, the sto-
ary state given by Eq22), Eq. (5) gives a time-independent chastic process defined by Bohm’s quantum force is nonge-
quantum force experienced by each member of the ensembiric in classically nonchaotic systeffmompare Eqs(34),
at its Bohmian positiofi17], (37), and(39)].

Work in progress, to be reported elsewhere, involves re-

3 5 placing the ordinary differential equatidid) and Eqgs.(2a)

Fa)(t) :B_ :B_ (39) and(2b) by their appropriate stochastic versions and deriving

2m 2m’ from them the time-evolution equation for, respectively, the

position probability density and phase-space probability den-

. sity. The aim is to determine whether these time-evolution

The stochastic proceq&")(t)} is thus stationary with the equations agree with the corresponding ones from Bohm's
following nth-order joint probability density theory.

F(J)(t):

b(t)=

:Wl(Fl,t1)5(Fz_

x=x{)(t)
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