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We investigate the quantum-classical transition in Sakinction-kicked rotor and the attainment of the
classical limit in terms of measurement-induced state localization. It is possible to study the transition by fixing
the environmentally induced disturbance at a sufficiently small value, and examining the dynamics as the
system is made more macroscopic. When the system action is relatively small, the dynamics is quantum
mechanical and when the system action is sufficiently large there is a transition to classical behavior. The
dynamics of the rotor in the region of transition, characterized by the late-time momentum diffusion coeffi-
cient, can be strikingly different from both the purely quantum and classical results. Remarkably, the early-time
diffusive behavior of the quantum system, even when different from its classical counterpart, is stabilized by
the continuous measurement process. This shows that such measurements can succeed in extracting essentially
guantum effects. The transition regime studied in this paper is accessible in ongoing experiments.
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I. INTRODUCTION markable features which are well within the reach of present-
day experiments.

Explorations of the transition from quantum-to-classical One of the remarkable features of the QDKR which
behavior in nonlinear dynamical systems constitute one ofiistinguishes it from its classical counterpart is the behavior
the frontier areas of present theoretical research. The recentff its late-time momentum diffusion constantD,,
re_alized. possibility of carrying out controlled experiments inE"mHoc d<p2(t)>/dt. In the classical case, this quantity at-
this regime[1-3] has added greatly to the impetus for in- {3ins a constant valu®,,, whereas for the QDKR, it falls to

creasing our understanding of this transition, quite asidgerg This latter phenomenon is termed dynamical localiza-
from the undoubtedly fundamental importance of the subjec&ion [8]. In addition, the QDKR also displays a nontrivial

The point at issue is not so much the status of formal Semigiation of the early-time intrinsic momentum diffusion co-

classical approximations in the sense of taking the rn"’Ith('afﬁcient, Dinit,» as a function of the stochasticity parameter

ematical limit4—0, but a description and understanding of . .
the processes that take place in actual experiments on tlgg]' and strong resistance to decoherefi@-19. This last

dynamical behavior obbservedyuantum systems. Quantum €ature relates to the fact that it is_ possible_ for_ ext_ernal noise
decoherence and conditioned evolution arising as a cons@nd decoherence to break dynamical localization in the sense
quence of system-environment couplings and the act of oghat the late-time quantitp,#0, nevertheles), remains
servation provide a natural pathway to the classical limit a$mall and far from its classical value unless very strong noise
has been demonstrated quantitatively in Hédi. (see also strength is employed. Finally, the QDKR possesses the added
Ref.[5]) and is reviewed in the next section. attraction that it can be studied via atomic optics experiments
Comparison of the dynamics of closed quantum and clasutilizing laser-cooled atoms and allowing some degree of
sical systems in explicit examples has shown a variety ofontrol of the coupling to an external environment via spon-
behaviors. At the one extreme, there exist systems wher@neous emission proces$@$ This system consists of non-
guantum and classical averages track each other for loniggteracting atoms in a magneto-optical trap; on turning on a
times [6], and at the other extreme, there are systems imletuned standing light wave with wave-numisgr=2/X\,
which the averages break away from each other decisively dhe atoms scatter photons resulting in an atomic momentum
finite times[7]. Since even this second class of systems ddick of 2.k, with every such event. Internal degrees of free-
attain classical dynamics when the action is sufficientlydom can be eliminated since the large detuning precludes
large, they undergo a clear transition from a “quantum” to apopulation transfer between atomic states. The resulting dy-
“classical” behavior as the parameters of the system controlnamics is restricted to the momentum space of the atoms and
ling its action are varied, and are of particular interest to acan be described by simple effective Hamiltonians, the
study of the quantum-classical transition. The quantunHamiltonian for the QDKR being one of the implementable
Ssfunction-kicked rotor(QDKR) is a well-studied example examples.
of this class of system and it is our purpose here to investi- Our main consideration is a systematic analysis of the
gate the quantum-classical transition in this system withimuantum-classical transition induced via position measure-
the framework based on the theory of continuous measuragnent for the nondissipativé-function-kicked rotor using the
ment presented in Ref4]. As will be demonstrated below, late-time momentum diffusion rate as a diagnostic tool. Even
the quantum-classical transition regime possesses some fiough quantum dynamical localization typically suppresses
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late-time diffusion D,=0 at late times we find that a small ample of an environment that naturally provides a measure-
measurement strengthe., weak noisgcan stabilize an in- ment is that of the(quantum electromagnetic field with
trinsically quantum early-time effe¢the enhancement of the which the system is surrounded. Monitoring this environ-
initial quantum diffusion rate predicted by Shepelyanskyment consists of focusing the light which is reflected from
[16]) and produce a nonzero final diffusion rate much largetthe system, allowing the motion to be observed. If the envi-
than the classical value. The predicted effect is large andonment is not being monitored, then the evolution is simply
should be observable in present experiments studying thgiven by averaging over all the possible motions of the sys-
guantum-classical transition in the QDKR. We also commentem. (Classically, this means an average over any uncertainty
on the behavior of the diffusion coefficient near a quantumn the initial conditions, and over the noise realizations.
resonance and on the nontrivial nature of the approach to the It has now been established quantitatively that continuous
classical noise-dominated value for the diffusion rate as thebservation of the position of a single quantum-mechanical
noise induced by the measurement is increased. Our theorategree of freedom, is sufficient to correctly predict the emer-
ical results have been confirmed recently by a more detailedence of classical motion when the action of the system is
analysis relevant to specific experimental realizatidig. sufficiently large compared té. In particular, inequalities
The plan of the paper is as follows. In Sec. Il, we providehave been derived involving the strength of the environmen-
a short review of recent work on continuous measuremental interaction and the Hamiltonian of the system, which, if
and the quantum-classical transition, moving on to the spesatisfied, will result in classical motiof4] (see also Ref.
cific case of the QDKR in Sec. IIl. In Sec. IV, we explain [5]). These inequalities, therefore, refine the notion of what it
how the late-time diffusion coefficient provides a window to means for a system to be macroscopic.
investigate the quantum-classical transition in this system A detailed explanation of the reason that continuous mea-
and in Sec. V, we describe the detailed nature of the transsurement induces the quantum-to-classical transition may be
tion. Section VI is a short conclusion. found in Refs.[4,21,22. To recapitulate that analysis, the
emergence of classical behavior arises from simultaneous
satisfaction of two counteracting constraints. The first is that
Il. CONTINUOUS MEASUREMENT AND THE a sufficiently strong observation process is needed to main-
QUANTUM-TO-CLASSICAL TRANSITION tain localization of the particle in phase space, and, thereby,

Macroscopic mechanical systems are observed to 0be[yoduce classical motion of the centroid of the Wigner func-
classical mechanics. However, the atoms which ultimatelyfion [4] from Ehrenfest's theorem. On the other hand, even
make up the macroscopic systems certainly obey quanturfﬁ’r a localized distribution, a strong measurement introduces
mechanics. Since classical and quantum evolution are diffefCiS€ into the system, and this needs to be bounded to a

ent, the question of how the observed classical mechanid®icroscopic scale. These constraints are satisfied for an ever
emerges from the underlying quantum mechanics arises in{'Créasing range of measurement strengths as the system pa-

mediately. This emergence, referred to as the quantum-tg@Mmeters become large enough to make the quantum unit of
classical transition, is particularly curious in light of the fact action, i-e.4, negligible. Thus, when systems are sufficiently
that classical mechanical trajectories that often exhibit chaodhacroscopic, they exhibit classical motion with a negligible
are governed by nonlinear dynamics whereas the ver§mount of irreducible quantum noise, a noise that, in prac-
concept of a phase-space trajectory for a closed quantuif® 1S always swamped by classical measurement uncertain-

system is ill defined, and any signatures of chaos are, at bed{es and tiny environmental disturbances. o
indirect. As mentioned above, these arguments can be codified into

8 k>

If quantum mechanics is really the fundamental theory@ set of inequalities. Fir_st, to r_naintain enoygh localization to
then one must be able to predict the emergendghef often guarantee that, at a typical point on the_trajgctory, one has for
chaotio classical trajectories by describing a macroscopidhe forceF(x), (F(x))~F({x)), as required in the classical
object with sufficient realism, but fully quantum mechani- I|m|tz the measurement strengftiefined precisely in the next
cally. Sufficient ingredients to perform such a descriptionS€ction, k, must stop the spread of the wave function at the
have now been founf4,5]. The solution has involved the Uunstable point$23], 3,F>0,
realization thatll real systems are subject to interaction with 5
their environment. This interaction does at least two things. Ik /|‘9><F| 2.1)
First, it subjects the system to noise and dampi®)19 (as F 2m’ '

a consequence all real classical systems are subject to noise

and damping—even if very smalland second, the environ- ~ Second, as noted already, a large measurement strength
ment provides a means by which information about the sysintroduces noise into the trajectory. Demanding that averaged

tem can be extracteeffectively continuously if desired  over a characteristic time period of the system, the change in

providing a measurement of the systgad]. position and momentum due to the noise are small compared

Since observation of a system is essential in order that tht® those induced by the classical dynamics, it is sufficient
trajectories followed by that system can be obtained and andhat, at a typical point on the trajectory, the measurement
lyzed (this being just as true classically as quantum mechanisatisfy
cally), it may be expected that this process must be included
in the description of the macroscopic system in order to cor- 2|a,F| |0xF|s

4 ; . . <hk<
rectly predict the emergence of classical trajectories. An ex- 7S 4

: (2.2
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wheres is the typical value of the actiof24] of the system large, the system is microscopic and will behave quantum
in units of 2 and » ranges from zero to unity and character- mechanically under weak environmental interaction. The
izes the efficiency of the measurem¢iar the measurements ability to change the system action relativesitdi.e., chang-
considered in this papermy=1). Obviously ass becomes ing k) allows a systematic experimental study of the
large, this relationship is satisfied for an ever larger range ofjuantum-classical transition. The parameter ranges we have
k, and this defines the classical limit. studied numerically below have been chosen to be more or
This understanding of the quantum-to-classical transitiorless typical of those utilized in present experiments. Finally,
in terms of quantum measurement which has emerged withiwe note that the scaling required to bring the equation to this
the last ten years is, of course, completely consistent with thdimensionless form hides the fact that increasing the dimen-
mechanism usually referred to as decoherence, since averagjonless effective Planck’s constdnat fixed « involves in-
ing over the results of the measurement process gives th&easing the period between the kicks and decreasing their
same evolution as an interaction with an unobserved envistrength—thus, all else being equal, this system is expected
ronment(in particular, the environment through which the to behave more clasically under observation when the kicks
system is being monitor¢din which the environment is are harder and spaced closer in time.
traced over. Thus, the treatment in terms of measurement is The effect of random momentum kicks due to spontane-
actually a microscopic analysis of the process of decohefeus emission can be modeled approximately by a weak cou-
ence. However, examining the measurement process allowsing to a thermal bath25]. In current experiments the atom
us to obtain an understanding of why it is that decoherencenteracts with a standing wave of laser light leading to a
causes classical motion to emerge, and also allows us t@inusoidal spatial modulation of the bath coupling. This
realize the trajectories themselves, something that is imposnodulation in turn produces a corresponding spatial varia-
sible when the environment is merely traced over. Knowl-tion in the diffusion coefficient of the master equation de-
edge of the dynamics of the individual quantum trajectoriesscribing the evolution of the reduced density matrix for the
provides new information not available from a traditional position of the atom. In the language of continuous measure-
decoherence analysis and, as we show below, this more minents, spontaneous emission can be regarded as a measure-
croscopic information can be helpful in understanding pheiment of a function of the positior, namely, cos{). While
nomena even at the level of expectation values. one can certainly study this class of measurement processes,
With this understanding of the mechanism of the emerin this paper we will study the case of continuous measure-
gence of classical motion, it becomes pertinent to ask thenents of position. In general, as far as the study of the
question, how does the dynamics of a particular systenguantum-classical transition is concerned, the exact nature of
change as it is made more macroscopic? That is, what haphe measurement process is not expected to be important
pens to the dynamics as it passes through the transition froprovided that it yields sufficient information to enable the
quantum motionwhen its action is very smalto classical observer to localize the system in phase space.
motion (when its action is sufficiently larg@ In the follow- A continuous measurement of position is described by the
ing sections we address this question for #®é&unction-  (nonlineaj stochastic Schidinger equatiorj26]
kicked rotor.

~ 1 ~
+dt))=| 1— = (iH + Kkg?)dt+ t||4(1)),
IIl. QDKR UNDER CONTINUOUS OBSERVATION [W(t+dv)=| 1 k('H kkg)dt+4kaRityd ]W( 2

The Hamiltonian controlling the evolution of the QDKR @3
is where the continuous measurement record obtained by the
observer is
12
R(t)dt=(q(t))dt+dW/ 8K, (3.4)

~ 1
AP0 )= 5 oo+ agcos2k,g) S ot'—nT).
) (3.0 dW being Wiener noise. The noise represents the inherent
randomness in the outcomes of measurements. Aside from

It is more convenient to study this system by rescaling varithe unitary evolution, this equation describes changes in the

ables, in terms of which the new Hamiltonian becorfies] ~ system wave function as a result of measurements made by
the observer. The parametecharacterizes the rate at which

1 information is extracted from the systdi27].
H(p,q,t)= §p2+ K €OSqY, 8(t—n), (3.2 Averaging over all possible results of measurements leads
A to a master equation describing the evolution of the reduced
density matrix for the system. This master equation has the

whereq and p are dimensionless position and momentum,form

satisfying[q,p]=ik, for a dimensionlesk=4ﬁka/m, and

k is the scaled kick strength. Following the experimental : i

situation, we will use a typical value of=10 and open p:_E[H'p]_k[q'[q'p]l 3.9
boundary conditions og. The value ok is a measure of the

system action relative td. When k is small, the system where the diffusion coefficient is given y.,~kk?, with
action is large compared to and the system can be consid- D, the diffusion constant describing the rate at which the
ered to be effectively macroscopic. Conversely, witeis  momentum of a free particle would diffuse due to a thermal

032115-3



BHATTACHARYA, HABIB, JACOBS, AND SHIZUME PHYSICAL REVIEW A65 032115

environment. From the relationship betwe&nand D,  difficult by the nonlinearity of the dynamical equations and
given above, we see thit determines the relationship be- the lack of a small parameter in which to carry out a pertur-
tween the information provided abogt and the resulting bative analysi§29]. The nonlinearity results from the fact
momentum disturbance. The important point to note for thehat the measurement recdrgt) drives the evolution of the
following is that for a fixedD.,,,, the measurement strength wave function in Eq.(3.3) and, at the same time, is itself
is reduced a¥ increasegconversely, for fixed measurement dependent on the expectation value of the position. We
strengthD,,,, increases wittk). The stochastic Schdinger ~ solved the nonlinear Schidinger equatior{3.3) numerically.
equation(3.3) is said to represent an unraveling of the master Numerical investigation of the dynamics of the environ-
equation(3.5 with averages over the Sclifinger trajecto- mentally coupled QDKR requires the solution of a stochas-
ries reproducing the expectation values computed using thiéc, nonlinear partial differential equation. In order to obtain
reduced density matrix. the desired ensemble averages, one needs to average over
All dynamical systems that one can build in the laboratorymany noise realizations for each set of parameters consid-
are necessarily observed in order to investigate their motiorered. We implemented a split-operator spectral algorithm on
For sufficiently smallk, and a reasonable value &f the a parallel supercomputer to solve H.3), and then aver-
measurement maintains localization of the wave functionaged over the resulting trajectories to obtain the solution to
while generating an insignificafit.,,,. For sufficiently local- EQg. (3.5). [Direct solution of Eq.(3.5) to the desired accu-
ized wave functions, expectation values of products of opfacy is still a major challenge for supercomputp@xid sizes
erators are very close to the products of the expectation vafor computing the wave function ranged from 1-64 K de-
ues of the individual operators. Ehrenfest's theorem thepending on the value dD.,, and k. One thousand realiza-
implies that the classical equations of motion are satisfiediions were averaged over for each data point. Our numerical
On the other hand, for sufficiently large (and the same results for the transition regime contain a variety of interest-
insignificantDy,,), K is sufficiently small that the quantum ing phenomena which we discuss below.
dynamics is essentially preserved. It is the detailed nature of

this transition that we now wish to investigate. V. THE STRUCTURE OF THE QUANTUM-CLASSICAL

TRANSITION

IV. QUANTUM-CLASSICAL TRANSITION AND THE h ic behavi f . ies is the fol
LATE-TIME DIFFUSION COEFFICIENT The generic behavior of quantum trajectories is the fol-

lowing. If we construct a trajectory starting with a minimum

Our strategy in examining the quantum-to-classical tranuncertainty wave packet, the nonlinearity of the system dy-
sition is to fix the level of noisé@.e., the diffusion coefficient namics tends to spread it out. However, the localizing in-
Deny resulting from the measurement at some sufficientlyfluence of measurement limits the spreadboth g andp),
small value, so that classical behavior is obtained for sknall and a steady state is eventually attained. The stronger the
and then to study systematically how quantum behaviomeasurement, the sooner the spread is checked. This behav-
emerges ak is increased. The key diagnostic is the behaviorior of individual trajectories appears to be the key to under-
in time of the expectation value of momentum squaredstandingD, even though, in this case, we are interested not
(p(t)). Previous studies of the QDKR have shown that inin single trajectories, but in the behavior of an ensemble of
the presence of decoherence/measurement, dynamical loc#tese trajectories.
ization is lost in the sense that there exists a nonzero late- In Fig. 1, we plot(p?)(t) for the classical system, and for
time momentum diffusion coefficient, but that this diffusion the quantum system with and without measurementkfor
coefficient is not necessarily the same as the intrinsic classi= 3. (Using the results of Ref4], classical behavior is not
cal diffusion coefficientD [10,11]. The existence of this expected unlesB,,,<3 andk<2D,,,.) At early times, the
late-time diffusion coefficient provides a particularly conve- quantum value of the diffusion rate is much higher than the
nient means of characterizing and studying the quantumelassical value, although, consistent with dynamical localiza-
classical transition: The late-time diffusion coefficient is antion, this decreases with tim{eventually falling to zerp On
unambiguous, theoretically well-defined quantity and, morethe other hand, when the system is under observation, the

over, is also measurable in present experiments. initial evolution of the system is hardly affected; it is only
In the classical regiméwhenk is sufficiently small, D,  that the diffusion rate reaches a constant value at about
attains the classical valud{=D) with D¢, <Dy. This =10 (for this value ofD,,) at which point a purely diffusive

should not be confused with the noisy classical limit whichevolution takes over. Thus, the measurement appears to in-
arises under strong driving by the noigargeD.,,) in which  duce a “premature’(time-dependentsteady state, just as it
caseD,=Dy+ Den, [28]. At sufficiently large values ok,  induces a “premature” steady-state widih]. Thus the dif-
on the other hand, one expects quantum effects to be domiiusion rate gets frozen in to its early-time value which, in
nant and therefore one should very nearly obtain dynamicahis case, is substantially larger than the classical result.
localization ©,=0). Thus, one of the key questions is the  In Fig. 2, we plotD, as a function ok for D,,~0.1 and
behavior ofD, as a function ok in the transition regime in  Dg,,= 104, with k=10. For smalk, D, is essentially given
betweenD,~D. andD,=0, and the variation oD, as a by the classical valuel{y=31.2), and for largek, D is
function of decoherence or measurement strength as set ljose to the quantum valueD(=0) when Dy, is suffi-
the value ofD g, ciently small. Thus we see the expected transition from
Analytical investigation of the transition regime is made classical-to-quantum behavior. However, the transition re-

032115-4



6-FUNCTION-KICKED ROTOR: MOMENTUM . ..

PHYSICAL REVIEW A 65 032115

2200 T T T T T 110
2000F 100
1800} _ 90
Quantum with Denv=0.1
1600 80
1400} s [0
©
N/& 1200F =2 60
~7 (aY)
1000} Quantum % 50
800 40
600r Classical 30
4001 1 20
200 ] 10
0 1 1 1 1 1 0
0 5 10 15 20 25 30

t

FIG. 1. The spread in momentum, measured %), as a func-
tion of time for the noiseless classical system, the noiseless quan 110
tum system withk=3, and the same quantum system wih,, 100
=0.1. To obtain the latter, the master equation has been solved b

averaging 1000 trajectories. 90
80
gion is surprisingly complex: the value &f, in this region . 70
varies widely as a function & andrisesto more than twice 2 €0
Dy at its peak. Another remarkable fact is that features anceg
placement of the transition regiofas a function ofk) is T 50

relative insensitive to the value @, as it changes over 40
three orders in magnitude. In what follows, for convenience
we will refer to the plots in Fig. 2 simply as transition
curves. 20
Some understanding of this complex structure can be ob- 10
tained by comparison with the early-time diffusion rate for
the unmeasured quantum system as derived analytically b
Shepelyansky16],

2 FIG. 2. The late-timet= 30-50) diffusion coefficient as a func-

_ 2 tion of k for two values of the measurement-induced diffusion co-
Di””_7[1+2‘]2(K9ﬁ)+ZJZ(KQ“)+ St (5. efficient, Dgn,. The circles are the calculated points; the solid
curves are meant simply to aid the ey@) Dg,=0.1; (b) Dgny
where k=2 sink/2)/k. This approximate expression for =104, _The dashed line represents the Shepelyansky curve dis-
Dy is also plotted in Fig. 2. As this formula is only valid for cussed in the text.
x>K, a condition not met over most of this range, we use it
only as a qualitative indicatdit is a particularly poor indi- vided « is large enough. This is the origin of the first peak in
cator of the actual behavior near the quantum resonance #te transition region for our value 0f=10: atk~3, ke
k=21). Nevertheless, the trend in the data is obvious: we~6.907, which is the position of the first such accelerator
see that for sufficiently larg®,,, the transition curve fol- mode.
lows the early-time quantum diffusion rate fairly closely over The scaled classical diffusion constaB,/«2, also in-
the region of the first peak: measurement is effective atreases ag—0. This leads to an interesting behavior in the
“freezing in” the early-time value, and it is from this that the quantum expression because by choodtrg2, we can
complex structure originates. tune k=0 even whenc remains nonzero. Correspondingly,

The structures in the transition region can therefore behe quantum system with this value kbfshows an enhanced
qualitatively understood in terms of this expression. Com-early diffusion which has no simple classical counterpart. In
parison of Eq.(5.1) with an expressior[16] for D(«k) fact, in a purely quantum-mechanical approach, this very
shows that this initial diffusion rate in units of the square ofnarrow quantum resonandd4] arises due to quantum-
the kick strengthx?, are identical except for a renormaliza- mechanical interference effects with no classical analog. It is
tion of k to k. The classical system, however, possessesemarkable that these inherently quantum-mechanical effects
regimes of increased diffusion due to the presence of accesurvive and, in fact, are stabilized by continuous measure-
erator modes at certain values ©f In the quantum system, ment and the associated decoherence in the mastéB Bjy.
we can scan through these valuesk@f by tuningk, pro-  This counter-intuitive behavior results in part from the fact

3045
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70F ¢-----—--T------—-- $ P ' ] ticle position is spread significantly over four periods of the
- potential, and the distribution contains a great deal of com-
plex structure. As a result, the individual trajectories, which
are in principle measurable, are still far from classi&d].
Evolving for small k reveals that true classical motion
emerges at the trajectory level for,,,~10" % only whenk
<103, as expected from the conditions in R&#]. The
second point is that since the transition curves rise above the
classical value in the intermediate regime, they necessarily
cross this value again during their descent into the quantum
region. Hence it is important not to sample the curve only in
a limited region, in which case one could mistakenly con-
clude that the transition from quantum-to-classical behavior
of the diffusion constant had already taken place.
. : . Experimental verification of our predictions should be
' D | within reach of the present state of the art. Either spontane-
ous emission or continuous driving with noise should be, in
FIG. 3. The late-time momentum diffusion coefficiedy, as a principle, sufficient to observe the anticipated diffusive be-
function of the diffusion coefficiend.,, in the master equation for havior in (p?(t)) (see, e.g., Ref[15]). Measuring(p?(t))
the QDKR. Results at different values &fshow the nontrivial —accurately can, however, still be complicated by problems
nature of the approach to the classical noise-dominated fsslii ~ with spurious tails in the momentum distribution, neverthe-
line). less, these problems can likely be overcome especially since
the predicted effects do not require the experiments to be run
that the QDKR strongly resists decoherence to classicality afr long times(see Ref[31] for a recent measurement of the
explained in Ref[12]. behavior near the quantum resonances including decoher-
For smaller values oD, the transition curve drops ence effects
below the Shepelyansky predictions for the diffusion rate,
which is consistent with the notion that the weaker measure-
ment takes longer to stabilize the falling quantum diffusion VI. CONCLUSION

rate. As is evident from Fig. 1, Ipckmg in at a later time on To conclude, we reemphasize a few key points: We have
the noiseless quantum curve will clearly produce a smaller

value of the diffusion coefficient. shown that it is possible to characterize the quantum-

One consequence of this complex behavior is that, in th classical transition in the QDKR by fixing the environmen-

transition region, the crossover from the classical—to—(?ally induced diffusion Dep) at some sufficiently small

: . value, and examining the late-time diffusion coefficient as
guantum regimes can also lead to effects that are quite coun- = L .
S T the size of the system is increasdddecreased In doing so,
terintuitive. An example of such behavior is exposed by plot- ) D "
) . . . we have shown that the late-time behavior in the transition
ting the late-timeD, as a function ofD, for different

values ofk as we have done in Fig. 3. One interesting openreg|on is strikingly complex and different from both the clas-

Lestion that can be addressed this wav is whether the uasi_cal and quantum behavior, and that this dynamics follows,
q . : way q f?]stead, the early-time quantum diffusion rates. Remarkably,
tum evolution, as a function dD,,, first goes over to the

classical limit (with small nois¢ or reaches the classical the temporary nature of the early-time quantum diffusion
value onlv in the fully noise-dominated limit. At sufficient rates is in fact stabilized by the continuous measurement al-
smallk ar)lld a finiteDy it follows from the r.esults of Refy lowing for their possible measurement. These predictions for
oo envy . : istinct, experimentall ible, “transition dynamics”
[4] that the classical limit will exist and thus the quantuma distinct, experimentally accessible, "transition dynamics

: . ) . .~ provide an interesting area for investigation in experiments
evolution will go over to the small-noise classical limit.

However, as Fig. 3 shows, in the intermediate regime this i%:éltrc:(rantly being performed on the quantfunction-kicked

not the case. Indeed, for a range of value,cdn inversion

of what is usually expected occurs: The system diffuses
slower (intuitively, a “more quantum” behavigrat smaller
values ofk (e.g.,k=3 vsk=2 in Fig. 3.

In summary, we would like to emphasize certain impor-  We thank Doron Cohen, Andrew Daley, Andrew Doherty,
tant points regarding the transition curve. The first is thaiScott Parkins, Daniel Steck, and Bala Sundaram for helpful
examining only the transition curve, one might conclude thatand stimulating discussions. K.J. would like to thank Scott
the classical limit has been achieved when the classical valuearkins for hospitality at the University of Auckland during
of D, has been reacheg.g., atk=0.2 for D¢,= 104, the development of this paper. Numerical calculations were
especially since it remains at this value for smakeiHow-  performed at the Advanced Computing Laboratory, Los Ala-
ever, examining the position probability distribution of the mos National Laboratory, and at the National Energy Re-
particle for a typical trajectory withk=0.2, and Do,  search Scientific Computing Center, Lawrence Berkeley Na-
=104, we find that far from being well localized, the par- tional Laboratory.
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