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d-function-kicked rotor: Momentum diffusion and the quantum-classical boundary

Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs
T-8, Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Kosuke Shizume
University of Library and Information Science, 1-2 Kasuga, Tsukuba, Ibaraki 305, Japan

~Received 21 May 2001; published 20 February 2002!

We investigate the quantum-classical transition in thed-function-kicked rotor and the attainment of the
classical limit in terms of measurement-induced state localization. It is possible to study the transition by fixing
the environmentally induced disturbance at a sufficiently small value, and examining the dynamics as the
system is made more macroscopic. When the system action is relatively small, the dynamics is quantum
mechanical and when the system action is sufficiently large there is a transition to classical behavior. The
dynamics of the rotor in the region of transition, characterized by the late-time momentum diffusion coeffi-
cient, can be strikingly different from both the purely quantum and classical results. Remarkably, the early-time
diffusive behavior of the quantum system, even when different from its classical counterpart, is stabilized by
the continuous measurement process. This shows that such measurements can succeed in extracting essentially
quantum effects. The transition regime studied in this paper is accessible in ongoing experiments.
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I. INTRODUCTION

Explorations of the transition from quantum-to-classic
behavior in nonlinear dynamical systems constitute one
the frontier areas of present theoretical research. The rece
realized possibility of carrying out controlled experiments
this regime@1–3# has added greatly to the impetus for i
creasing our understanding of this transition, quite as
from the undoubtedly fundamental importance of the subj
The point at issue is not so much the status of formal se
classical approximations in the sense of taking the ma
ematical limit \→0, but a description and understanding
the processes that take place in actual experiments on
dynamical behavior ofobservedquantum systems. Quantum
decoherence and conditioned evolution arising as a co
quence of system-environment couplings and the act of
servation provide a natural pathway to the classical limit
has been demonstrated quantitatively in Ref.@4# ~see also
Ref. @5#! and is reviewed in the next section.

Comparison of the dynamics of closed quantum and c
sical systems in explicit examples has shown a variety
behaviors. At the one extreme, there exist systems wh
quantum and classical averages track each other for
times @6#, and at the other extreme, there are systems
which the averages break away from each other decisive
finite times@7#. Since even this second class of systems
attain classical dynamics when the action is sufficien
large, they undergo a clear transition from a ‘‘quantum’’ to
‘‘classical’’ behavior as the parameters of the system cont
ling its action are varied, and are of particular interest t
study of the quantum-classical transition. The quant
d-function-kicked rotor~QDKR! is a well-studied example
of this class of system and it is our purpose here to inve
gate the quantum-classical transition in this system wit
the framework based on the theory of continuous meas
ment presented in Ref.@4#. As will be demonstrated below
the quantum-classical transition regime possesses som
1050-2947/2002/65~3!/032115~7!/$20.00 65 0321
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markable features which are well within the reach of prese
day experiments.

One of the remarkable features of the QDKR whi
distinguishes it from its classical counterpart is the behav
of its late-time momentum diffusion constant,Dp

[ limt→` d^p2(t)&/dt. In the classical case, this quantity a
tains a constant value,Dcl , whereas for the QDKR, it falls to
zero. This latter phenomenon is termed dynamical locali
tion @8#. In addition, the QDKR also displays a nontrivia
variation of the early-time intrinsic momentum diffusion c
efficient, D init , as a function of the stochasticity paramet
@9#, and strong resistance to decoherence@10–15#. This last
feature relates to the fact that it is possible for external no
and decoherence to break dynamical localization in the se
that the late-time quantityDpÞ0, nevertheless,Dp remains
small and far from its classical value unless very strong no
strength is employed. Finally, the QDKR possesses the ad
attraction that it can be studied via atomic optics experime
utilizing laser-cooled atoms and allowing some degree
control of the coupling to an external environment via spo
taneous emission processes@2#. This system consists of non
interacting atoms in a magneto-optical trap; on turning o
detuned standing light wave with wave-numberkL52p/l,
the atoms scatter photons resulting in an atomic momen
kick of 2\kL with every such event. Internal degrees of fre
dom can be eliminated since the large detuning preclu
population transfer between atomic states. The resulting
namics is restricted to the momentum space of the atoms
can be described by simple effective Hamiltonians,
Hamiltonian for the QDKR being one of the implementab
examples.

Our main consideration is a systematic analysis of
quantum-classical transition induced via position measu
ment for the nondissipatived-function-kicked rotor using the
late-time momentum diffusion rate as a diagnostic tool. Ev
though quantum dynamical localization typically suppres
©2002 The American Physical Society15-1
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late-time diffusion (Dp50 at late times!, we find that a small
measurement strength~i.e., weak noise! can stabilize an in-
trinsically quantum early-time effect~the enhancement of th
initial quantum diffusion rate predicted by Shepelyans
@16#! and produce a nonzero final diffusion rate much lar
than the classical value. The predicted effect is large
should be observable in present experiments studying
quantum-classical transition in the QDKR. We also comm
on the behavior of the diffusion coefficient near a quant
resonance and on the nontrivial nature of the approach to
classical noise-dominated value for the diffusion rate as
noise induced by the measurement is increased. Our the
ical results have been confirmed recently by a more deta
analysis relevant to specific experimental realizations@17#.

The plan of the paper is as follows. In Sec. II, we provi
a short review of recent work on continuous measurem
and the quantum-classical transition, moving on to the s
cific case of the QDKR in Sec. III. In Sec. IV, we expla
how the late-time diffusion coefficient provides a window
investigate the quantum-classical transition in this sys
and in Sec. V, we describe the detailed nature of the tra
tion. Section VI is a short conclusion.

II. CONTINUOUS MEASUREMENT AND THE
QUANTUM-TO-CLASSICAL TRANSITION

Macroscopic mechanical systems are observed to o
classical mechanics. However, the atoms which ultima
make up the macroscopic systems certainly obey quan
mechanics. Since classical and quantum evolution are di
ent, the question of how the observed classical mecha
emerges from the underlying quantum mechanics arises
mediately. This emergence, referred to as the quantum
classical transition, is particularly curious in light of the fa
that classical mechanical trajectories that often exhibit cha
are governed by nonlinear dynamics whereas the v
concept of a phase-space trajectory for a closed quan
system is ill defined, and any signatures of chaos are, at b
indirect.

If quantum mechanics is really the fundamental theo
then one must be able to predict the emergence of~the often
chaotic! classical trajectories by describing a macrosco
object with sufficient realism, but fully quantum mechan
cally. Sufficient ingredients to perform such a descripti
have now been found@4,5#. The solution has involved the
realization thatall real systems are subject to interaction w
their environment. This interaction does at least two thin
First, it subjects the system to noise and damping@18,19# ~as
a consequence all real classical systems are subject to
and damping—even if very small!, and second, the environ
ment provides a means by which information about the s
tem can be extracted~effectively continuously if desired!,
providing a measurement of the system@20#.

Since observation of a system is essential in order that
trajectories followed by that system can be obtained and a
lyzed~this being just as true classically as quantum mech
cally!, it may be expected that this process must be inclu
in the description of the macroscopic system in order to c
rectly predict the emergence of classical trajectories. An
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ample of an environment that naturally provides a measu
ment is that of the~quantum! electromagnetic field with
which the system is surrounded. Monitoring this enviro
ment consists of focusing the light which is reflected fro
the system, allowing the motion to be observed. If the en
ronment is not being monitored, then the evolution is sim
given by averaging over all the possible motions of the s
tem.~Classically, this means an average over any uncerta
in the initial conditions, and over the noise realizations.!

It has now been established quantitatively that continu
observation of the position of a single quantum-mechan
degree of freedom, is sufficient to correctly predict the em
gence of classical motion when the action of the system
sufficiently large compared to\. In particular, inequalities
have been derived involving the strength of the environm
tal interaction and the Hamiltonian of the system, which,
satisfied, will result in classical motion@4# ~see also Ref.
@5#!. These inequalities, therefore, refine the notion of wha
means for a system to be macroscopic.

A detailed explanation of the reason that continuous m
surement induces the quantum-to-classical transition ma
found in Refs.@4,21,22#. To recapitulate that analysis, th
emergence of classical behavior arises from simultane
satisfaction of two counteracting constraints. The first is t
a sufficiently strong observation process is needed to m
tain localization of the particle in phase space, and, there
produce classical motion of the centroid of the Wigner fun
tion @4# from Ehrenfest’s theorem. On the other hand, ev
for a localized distribution, a strong measurement introdu
noise into the system, and this needs to be bounded
microscopic scale. These constraints are satisfied for an
increasing range of measurement strengths as the system
rameters become large enough to make the quantum un
action, i.e.,\, negligible. Thus, when systems are sufficien
macroscopic, they exhibit classical motion with a negligib
amount of irreducible quantum noise, a noise that, in pr
tice, is always swamped by classical measurement uncer
ties and tiny environmental disturbances.

As mentioned above, these arguments can be codified
a set of inequalities. First, to maintain enough localization
guarantee that, at a typical point on the trajectory, one has
the forceF(x), ^F(x)&'F(^x&), as required in the classica
limit, the measurement strength~defined precisely in the nex
section!, k, must stop the spread of the wave function at t
unstable points@23#, ]xF.0,

8hk@U]x
2F

F
UAu]xFu

2m
. ~2.1!

Second, as noted already, a large measurement stre
introduces noise into the trajectory. Demanding that avera
over a characteristic time period of the system, the chang
position and momentum due to the noise are small compa
to those induced by the classical dynamics, it is suffici
that, at a typical point on the trajectory, the measurem
satisfy

2u]xFu
hs

!\k!
u]xFus

4
, ~2.2!
5-2
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d-FUNCTION-KICKED ROTOR: MOMENTUM . . . PHYSICAL REVIEW A 65 032115
wheres is the typical value of the action@24# of the system
in units of \ andh ranges from zero to unity and characte
izes the efficiency of the measurement~for the measurement
considered in this paper,h51!. Obviously ass becomes
large, this relationship is satisfied for an ever larger range
k, and this defines the classical limit.

This understanding of the quantum-to-classical transit
in terms of quantum measurement which has emerged w
the last ten years is, of course, completely consistent with
mechanism usually referred to as decoherence, since av
ing over the results of the measurement process gives
same evolution as an interaction with an unobserved e
ronment ~in particular, the environment through which th
system is being monitored! in which the environment is
traced over. Thus, the treatment in terms of measureme
actually a microscopic analysis of the process of decoh
ence. However, examining the measurement process al
us to obtain an understanding of why it is that decohere
causes classical motion to emerge, and also allows u
realize the trajectories themselves, something that is imp
sible when the environment is merely traced over. Kno
edge of the dynamics of the individual quantum trajector
provides new information not available from a tradition
decoherence analysis and, as we show below, this more
croscopic information can be helpful in understanding p
nomena even at the level of expectation values.

With this understanding of the mechanism of the em
gence of classical motion, it becomes pertinent to ask
question, how does the dynamics of a particular sys
change as it is made more macroscopic? That is, what
pens to the dynamics as it passes through the transition
quantum motion~when its action is very small! to classical
motion ~when its action is sufficiently large!? In the follow-
ing sections we address this question for thed-function-
kicked rotor.

III. QDKR UNDER CONTINUOUS OBSERVATION

The Hamiltonian controlling the evolution of the QDK
is

H̃~p8,q8,t8!5
1

2

p82

m
1a0 cos~2kLq8!(

n
d~ t82nT!.

~3.1!

It is more convenient to study this system by rescaling v
ables, in terms of which the new Hamiltonian becomes@15#

H~p,q,t !5
1

2
p21k cosq(

n
d~ t2n!, ~3.2!

whereq and p are dimensionless position and momentu
satisfying@q,p#5 ik” , for a dimensionlessk”54\kL

2T/m, and
k is the scaled kick strength. Following the experimen
situation, we will use a typical value ofk510 and open
boundary conditions onq. The value ofk” is a measure of the
system action relative to\. When k” is small, the system
action is large compared to\ and the system can be consi
ered to be effectively macroscopic. Conversely, whenk” is
03211
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large, the system is microscopic and will behave quant
mechanically under weak environmental interaction. T
ability to change the system action relative to\ ~i.e., chang-
ing k” ) allows a systematic experimental study of t
quantum-classical transition. The parameter ranges we h
studied numerically below have been chosen to be more
less typical of those utilized in present experiments. Fina
we note that the scaling required to bring the equation to
dimensionless form hides the fact that increasing the dim
sionless effective Planck’s constantk” at fixedk involves in-
creasing the period between the kicks and decreasing
strength—thus, all else being equal, this system is expe
to behave more clasically under observation when the ki
are harder and spaced closer in time.

The effect of random momentum kicks due to sponta
ous emission can be modeled approximately by a weak c
pling to a thermal bath@25#. In current experiments the atom
interacts with a standing wave of laser light leading to
~sinusoidal! spatial modulation of the bath coupling. Th
modulation in turn produces a corresponding spatial va
tion in the diffusion coefficient of the master equation d
scribing the evolution of the reduced density matrix for t
position of the atom. In the language of continuous measu
ments, spontaneous emission can be regarded as a mea
ment of a function of the positionx, namely, cos(x). While
one can certainly study this class of measurement proces
in this paper we will study the case of continuous measu
ments of position. In general, as far as the study of
quantum-classical transition is concerned, the exact natur
the measurement process is not expected to be impo
provided that it yields sufficient information to enable th
observer to localize the system in phase space.

A continuous measurement of position is described by
~nonlinear! stochastic Schro¨dinger equation@26#

uc̃~ t1dt!&5F12
1

k”
~ iH 1k”kq2!dt14kqR~ t !dtG uc̃~ t !&,

~3.3!

where the continuous measurement record obtained by
observer is

R~ t !dt5^q~ t !&dt1dW/A8k, ~3.4!

dW being Wiener noise. The noise represents the inhe
randomness in the outcomes of measurements. Aside f
the unitary evolution, this equation describes changes in
system wave function as a result of measurements mad
the observer. The parameterk characterizes the rate at whic
information is extracted from the system@27#.

Averaging over all possible results of measurements le
to a master equation describing the evolution of the redu
density matrix for the system. This master equation has
form

ṙ52
i

k”
@H,r#2k†q,@q,r#‡, ~3.5!

where the diffusion coefficient is given byDenv5kk” 2, with
Denv the diffusion constant describing the rate at which t
momentum of a free particle would diffuse due to a therm
5-3
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environment. From the relationship betweenk and Denv
given above, we see thatk” determines the relationship be
tween the information provided aboutq, and the resulting
momentum disturbance. The important point to note for
following is that for a fixedDenv, the measurement streng
is reduced ask” increases~conversely, for fixed measureme
strengthDenv increases withk” ). The stochastic Schro¨dinger
equation~3.3! is said to represent an unraveling of the mas
equation~3.5! with averages over the Schro¨dinger trajecto-
ries reproducing the expectation values computed using
reduced density matrixr.

All dynamical systems that one can build in the laborato
are necessarily observed in order to investigate their mot
For sufficiently smallk” , and a reasonable value ofk, the
measurement maintains localization of the wave functi
while generating an insignificantDenv. For sufficiently local-
ized wave functions, expectation values of products of
erators are very close to the products of the expectation
ues of the individual operators. Ehrenfest’s theorem th
implies that the classical equations of motion are satisfi
On the other hand, for sufficiently largek” ~and the same
insignificantDenv), k is sufficiently small that the quantum
dynamics is essentially preserved. It is the detailed natur
this transition that we now wish to investigate.

IV. QUANTUM-CLASSICAL TRANSITION AND THE
LATE-TIME DIFFUSION COEFFICIENT

Our strategy in examining the quantum-to-classical tr
sition is to fix the level of noise~i.e., the diffusion coefficient
Denv) resulting from the measurement at some sufficien
small value, so that classical behavior is obtained for smak”
and then to study systematically how quantum behav
emerges ask” is increased. The key diagnostic is the behav
in time of the expectation value of momentum squar
^p2(t)&. Previous studies of the QDKR have shown that
the presence of decoherence/measurement, dynamical l
ization is lost in the sense that there exists a nonzero l
time momentum diffusion coefficient, but that this diffusio
coefficient is not necessarily the same as the intrinsic cla
cal diffusion coefficientDcl @10,11#. The existence of this
late-time diffusion coefficient provides a particularly conv
nient means of characterizing and studying the quant
classical transition: The late-time diffusion coefficient is
unambiguous, theoretically well-defined quantity and, mo
over, is also measurable in present experiments.

In the classical regime~whenk” is sufficiently small!, Dp
attains the classical value (Dp.Dcl) with Denv!Dcl . This
should not be confused with the noisy classical limit whi
arises under strong driving by the noise~largeDenv! in which
caseDp.Dcl1Denv @28#. At sufficiently large values ofk” ,
on the other hand, one expects quantum effects to be d
nant and therefore one should very nearly obtain dynam
localization (Dp.0). Thus, one of the key questions is th
behavior ofDp as a function ofk” in the transition regime in
betweenDp.Dcl and Dp.0, and the variation ofDp as a
function of decoherence or measurement strength as se
the value ofDenv.

Analytical investigation of the transition regime is ma
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difficult by the nonlinearity of the dynamical equations a
the lack of a small parameter in which to carry out a pert
bative analysis@29#. The nonlinearity results from the fac
that the measurement recordR(t) drives the evolution of the
wave function in Eq.~3.3! and, at the same time, is itse
dependent on the expectation value of the position.
solved the nonlinear Schro¨dinger equation~3.3! numerically.

Numerical investigation of the dynamics of the enviro
mentally coupled QDKR requires the solution of a stoch
tic, nonlinear partial differential equation. In order to obta
the desired ensemble averages, one needs to average
many noise realizations for each set of parameters con
ered. We implemented a split-operator spectral algorithm
a parallel supercomputer to solve Eq.~3.3!, and then aver-
aged over the resulting trajectories to obtain the solution
Eq. ~3.5!. @Direct solution of Eq.~3.5! to the desired accu
racy is still a major challenge for supercomputers.# Grid sizes
for computing the wave function ranged from 1–64 K d
pending on the value ofDenv and k” . One thousand realiza
tions were averaged over for each data point. Our numer
results for the transition regime contain a variety of intere
ing phenomena which we discuss below.

V. THE STRUCTURE OF THE QUANTUM-CLASSICAL
TRANSITION

The generic behavior of quantum trajectories is the f
lowing. If we construct a trajectory starting with a minimu
uncertainty wave packet, the nonlinearity of the system
namics tends to spread it out. However, the localizing
fluence of measurement limits the spread~in both q andp),
and a steady state is eventually attained. The stronger
measurement, the sooner the spread is checked. This be
ior of individual trajectories appears to be the key to und
standingDp even though, in this case, we are interested
in single trajectories, but in the behavior of an ensemble
these trajectories.

In Fig. 1, we plot̂ p2&(t) for the classical system, and fo
the quantum system with and without measurement fok”
53. ~Using the results of Ref.@4#, classical behavior is no
expected unlessDenv!3 andk”!2ADenv.! At early times, the
quantum value of the diffusion rate is much higher than
classical value, although, consistent with dynamical locali
tion, this decreases with time~eventually falling to zero!. On
the other hand, when the system is under observation,
initial evolution of the system is hardly affected; it is on
that the diffusion rate reaches a constant value at abot
510 ~for this value ofDenv) at which point a purely diffusive
evolution takes over. Thus, the measurement appears to
duce a ‘‘premature’’~time-dependent! steady state, just as i
induces a ‘‘premature’’ steady-state width@4#. Thus the dif-
fusion rate gets frozen in to its early-time value which,
this case, is substantially larger than the classical result.

In Fig. 2, we plotDp as a function ofk” for Denv50.1 and
Denv51024, with k510. For smallk” , Dp is essentially given
by the classical value (Dcl531.2), and for largek” , Dp is
close to the quantum value (Dp50) when Denv is suffi-
ciently small. Thus we see the expected transition fr
classical-to-quantum behavior. However, the transition
5-4
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d-FUNCTION-KICKED ROTOR: MOMENTUM . . . PHYSICAL REVIEW A 65 032115
gion is surprisingly complex: the value ofDp in this region
varies widely as a function ofk” andrisesto more than twice
Dcl at its peak. Another remarkable fact is that features
placement of the transition region~as a function ofk” ) is
relative insensitive to the value ofDenv as it changes ove
three orders in magnitude. In what follows, for convenien
we will refer to the plots in Fig. 2 simply as transitio
curves.

Some understanding of this complex structure can be
tained by comparison with the early-time diffusion rate f
the unmeasured quantum system as derived analyticall
Shepelyansky@16#,

D init5
k2

2
@112J2~keff!12J2

2~keff!1•••#, ~5.1!

wherekeff52k sin(k”/2)/k” . This approximate expression fo
D init is also plotted in Fig. 2. As this formula is only valid fo
k@k” , a condition not met over most of this range, we use
only as a qualitative indicator~it is a particularly poor indi-
cator of the actual behavior near the quantum resonanc
k”52p). Nevertheless, the trend in the data is obvious:
see that for sufficiently largeDenv, the transition curve fol-
lows the early-time quantum diffusion rate fairly closely ov
the region of the first peak: measurement is effective
‘‘freezing in’’ the early-time value, and it is from this that th
complex structure originates.

The structures in the transition region can therefore
qualitatively understood in terms of this expression. Co
parison of Eq.~5.1! with an expression@16# for Dcl(k)
shows that this initial diffusion rate in units of the square
the kick strength,k2, are identical except for a renormaliza
tion of k to keff . The classical system, however, posses
regimes of increased diffusion due to the presence of ac
erator modes at certain values ofk. In the quantum system
we can scan through these values ofkeff by tuning k” , pro-

FIG. 1. The spread in momentum, measured by^p2&, as a func-
tion of time for the noiseless classical system, the noiseless q
tum system withk”53, and the same quantum system withDenv

50.1. To obtain the latter, the master equation has been solve
averaging 1000 trajectories.
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videdk is large enough. This is the origin of the first peak
the transition region for our value ofk510: at k”'3, keff
'6.907, which is the position of the first such accelera
mode.

The scaled classical diffusion constant,Dcl /k
2, also in-

creases ask→0. This leads to an interesting behavior in th
quantum expression because by choosingk”52p, we can
tunekeff50 even whenk remains nonzero. Correspondingl
the quantum system with this value ofk” shows an enhance
early diffusion which has no simple classical counterpart.
fact, in a purely quantum-mechanical approach, this v
narrow quantum resonance@14# arises due to quantum
mechanical interference effects with no classical analog.
remarkable that these inherently quantum-mechanical eff
survive and, in fact, are stabilized by continuous measu
ment and the associated decoherence in the master Eq.~3.5!.
This counter-intuitive behavior results in part from the fa

n-

by

FIG. 2. The late-time (t530–50) diffusion coefficient as a func
tion of k” for two values of the measurement-induced diffusion c
efficient, Denv. The circles are the calculated points; the so
curves are meant simply to aid the eye.~a! Denv50.1; ~b! Denv

51024. The dashed line represents the Shepelyansky curve
cussed in the text.
5-5
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that the QDKR strongly resists decoherence to classicalit
explained in Ref.@12#.

For smaller values ofDenv, the transition curve drops
below the Shepelyansky predictions for the diffusion ra
which is consistent with the notion that the weaker measu
ment takes longer to stabilize the falling quantum diffusi
rate. As is evident from Fig. 1, locking in at a later time o
the noiseless quantum curve will clearly produce a sma
value of the diffusion coefficient.

One consequence of this complex behavior is that, in
transition region, the crossover from the classical-
quantum regimes can also lead to effects that are quite c
terintuitive. An example of such behavior is exposed by pl
ting the late-timeDp as a function ofDenv for different
values ofk” as we have done in Fig. 3. One interesting op
question that can be addressed this way is whether the q
tum evolution, as a function ofDenv, first goes over to the
classical limit ~with small noise! or reaches the classica
value only in the fully noise-dominated limit. At sufficientl
small k” and a finiteDenv, it follows from the results of Ref.
@4# that the classical limit will exist and thus the quantu
evolution will go over to the small-noise classical lim
However, as Fig. 3 shows, in the intermediate regime thi
not the case. Indeed, for a range of values ofk” , an inversion
of what is usually expected occurs: The system diffu
slower ~intuitively, a ‘‘more quantum’’ behavior! at smaller
values ofk” ~e.g.,k”53 vs k”52 in Fig. 3!.

In summary, we would like to emphasize certain imp
tant points regarding the transition curve. The first is t
examining only the transition curve, one might conclude t
the classical limit has been achieved when the classical v
of Dp has been reached~e.g., atk”'0.2 for Denv51024),
especially since it remains at this value for smallerk” . How-
ever, examining the position probability distribution of th
particle for a typical trajectory withk”50.2, and Denv
51024, we find that far from being well localized, the pa

FIG. 3. The late-time momentum diffusion coefficientDp as a
function of the diffusion coefficientDenv in the master equation fo
the QDKR. Results at different values ofk” show the nontrivial
nature of the approach to the classical noise-dominated result~solid
line!.
03211
as

,
e-

r

e
-
n-
-

n
n-

is

s

-
t
t

ue

ticle position is spread significantly over four periods of t
potential, and the distribution contains a great deal of co
plex structure. As a result, the individual trajectories, whi
are in principle measurable, are still far from classical@30#.
Evolving for small k” reveals that true classical motio
emerges at the trajectory level forDenv51024 only whenk”
&1023, as expected from the conditions in Ref.@4#. The
second point is that since the transition curves rise above
classical value in the intermediate regime, they necessa
cross this value again during their descent into the quan
region. Hence it is important not to sample the curve only
a limited region, in which case one could mistakenly co
clude that the transition from quantum-to-classical behav
of the diffusion constant had already taken place.

Experimental verification of our predictions should b
within reach of the present state of the art. Either sponta
ous emission or continuous driving with noise should be,
principle, sufficient to observe the anticipated diffusive b
havior in ^p2(t)& ~see, e.g., Ref.@15#!. Measuring^p2(t)&
accurately can, however, still be complicated by proble
with spurious tails in the momentum distribution, neverth
less, these problems can likely be overcome especially s
the predicted effects do not require the experiments to be
for long times~see Ref.@31# for a recent measurement of th
behavior near the quantum resonances including deco
ence effects!.

VI. CONCLUSION

To conclude, we reemphasize a few key points: We h
shown that it is possible to characterize the quantu
classical transition in the QDKR by fixing the environme
tally induced diffusion (Denv) at some sufficiently smal
value, and examining the late-time diffusion coefficient
the size of the system is increased (k” decreased!. In doing so,
we have shown that the late-time behavior in the transit
region is strikingly complex and different from both the cla
sical and quantum behavior, and that this dynamics follo
instead, the early-time quantum diffusion rates. Remarka
the temporary nature of the early-time quantum diffusi
rates is in fact stabilized by the continuous measuremen
lowing for their possible measurement. These predictions
a distinct, experimentally accessible, ‘‘transition dynamic
provide an interesting area for investigation in experime
currently being performed on the quantumd-function-kicked
rotor.
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