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Nuclear Schiff moment and time-invariance violation in atoms
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Parity- and time-invariance-violating (P,T-odd! nuclear forces produceP,T-odd nuclear moments. In turn,
these moments can induce electric dipole moments~EDMs! in atoms through the mixing of electron wave
functions of opposite parity. The nuclear EDM is screened by atomic electrons. The EDM of an atom with
closed electron subshells is induced by the nuclear Schiff moment. Previously the interaction with the Schiff
moment has been defined for a pointlike nucleus. No problems arise with the calculation of the electron matrix
element of this interaction as long as the electrons are considered to be nonrelativistic. However, a more
realistic model obviously involves a nucleus of finite size and relativistic electrons. In this work we have
calculated the finite nuclear size and relativistic corrections to the Schiff moment. The relativistic corrections
originate from the electron wave functions and are incorporated into a ‘‘nuclear’’ moment, which we term the
local dipole moment. For199Hg these corrections amount to;25%. We have found that the natural generali-
zation of the electrostatic potential of the Schiff moment for a finite-size nucleus corresponds to an electric-
field distribution which, inside the nucleus, is well approximated as constant and directed along the nuclear
spin, and outside the nucleus is zero. Also in this work the239Pu atomic EDM is calculated.

DOI: 10.1103/PhysRevA.65.032113 PACS number~s!: 32.80.Ys, 21.10.Ky, 24.80.1y
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I. INTRODUCTION

The best limit on parity- and time-invariance-violatin
(P,T-odd! nucleon-nucleon interactions~as well as quark-
quark P,T-odd interactions! has been obtained from th
measurement of the199Hg electric dipole moment~EDM!
@1#. The mechanism of this EDM generation is the followin
P,T-odd nuclear forces createP,T-odd nuclear moments
e.g., the EDM and Schiff moment~SM!. According to the
Schiff theorem@2–4#, the EDM of a pointlike nucleus is
completely screened by atomic electrons, so it cannot
measured. However, the electrostatic interaction betw
atomic electrons and the nuclear Schiff moment induces
atomic EDM.

The electrostatic potential produced by the Schiff mom
is usually presented in the form@5#

w~R!54pS•“d~R!, ~1!

whereS is the Schiff moment~vector!, d(R) is a delta func-
tion. The contact interaction2ew mixess- andp-wave elec-
tron orbitals and produces EDMs in atoms; for example
atomic EDM induced in an atom with a single electron
statens has the form

datom52(
m

^nsu2ew~R!ump&^mpu2eRuns&
Ens2Emp

. ~2!

The expression~1! is consistently defined for nonrelativisti
electrons. Using integration by parts, it is seen that the
trix element^su2ewup& is finite,

^su2ewup&54peS•~“cs
†cp!R505const. ~3!

However, atomic electrons near the nucleus are ultrar
tivistic, the ratio of the kinetic or potential energy tomc2 in
heavy atoms is about 100. For the solution of the Dirac eq
1050-2947/2002/65~3!/032113~9!/$20.00 65 0321
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tion, (“cs
†cp)R→0→` for a pointlike nucleus. Usually this

problem is solved by a cutoff of the electron wave functio
at the nuclear surface. However, even inside the nuc
“cs

†cp varies significantly,'Z2a2, where a is the fine-
structure constant,Z is the nuclear charge. In Hg (Z580),
Z2a250.34. Recently, proposals have been made to mea
EDMs of very heavy atoms, such as Ra (Z588) @6–9# and
Pu (Z594) @10# whereP,T-violating nuclear moments an
the resulting atomic EDMs are very strongly enhanced.

A consistent treatment of the Schiff moment is need
especially because the Schiff moment itself is defined as
difference of two approximately equal terms@see Eq.~15!#.
The aim of the present work is to develop a consistent the
of the nuclear Schiff moment, and the atomic EDM it i
duces, which properly takes into account the relativistic ch
acter of the electron wave functions inside the nucleus.

For relativistic electrons we should introduce a finite-s
Schiff moment potential. In this paper we show that the na
ral generalization of the Schiff moment potential for a finit
size nucleus is

w~R!52
3S•R

B
n~R!, ~4!

whereB5*n(R)R4dR'RN
5 /5, RN is the nuclear radius, and

n(R) is a smooth function that is 1 forR,RN2d and 0 for
R.RN1d; n(R) can be taken as proportional to the nucle
density. This potential~4! corresponds to a constant electr
field inside the nucleus~see Fig. 1! that can be produced b
P,T-odd nuclear forces or by an intrinsic EDM of an exte
nal nucleon. This expression has no singularities and ma
used in relativistic atomic calculations.

A more accurate treatment requires the calculation o
new nuclear characteristic, which we call thelocal dipole
moment~LDM !. This moment takes into account relativist
corrections to the nuclear Schiff moment, which origina
from the electron wave functions. So in the nonrelativis
©2002 The American Physical Society13-1
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V. V. FLAMBAUM AND J. S. M. GINGES PHYSICAL REVIEW A65 032113
limit, Za→0, the LDM L5S. For 199Hg, L'S(1
20.8Z2a2)'0.75S. When considering the interaction o
atomic electrons with the LDM we define it as placed at
center of the nucleus, that is the electrostatic potential is

w~R!54pL•“d~R!. ~5!

This paper is organized in the following manner. In Sec
we derive a general expression for the dipole componen
theP,T-odd electrostatic potential inside the nucleus. In S
III we take the electronic matrix element of this potential a
show that it is related to the nuclear Schiff moment. In t
section the electronic and nuclear problems are separate
is shown that it is convenient to define a ‘‘nuclear’’ mome
~the local dipole moment!, which is the nuclear Schiff mo
ment with higher-order~relativistic! corrections that origi-
nate from the electron wave functions. In Sec. IV we cal
late various nuclear LDMs that arise due toP,T-odd nuclear
forces; we calculate the contribution of an external pro
and that of core protons to the LDM of a spherical nucle
and we calculate the collective LDM of an octupol
deformed nucleus. Then in Sec. V we calculate the elec
field distribution associated with the nuclear Schiff mome
In Sec. VI we estimate the size of the atomic EDM induc
in 239Pu.

II. THE SCHIFF CONTRIBUTION TO THE NUCLEAR
ELECTROSTATIC POTENTIAL

The nuclear electrostatic potential with electron screen
taken into account can be presented in the following fo
~see, e.g., Appendix of Ref.@7# for derivation!:

w~R!5E er~r !

uR2r u
d3r 1

1

Z
~d•“ !E r~r !

uR2r u
d3r , ~6!

where er is the nuclear charge density,*rd3r 5Z, and d
5e*rrd3r[e^r & is the nuclear EDM. The second term ca
cels the dipole long-range electric field in the multipole e
pansion ofw(R). The Coulomb potential 1/(uR2r u) can be
expanded in terms of Legendre polynomials

1

uR2r u
5(

l

r ,
l

r .
l 11

Pl~cosu!, ~7!

FIG. 1. Constant electric fieldE inside the nucleus produced b
the Schiff moment.E is directed along the nuclear spinI .
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wherer , (r .) is min@r,R# (max@r,R#). The P,T-odd part of
the potential~7! originates from the odd harmonicsl. The
third harmonicl 53 corresponds to the octupole field th
has been considered in@11#. The contribution of thel 53
term is usually small~in 199Hg, which has nuclear spinI
51/2, it vanishes!. Higher l always gives negligible contri-
butions. Therefore, we concentrate onl 51 ~it may be pre-
sented as (r•R/R3)Q(R2r )1(r•R/r 3)Q(r 2R), where
Q(r 2R)51 for r .R andQ(r 2R)50 for r ,R),

w (1)~R!5
eR

R3
•F E

0

R

rr~r !d3r G1eR•F E
R

` r

r 3
r~r !d3r G

2
e^r &•R

ZR3 E
0

R

r~r !d3r . ~8!

Note that in the second~screening! term in Eq.~6! we only
keep the zero multipolel 50. Also note that forR→` the
first and third terms of Eq.~8! cancel each other. Therefore
we can use*0

R5*0
`2*R

`52*R
` and presentw (1)(R) as

w (1)~R!5eR•F E
R

`S ^r &

ZR3
2

r

R3
1

r

r 3D r~r !d3r G . ~9!

We see thatw (1)(R)50 for R.RN ~nuclear radius! since
r(r )50 in this area. We will see in the following section th
this potential~9! is related to the Schiff moment.

III. ELECTRON MATRIX ELEMENTS OF THE P,T-ODD
ELECTROSTATIC POTENTIAL

All the electron orbitals forl .1 are extremely small in-
side the nucleus. Therefore, we can limit our consideration
the matrix elements betweens andp Dirac orbitals. We will
use the following notations for the electron wave function

c~R!5S f ~R!V j lm

2 i ~s•n!g~R!V j lm
D , ~10!

where V j lm is a spherical spinor,n5R/R, and f (R) and
g(R) are radial functions~see, e.g.,@12#!. Using (s•n)2

51, then we can write the electron transition density as

rsp~R![cs
†cp5Vs

†VpUsp~R! ~11!

Usp~R!5 f s~R! f p~R!1gs~R!gp~R!5 (
k51

`

bkR
k. ~12!

The expansion coefficientsbk are calculated analytically an
are presented in the Appendix; as is seen here, the sum
tion is carried over the odd powers ofk. Now we can find the
matrix element of theP,T-odd electrostatic potential,
3-2
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NUCLEAR SCHIFF MOMENT AND TIME-INVARIANCE . . . PHYSICAL REVIEW A 65 032113
^su2ew (1)~R!up&

52e2^sunup&•H E
0

`F S 1

Z
^r &2r D E

0

r

UspdR

1
r

r 3E0

r

UspR
3dRGr d3r J

52e2^sunup&•H (
k51

`
bk

k11 F1

Z
^r &^r k11&

2
3

k14
^r r k11&G J , ~13!

where^sunup&[*Vs
†nVpdf sinu du and^r n&[*r(r )r nd3r .

Note that all vector valueŝr r n& are due to theP,T-odd
correction to the nuclear charge densityr, while (1/Z)^r n&
are the usualP,T-even moments of the charge density sta
ing from the mean-square radius (1/Z)^r 2&5r q

2 for k51.
In the nonrelativistic case (Za→0) we have justb1Þ0,

and so

^su2ew (1)up&52
e2b1

2
^sunup&•F1

Z
^r &^r 2&2

3

5
^r r 2&G

54peS•~“cs
†cp!R→0 , ~14!

where the Schiff momentS is defined as

S5
e

10F ^r 2r &2
5

3Z
^r 2&^r &G5SI /I , ~15!

I is the nuclear spin. The expressions~14! and ~15! agree
with the results of Ref.@5#.

Therefore, Eq.~13! gives us the possibility of a consiste
relativistic treatment of the atomic effects produced
P,T-odd nuclear forces. The nuclear and electronic proble
can be separated in the following way. The nuclear calcu
tions can provide us with the value of the LDM,

L5e(
k51

`
bk

b1

1

~k11!~k14! F ^r r k11&2
k14

3Z
^r &^r k11&G

5LI /I , ~16!

which coincides with the Schiff momentS ~15! in the non-
relativistic limit (Za→0). Note that this ‘‘nuclear’’ moment
contains relativistic corrections that arise from theelectron
wave functionswhich are calculated analytically.~It should
further be noted that the corrections originating from t
sp1/2 and sp3/2 matrix elements are different.! The electron
matrix elements are then given by

^su2ew (1)up&54peL•~“cs
†cp!R→053eL•^sunup&

3S f sf p1gsgp

R D
R→0

. ~17!
03211
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These formulas~16! and~17!, in principle, solve the problem
of the consistent approach for the calculation of the inter
tion of the relativistic electrons with the Schiff moment. No
that to achieve;10% accuracy it is enough to keep inL just
the first correction,b3 /b152(3/5)Z2a2/RN

2 for the sp1/2

matrix element andb3 /b152(9/20)Z2a2/RN
2 for the sp3/2

matrix element~see the Appendix!; and at this level of accu-
racy (;10%) the values of the coefficientsb3 /b1 ~for sp1/2
andsp3/2) can be taken to be the same.

IV. LOCAL DIPOLE MOMENTS INDUCED BY P,T-ODD
NUCLEAR FORCES

We can now calculate local dipole moments induced
P,T-odd nuclear forces. We will begin in Sec. IV A with th
calculation of the contribution of an external proton to t
local dipole moment of a spherical nucleus. Because the
limit on the P,T-odd nucleon-nucleon interaction has be
extracted from199Hg ~which has an external neutron, so on
the core protons contribute to the LDM! the result of Sec.
IV A is not so interesting by itself. However, as will be ex
plained in Sec. IV B, it provides us with a check of th
method for the calculation of the contribution of core proto
to the LDM. Then in Sec. IV C we calculate the collectiv
LDM of an octupole-deformed nucleus.

TheP,T-odd nucleon-nucleon interaction, to first order
the velocitiesp/m, can be presented as@5#

Ŵab5
G

A2

1

2m
„~habsa2hbasb!•“ad~ra2rb!

1hab8 @sa3sb#•$~pa2pb!,d~ra2rb!%…, ~18!

where$ , % is an anticommutator,G is the Fermi constant o
the weak interaction,m is the nucleon mass, ands, r , andp
are the spins, coordinates, and momenta of the nucleoa
andb. The dimensionless constantshab andhab8 characterize
the strength of theP,T-odd nuclear potential~experiments
on EDMs are aimed to measure these constants!.

A. Nuclear LDM produced by external proton

In this section we calculate the LDM arising due to
external proton. We are, therefore, interested in theP,T-odd
interaction of the external proton with the core nucleons.
can average the two-particle interaction~18! over the core
nucleons to obtain the effective single-particleP,T-odd in-
teraction between the proton and core@5#

Ŵ5
G

A2

h

2m
s•“rA~r !. ~19!

Here it has been assumed that the proton and neutron d
ties are proportional to the total nuclear densityrA(r ); the
dimensionless constanth5(Z/A)hpp1(N/A)hpn . Notice
that there is only one surviving term from theP,T-odd
nucleon-nucleon interaction~18!; this is because all othe
terms contain the spin of the internal nucleons for wh
^s&50. The shape of the nuclear densityrA and the strong
3-3
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V. V. FLAMBAUM AND J. S. M. GINGES PHYSICAL REVIEW A65 032113
potential U are known to be similar; we, therefore, tak
rA(r )5@rA(0)/U(0)#U(r ). Then we can rewrite Eq.~19! in
the following form:

Ŵ5js•“U, j5h
G

2A2m

rA~0!

U~0!
52231028h fm.

~20!

Now it is easy to find the solution of the Schro¨dinger equa-
tion including the interactionŴ @5#,

~Ĥ1Ŵ!c̃5Ec̃,

c̃5~11js•“ !c, ~21!

wherec is the unperturbed solution (Ĥc5Ec). The valence
proton density is then equal to

r5c̃†c̃5c†c1j“•~c†sc!. ~22!

The second term gives theP,T-odd part of the density tha
generates a Schiff momentS @5#,

S52
ej

10F S t I1
1

I 11D r ex
2 2

5

3
t I r q

2G , ~23!

where we denoter ex
2 as the mean-square radius of the ext

nal nucleon~in this case that of the proton!, r q
2 is the mean-

square nuclear charge radius,^s&5t I(I /I ), and

t I5H 1, I 5 l 11/2

2
I

I 11
, I 5 l 21/2,

~24!

whereI and l are the total and orbital angular momentum
the proton, respectively. It should be noted that for the Sc
moment the recoil effect~the motion of the nuclear cor
around the center of mass! disappears due to the cancellatio
of its contributions to the first and second~screening! terms
in Eq. ~6! @5#.

To calculate the local dipole moment, it is enough to su
stitute the external proton density~22! into the expression for
the LDM ~16! and perform integration using integration b
parts. The result is

L52 (
k51

`
bk

b1

ej

~k11!~k14! F S t I1
k11

2~ I 11! D r ex
k11

2
k14

3
t I r q

k11G . ~25!

~Notice that for a proton in the states1/2, the LDM is re-
duced to the difference of two approximately equal ter
(r ex

k 2r q
k) for all k52,4, . . . .This makes an analytical ca

culation hopeless when trying to estimate the LDM of
nucleus with an external proton in states1/2, as is the case
for 203,205Tl.!
03211
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B. Nuclear LDM produced by core protons: Mercury moments

In nuclei like 199Hg and 129Xe the external nucleon is a
neutron. It does not contribute to the Schiff moment direc
In Ref. @13# it was shown that virtual excitations of the co
nucleons caused by aP,T-odd interaction with the externa
nucleon produce a Schiff moment which is comparable
that produced by an external proton. The actual calcula
of the Schiff moments in@13# was carried out numerically. In
this section we perform a simple analytical calculation th
allows us to estimate the contribution of the relativistic co
rections;Z2a2 to the Schiff moment. Here we follow an
approach that was used in@13# to estimate the contribution o
the giant dipole resonance to the nuclear EDM.

The expression for the local dipole momentL induced in
the nuclear stateu0& by the P,T-odd interactionŴab ~18!
between the nucleonsa andb is

L5(
n

^0uL̂ un&^nuŴabu0&1^0uŴabun&^nuL̂ u0&
E02En

~26!

5(
n

^0u@Ĥ,L̂ #un&^nuŴabu0&2^0uŴabun&^nu@Ĥ,L̂ #u0&

~E02En!2
.

~27!

HereĤ is the Hamiltonian, and@Ĥ,L̂ # is a commutator; the
LDM operator L̂ is defined from Eq.~16! as L5^L̂ &. Now
we assume that the transition strength in the sum over in
mediate statesun& is concentrated around the excitation e
ergy v r , and replace (E02En)2 by v r

2 . @Note that the re-
placement of (E02En) by v r in Eq. ~26! gives an incorrect
result since in single-particle language there are transiti
with E02En5v r and E02En52v r .# Use of closure,
(nun&^nu51, gives

L5
1

v r
2 ^0u†@Ĥ,L̂ #,Ŵab‡u0&. ~28!

To calculate the commutator we assume that the motion
each nucleon in the nucleus can be described by the Ha
tonian Ĥ5( p̂2/2m)1V(r ). The contribution to the LDM
from a single proton is then

L52
1

mv r
2 ^0u~¹aL̂ !~¹aŴab!u0&. ~29!

As a check of the validity of this approach for the calc
lation of the core contribution, we use this formula~29! to
calculate both the contribution of the external proton@which
we can compare with Eq.~25!# and the contribution of the
core protons.
3-4
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1. External proton contribution

For the external proton we can just substitute the effec
potentialŴ ~19! into expression~29!,

L52
G

A2

1

2m2v r
2
h^0u~¹aL̂ !@¹a~s•“ !rA#u0&, ~30!

whereu0& corresponds to the state of the external proton
we consider the nuclear densityrA to be proportional to the
nuclear potentialU, and use the oscillator model to approx
mate the potential so that

rA~r !5
rA~0!

U~0!

1

2
mv2r 2, ~31!

then the LDM is reduced to

L52
v2

v r
2 (

k51

`
bk

b1

ej

~k11!~k14! F S t I1
k11

2~ I 11! D r ex
k11

2
k14

3
t I r q

k11G . ~32!

Because here we are considering the LDM produced b
single proton, we can setv r5v, so the factor (v2/v r

2)51.
Therefore, using the resonance method we can reproduce
~25!.

2. Core contribution

In this section we use the ‘‘Schiff resonance’’ formalis
to estimate the local dipole moment produced by the c
protons. Again we start from Eq.~29!, where in this case the
derivatives are with respect to the internal proton coor
nates. Assuming that the proton density is proportional to
total nuclear densityrA , we obtain

L5
G

2A2m

1

mv r
2
h^0us•“@“a~rA“aL̂ !#u0&, ~33!

whereu0& is the state of the external nucleon. Because h
we are considering theP,T-odd interactionŴap ~18! be-
tween the external nucleon~proton or neutron,a) and the
core protons, theP,T-odd dimensionless constanth
5(Z/A)hap . Using Eq.~31! to approximate the nuclear den
sity, the LDM becomes

L5
v2

v r
2 (

k51

`
bk

b1

ej

~k11!~k14! Fk217k18

2

3S t I1
k11

2~ I 11! D r ex
k112

k14

3
t I r q

k11G . ~34!

Before we consider the size of the relativistic corrections,
us check that this result gives us a reasonable value for
Schiff moment (Za→0). In the approximation of a uniform
and spherical charge distribution,r q

25(3/5)RN
2 , assuming

that r ex
2 5r q

2 , and setting the resonance frequency for c
03211
e
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protonsv r52v ~frequency of giant resonance!, we obtain
for the Schiff moment of199Hg ~which has an external neu
tron in the statep1/2)

SHg'21.631028hnpe fm3. ~35!

From a numerical calculation of the Schiff moment for199Hg
performed in Ref.@13# the resultS521.431028hnpe fm3

was obtained. This value agrees with our analytical estim
~35!. Therefore, it seems that the resonance method ca
used for Hg to give a crude estimate of the size of the re
tivistic corrections to the Schiff moment.

To estimate the size of the corrections, we use the
proximation of a uniform and spherical charge distributio
r q

n5„3/(n13)…RN
n , and we assume thatr ex

n 5r q
n , for n

52,4, . . . .Substituting the coefficients from the Append
into the expression for the LDM~34!, we see that the firs
correction (k53) to the Schiff moment for Hg is about 25%
@Note that the second correction (k55) amounts to less than
10%.# Therefore, the relativistic corrections to the Schiff m
ment for Hg ~and we expect for other spherical nuclei! are
not very large; for Hg we haveL'0.75S.

C. Collective LDM of an octupole-deformed nucleus

Nuclei with octupole deformation have enhanced colle
tive Schiff moments, which may be up to 1000 times larg
than the Schiff moments of spherical nuclei@6,7#. In Ref.
@10# it was pointed out that the soft octupole vibration mo
produces an enhancement similar to that of the static o
pole deformation. This makes heavy atoms containing nu
with collective Schiff moments attractive for future expe
ments searching forT violation.

The mechanism generating the collective Schiff mom
is the following @6,7#. In the ‘‘frozen’’ body frame the col-
lective Schiff momentSintr can exist without anyP,T viola-
tion. However, the nucleus rotates, and this makes the ex
tation value of the Schiff moment vanish in the laborato
frame if there is noP,T violation. ~This is because the in
trinsic Schiff moment is directed along the nuclear ax
Sintr5Sintrn, and in the laboratory frame the only possib
correlation ^n&}I violates parity and time reversal.! The
P,T-odd nuclear forces mix rotational states of opposite p
ity and create an average orientation of the nuclear axin
along the nuclear spinI ,

^nz&52a
KM

I ~ I 11!
, ~36!

where

a5
^c2uŴuc1&

E12E2
~37!

is the mixing coefficient of the opposite parity states,K
5uI•nu is the absolute value of the projection of the nucle
spin I on the nuclear axis,M5I z , and Ŵ is the effective
single-particle potential~19!. The Schiff moment in the labo
ratory frame is
3-5
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Sz5Sintr^nz&5Sintr

2aKM

I ~ I 11!
. ~38!

In the ‘‘frozen’’ body frame the surface of an axially sym
metric deformed nucleus is described by the following e
pression:

R~u!5RNF11(
l 51

b lYl0~u!G . ~39!

To keep the center of mass atr 50 we have to fixb1 @14#,

b1523A 3

4p(
l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
. ~40!

We assume that the distributions of the protons and neut
are the same, so the electric dipole momente^r &50 ~since
the center of mass of the charge distribution coincides w
the center of mass! and hence there is no screening con
bution to the Schiff moment. We also assume constant d
sity for R,R(u). The intrinsic Schiff momentSintr is then
@6,7#

Sintr5eZRN
3 3

20p (
l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
'eZRN

3 9b2b3

20pA35
,

~41!

where the major contribution comes fromb2b3, the product
of the quadrupoleb2 and octupoleb3 deformations. For
b2;b3;0.1 andZ588 ~Ra! we obtainSintr;10e fm3. The
estimate of the Schiff moment in the laboratory frame giv
@7#

S;aSintr;0.05 eb2b3
2ZA2/3hr 0

3 eV

E12E2

;70031028he fm3, ~42!

where r 0'1.2 fm is the internucleon distance,E12E2

;50 keV. This estimate~42! is about 500 times larger tha
the Schiff moment of a spherical nucleus, e.g., Hg. Note t
S in Eq. ~42! is proportional to the squared octupole defo
mation parameterb3

2. According to Ref.@10#, in nuclei with
a soft octupole vibration modêb3

2&;(0.1)2, i.e., this is the
same as in nuclei with static octupole deformation. T
means that a number of heavy nuclei can have large co
tive Schiff moments.

With no screening term, it is easy to calculate the coll
tive LDM. Use of Eq.~16! gives

L5SS 11 (
k53

5bk

~k14!b1
RN

k21D'S~120.35Z2a2!.

~43!

As with spherical nuclei, we see that the correction to
Schiff moment for collective nuclei is not very large~for Ra,
Pu this correction;15%).
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V. P,T-ODD PART OF THE NUCLEAR ELECTRIC FIELD
„SCHIFF FIELD …

In this section we calculate the actual distribution of t
P,T-odd component of the electrostatic potentialw(R) in-
side the nucleus~arising from theP,T-odd nucleon-nucleon
interaction! for two models: for an external proton in
spherical nucleus and for a collective Schiff moment, wh
appears in a nucleus with octupole deformation. It is fou
that in the collective case the electric field is constant a
directed along the nuclear spin. This field distribution is a
approximately correct in the spherical case when the exte
proton is in states1/2; this is also true without theP,T-odd
interaction but when the external nucleon~proton or neutron!
possesses an intrinsic EDM and is in states1/2.

A. P,T-odd electric field produced by a valence proton

To calculate theP,T-odd part of the electrostatic potentia
wT produced by the external proton, we substitute
P,T-odd perturbed external proton density~22! into Eq. ~6!
and integrate by parts

wT~R!5ej“•F E rs

uR2r u
d3r G2

1

Z
ej^s&•“E r

uR2r u
d3r ,

~44!

wherers5c†sc is the spin density,̂s&5t I(I /I ). Note the
similarity of this expression and that for aP,T-odd potential
produced by an external proton electric dipole momentdp
~see, e.g., Refs.@3,12#!. In the latter case one should on
replaceej by dp ~or by dn in the case of Hg or Xe!. Note,
however, that generally speakingrs5c†scÞ^s&c†c ~this
assumption was used in@3#!, i.e., the direction of the externa
nucleon EDM depends on the coordinater . The separation of
the spin and the coordinate variables is possible in the c
of I 5 l 11/2. Taking I 5I z we obtainrs5(I /I )rM , where
rM is the density of the valence proton. If we now assu
that this density is constant within the sphere of the rad
RM , rM(r )5(3/4pRM

3 ), r ,RM , and rM(r )50 for r
.RM , and, similarly, the nuclear charge densityrq(r )
5(3Z/4pRN

3 ), r ,RN , and rq(r )50 for r .RN , then we
obtain for the dipole term~and forRN,RM!

w (1)~R!52ejR•

I

I 5 S 1

RM
3

2
1

RN
3 D , R,RN

S 1

RM
3

2
1

R3D , RN,R,RM

0, R.RM .
~45!

Thus, the P,T-odd part of the electrostatic potential
w (1)(R)}R cosu inside the nucleus. This gives us a ve
simple picture for theP,T-odd electric field~Schiff field!:
Ez52(]w/]z)}I inside the nucleus. Thus, the Schiff mo
ment gives a constant electric field along the nuclear s
E}I , and this field vanishes within the nuclear ‘‘skin’’~see
Fig. 1!.
3-6
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We can easily establish a relation between theP,T-odd
electrostatic potential inside the nucleusw (1)}R cosu and
the Schiff momentS. Comparing Eq.~45! with Eq. ~23!
~with t I51, I 51/2) we obtain

w (1)~R!52
15S•R

RN
5

n~R2RN!, ~46!

where n(R2RN) is a smoothed step-functionQ(RN2R),
that is n(R2RN)'Q(RN2R); n(R2RN)51 for R,RN
andn(R2RN)50 for R.RN1d, whered5RM2RN!RN .
It gives the natural generalization of the Schiff moment p
tential ~1! for the case of a finite-size nucleus. Of course,
the general case, the radial functionn(R2RN) in the first
harmonic of theP,T-odd potential~46! is more complicated
~this gives some ‘‘wiggling’’ of the electric field inside th
nucleus!.

B. P,T-odd electric field produced by a collective
Schiff moment

Now we wish to calculate the electrostatic potentialw (1)

arising due to a collective Schiff moment in a nucleus w
octupole deformation. We use Eqs.~39! and~40! and assume
that the distributions of the protons and neutrons are
same~thereforee^r &50, and so there is no screening term!
and that the density forR,R(u) is constant. Calculating the
integral in Eq.~9! for R,minR(u) gives

w (1)~R!52
9Ze

4pRN
2

R•

I

I (
l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
. ~47!

In the laboratory frame the result differs by an extra fac
^nz& ~36!. Using Eq.~41! we can present the final result fo
w (1) as

w (1)~R!52
15S•R

RN
5

n~R2RN!, ~48!

wheren(R2RN)51 for R,minR(u), andn(R2RN)50 for
R.maxR(u). This result is similar to Eq.~46!. Thus, the
collective Schiff moment produces a constant electric fi
along the nuclear spin inside the nucleus and zero field
side ~Fig. 1!. In this case the width of the transition area
the nuclear surface;b lRN;0.2RN .

The expression~46! and ~48! contains the fifth power of
the nuclear radiusRN , which is not a very well-defined prop
erty in the case of finite nuclear thickness. We can avoid
ambiguity by using a ‘‘normalized’’ expression which is e
act in the limitZa!1 whenrsp;R @compare with Eq.~3!#

w (1)~R!52
3S•R

B
n~R2RN!,

B5E n~R2RN!R4dR'RN
5 /5. ~49!
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VI. THE ATOMIC EDM INDUCED IN PLUTONIUM

In Ref. @10# it was shown that239Pu has a large vibra
tional Schiff moment and it was pointed out that it is a go
candidate for experiments searching forP,T-odd effects: it
has a ground-state nuclear spinI 51/2 and it has a long half-
life. The ground-state electron angular momentum isJ50,
and so the atomic EDM is sensitive to the nuclear Sch
moment; however, it corresponds to a complex electro
configuration, 5f 67s2.

In this section we perform a simple analytical estimate
the size of the atomic electric dipole moment induced by
nuclear Schiff moment for239Pu. The contribution of elec-
trons from thef shell is small. Therefore, in a simplisti
model we can consider239Pu to be an electronic analog o
199Hg. We can then exploit theZ dependence of the atomi
EDM, as was done, e.g., in Ref.@7#, to estimate the EDM of
239Pu from the calculation of the atomic EDM of199Hg. The
arguments for this simple estimate follow.

We see from Eq.~2! that there are three factors contribu
ing to the atomic EDM: the electric dipole transition amp
tudes, the energy denominators, and the Schiff matrix
ments. The first two factors are sensitive to the wa
functions at large distances, and these are similar for an
gous atoms. The matrix element of the Schiff moment
determined from distances close to the nucleus, and there
the significant contributions come from the matrix eleme
of s1/2 and p1/2 as well ass1/2 and p3/2. These matrix ele-
ments strongly depend on the nuclear charge: they are
portional to SZ2R1/2 and SZ2R3/2, respectively, where the
relativistic enhancement factorsR1/2 and R3/2 are given by
@5#

R1/25
4g1/2

@G~2g1/211!#2 S 2ZRN

aB
D 2g1/222

,

R3/25
48

G~2g1/211!G~2g3/211! S 2ZRN

aB
D g1/21g3/223

,

~50!

whereg j5@( j 1 1
2 )22(Za)2#1/2 and aB is the Bohr radius.

Because there are twice as manyp3/2 states asp1/2 states, we
use a linear combination ofR1/2 andR3/2 in the calculations,
Rsp5(R1/212R3/2)/3.

Our estimate for the atomic EDM induced in239Pu due to
its nuclear Schiff moment can, therefore, be expressed
terms of the Schiff moment and atomic EDM of199Hg, for
which calculations have been performed,

datom~Pu!5datom~Hg!
~SZ2Rsp!Pu

~SZ2Rsp!Hg

. ~51!

We use the results of Ref.@13# for the value of the Schiff
moment of Hg,SHg521.431028hnpe fm3, and the atomic
EDM it induces, datom(Hg)55.6310225hnpe cm. The
atomic structure ratio (Z2Rsp)Pu/(Z2Rsp)Hg52.6. The
atomic EDM for 239Pu in terms of its Schiff moment is the
3-7
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datom~Pu!521310216
„SPu/~e fm3!…e cm. ~52!

If we take the value for the Schiff moment of Pu from Re
@10#, SPu540031028hne fm3, then the atomic EDM is
datom(Pu)524310222hne cm, which is'700 times larger
than the atomic EDM induced in199Hg.

A numerical calculation of the atomic EDMs induced
Hg, Xe, Rn, Ra, and Pu is underway.
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APPENDIX: ELECTRON TRANSITION DENSITY
FOR sp1Õ2 AND sp3Õ2

To calculate the electron wave functions inside t
nucleusR<RN we assume that the nuclear charge is u
formly distributed about a sphere. This charge distribut
corresponds to the harmonic-oscillator potential

V52
Za

RN
S 3

2
2

1

2
x2D , ~A1!

where we have setx[R/RN . By solving the radial Dirac
equations for an electron in statess1/2, p1/2, andp3/2 moving
in this potential we obtain the radial wave functions@see Eq.
~10! for definition# for s,

f s~R!5 f s~0!F12
3

8
Z2a2x2S 12

4

15
x21

1

45
x42

9

80
Z2a2x2

1••• D2
1

2
RNmZax2S 12

1

10
x22

9

40
Z2a2x2

1••• D G ,
gs~R!5 f s~0!F2

1

2
ZaxS 12

1

5
x22

9

40
Z2a2x21••• D

1
3

20
RNmZ2a2x3S 12

13

42
x21

1

54
x42

9

56
Z2a2x2

1••• D G ;
for p1/2,

f p1/2
~R!5gp1/2

~0!F1

2
ZaxS 12

1

5
x22

9

40
Z2a2x21••• D

1
2

3
RNmxH 12

9

20
Z2a2x2S 12

23

84
x21

7

324
x4

2
27

224
Z2a2x21••• D J G ,
03211
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gp1/2
~R!5gp1/2

~0!F12
3

8
Z2a2x2S 12

4

15
x21

1

45
x4

2
9

80
Z2a2x21••• D2

1

2
RNmZax2S 12

1

6
x2

2
9

40
Z2a2x21••• D G ;

and forp3/2,

f p3/2
~R!5~ f p3/2

/x!R50xF12
9

40
Z2a2x2S 12

2

7
x21

5

189
x4

2
9

112
Z2a2x21••• D G ,

gp3/2
~R!52Za~ f p3/2

/x!R50x2F 3

10
2

1

14
x22

27

560
Z2a2x2

1•••G .
Here f s(0), gp1/2

(0), and (f p3/2
/x)R50 are thes, p1/2, and

(p3/2/x) radial wave functions at zero, andm is the electron
mass. The terms included into the radial wave functio
above are such that the radial transition densitiesUsp5 f sf p

1gsgp for sp1/2 and sp3/2 include all corrections of orde
Z2a2 and the lowest correction of orderZ4a4,

Usp1/2
5

2

3
f s~0!gp1/2

~0!mRNxH 12
3

5
Z2a2x2S 12

3

14
x2

1
2

135
x4D1

81

560
Z4a4x41•••J , ~A2!

Usp3/2
5 f s~0!~ f p3/2

/x!R50xH 12
9

20
Z2a2x2S 12

69

315
x2

1
1

63
x4D1

243

2800
Z4a4x41•••J . ~A3!

It is seen by direct substitution of the transition densit
~A2! and~A3! into the LDM expressions~25!, ~34!, and~43!
that it is sufficient to include inUsp just the first correction.
These terms (}Z2a2/RN

2 ) correspond to the coefficientb3 in
expression~12!. They give corrections to the Schiff momen
of '15–25 %. The remaining terms in Eqs.~A2! and ~A3!
correct the Schiff moments by a few percent.
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