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Nuclear Schiff moment and time-invariance violation in atoms
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Parity- and time-invariance-violating®( T-odd) nuclear forces produce, T-odd nuclear moments. In turn,
these moments can induce electric dipole momé¢BBMs) in atoms through the mixing of electron wave
functions of opposite parity. The nuclear EDM is screened by atomic electrons. The EDM of an atom with
closed electron subshells is induced by the nuclear Schiff moment. Previously the interaction with the Schiff
moment has been defined for a pointlike nucleus. No problems arise with the calculation of the electron matrix
element of this interaction as long as the electrons are considered to be nonrelativistic. However, a more
realistic model obviously involves a nucleus of finite size and relativistic electrons. In this work we have
calculated the finite nuclear size and relativistic corrections to the Schiff moment. The relativistic corrections
originate from the electron wave functions and are incorporated into a “nuclear” moment, which we term the
local dipole moment. Fot®*Hg these corrections amount t625%. We have found that the natural generali-
zation of the electrostatic potential of the Schiff moment for a finite-size nucleus corresponds to an electric-
field distribution which, inside the nucleus, is well approximated as constant and directed along the nuclear
spin, and outside the nucleus is zero. Also in this work 4feu atomic EDM is calculated.
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[. INTRODUCTION tion, (Vz,//;rz/;p)R_,o—wo for a pointlike nucleus. Usually this
problem is solved by a cutoff of the electron wave functions
The best limit on parity- and time-invariance-violating at the nuclear surface. However, even inside the nucleus
(P,T-odd nucleon-nucleon interaction@s well as quark- Vljl;rwp varies significantly,~Z2«?, where « is the fine-
quark P,T-odd interactions has been obtained from the structure constang is the nuclear charge. In H@ZE 80),
measurement of thé*Hg electric dipole momentEDM)  7?a2=0.34. Recently, proposals have been made to measure
[1]. The mechanism of this EDM generation is the following. EDMs of very heavy atoms, such as Ra<88) [6—9] and
P,T-odd nuclear forces create, T-odd nuclear moments, Pu (Z=94) [10] whereP,T-violating nuclear moments and
e.g., the EDM and Schiff momeriEM). According to the  the resulting atomic EDMs are very strongly enhanced.
Schiff theorem[2-4], the EDM of a pointlike nucleus is A consistent treatment of the Schiff moment is needed
completely screened by atomic electrons, so it cannot bespecially because the Schiff moment itself is defined as the
measured. However, the electrostatic interaction betweegifference of two approximately equal terfsee Eq.(15)].
atomic electrons and the nuclear Schiff moment induces ammhe aim of the present work is to develop a consistent theory

atomic EDM. of the nuclear Schiff moment, and the atomic EDM it in-
The electrostatic potential produced by the Schiff momentuces, which properly takes into account the relativistic char-
is usually presented in the forfB] acter of the electron wave functions inside the nucleus.
For relativistic electrons we should introduce a finite-size
¢(R)=47S-V(R), (1) schiff moment potential. In this paper we show that the natu-

) ) ) ral generalization of the Schiff moment potential for a finite-
whereS is the Schiff momentvecton, 5(R) is a delta func-  gize nucleus is

tion. The contact interactior e mixess- andp-wave elec-

tron orbitals and produces EDMs in atoms; for example the .

atomic EDM induced in an atom with a single electron in e(R)=- B n(R), 4
statens has the form

whereB= [n(R)R*dR~ R§/5, Ry is the nuclear radius, and
4. 23 (ns|—eq(R)|mp){mp|—eR|ns) (27 N(R) is a smooth function that is 1 f&R<Ry— & and 0 for
atom™ <= Ens— Emp ' R>Ry+ 8; n(R) can be taken as proportional to the nuclear
density. This potential4) corresponds to a constant electric
The expressiofil) is consistently defined for nonrelativistic field inside the nucleuésee Fig. ] that can be produced by
electrons. Using integration by parts, it is seen that the maP,T-odd nuclear forces or by an intrinsic EDM of an exter-

trix element(s| —egp|p) is finite, nal nucleon. This expression has no singularities and may be
used in relativistic atomic calculations.
(s|—e¢|p)=4meS-(V z@%)R:O:const. 3 A more accurate treatment requires the calculation of a

new nuclear characteristic, which we call tleeal dipole
However, atomic electrons near the nucleus are ultrarelanomentLDM). This moment takes into account relativistic
tivistic, the ratio of the kinetic or potential energy noc? in corrections to the nuclear Schiff moment, which originate
heavy atoms is about 100. For the solution of the Dirac equafrom the electron wave functions. So in the nonrelativistic
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wherer - (r-) is minr,R] (maxr,R]). The P,T-odd part of
the potential(7) originates from the odd harmonids The
third harmonicl =3 corresponds to the octupole field that
has been considered [i1]. The contribution of thd =3
term is usually smal(in '°Hg, which has nuclear spih
=1/2, it vanishes Higherl always gives negligible contri-
butions. Therefore, we concentrate bal (it may be pre-
sented as 1 R/IR)O(R—r)+(r-R/Ir¥)O(r—R), where
O(r—R)=1 forr>R and®(r—R)=0 forr<R),

FIG. 1. Constant electric fiel# inside the nucleus produced by eR R w
the Schiff momentE is directed along the nuclear spin eM(R)= = [f rp(r)d [+eR- f _3P(r)d3r
0 RT
limit, Za—0, the LDM L=S. For ®Hg, L~S(1 e(r)-R (R
—0.82%20%?)~0.755. When considering the interaction of - S f p(r)d3r. (8)
atomic electrons with the LDM we define it as placed at the ZR" Jo

center of the nucleus, that is the electrostatic potential is

Note that in the secongscreening term in Eq.(6) we only
¢(R)=47L-V(R). (5  keep the zero multipolé=0. Also note that folR—o the

i _ L+rr—3) p(r)d3r]. ©)

M(R)=eR-
et ZR® RS

first and third terms of Eq(8) cancel each other. Therefore,
This paper is organized in the following manner. In Sec. llwe can usg 8= 5 — 5= — [ and present™(R) as
we derive a general expression for the dipole component of

the P, T-odd electrostatic potential inside the nucleus. In Sec.

[Il we take the electronic matrix element of this potential and fw

show that it is related to the nuclear Schiff moment. In this R

section the electronic and nuclear problems are separated. It

is shown that it is convenient to define a “nuclear” moment N

(the local dipole momet which is the nuclear Schiff mo- we see_thatfp(l)(R):O fo_r R> RN (nuclear_radlu)s since
ment with higher-ordel(relativistic) corrections that origi- p(.r)IO in _th|s area. We will see in thg following section that
nate from the electron wave functions. In Sec. IV we calcy S Potential(9) is related to the Schiff moment.

late various nuclear LDMs that arise dueRoT-odd nuclear

forces; we calculate the contribution of an external proton y; g| ECTRON MATRIX ELEMENTS OF THE P, T-ODD

and that of core protons to the LDM of a spherical nucleus, ELECTROSTATIC POTENTIAL

and we calculate the collective LDM of an octupole-

deformed nucleus. Then in Sec. V we calculate the electric- All the electron orbitals fot>1 are extremely small in-
field distribution associated with the nuclear Schiff moment.side the nucleus. Therefore, we can limit our consideration to
In Sec. VI we estimate the size of the atomic EDM inducedthe matrix elements betweemandp Dirac orbitals. We will
in 23%u. use the following notations for the electron wave functions:

Il. THE SCHIFF CONTRIBUTION TO THE NUCLEAR f(R)Q”m

R)=| . : 10
ELECTROSTATIC POTENTIAL ¥(R) —i(o-mg(RIQn (10

The nuclear electrostatic potential with electron screening
taken into account can be presented in the following formynere Qi is a spherical spinom=R/R, and f(R) and
(see, e.g., Appendix of Ref7] for derivation): g(R) are radial functiongsee, e.g.[12]). Using (o-n)?
=1, then we can write the electron transition density as

ep(r 1 r
¢(R)=f%d3r+z(d~V)f“g(T)r|d3r, ®)
psfR)= ity = 00U (R) (12)
where ep is the nuclear charge densitfpd®r=2, andd
=efprd3r=e(r) is the nuclear EDM. The second term can- “ .
cels the dipole long-range electric field in the multipole ex- Usp(R):fs(R)fp(R)+gs(R)gp(R):gl bR*. (12

pansion ofg(R). The Coulomb potential IJ/R—r|) can be
expanded in terms of Legendre polynomials
The expansion coefficients, are calculated analytically and

1 rI< are presented in the Appendix; as is seen here, the summa-
R~ Z —+1 Pi(cosb), (7)  tionis carried over the odd powerskfNow we can find the
[R=r| 4 r- matrix element of thé> T-odd electrostatic potential,
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(s| —e<p(1)(R)|p> These formula$16) and(17), in principle, solve the problem
of the consistent approach for the calculation of the interac-
) e (1 r tion of the relativistic electrons with the Schiff moment. Note
= —e¥slnlp)-{ | ||5(n=r] | UsR
0 0
r(r 3
+r_3 0UspR dR

that to achieve-10% accuracy it is enough to keeplinjust

the first correction,bs/b,=— (3/5)2?a?/RE for the spy,
matrix element andz/b;=—(9/20)2%a?/R for the spy,

P dsr] matrix elementsee the Appendijx and at this level of accu-
racy (~10%) the values of the coefficierlts /b, (for spy,

oo

andsps,) can be taken to be the same.

b, |1
=—e2<s|n|p>-[ 3 |y
k=1 IV. LOCAL DIPOLE MOMENTS INDUCED BY P, T-ODD
NUCLEAR FORCES
— ——(rrk*th ] (13 . .
k+4 We can now calculate local dipole moments induced by

P,T-odd nuclear forces. We will begin in Sec. IV A with the
where(s|n|p)zfﬂlnﬂpd¢> singde and<rn>Efp(r)rnd3r_ calculation of the contribution of an external proton to the
Note that all vector valueérr") are due to theP,T-odd local dipole moment of a spherical nucleus. Because the best

correction to the nuclear charge densitywhile (1/z)(r"y  limit on the P,T-odd nucleon-nucleon interaction has been
are the usuaP, T-even moments of the charge density start-extracted from***Hg (which has an external neutron, so only
ing from the mean-square radius Zl{r2>:r2 for k=1. the core protons contribute to the LDMhe result of Sec.
In the nonrelativistic caseZ@—0) we ha(i/e jusb,#0 IV A'is not so interesting by itself. However, as will be ex-
and so plained in Sec. IV B, it provides us with a check of the

method for the calculation of the contribution of core protons

e2b, 1 3 to the LDM. Then in Sec. IV C we calculate the collective
(s|—eeW|p)=— ——(sInlp)- Z(r)(r2>— g(rr2>} LDM of an octupole-deformed nucleus.
The P, T-odd nucleon-nucleon interaction, to first order in
=47eS (V,/,;r%)RHO, (14)  the velocitiesp/m, can be presented &S]
where the Schiff momers is defined as - G 1

Wab:E ﬁ(( NabGa™ MpaOb)  Vad(ra—rp)

e 5
S= E[“z”‘ §<f2><f>}25” ! (15 + D[ 02X 0p] - {(Pa— D). 8(ra—ro)}),  (18)

where{, } is an anticommutatoG is the Fermi constant of
the weak interactiorm is the nucleon mass, ang, r, andp

Therefore, Eq(13) gives us the possibility of a consistent are the Spns, coc_)rdmates, and momenta, of the nucl_aons
relativistic treatment of the atomic effects produced by@"dP- The dimensionless constanig, and,, characterize

P, T-odd nuclear forces. The nuclear and electronic problem® Strength of the>,T-odd nuclear potentialexperiments

can be separated in the following way. The nuclear calcula®n EDMs are aimed to measure these consfants

tions can provide us with the value of the LDM,

| is the nuclear spin. The expressiofigh and (15) agree
with the results of Ref[5].

A. Nuclear LDM produced by external proton

B “ by i1 4 1 In this section we calculate the LDM arising due to an
L—egl by (k+1)(k+4) (rr ) = 57 (I(r ) external proton. We are, therefore, interested inRh€-odd
interaction of the external proton with the core nucleons. We
=LI/I, (16) can average the two-patrticle interacti¢fB) over the core

nucleons to obtain the effective single-parti&eT-odd in-
which coincides with the Schiff momei& (15) in the non-  teraction between the proton and c¢é
relativistic limit (Za—0). Note that this “nuclear” moment
contains relativistic corrections that arise from #lectron ~ G 7
wave functionsvhich are calculated analyticallylt should W= E ﬁ""vf’A(r)' (19
further be noted that the corrections originating from the

SPyz andspy; matrix elements are differentThe electron  gre jt has been assumed that the proton and neutron densi-
matrix elements are then given by ties are proportional to the total nuclear dengiiy(r); the
dimensionless constang=(Z/A) n,,+ (N/A) 5,,. Notice

<5|_e<P(1)|P>:47TeL'(V‘ﬂ;r‘/’p)Rﬂ023eL‘<5|n|P> that there is only one surviving term from the,T-odd
fof +0.g nucleon-nucleon interactiofil8); this is because all other
X(M> (177  terms contain the spin of the internal nucleons for which
R R—0 (ay=0. The shape of the nuclear density and the strong
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potential U are known to be similar; we, therefore, take B. Nuclear LDM produced by core protons: Mercury moments
pa(r)=[pa(0)/U(0)]U(r). Then we can rewrite Eq19) in

i In nuclei like **Hg and ?°Xe the external nucleon is a
the following form:

neutron. It does not contribute to the Schiff moment directly.
G ) In Ref.[13] it was shown that virtual excitations of the core
VIR _ pA\Y) _ -8 nucleons caused by R, T-odd interaction with the external
W=éo-VU, ¢ 7]2\/§m u(0) 210 %y fm. nucleon produce a Schiff moment which is comparable to
(20 that produced by an external proton. The actual calculation
of the Schiff moments if13] was carried out numerically. In
Now it is easy to find the solution of the Schinger equa- this section we perform a simple analytical calculation that

tion including the interactionV [5], allows us to estimate the contribution of the relativistic cor-
rections~Z2a? to the Schiff moment. Here we follow an
(H +\7V)<~/;= EV, approach that was used|ib3] to estimate the contribution of
the giant dipole resonance to the nuclear EDM.
Tp=(1+§a--V)w, 1) The expression for the local dipole moméninduced in

the nuclear stat¢0) by the P,T-odd interactionW,,, (18)

wherey is the unperturbed solutior(yy=E ). The valence P€tween the nucleorsandb is

proton density is then equal to

0|L|nY{n|W,p|0)+ (O] W,|n)(n|L|0O
- e . . L:E < | | >< | ab|E>_<E| ab| >< | | ) (26)
p=Y Y=g Y+ EV (Y o). (22) n 0~ En
The second term gives tHe, T-odd part of the density that
generates a Schiff momesi[5], _ < (OI[A,LTIn){n|W,5|0) — (0| Wap|n)(ni[H,L]]0)
et 1\, 5 , " (Eo—En)? '
S=— E t,+ m rex—§t|rq , (23 (27

2 H ~ PPN
Whlere vlve dgn(::]gex as tht?] thle?r:;]squarf[a ragl.ustr?f the exter-ere y is the Hamiltonian, anfiH,L ] is a commutator; the
nal nucleon(in this case that of the protir is the mean- | ., operatorL is defined from Eq(16) asL=(L). Now

’ q
square nuclear charge radigas)=1,(1/1), and we assume that the transition strength in the sum over inter-

1 [=1+1/2 mediate statefn) is concentrated around the excitation en-
’ ergy o,, and replace E,—E,)? by wrz. [Note that the re-
uv=y oLl (24 placement of Eo— E,)) by o, in Eq. (26) gives an incorrect
I+1’ ’ result since in single-particle language there are transitions

with Eg—E,=w, and Eq—E,=—-w,.] Use of closure,
wherel and| are the total and orbital angular momentum of 3 |n)(n|=1, gives
the proton, respectively. It should be noted that for the Schiff
moment the recoil effectthe motion of the nuclear core

around the center of mgsdisappears due to the cancellation 1 o
of its contributions to the first and secofgtreening terms L= —2<O|[[H,L],Wab]|0). (28
in Eq. (6) [5]. Wy

To calculate the local dipole moment, it is enough to sub-
stitute the external proton densit82) into the expression for

the LDM (16) and perform integration using integration by To calculate the commutator we assume _that the motion qf
parts. The result is each nucleon in the nucleus can be described by the Hamil-

tonian H=(p%/2m)+V(r). The contribution to the LDM

by e¢ K+1 from a single proton is then
L=-— T t| + I’z;l
=1 by (k+1)(k+4) 2(1+1)
k+4 1 R -
———trktt (25) L=~ —5(0[(VoL)(VaWap)|0). (29
3 ' mw?

(Notice that for a proton in the statg,,, the LDM is re-

duced to the difference of two approximately equal terms As a check of the validity of this approach for the calcu-
(r';x—r'a) for all k=2,4, ... .This makes an analytical cal- lation of the core contribution, we use this formy@0) to
culation hopeless when trying to estimate the LDM of acalculate both the contribution of the external profaich
nucleus with an external proton in statg,, as is the case we can compare with Eq25)] and the contribution of the
for 2032097 ) core protons.
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1. External proton contribution protonsw,=2w (frequency of giant resonancene obtain

. 9 .
For the external proton we can just substitute the effectivdr the ShCh'ﬁ moment of'**Hg (which has an external neu-
potentiaI\N (19) into expression(29), tron in the statep; )

Shg~ —1.6X10 8p,,e fm?. (35)

0/(V,L)[ V(o V)pall0), (30 . . :
(O(Val)[Val @ V)pall0). (30 From a numerical calculation of the Schiff moment f8tHg

G
V2 2m2wr2 7
performed in Ref[13] the resultS= —1.4x 10 87,,e fm?
where|0) corresponds to the state of the external proton. lfwas obtained. This value agrees with our analytical estimate
we consider the nuclear densijty to be proportional to the (35). Therefore, it seems that the resonance method can be
nuclear potentiall, and use the oscillator model to approxi- used for Hg to give a crude estimate of the size of the rela-

mate the potential so that tivistic corrections to the Schiff moment.
To estimate the size of the corrections, we use the ap-
pa(r)= pa(0) }mwgrz (31) proximation of a uniform and spherical charge distribution,
A u(o) 2 ’ rqg=(3/(n+3))RY, and we assume thatg=rgy, for n

. =2,4, ... .Substituting the coefficients from the Appendix

then the LDM is reduced to into the expression for the LDM34), we see that the first
b, correction k= 3) to the Schiff moment for Hg is about 25%.

L=— w- B es t+ k+1 pkrt [Note that the second correctiok=5) amounts to less than
wrz &by (k+D)(k+4) [\ 200+1)) & 10% ] Therefore, the relativistic corrections to the Schiff mo-

ment for Hg(and we expect for other spherical nuglare

k+4 ., not very large; for Hg we have~0.755.

-tk

3 (32

o C. Collective LDM of an octupole-deformed nucleus
Because here we are considering the LDM produced by a o ]
single proton, we can sef, =, so the factor bz/wrz)zl- Nuclei with octupole deformation have enhanced collec-

Therefore, using the resonance method we can reproduce E¢/€ Schiff moments, which may be up to 1000 times larger
(25). than the Schiff moments of spherical nuc|éi,7]. In Ref.
[10] it was pointed out that the soft octupole vibration mode
2. Core contribution produces an enhancement similar to that of the static octu-
pole deformation. This makes heavy atoms containing nuclei

In this section we use the “Schiff resonance” formalism \ it collective Schiff moments attractive for future experi-

to estimate the local dipole moment produced by the cor

: : e in th o fnents searching foF violation.
protons. Again we start from Eq29), where in this case the 1o mechanism generating the collective Schiff moment
derivatives are with respect to the internal proton coordi-

: e ) is the following[6,7]. In the “frozen” body frame the col-
nates. Assuming that the proton.densny is proportional to th?ective Schiff momens, , can exist without any, T viola-
total nuclear densitp,, we obtain tion. However, the nucleus rotates, and this makes the expec-
tation value of the Schiff moment vanish in the laboratory
L= LLW(OW'V[V(Y(PAVQ':)NO), (33) frgm.e if thgre is noP,T.vioIgtion. (This is because the in—'
2\/2m mo? trinsic Schiff moment is directed along the nuclear axis,
Sinr=SinyN, and in the laboratory frame the only possible
where|0) is the state of the external nucleon. Because hereorrelation (n)e| violates parity and time reverspiThe
we are considering th&,T-odd interactionWap (18) be- P,T-odd nuclear forces mix rotational states of opposite par-
tween the external nucleofproton or neutrona) and the ity and create an average orientation of the nuclear axis
core protons, theP,T-odd dimensionless constany  along the nuclear spih
=(ZIA) 774, Using Eq.(31) to approximate the nuclear den-

! KM
sity, the LDM becomes _
L_@t b ed [KHTkEB
_w_r2k=1b_1(k+l)(k+4) 2 where
K+1 K+ 4 (- W)
k+1__ k+1 _\y-IWIyg+) 3
(t'+2(l+1) fo =3 tra |- (349 ““EE (37)

Before we consider the size of the relativistic corrections, leis the mixing coefficient of the opposite parity statés,
us check that this result gives us a reasonable value for the|l-n| is the absolute value of the projection of the nuclear
Schiff moment Za—0). In the approximation of a uniform spin | on the nuclear axisM=1,, andW is the effective
and spherical charge distributiom§=(3/5)R2, assuming  single-particle potentigl9). The Schiff moment in the labo-
thatr2=r2, and setting the resonance frequency for corgatory frame is

032113-5



V. V. FLAMBAUM AND J. S. M. GINGES PHYSICAL REVIEW A65 032113

2aKM V. P,T-ODD PART OF THE NUCLEAR ELECTRIC FIELD

S,= Simr<nz>:Sntrm- (39 (SCHIFF FIELD )

In this section we calculate the actual distribution of the
In the “frozen” body frame the surface of an axially sym- p T-odd component of the electrostatic potentgR) in-
metric deformed nucleus is described by the following ex-side the nucleusarising from theP,T-odd nucleon-nucleon
pression. interaction for two models: for an external proton in a
spherical nucleus and for a collective Schiff moment, which

_ appears in a nucleus with octupole deformation. It is found
R(6)=Rwn 1+|21 Bi¥io(0) . (39 that in the collective case the electric field is constant and
directed along the nuclear spin. This field distribution is also
To keep the center of massrat0 we have to fix8; [14], approximately correct in the spherical case when the external
proton is in states,,,; this is also true without th®,T-odd
\/? (1+1)8,B+1 interaction but when the external nucle@moton or neutron
Bi1=— — . (40)  possesses an intrinsic EDM and is in stafg.
Ami=2 (21 +1)(21+3)

We assume that the distributions of the protons and neutrons A. P,T-odd electric field produced by a valence proton

are the same, so the electric dipole momefr)=0 (since To calculate thd®, T-odd part of the electrostatic potential
the center of mass of the charge distribution coincides withpt produced by the external proton, we substitute the
the center of magsand hence there is no screening contri- P, T-odd perturbed external proton densi2) into Eq. (6)
bution to the Schiff moment. We also assume constant derand integrate by parts

sity for R<R(#). The intrinsic Schiff momeng,,, is then 1
6.7 ¢T(R)=egv-Uﬁdﬂ—zeg(ayvf ﬁd?’r,
98283 (44)

20m\35"  wherep,= ¢ o is the spin densitya)=t,(1/1). Note the
(41  similarity of this expression and that forR T-odd potential
produced by an external proton electric dipole moment
where the major contribution comes frgf3 83, the product  (see, e.g., Refd3,17)). In the latter case one should only
of the quadrupole8, and octupoleB; deformations. For replaceeé by d, (or by d, in the case of Hg or Xe Note,
B2~ B3~0.1 andZ=88 (Ra) we obtainS,,,~10e fm®. The  however, that generally speakipg= ¢ o+ ()¢ (this
estimate of the Schiff moment in the laboratory frame givesassumption was used j8]), i.e., the direction of the external
[7] nucleon EDM depends on the coordinatd he separation of
v the spin and the coordinate variables is possible in the case
25 r23 .3 © of I=1+1/2. Takingl =1, we obtainp,=(I/1)py, where
S~ aSm~0.05 efzB52A /377r°E+—E, pwm is the density of the valence proton. If we now assume
g 3 that this density is constant within the sphere of the radius
~700x10 "ne fm?, 42 Ry, pu(r)=(3/47R%), r<Ry, and pu(r)=0 for r
>Ry, and, similarly, the nuclear charge densiy(r)
=(32/47RY), r<Ry, and py(r)=0 for r>Ry, then we
btain for the dipole ternfand forRy<Ry)

Snu—eZF%zoW.; (21+1)(21+3) -

where ro~1.2 fm is the internucleon distanc& , —E_

~50 keV. This estimat¢4?2) is about 500 times larger than
the Schiff moment of a spherical nucleus, e.g., Hg. Note tha?
Sin Eq. (42) is proportional to the squared octupole defor- e

mation parameteg3. According to Ref[10], in nuclei with is_ is . R<Ry
a soft octupole vibration modgs3)~ (0.1)?, i.e., this is the | Rv Ry
same as in nuclei with static octupole deformation. This ¢(1)(R)=—e§R-|—< 1 1

means that a number of heavy nuclei can have large collec- i _) ., Ry<R<Ry
tive Schiff moments. Rﬁ',. R

With no screening term, it is easy to calculate the collec- 0 R>R
tive LDM. Use of Eq.(16) gives - M (45)

Thus, the P,T-odd part of the electrostatic potential is
oM(R)xRcosé inside the nucleus. This gives us a very
(43) simple picture for theP,T-odd electric field(Schiff field):
E,=—(d¢/dz)=| inside the nucleus. Thus, the Schiff mo-
As with spherical nuclei, we see that the correction to thement gives a constant electric field along the nuclear spin,
Schiff moment for collective nuclei is not very larg®r Ra,  E«I|, and this field vanishes within the nuclear “skirfsee
Pu this correction-15%). Fig. ).

5b
L=S 1+k23 mRK“l ~S(1-0.3%2a2).
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We can easily establish a relation between Ehé&-odd
electrostatic potential inside the nucley$§">=R cosé and
the Schiff momentS. Comparing Eq.(45) with Eq. (23)
(with t;=1, 1 =1/2) we obtain

155-R

5
N

eW(R) =~ n(R—Ry), (46)

where n(R—Ry) is a smoothed step-functio® (Ry—R),
that is n(R—Ry)=0O(Ry—R); n(R—Ry)=1 for R<Ry
andn(R—Ry) =0 for R>Ry+ 8, where =Ry, —Ry<Ry.
It gives the natural generalization of the Schiff moment po

tential (1) for the case of a finite-size nucleus. Of course, in

the general case, the radial functiofR—Ry) in the first
harmonic of theP,T-odd potentia46) is more complicated
(this gives some “wiggling” of the electric field inside the
nucleus.

B. P,T-odd electric field produced by a collective
Schiff moment

Now we wish to calculate the electrostatic potential

PHYSICAL REVIEW A 65032113

VI. THE ATOMIC EDM INDUCED IN PLUTONIUM

In Ref.[10] it was shown that?®*%®Pu has a large vibra-
tional Schiff moment and it was pointed out that it is a good
candidate for experiments searching @T-odd effects: it
has a ground-state nuclear spi1/2 and it has a long half-
life. The ground-state electron angular momentund #s0,
and so the atomic EDM is sensitive to the nuclear Schiff
moment; however, it corresponds to a complex electronic
configuration, 5°7s2.

In this section we perform a simple analytical estimate of
the size of the atomic electric dipole moment induced by the
nuclear Schiff moment fof**Pu. The contribution of elec-
trons from thef shell is small. Therefore, in a simplistic
model we can considef*®Pu to be an electronic analog of
19%g. We can then exploit th& dependence of the atomic
EDM, as was done, e.g., in R¢f], to estimate the EDM of
239y from the calculation of the atomic EDM 6f*Hg. The
arguments for this simple estimate follow.

We see from Eq(2) that there are three factors contribut-
ing to the atomic EDM: the electric dipole transition ampli-
tudes, the energy denominators, and the Schiff matrix ele-
ments. The first two factors are sensitive to the wave

arising due to a collective Schiff moment in a nucleus withfunctions at large distances, and these are similar for analo-

octupole deformation. We use Eq89) and(40) and assume

gous atoms. The matrix element of the Schiff moment is

that the distributions of the protons and neutrons are théetermined from distances close to the nucleus, and therefore

same(thereforee(r)=0, and so there is no screening tg¢rm
and that the density fdR<R(#) is constant. Calculating the
integral in Eq.(9) for R<minR(6) gives

| (I+1)B1B1+1

Ze

(47

In the laboratory frame the result differs by an extra facto

(n,) (36). Using Eg.(41) we can present the final result for
(1)

o'* as

o 15S-R
PH(R)=~— n(R=Ry),

(48)

RY
wheren(R—Ry) =1 for R<minR(#), andn(R—Ry) =0 for
R>maxR(#). This result is similar to Eq(46). Thus, the

the significant contributions come from the matrix elements
of s, and py, as well ass;,, and p3,. These matrix ele-
ments strongly depend on the nuclear charge: they are pro-
portional to SZ2R,,, and SZ?Ry,, respectively, where the
relativistic enhancement factoR,,, and R;,, are given by

[5]

2ZRy\ 2122

ap

4y
[[(2y1,+1)]?

r

Ryp=

Y12t v3p—3

48
L2yt DI(2y3,+1)

27Ry
ap

Rz

(50

where y;=[(j+3)?— (Za)?]? and ag is the Bohr radius.
Because there are twice as mamy, states ap,,, states, we

collective Schiff moment produces a constant electric fielduse a linear combination &;,; andRs), in the calculations,
along the nuclear spin inside the nucleus and zero field ouRsp=(Ry2+ 2R31)/3.

side (Fig. 1). In this case the width of the transition area of
the nuclear surface- B8Ry~ 0.2Ry .

The expressiorni46) and (48) contains the fifth power of
the nuclear radiuRy, which is not a very well-defined prop-

Our estimate for the atomic EDM induced #4%Pu due to
its nuclear Schiff moment can, therefore, be expressed in
terms of the Schiff moment and atomic EDM &t*Hg, for
which calculations have been performed,

erty in the case of finite nuclear thickness. We can avoid this

ambiguity by using a “normalized” expression which is ex-
act in the limitZa<1 whenpg,~R [compare with Eq(3)]

B

eW(R)=— n(R—Ry),

Bzf n(R—Ry)R*dR~R3/5. (49

(SZZRsp) Pu

: (51)
( S ZZRS p) Hg

datond PU) = dg0n{ HO)

We use the results of Ref13] for the value of the Schiff
moment of Hg,S,q= —1.4x 10 85, ,e fm3, and the atomic
EDM it induces, dgor{Hg)=5.6X10"®5,,e cm. The
atomic structure ratio ZRsp)py/(Z°Rsp)ug=2.6. The
atomic EDM for 23%Pu in terms of its Schiff moment is then
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oo PU=—1x10"15Sp /(e fm3))e cm. (52
If we take the value for the Schiff moment of Pu from Ref.
[10], Sp,=400x10 8p.e fm?, then the atomic EDM is
oo PU)= —4X 10 ?27,e cm, which is~700 times larger
than the atomic EDM induced if®*Hg.

A numerical calculation of the atomic EDMs induced in
Hg, Xe, Rn, Ra, and Pu is underway.

ACKNOWLEDGMENTS
We are grateful to V.A. Dzuba for useful discussions. This
work was supported by the Australian Research Council.
APPENDIX: ELECTRON TRANSITION DENSITY
FOR spy, AND spg;

To calculate the electron wave functions inside the
nucleusR=Ry we assume that the nuclear charge is uni-

PHYSICAL REVIEW A65 032113

formly distributed about a sphere. This charge distribution

corresponds to the harmonic-oscillator potential

(A1)

where we have set=R/Ry. By solving the radial Dirac
equations for an electron in stat®s,, p1>, andps, moving
in this potential we obtain the radial wave functidsse Eq.
(10) for definition] for s,

4 9
—x2+—xt— —

f{(R)=140) 1—§22a2x2 1—
s s 8 157 45" 80

e

gs(R)=1f¢(0) —EZaX 1—}x2— 322a2x2+-..
s s 2 57 40

1 9
—x2— —Z72%a%

=10 20

RymZax?

N| =

3 13 1 9
= 2 203/ 1_22y2, 4 2 52 2.2
+20RNmZax<1 42x +54x 56Zax
for pyp,
o (R1=0p, (0)] 5 Zax| 1- 232~ o Z2aPx+
pl )= 0p, )E ax 5X T zf X T
2 9 23 7
- _ 252 221 22, © 4
+3Rme[1 202ax(1 84X+324X
27
—_—— 2 22 .« ..
224Za/X+ ],

3 4 1
_ 252 2204 T 2, " 4
gpuz(R)_gPuz(O)[l 82 aX (1 15x +45x
9 1
_Z 52 0202, |_Z= 2[4 _ =2
802 aX+ 2RNmZax (1 6x
9
_E22a2x2+.” :l,
and forps,,
9 2 5
_ ___72_2,,2 _ 2 4
fp3/2(R)—(fp3/2/x)R:0x 1 40Z aX (1 7x + 189X
9
BETT A }
3 1 27
_ 2l 2~ 2 U2 202
gp3/2(R)_ Za(fp3/2/x)R=ox 10 14x 56OZ aX

+}

Here f4(0), gpllz(O), and (fpm/x)R:O are thes, py,, and
(p3p/X) radial wave functions at zero, amdis the electron
mass. The terms included into the radial wave functions
above are such that the radial transition densltigs=ff,
+9s0p for spy, and spsy, include all corrections of order
Z%a? and the lowest correction of ord@fa?*,

2 32 20 3,
USp1/2:§fS(O)gpllz(o)mRNx 1=gZ%a™X| 1= 4%
2 81
PY= 4 " 404%4 P
T 135¢ | T5e0% ¥ X T } (A2)
9 2 2,2 69 ,
US%/zsz(o)(nyz/X)R:OX 1_2_0Z a“X 1_E3X
1 243
~n 4 A 4 4 4 ...
3¢ | T 28007 ¥ Xt (A3)

It is seen by direct substitution of the transition densities
(A2) and(A3) into the LDM expression&25), (34), and(43)
that it is sufficient to include ifJ, just the first correction.
These terms#Z2a?/R2) correspond to the coefficiebt in
expression(12). They give corrections to the Schiff moments
of ~15-25%. The remaining terms in Eq#2) and (A3)
correct the Schiff moments by a few percent.
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