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Weak values, quantum trajectories, and the cavity-QED experiment on wave-patrticle correlation
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Weak values as introduced by Aharonov, Albert, and Vaidii#e®/ ) are ensemble-average values for the
results of weak measurements. They are interesting when the ensemble is preselected on a particular initial
state and postselected on a particular final measurement result. It is shown that weak values arise naturally in
guantum optics, as weak measurements occur whenever an open system is méastoned photodetector
The quantum-trajectory theory is used to derive a generalization of AAV’s formula to inGiudexed initial
conditions,(b) nonunitary evolution(c) a generalizednonprojective final measurement, and) a non-back-
action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating
wave particle dualityG. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett.

85, 3149(2000]. It is shown that the “fractional-order” correlation function measured in that experiment can
be recast as a weak value in a form as simple as that introduced by AAV.
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I. INTRODUCTION
¢<xn>¢EE[xn|¢,¢]=§ x Prof X,=x|¢, ] (1.2

The concept of weak values in quantum mechanics was
formulated by Aharonov, Albert, and VaidmaAAV) [1]

using the earlier two-wave-function formalism of REZ]. A ; x Prolf ¢|Xn=x,y/]Protf Xn=x| 4]
weak value is the ensemble-average value of a weak- =

measurement result. A weak measurement is one that mini- > Prolf ¢, Xn,=Yy| ]

mally disrupts the system, while consequently yielding a y

minimal amount of information about the observable mea- 13

sured. For a given initial system state, the ensemble average .

of weak-measurement results is the same as for stfiomg ~ Here ProbH | denotes the probability for eveht. .
projective measurement results. Where weak measurements FOr simplicity, assume for the moment that there is no
are interesting is when final as well as an initial state is evolution between measurements. Then for a strong interme-

specified. Here the final state is the result of a second mezg-'ate measurement, the postselected average valXg isf

surement(a strong ong so that the ensemble average is
taken over apostselectedensemble, in which the desired 2 X Prolf ¢p|Xs=x]Prold Xs=x| ]
result for the final measurement was obtained. X

Let the desired initial system state [g¢, and letys denote o Xs)y=
the event that this is successfully prepared. Let the desired >, Prolf ¢|Xs=y]Proli Xs=y| ]
final system state bgb), and let¢ denote the event that the Y
appropriate result is obtained by the final projective measure-
ment. Let the observable to be measured at an intermediate > X)X |(X| )2

X

time have operatof(, and let the result of the measurement
be denoted byX,. Here the naturen of the measurement
could be strongrf=s) or weak fi=w). In the former case,
which corresponds to a projective measuremeqtrepro-

duces the statistics of. In the latter caseX,, does not, and  Here|x) denotes an eigenstate %f In the final result there is

indeed is not confined to the spectrumfWe do require, no direct connection between the initial state and the final

however, that in all cases, be an unbiased estimator in the state. The intermediate strong measurement has destroyed

sense that that connection, as it enables the dropping of the conditional
 from Probj ¢|Xs=x, 4] in Eq. (1.3). Basically there are no
surprises here.

_ IR Contrast this result with that from a weak measurement,

(1.4)

- . (1.5
zy: [(BINIZKylw)I?

Here E denotes expectation value and the vertical line de- (X,) :Re<¢|x|l//> (1.6
notes “given.” The postselected value we desire is AN (dly) - '
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Aharonov and Vaidman derive this in detail in RES], and it  where the probability for the result is

is also derived here, in Sec. Il, from a somewhat different R A

perspective. This formula appears to have much more of a Prok[Xn=x]=Tr[Mxp(t)MI]. (2.2
mysterious “quantum” nature than E@L.5), as it involves

the initial and final states linearlyather than bilinearlyon ~ By conservation of probability, the measurement operators
the numerator and denominator. As a consequence, weak vdnust obey a completeness relation

ues can have bizarre properties, especially when the outcome

¢ used for postselection_ is improbalﬁ[él. For exqmple, the z E =1, 2.3
weak value,(X,,), may lieoutsidethe range of eigenvalues X

for X [1,3]. Counterfactual paradoxdd] can also be ex- A

pressed and resolved in this wg;6]. where EX=M:£MX is known as theprobability operatoror

It might be thought that weak values would be mainly of effectfor the resultx.
theoretical interest, because arbitrarily weak measurements As above, we require the measurementXofo be unbi-

would not arise naturally in experimeritg]. But in fact ar-  gged, so tha¢Xn(t))p(t)=Tr[p(t)5(]. This is satisfied by the

bitrarily weak measurements arise all the time, whenever gowing measurement operator, which also has a suitably
system is monitoredi.e., measured continuously in time \yeak effect on the systefi21]:

The measurement theory for monitored systems was devel-

oped by mathematical physicig®—11]. It was subsequently NI, = (27 5t) Y exp — x28t/2)[ 1+ st(xe—&'e/2)].
rediscovered by workers in quantum optjd2—-14 when it

was found necessary to describe the conditioning of systems (2.4
on an observed photocurrent. In quantum optics, the theorifere¢ is an operator such that
of continuous monitoring, especially for homodyne and het-

erodyne measurement, has come to be known as the e+et=X. (2.5
qguantum-trajectory theory14,15.

In this paper | show in Sec. Il how the AAV formula can For convenience we are measuring time in units such that
be derived using the approach of the quantum-trajectorg’@éét is dimensionless. Note that by allowirigto be non-
theory. | derive a simple generalization arising from remov-Hermitian we are allowing for non-back-action-evading
ing the restriction that the weak measuremenX ok a quan-  measurements ok, even ignoring any evolution between
tum nondemolition measurement. In Sec. lll, | derive a moremeasurements.
complete generalization that allows f@ mixed initial con- The measurement operators satisfy a continuous version
ditions, (b) nonunitary evolution between measurements, angf the completeness relatid@.3) to order (5t)?,

(c) a nonprojective final measurement. Within this context,

the AAV formula can be seen to be a special case of the Cpa )

correlation functions that have been used in quantum optics f dx MyM,=1+0(5t%). (2.6
for a long time[16]. Finally, in Sec. IV | show that the

correlation function measured in the recent cavity-QED exdn the limit st—dt, the correction vanishes and it is not
periment[17] can be reformulated as a weak value almostdifficult to show [21] that the measurement resi{, has
exactly as originally proposed by AAV. statistics given by

Il. WEAK VALUES: THE SPECIAL THEORY Xw(t) =TI Xp()]+ £(1). 2.7

Monitoring a quantum system can be treated by considerHlere is a Gaussian white-noise term, defined &)
ing a sequence of discrete weak measurements, each takirgd W(t)/dt, where
time &t and letting st—dt. To obtain a sensible limit, the
strength of each measurement must scaleStasBy this |
mean that the postmeasurement system state should, on av- )
erage, be different from the premeasurement state by an dW(t)“=dt. (2.9
amount of orderst.

To describe weak measurements, we require a generaliz
(nonprojectivé quantum measurement thedri8—20. Let
the measurement result be the random variahl@s above. _ = A
In the case of efficient measurements, the measurement can Px,(t+dY {1+ el HEJdWD]p(L). (2.10
be described in terms of a set afeasurement operators

{M,},, each associated with a resf=x. The postmea-

E[dW(t)]=0, (2.8

é\éoreover, the stochastic postmeasurement conditioned state
IS given by

Here for arbitrary operatord andB

surement conditioned state is given by R
D[A]B=ABAT-— E{ATA,B}, (2.12)
Myp(t)M ]
P+ o) = Prof X,=x]’ @D H[A]B=(A-Ti[AB])B+H.c. (2.12
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Averaging over the measurement results would give (d|E|y)
=2R .
dp=dt D[&]p, (2.13 (o)

which does not necessarily presel(\fe>p(t)=Tr[5<p(t)] be- In the AcasAe of qgantum—nondemohﬂ(f@ND) measurem_ents
~ wheret= X/2, this reduces to the AAV formuld..6). Putting

c n n mmute witlX. ; : . . . .

causec ee_d ot commute wit . . in the unitary time evolution explicitly and settingj=t
For continuous measurements we wish to consider a se- -

guence of measurements as described above. However, for

the purposes of deriving weak values, we wish to assume we

(2.22

have just a single such weak measurement at tint€his S X)), =2 Re<¢(T)|U(T)CU(t)|¢/(O)>. (2.23
unrealistic assumption will be removed in Sec.)IBay the (H(M|U(T)|(0))

system was prepared at time 0 in sta€0)) and evolved

unitarily to statgy) at timet. Let us usep(t) for |¢)(¢f. The Il WEAK VALUES: THE GENERAL THEORY

infinitely weak (i.e., infinitesimally strongymeasurement is

then performed?22]. Then at timeT a final projective mea- We now generalize the above theory by removing many

surement is made, and we wish to keep only those values aff the assumptions. First, we allow the initial system state
X obtained for which the final result corresponds to the statg(0) to be mixed. Second, we allow arbitrary Markovian evo-
|#(T)). Let|¢) be that state evolved unitarily backwards in lution [20] of p between measurements,

time from T to just aftert. Dropping the time arguments, we

have in the notation of Sec. I, p=Lp=—i[A,p]+ 3> DlE, . 3.1)
Y22

X y= E[xwl¢>,¢]=§ XProlf X,,=X| ¢, ¥/]

Here H is an Hermitian operator whilgc,}, is a set of
(2.14  arbitrary operatorgwhich strictly should be boundd@4]).

It would be natural for one of them to be the operator

introduced in Sec. Il. Then at any time between preparation

and final measurement, the conditional evolution of the sys-
(2.15  tem would be

= zx: xProld X,,= X, ¢| ]/ Prolf ¢|].

Here we have used a sum rather than an integral merely for dpxw(s)zds[,erdW(s)H[é]p. (3.2
convenience.
Now because the measurement is infinitely weak, it doe&inally, we allow for the final measurement at tirffigo be
not affect the denominatoD =Prolj 4[], which equals gescribed by a positive operatf(T), which is not neces-
[(p|)|?. The numerator meanwhile evaluates to sarily a projector] ¢(T)}(&(T)|. As long as”t E(T)=0,
E(T) is an effect for some final measurement.
N= 2> x Prolf ¢|X,,=x,y]Prof X,=x|¢] (2.16 Using E andp to denote the events of successful prepara-
X tion and successful final measurement, the weak value at
time t we wish to calculate now is
=2 X(lp(t+dt]$)ProiX,=x¥]  (2.17
' e(Xw)y=ELXu|E,p]= 2 xProtiX,=X|E.p] (33

=E[Xu(lpx, (t+dD)[H)]. (2.18
= xProf X,,=x,E|p]/Prod E|p].
Now from the above formula&.7)—(2.10 it is easy to see X
that this evaluates to (3.9

~ . As before, the denominator is unaffected by the weak mea-
(o (O(X) 0y + HIEIp(D} ) +O(dY). (219 grement and is given by

Expanding the superoperatét and ignoring infinitesimals

gives D=TH{E(T)e“Tp(0)]. 3.5
<¢|{Cp(t)+p(t)éT}|¢>. (2.20 The numerator can be manipulated similarly to yield
Substituting this into Eq(2.15), and usingp(t)=|¢)(#|, N=E[X,() TH{E(T)e“pyx, (t+dD}] (3.6
gives
=T E(T)ef{eefp(0)+H.cl]. (3.7

(lelv)(yld)+H.c
(glw)*

¢<wa>: (2.2))

Equation(2.23 thus generalizes to
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TE(T)el eep(0)}] G+ D)X() ) =(&(t+ DE(t) + & (t+ PE(t)
E<Xw(t)>p:2 RC . (38) At R At At
TIE(T)eTp(0)] +el(ne(t+n+e' (e’ (t+1).
The above result looks more like a normalized correlation @
function, as is familiar in quantum optics, than the unex-Usually they are evaluated at steady st@®, where
pected AAV formula(1.6). Indeed, it can be written in the
Heisenberg pictur§23] as p(0)=ps£( L), 4.2
T where.. is the null space.
(S, = (EMem+e"(mET) (3.9 Note that this is not of the form of Eq3.9), so that this
. (E(T)) ' correlation function cannot be thought of as a weak value in

the AAV sense.
with initial conditions supplied by(0) and the bath state A notable exception to this typicality is the recent cavity-
implied by the master equatiai3.1). However, we can for- QED experimen{17]. This involved a damped cavity, very
mulate Eq.(3.8) more like Eq.(1.6) as follows. First we weakly driven, through which a beam of resonant atoms

denote, in analogy toy)=U(t)|(0)), passed. The master equation for the system can be approxi-
mated as
p=e“p(0). (3.10 |
This is the usual forward time evolution by the master equa-  P==¢[a'—a,p]+2«D[alp+ >, {gj[a’s] - 5/a.p]
tion (3.1). Next we define aetrodictive[25] positive opera- J
tor E according to +2vy,D[51p}- 4.3
THEA]=Tr{ E(T)e’"A] (3.11) Hered;=[g)(e| is the lowering operator for thgth atom

and & is the annihilation operator for the field. The output
from the cavity is split into two beams by an 85-15 beam
splitter. One beam is detected by homodyne deteditidth
net efficiency ,<<85%) and the other is detected using a
photon countefwith net efficiencyz.<15%).

- Choosing the slightly odd convention of measuring time
E_+|[H E]+E [ Ee _%{é ¢, E}]. (3.12 in units of 1/(2_K17h), the homodyne measurement gives a

current proportional to

whereA is an arbitrary operator.

It is easy to verify that thi€ is E(T) evolved forward by
time 7 according to theetrodictive master equation

Note that this differs slightly from the retrodictive master Xu(1)=Tr p()X]+ &(1), (4.9
equation in Ref[26]. This is because we do not require the

norm of £ to be preserved, as it appears in both the numerawhereX=2a+a". It conditions the system stageby adding
tor and denominator of Ed3.8). That Eq.(3.12 does gen- the term

erate a positive operator is obvious from the solution as a .

“Dyson-like” sum constructed in the manner of E@..24) of dW(t)H[a]p (4.9
Ref. [14]. Using these definitions, we can write the postse-

to dp. Thus the homodyne measurement gives a continuous
lected weak value as

weak measurement as in Sec. ll, wigk=a. The photon
counting also gives a continuous measurement that is weak

TF[ECP] in the sense that the average change in the conditioned sys-
e(Xw)p=2 Re (3.13 tem in time &t is of orderé‘tg Howe?/er unlike homodyne y
THEp] - ' Y

detection, sometimes the change is great. This can be seen

Thus retrodiction, quantum trajectories, and weak values arom the set of effect$E,, E,} describing this measurement,
all united in this expression. .
Eo=1-6tkya'a, (4.6)
IV. WEAK VALUES IN THE RECENT CAVITY-QED “ ata
EXPERIMENT E,=dtena'a. 4.7

The preceding section showed that postselected weak valhese give the probabilities for detecting zero or one photon
ues can be thought of as a correlation func{i®1®). In quan-  over a short timest. The latter result reveals a lot about the
tum optics weak measurements of the type described in Sesystem, and its effectand measurement opergtds not
Il are realized through homodyne detect{dd,15, wheret close to unity.
is proportional to the lowering operator of the radiating sys- In the recent cavity-QED experiment, the correlation be-
tem. The typical correlation functions thus found are of thetween the homodyne curreit,(t) and the photon count
form (in the Heisenberg pictuye increment at timd =t + 7 was measured in order to demon-
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strate an aspect of wave-particle duality. In the experiment The stationary solution is, to a very good approximation,
ranged from negative to positive, and the measured correlgure[29],
tion was proportional t@in the Heisenberg pictuye

Pss:|¢ss><¢ssli (4.14

(@A) (T)X(1):)ss

h(t=T)= (a'a) (4.8 where |0 is the eigenstate of iH o with an eigenvalue
having the largest real part.

This is a “fractional” (3/2)-order correlation functiorfin These results mean that we can approximate(£40 by
contrast to the first-order function in EGL.1)]. Here we are
interested only in the case>0 in which case the correlation Xy —2R (sdaTaN(7)a] 5o .19
function can be written a27] BN\ es™ € Sy JATAN(7) ey .

h(—1)= T Ey(T)e " (8psst psd )] 4 Again because of the weak excitatidso) is, to a good

(=)= THEL(T)ped : 4.9 approximation, given by
1 S

Defining E; to be E;(T) retrodicted(as in Sec. II} from [459=10)+ 1)+ BI1"). (4.19

time T to timet, we can rewrite this correlation function as Here « and 8 scale withe. The statd0) is the state with no

THE,Ape] excitations, |1) that with one ph(_)ton but all atoms in the

19Pss) (410 ground state, andl’) a state with one collective atomic
T E1psd excitation but no photons. The same sort of expansion holds
. . ) _ for &l 9/ (a"a) (although the presence of a nonzétp

It is now clear that the correlation function measured interms here indicates thats) does have higher-order terms
Ref.[17] is a weak value, preselected by the system being ifyrthermore, to leading ordeX(t) preserves this expansion
its stationary state, and postselected on the final measurgspart from normalization For these reasons, we can replace
ment SUIE, (s photon delecen o I, ACLY, S0CE 3, which s 12 Ly by 111, Trat 5, postse
tion of 7), this experiment showed th@/namic.so.f’ a weak Iect!on on the. def[ect!on of a photon is e_quwalent to postse-

P } N lection on projection into the staf#). The final result thus is

value over time. In this case, the spectrumXofs the real

E1< XW> pSS: 2R

line, so there is no chance of observing a weak value outside (1IN(7)a] )
of this range. Nevertheless, the weak values measured in the £ (Xw) y = 2 RW. (4.17)
S

experiment were, for a range of timesvery far away from

the stationary average valueXf This led to the violation of = ;g s completely analogous to Eg..6) when we recognize
various classical inequalitie$28,17. In hindsight, the N'(7)|1) as the unnormalized retrodicted final state.

strangeness of the weak values in this experiment is not sur- When |y, andN(7) are substituted into Eq4.17), and
S 4.17),

prising, since the condition cited by Aharonov and Vaidman : ; i
[3] is fulfilled. That is, the postselection is done on a rareOnIy the terms of leading order in the drivirgare kept, the

event(the detection of one photon rather than zero photons result is

There are a number of features of the above system that (X,)
let us transform the generalized weak val4el0 into a ENNW/ s —1+¢e 7 cosQr+ zsinQT 4.19
form almost identical to the special fori2.22 derived in (hdX|hsa Q o

Sec. Il. Because the driving is very weak<x,y, ), the
‘jJump” terms in the master equatio.3) have a very small  where=(x+ y,)/2 and where/ and() are functions ofx,
effect. This means that it is possible to approximate they | and the coupling coefficientsy;}; . This is exactly the

Liouvillian as same as the analytical result in Rg17], where this result
R was derived by considering the correlation functigh8)
L="H[—iHex], (4.1)  with T<t. That is, with the photodetection preceding the
homodyne measurement. In that case, the correlation func-
where tion is
N
—iHer=e(a’—a)—«a'a+ > [g(a's]-5]a) o il = T Xefap A’
—y,8]5;]. (4.12

In Ref.[17] the symmetry oh(7) was established by assum-
Ignoring normalization, this generates nonunitary evolutioning Gaussian fluctuations. The analysis in this paper shows

according to the operator that the symmetryto leading orderof h(7) can be demon-
A strated explicitly by calculating both cases. The case of nega-
N(t)=exp(—iHgqt). (4.13  tive 7 is found simply from the usual predictive quantum
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mechanics with wave-function collapg29], and the case of value over time. That is, it showed tldynamicsof a weak
positive 7 equally simply by retrodictive quantum mechanics value.
with weak values, as here. Weak values are of considerable intrinsic theoretical and
Finally, it is important to point out that the above form for philosophical interest. Moreover, the fact that they obey cer-
the weak value as a function of time H4.18 matches well  tain well-defined rule§3,5] imply that they are also heuristic
with the experimenf17]. This is so even though the experi- tools for predicting the results of experiments. Of course the
mental conditions are far from ideal, with fluctuations in theresults could be obtained by other, more laborious methods.
number of atoms, transverse motion of the atoms, imperfeddut the power of having several fonts of intuition should not
beam alignment, and so on. This shows that a weak value ise undervalued. The analysis of Sec. IV is a case in point.
not as fragile as one might have thought, and does give quaihis work should help to identify other instances in which

titative predictions for the behavior of the system. the theory of weak values can be used in quantum optics and
related areas. It may even suggest new experiments that pro-
V. DISCUSSION vide further illustrations and applications for this thought-

_ ) ) provoking area of quantum physics.
In this paper | have combined the quantum-trajectory

theory and the concepts of weak values and retrodiction in
order to show the relation between weak values and certain
correlation functions as can be measured in quantum optics.
This required a generalization of the weak value theory of | would like to thank the Stony Brook group, in particular

Aharonov, Albert, and Vaidman. However, in a special casd.uis Orozco and Joe Reiner, for their hospitality and for
of considerable interest, the wave-particle cavity-QED ex-discussions without which | could never have done this
periment, | show that the correlation function reduces to avork. Discussions with David Pegg about retrodiction, and
form as simple, and almost the same, as that originally dewith Klaus Mglmer about weak values, are also gratefully
rived by AAV. Moreover, this experiment measured not aacknowledged. This work was supported by the Australian
weak value at a particular time, but the change in a wealResearch Council.
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