
PHYSICAL REVIEW A, VOLUME 65, 032111
Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation
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Weak values as introduced by Aharonov, Albert, and Vaidman~AAV ! are ensemble-average values for the
results of weak measurements. They are interesting when the ensemble is preselected on a particular initial
state and postselected on a particular final measurement result. It is shown that weak values arise naturally in
quantum optics, as weak measurements occur whenever an open system is monitored~as by a photodetector!.
The quantum-trajectory theory is used to derive a generalization of AAV’s formula to include~a! mixed initial
conditions,~b! nonunitary evolution,~c! a generalized~nonprojective! final measurement, and~d! a non-back-
action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating
wave particle duality@G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett.
85, 3149~2000!#. It is shown that the ‘‘fractional-order’’ correlation function measured in that experiment can
be recast as a weak value in a form as simple as that introduced by AAV.

DOI: 10.1103/PhysRevA.65.032111 PACS number~s!: 03.65.Ta, 42.50.Lc, 42.50.Ct, 42.50.Ar
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I. INTRODUCTION

The concept of weak values in quantum mechanics
formulated by Aharonov, Albert, and Vaidman~AAV ! @1#
using the earlier two-wave-function formalism of Ref.@2#. A
weak value is the ensemble-average value of a we
measurement result. A weak measurement is one that m
mally disrupts the system, while consequently yielding
minimal amount of information about the observable m
sured. For a given initial system state, the ensemble ave
of weak-measurement results is the same as for strong~i.e.,
projective! measurement results. Where weak measurem
are interesting is when afinal as well as an initial state is
specified. Here the final state is the result of a second m
surement~a strong one!, so that the ensemble average
taken over apostselectedensemble, in which the desire
result for the final measurement was obtained.

Let the desired initial system state beuc&, and letc denote
the event that this is successfully prepared. Let the des
final system state beuf&, and letf denote the event that th
appropriate result is obtained by the final projective meas
ment. Let the observable to be measured at an intermed

time have operatorX̂, and let the result of the measureme
be denoted byXn . Here the naturen of the measuremen
could be strong (n5s) or weak (n5w). In the former case
which corresponds to a projective measurement,Xs repro-

duces the statistics ofX̂. In the latter case,Xw does not, and

indeed is not confined to the spectrum ofX̂. We do require,
however, that in all casesXn be an unbiased estimator in th
sense that

^Xn&c[E@Xnuc#5^cuX̂uc&. ~1.1!

Here E denotes expectation value and the vertical line
notes ‘‘given.’’ The postselected value we desire is
1050-2947/2002/65~3!/032111~6!/$20.00 65 0321
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f^Xn&c[E@Xnuc,f#5(
x

x Prob@Xn5xuf,c# ~1.2!

5

(
x

x Prob@fuXn5x,c#Prob@Xn5xuc#

(
y

Prob@f,Xn5yuc#

.

~1.3!

Here Prob@H# denotes the probability for eventH.
For simplicity, assume for the moment that there is

evolution between measurements. Then for a strong inter
diate measurement, the postselected average value ofXs is

f^Xs&c5

(
x

x Prob@fuXs5x#Prob@Xs5xuc#

(
y

Prob@fuXs5y#Prob@Xs5yuc#

~1.4!

5

(
x

u^fux&u2xu^xuc&u2

(
y

u^fuy&u2u^yuc&u2
. ~1.5!

Hereux& denotes an eigenstate ofX̂. In the final result there is
no direct connection between the initial state and the fi
state. The intermediate strong measurement has destr
that connection, as it enables the dropping of the conditio
c from Prob@fuXs5x,c# in Eq. ~1.3!. Basically there are no
surprises here.

Contrast this result with that from a weak measureme
as derived by AAV,

f^Xw&c5Re
^fuX̂uc&

^fuc&
. ~1.6!
©2002 The American Physical Society11-1
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H. M. WISEMAN PHYSICAL REVIEW A 65 032111
Aharonov and Vaidman derive this in detail in Ref.@3#, and it
is also derived here, in Sec. II, from a somewhat differ
perspective. This formula appears to have much more
mysterious ‘‘quantum’’ nature than Eq.~1.5!, as it involves
the initial and final states linearly~rather than bilinearly! on
the numerator and denominator. As a consequence, weak
ues can have bizarre properties, especially when the outc
f used for postselection is improbable@3#. For example, the
weak valuef^Xw&c may lieoutsidethe range of eigenvalue
for X̂ @1,3#. Counterfactual paradoxes@4# can also be ex-
pressed and resolved in this way@5,6#.

It might be thought that weak values would be mainly
theoretical interest, because arbitrarily weak measurem
would not arise naturally in experiments@7#. But in fact ar-
bitrarily weak measurements arise all the time, wheneve
system is monitored~i.e., measured continuously in time!.
The measurement theory for monitored systems was de
oped by mathematical physicists@8–11#. It was subsequently
rediscovered by workers in quantum optics@12–14# when it
was found necessary to describe the conditioning of syst
on an observed photocurrent. In quantum optics, the the
of continuous monitoring, especially for homodyne and h
erodyne measurement, has come to be known as
quantum-trajectory theory@14,15#.

In this paper I show in Sec. II how the AAV formula ca
be derived using the approach of the quantum-trajec
theory. I derive a simple generalization arising from remo
ing the restriction that the weak measurement ofX be a quan-
tum nondemolition measurement. In Sec. III, I derive a m
complete generalization that allows for~a! mixed initial con-
ditions,~b! nonunitary evolution between measurements, a
~c! a nonprojective final measurement. Within this conte
the AAV formula can be seen to be a special case of
correlation functions that have been used in quantum op
for a long time @16#. Finally, in Sec. IV I show that the
correlation function measured in the recent cavity-QED
periment@17# can be reformulated as a weak value alm
exactly as originally proposed by AAV.

II. WEAK VALUES: THE SPECIAL THEORY

Monitoring a quantum system can be treated by consid
ing a sequence of discrete weak measurements, each ta
time dt and lettingdt→dt. To obtain a sensible limit, the
strength of each measurement must scale asdt. By this I
mean that the postmeasurement system state should, o
erage, be different from the premeasurement state by
amount of orderdt.

To describe weak measurements, we require a genera
~nonprojective! quantum measurement theory@18–20#. Let
the measurement result be the random variableXn as above.
In the case of efficient measurements, the measuremen
be described in terms of a set ofmeasurement operator

$M̂ x%x , each associated with a resultXn5x. The postmea-
surement conditioned state is given by

rx~ t1dt !5
M̂ xr~ t !M̂x

†

Prob@Xn5x#
, ~2.1!
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where the probability for the result is

Prob@Xn5x#5Tr@M̂xr~ t !M̂ x
†#. ~2.2!

By conservation of probability, the measurement operat
must obey a completeness relation

(
x

Êx51̂, ~2.3!

where Êx5M̂ x
†M̂x is known as theprobability operatoror

effectfor the resultx.
As above, we require the measurement ofX̂ to be unbi-

ased, so that̂Xn(t)&r(t)5Tr@r(t)X̂#. This is satisfied by the
following measurement operator, which also has a suita
weak effect on the system@21#:

M̂ x5~2p/dt !21/4exp~2x2dt/2!@11dt~xĉ2 ĉ†ĉ/2!#.

~2.4!

Here ĉ is an operator such that

ĉ1 ĉ†5X̂. ~2.5!

For convenience we are measuring time in units such
ĉ†ĉdt is dimensionless. Note that by allowingĉ to be non-
Hermitian we are allowing for non-back-action-evadin
measurements ofX̂, even ignoring any evolution betwee
measurements.

The measurement operators satisfy a continuous ver
of the completeness relation~2.3! to order (dt)2,

E dx M̂x
†M̂ x51̂1O~dt2!. ~2.6!

In the limit dt→dt, the correction vanishes and it is no
difficult to show @21# that the measurement resultXw has
statistics given by

Xw~ t !5Tr@X̂r~ t !#1j~ t !. ~2.7!

Here is a Gaussian white-noise term, defined byj(t)
5dW(t)/dt, where

E@dW~ t !#50, ~2.8!

dW~ t !25dt. ~2.9!

Moreover, the stochastic postmeasurement conditioned s
is given by

rXw
~ t1dt!5$11D@cW #dt1H@ ĉ#dW~ t !%r~ t !. ~2.10!

Here for arbitrary operatorsÂ and B̂

D@Â#B̂[ÂB̂Â†2
1

2
$Â†Â,B̂%, ~2.11!

H@Â#B̂[~Â2Tr@ÂB̂# !B̂1H.c. ~2.12!
1-2
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WEAK VALUES, QUANTUM TRAJECTORIES, AND THE . . . PHYSICAL REVIEW A 65 032111
Averaging over the measurement results would give

dr5dt D@ ĉ#r, ~2.13!

which does not necessarily preserve^X̂&r(t)5Tr@X̂r(t)# be-
causeĉ need not commute withX̂.

For continuous measurements we wish to consider a
quence of measurements as described above. Howeve
the purposes of deriving weak values, we wish to assume
have just a single such weak measurement at timet. ~This
unrealistic assumption will be removed in Sec. III.! Say the
system was prepared at time 0 in stateuc~0!& and evolved
unitarily to stateuc& at timet. Let us user(t) for uc&^cu. The
infinitely weak ~i.e., infinitesimally strong! measurement is
then performed@22#. Then at timeT a final projective mea-
surement is made, and we wish to keep only those value
X obtained for which the final result corresponds to the s
uf(T)&. Let uf& be that state evolved unitarily backwards
time fromT to just aftert. Dropping the time arguments, w
have in the notation of Sec. I,

f^Xw&c5E@Xwuf,c#5(
x

xProb@Xw5xuf,c#

~2.14!

5(
x

xProb@Xw5x,fuc#/Prob@fuc#.

~2.15!

Here we have used a sum rather than an integral merely
convenience.

Now because the measurement is infinitely weak, it d
not affect the denominatorD5Prob@fuc#, which equals
u^fuc&u2. The numerator meanwhile evaluates to

N5(
x

x Prob@fuXw5x,c#Prob@Xw5xuc# ~2.16!

5(
x

x^furx~ t1dt!uf&Prob@Xw5xuc# ~2.17!

5E@Xw^furXw
~ t1dt!uf&#. ~2.18!

Now from the above formulas~2.7!–~2.10! it is easy to see
that this evaluates to

^fu$r~ t !^X̂&r~ t !1H@ ĉ#r~ t !%uf&1O~dt!. ~2.19!

Expanding the superoperatorH and ignoring infinitesimals
gives

^fu$ĉr~ t !1r~ t !ĉ†%uf&. ~2.20!

Substituting this into Eq.~2.15!, and usingr(t)5uc&^cu,
gives

f^Xwc
&5

^fuĉuc&^cuf&1H.c.

u^fuc&u2
~2.21!
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e-
for
e

of
te

or

s

52 Re
^fuĉuc&

^fuc&
. ~2.22!

In the case of quantum-nondemolition~QND! measurements
whereĉ5X̂/2, this reduces to the AAV formula~1.6!. Putting
in the unitary time evolution explicitly and settingT5t
1t,

f^Xw~ t !&c52 Re
^f~T!uÛ~t!ĉÛ~ t !uc~0!&

^f~T!uÛ~T!uc~0!&
. ~2.23!

III. WEAK VALUES: THE GENERAL THEORY

We now generalize the above theory by removing ma
of the assumptions. First, we allow the initial system st
r~0! to be mixed. Second, we allow arbitrary Markovian ev
lution @20# of r between measurements,

ṙ5Lr[2 i @Ĥ,r#1(
m

D@ ĉm#. ~3.1!

Here Ĥ is an Hermitian operator while$ĉm%m is a set of
arbitrary operators~which strictly should be bounded@24#!.
It would be natural for one of them to be the operatorĉ
introduced in Sec. II. Then at any time between prepara
and final measurement, the conditional evolution of the s
tem would be

drXw~s!5dsLr1dW~s!H@ ĉ#r. ~3.2!

Finally, we allow for the final measurement at timeT to be
described by a positive operatorÊ(T), which is not neces-
sarily a projectoruf(T)&^f(T)u. As long as 1ˆ 2Ê(T)>0,
Ê(T) is an effect for some final measurement.

UsingE andr to denote the events of successful prepa
tion and successful final measurement, the weak value
time t we wish to calculate now is

E^Xw&r5E@XwuE,r#5(
x

x Prob@Xw5xuE,r# ~3.3!

5(
x

x Prob@Xw5x,Eur#/Prob@Eur#.

~3.4!

As before, the denominator is unaffected by the weak m
surement and is given by

D5Tr@Ê~T!eLTr~0!#. ~3.5!

The numerator can be manipulated similarly to yield

N5E@Xw~ t !Tr$Ê~T!eLtrXw
~ t1dt!%# ~3.6!

5Tr@Ê~T!eLt$ĉeLtr~0!1H.c.%#. ~3.7!

Equation~2.23! thus generalizes to
1-3
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H. M. WISEMAN PHYSICAL REVIEW A 65 032111
E^Xw~ t !&r52 Re
Tr@Ê~T!eLt$ĉeLtr~0!%#

Tr@Ê~T!eLTr~0!#
. ~3.8!

The above result looks more like a normalized correlat
function, as is familiar in quantum optics, than the une
pected AAV formula~1.6!. Indeed, it can be written in the
Heisenberg picture@23# as

E^Sw&r5
^Ê~T!ĉ~ t !1 ĉ†~ t !Ê~T!&

^Ê~T!&
, ~3.9!

with initial conditions supplied byr~0! and the bath state
implied by the master equation~3.1!. However, we can for-
mulate Eq.~3.8! more like Eq. ~1.6! as follows. First we
denote, in analogy touc&5U(t)uc(0)&,

r5eLtr~0!. ~3.10!

This is the usual forward time evolution by the master eq
tion ~3.1!. Next we define aretrodictive@25# positive opera-
tor Ê according to

Tr@ÊÂ#[Tr@Ê~T!eLtÂ#, ~3.11!

whereÂ is an arbitrary operator.
It is easy to verify that thisÊ is Ê(T) evolved forward by

time t according to theretrodictivemaster equation

dÊ

dt
51 i @Ĥ,Ê#1(

m
@ ĉm

† Êĉm2 1
2 $ĉm

† ĉm ,Ê%#. ~3.12!

Note that this differs slightly from the retrodictive mast
equation in Ref.@26#. This is because we do not require th
norm of Ê to be preserved, as it appears in both the nume
tor and denominator of Eq.~3.8!. That Eq.~3.12! does gen-
erate a positive operator is obvious from the solution a
‘‘Dyson-like’’ sum constructed in the manner of Eq.~7.24! of
Ref. @14#. Using these definitions, we can write the post
lected weak value as

E^Xw&r52 Re
Tr@Êĉr#

Tr@Êr#
. ~3.13!

Thus retrodiction, quantum trajectories, and weak values
all united in this expression.

IV. WEAK VALUES IN THE RECENT CAVITY-QED
EXPERIMENT

The preceding section showed that postselected weak
ues can be thought of as a correlation function~3.9!. In quan-
tum optics weak measurements of the type described in
II are realized through homodyne detection@14,15#, whereĉ
is proportional to the lowering operator of the radiating s
tem. The typical correlation functions thus found are of t
form ~in the Heisenberg picture!
03211
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^:X̂~ t1t!X̂~ t !:&5^ĉ~ t1t!ĉ~ t !1 ĉ†~ t1t!ĉ~ t !

1 ĉ†~ t !ĉ~ t1t!1 ĉ†~ t !ĉ†~ t1t!&.

~4.1!

Usually they are evaluated at steady state~ss!, where

r~0!5rss}n~L!, ~4.2!

wheren is the null space.
Note that this is not of the form of Eq.~3.9!, so that this

correlation function cannot be thought of as a weak value
the AAV sense.

A notable exception to this typicality is the recent cavit
QED experiment@17#. This involved a damped cavity, ver
weakly driven, through which a beam of resonant ato
passed. The master equation for the system can be app
mated as

ṙ5«@ â†2â,r#12kD@ â#r1(
j

N

$gj@ â†ŝ j
†2ŝ j

†â,r#

12g'D@ŝ j #r%. ~4.3!

Here ŝ j5ug& j^eu is the lowering operator for thej th atom
and â is the annihilation operator for the field. The outp
from the cavity is split into two beams by an 85-15 bea
splitter. One beam is detected by homodyne detection~with
net efficiencyhh,85%! and the other is detected using
photon counter~with net efficiencyhc,15%!.

Choosing the slightly odd convention of measuring tim
in units of 1/(2khh), the homodyne measurement gives
current proportional to

Xw~ t !5Tr@r~ t !X̂#1j~ t !, ~4.4!

whereX̂5â1â†. It conditions the system stater by adding
the term

dW~ t !H@ â#r ~4.5!

to dr. Thus the homodyne measurement gives a continu
weak measurement as in Sec. II, withĉ5â. The photon
counting also gives a continuous measurement that is w
in the sense that the average change in the conditioned
tem in timedt is of orderdt. However, unlike homodyne
detection, sometimes the change is great. This can be
from the set of effects$Ê0 ,Ê1% describing this measuremen

Ê0512dtkhcâ
†â, ~4.6!

Ê15dtkhcâ
†â. ~4.7!

These give the probabilities for detecting zero or one pho
over a short timedt. The latter result reveals a lot about th
system, and its effect~and measurement operator! is not
close to unity.

In the recent cavity-QED experiment, the correlation b
tween the homodyne currentXw(t) and the photon coun
increment at timeT5t1t was measured in order to demo
1-4
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WEAK VALUES, QUANTUM TRAJECTORIES, AND THE . . . PHYSICAL REVIEW A 65 032111
strate an aspect of wave-particle duality. In the experimet
ranged from negative to positive, and the measured corr
tion was proportional to~in the Heisenberg picture!

h~ t2T!5
^:~ â†â!~T!X̂~ t !:&ss

^â†â&ss
. ~4.8!

This is a ‘‘fractional’’ ~3/2!-order correlation function@in
contrast to the first-order function in Eq.~4.1!#. Here we are
interested only in the caset.0 in which case the correlatio
function can be written as@27#

h~2t!5
Tr@Ê1~T!eLt~ ârss1rssâ

†!#

Tr@Ê1~T!rss#
. ~4.9!

Defining Ê1 to be Ê1(T) retrodicted~as in Sec. III! from
time T to time t, we can rewrite this correlation function a

E1
^Xw&rss

52 Re
Tr@Ê1ârss#

Tr@Ê1rss#
. ~4.10!

It is now clear that the correlation function measured
Ref. @17# is a weak value, preselected by the system bein
its stationary state, and postselected on the final meas
ment resultE1 ~a photon detected at timeT!. Actually, since
what was measured was a correlationfunction ~i.e., a func-
tion of t!, this experiment showed thedynamicsof a weak
value over time. In this case, the spectrum ofX̂ is the real
line, so there is no chance of observing a weak value out
of this range. Nevertheless, the weak values measured in
experiment were, for a range of timest, very far away from
the stationary average value ofX̂. This led to the violation of
various classical inequalities@28,17#. In hindsight, the
strangeness of the weak values in this experiment is not
prising, since the condition cited by Aharonov and Vaidm
@3# is fulfilled. That is, the postselection is done on a ra
event~the detection of one photon rather than zero photo!.

There are a number of features of the above system
let us transform the generalized weak value~4.10! into a
form almost identical to the special form~2.22! derived in
Sec. II. Because the driving is very weak (e!k,g'), the
‘‘jump’’ terms in the master equation~4.3! have a very small
effect. This means that it is possible to approximate
Liouvillian as

L5H@2 iĤ eff#, ~4.11!

where

2 iĤ eff5«~ â†2â!2kâ†â1(
j

N

@g~ â†ŝ j
†2ŝ j

†â!

2g'ŝ j
†ŝ j #. ~4.12!

Ignoring normalization, this generates nonunitary evolut
according to the operator

N~ t !5exp~2 iĤ efft !. ~4.13!
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The stationary solution is, to a very good approximatio
pure @29#,

rss5ucss&^cssu, ~4.14!

where ucss& is the eigenstate of2 iĤ eff with an eigenvalue
having the largest real part.

These results mean that we can approximate Eq.~4.10! by

E1
^Xw&css

52 Re
^cssuâ†âN~t!âucss&

^cssuâ†âN~t!ucss&
. ~4.15!

Again because of the weak excitation,ucss& is, to a good
approximation, given by

ucss&5u0&1au1&1bu18&. ~4.16!

Herea andb scale withe. The stateu0& is the state with no
excitations,u1& that with one photon but all atoms in th
ground state, andu18& a state with one collective atomi
excitation but no photons. The same sort of expansion ho
for âucss&/A^â†â&ss ~although the presence of a nonzerou1&
terms here indicates thatucss& does have higher-order terms!.
Furthermore, to leading order,N(t) preserves this expansio
~apart from normalization!. For these reasons, we can repla
â†â, which is reallyâ†â^ 1̂atoms, by u1&^1u. That is, postse-
lection on the detection of a photon is equivalent to post
lection on projection into the stateu1&. The final result thus is

E1
^Xw&css

52 Re
^1uN~t!âucss&

^1uN~t!ucss&
. ~4.17!

This is completely analogous to Eq.~1.6! when we recognize
N†(t)u1& as the unnormalized retrodicted final state.

When ucss& andN(t) are substituted into Eq.~4.17!, and
only the terms of leading order in the drivinge are kept, the
result is

E1
^Xw&css

^cssuX̂ucss&
511ze2htFcosVt1

h

V
sinVtG , ~4.18!

whereh5(k1g')/2 and wherez andV are functions ofk,
g' , and the coupling coefficients$gj% j . This is exactly the
same as the analytical result in Ref.@17#, where this result
was derived by considering the correlation function~4.8!
with T,t. That is, with the photodetection preceding t
homodyne measurement. In that case, the correlation fu
tion is

h~2t!5h~ utu!5
Tr@X̂eLutuârssâ

†#

Tr@ ârssâ
†#

. ~4.19!

In Ref. @17# the symmetry ofh(t) was established by assum
ing Gaussian fluctuations. The analysis in this paper sh
that the symmetry~to leading order! of h(t) can be demon-
strated explicitly by calculating both cases. The case of ne
tive t is found simply from the usual predictive quantu
1-5
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H. M. WISEMAN PHYSICAL REVIEW A 65 032111
mechanics with wave-function collapse@29#, and the case o
positivet equally simply by retrodictive quantum mechani
with weak values, as here.

Finally, it is important to point out that the above form fo
the weak value as a function of time Eq.~4.18! matches well
with the experiment@17#. This is so even though the exper
mental conditions are far from ideal, with fluctuations in t
number of atoms, transverse motion of the atoms, imper
beam alignment, and so on. This shows that a weak valu
not as fragile as one might have thought, and does give q
titative predictions for the behavior of the system.

V. DISCUSSION

In this paper I have combined the quantum-traject
theory and the concepts of weak values and retrodiction
order to show the relation between weak values and cer
correlation functions as can be measured in quantum op
This required a generalization of the weak value theory
Aharonov, Albert, and Vaidman. However, in a special ca
of considerable interest, the wave-particle cavity-QED
periment, I show that the correlation function reduces t
form as simple, and almost the same, as that originally
rived by AAV. Moreover, this experiment measured not
weak value at a particular time, but the change in a w
ev

en
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value over time. That is, it showed thedynamicsof a weak
value.

Weak values are of considerable intrinsic theoretical a
philosophical interest. Moreover, the fact that they obey c
tain well-defined rules@3,5# imply that they are also heuristi
tools for predicting the results of experiments. Of course
results could be obtained by other, more laborious metho
But the power of having several fonts of intuition should n
be undervalued. The analysis of Sec. IV is a case in po
This work should help to identify other instances in whi
the theory of weak values can be used in quantum optics
related areas. It may even suggest new experiments that
vide further illustrations and applications for this though
provoking area of quantum physics.
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