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Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger
and W states
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A proof of Bell's theorem without inequalities valid for both inequivalent classes of three-qubit entangled
states under local operations assisted by classical communication, namely Greenberger-Horne-Z&ifiger
andW, is described. This proof leads to a Bell inequality that allows more conclusive tests of Bell's theorem
for three-qubit systems. Another Bell inequality involving both tri- and bipartite correlations is introduced
which illustrates the different violations of local realism exhibited by the GHZ \Ahstates.
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[. INTRODUCTION At this point, some natural questions arise. The first being
in which applications does the use of tkéstate mean an
In recent years, Greenberger-Horne-ZeilingeeHZz) improvement over previous protocols using the GHZ state.
states of three or more qubits] have become ubiquitous in  This question is partially addressed [21], where it is
qguantum information theorf2—8|. However, the interest in pointed out that in a three-qubit system prepared iVa
GHZ states began in connection with Bell's theorem. While(GHZ) state, if one of the qubits is traced out then the re-
Bell's proof of the impossibility of Einstein, Podolsky, and maining two qubits are entanglédompletely unentangled
Rosen’s(EPR’9 “elements of reality”[9] was based on sta- Indeed,W is the three-qubit state whose entanglement has
tistical predictions and inequaliti¢40], GHZ showed that a the highest robustness against the loss of one d&tit
simpler proof can be achieved with perfect correlations andvoreover, from a single copy of the reduced density matrix
without inequalitied 1,11,13. Subsequently, the GHZ proof for any two qubits belonging to a three-qubit state, one
was translated into experimentally verifiable Bell inequalitiescan always obtain a state which is arbitrarily close to a Bell
[13,14 and into real experimentgl5,16. It has recently state by means of a filtering measuremi28]. This means
been found that not only the GHZ state but any two-qubitthat, if one of the parties sharing the system preparedh a
pure entangled state admits a proof of Bell's theorem withoutGHZ) state decides not to cooperate with the other two, or if
inequalities[17-19. for some reason the information about one of the qubits is
On the other hand, over the last few years the importanctost, then the remaining two parties still c&canno} use
of quantum entanglement as a resource for unusual kinds @ntanglement resources to perform communication tasks.
communication and information processing has stimulated On the other hand, it has been shown thatwhstate does
the mathematical study of the entanglement of multiqubitnot allow a GHZ-type proof of Bell’s theoref27]. There-
systems. In particular, there has been much interest in thiere, two other natural questions are whether Westate
classification of three-qubit pure entangled states in terms aidmits any kind of proof of Bell's theorem without inequali-
equivalences under local operations assisted by classicties and what the differences are between the violation of
communicationLOCC) [20—24. Dur, Vidal, and Cirad 21] local realism exhibited by the GHZ and/ states. In this
have shown that there are only two classes of genuinely tripaper, | will describe four related results which answer these
partite entanglement which are inequivalent under LOCCgquestions. First, a proof of Bell's theorem without inequali-
One class is represented by the GHZ state, ties specific for theW state. Second, an extension of that
proof which is also valid for the GHZ state. Such a proof
leads to a Bell-type inequality for three qubits which can be
|GHZ)= T(|y+y+y+>+|y—y—y—>), (1) experimentally useful in order to achieve more conclusive
2 tests of Bell's theorem. Finally, a different set of Bell in-
equalities is considered with the purpose of illustrating some
differences between the violations of local realism exhibited
by the GHZ andW states.

where oy |y*)=*|y*+), o, being the corresponding
Pauli spin matrix. The other class is represented by\ihe
state[25],

1 Il. BELL'S THEOREM WITHOUT INEQUALITIES
|W>:$(|+——>+|—+—>+|——+>), 2 FOR THE W STATE

First, | will show that theW state allows three local ob-
whereo,| =)= =|=). The GHZ and\ states cannot be con- servers to define elements of reality which are incompatible
verted into each other by means of LOCC. with some predictions of quantum mechar{i28]. | will use

the following notationz, andx, will be the results -1 or
1) of measuringr, and o, on qubitq (q=1,2,3). The first
*Electronic address: adan@us.es step of the proof consists of showing that, in iestate, all
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the z, andx, satisfy EPR’s criterion of elements of reality. _ Sometimes -1

EPR'’s condition readsif, without in any way disturbing a 4= &L=

system, we can predict with certainty (i.e., with probability

equal to unity) the value of a physical quantity, then there Always Always

exists an element of physical reality corresponding to this

physical quantity”’[9]. From the expression of the/ state

given in Eq.(2), it can be immediately seen that, z,, and b=l — b,=1

z3 are elements of reality, since the resgjltan be predicted eve

with certainty from the results of spacelike separated mea- FIG. 1. Diagram for Hardy's proof of Bell's theorem without

surements of; andz, (i #j, j #k, andk#i). In addition, by  inequalities for two qubits in a nonmaximally entangled state

rewriting the W state in the suitable basis, it can easily be[17,29. a; andb; are alternative spin observables of quibit

seen that, iz;=—1 then, with certaintyx;=x, . Therefore,

if z=-1, then by measuring; (x,) one can predict x,, x,, andx; alwayssatisfyx;=X,= x5. However, this is in

Xk (x;) with certainty. Therefore, if;=—1, thenx; andxy  contradiction with property6) which states that, when mea-

are elements of reality. If;=+1 then, using the expression syringo, on all three qubits, one finds results ticannotbe

(2), it can immediately be seen that= —1. Therefore, fol-  explained with elements of reality ih of the cases. There-

lowing the previous reasoning; and x, are elements of fore, the conclusion is that quantum predictions for We

reality (althoughx; could have ceased to be an element ofstate cannot be “completed” with EPR’s elements of reality.

reality after measuringr, on particlei). In conclusion,z, While the structure of this proof is similar to Hardy's

andx, are EPR elements of reality and therefore, according17,29, the logical argument is different: in Hardy’s, from a

to EPR, they should have predefined values or 1 before  result thatsometime®ccurs, two local observers infer a re-

any measurement. sult thatneveroccurs(see Fig. 1; here, from a result that
However, according to quantum mechanics, such an asslwaysoccurs, two observers infer a result tlatly some-

signment of values is impossible. The proof can be presenteimesoccurs(see Fig. 2 In addition, while in Hardy’s proof

in a very similar way to Hardy’s proof of Bell's theorem for only 9% of the runs of a certain experiment contradict local

nonmaximally entangled states of two quijils’] by using  realism, here 25% of the runs of the last experiment cannot

four properties of the quantum state and a logical argumertie explained by local realism. On the other hand, while in

based on them. For the refutation of EPR’s elements of reaHardy’s proof we need both qubits to start the argument and

ity, the relevant properties of the/ state (2), which can in GHZ’s proof[11,12 all three qubits are required, in the

easily be checked, are proof for the W state the contradiction results from infer-
ences from onlytwo of all three qubits, but we cannot tell
Pw(zi=—-1z=-1)=1, (3)  which one.
Pw(xj=xz=-1)=1, 4

Ill. BELL'S THEOREM WITHOUT INEQUALITIES
Pw(Xi :Xk|zj =—-1)=1, (5) FOR THE GHZ AND W STATES

For two-qubit pure states, the logical structure that can be
Pu/(X =X =X ):§ ©6) qbtaine_d from Fig. 1 by changing the “never” to “_fewer
WA AT g times” is not particularly useful, since the states which sat-
isfy a “sometimes-always-never” structure like that in Fig.
where Py(z;=—1z;=—1) means the probability of two 1, namely, nonmaximally entangled stafég], are the same
qubits (although we cannot tell which ohegiving the result  which satisfy the extended structuf80]. However, for
—1 when measuringr, on all three qubits, andPy(X;  three-qubit pure states, a similar extension of Fig. 2's
=xi/zi=—1) is the conditional probability ofry; and oy,  “always-always-sometimes” structuréchanging the first
having the same result given that the resultogf is —1. “always” to “sometimes” and the last “sometimes” to
Property (3) tells us that, when measuring, on all three  “fewer times”) allows us to extend the proof for th& state
qubits, the result-1 alwaysoccurs intwo of them. Let us to the GHZ state and, therefore, to obtain a common proof of
call these qubits andj. Then let us suppose that we had Bell's theorem without inequalities for both classes of genu-
measuredr, on qubitsj andk, instead ofo,. Then, accord-

ing to property(4), the results would have been the same. Always
Therefore, following EPR, one reaches the conclusion that z=-l &> z=-1
the predefined values corresponding to the elements of real-

ity x; andx, are equal. Now let us suppose that we had Always Always

measuredr, on qubitsi andk, instead ofo,. Then, accord-
ing to property(5), the results would have been the same.

Therefore, the predefined values corresponding to the ele- X=X, ——— X=X
. . Sometimes
ments of realityx; andx, are equal. Taking these two con-
clusions together, one must deduce that, in\tstate, the FIG. 2. Diagram for the proof of Bell's theorem without in-

predefined values corresponding to the elements of realitgqualities for thew state.
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=1 Sometimes =1 ited by the GHZ state is even higher. By using properties
i 7 (7)—(10), it can easily be seen that the middle term in Eq.
(12) is 0.5, which is the maximum allowed violation of a
Always Always CH-type inequality and corresponds to a value four in the
corresponding Clauser-Horne-Shimony-Hal€HSH) in-
equality[35].
X=X W X=X A similar situation occurs in Mermin’s inequalify. 3]
FIG. 3. Diagram for the extended proof of Bell's theorem with- —2<({A;A,A3z)—(A;B,B3)—(B1A,B3)—(B1B,A3)<2,
out inequalities valid for the GHZ and/ states. The diagram in Fig. (12
2 is a particular case of this one.
whereA,; andB; are observables of quhit By choosingA;
inely tripartite entangled states. Such a proof is illustrated in= 02; andB;= o;, for the GHZ statg1) we obtain four for
Fig. 3 and, for the GHZ staté), it is based on its following the middle term in Eq(12), four being the maximum al-

four properties which can easily be checked: lowed violation of inequality(12). For theW state(2), con-
sidering only local spin observables on plaxe, and that

Ai=A,=A; and B;=B,=Bj;, the maximum violation is

Ponz(zi=—1z=-1)=7, (7)  3.046 [for instance, by choosing A =cos(0.628),
—sin(0.628)r, andB; = cos(1.154y,+ sin(1.154),]. Alter-
Parz(X; = Xzi=—-1)=1, (8) natively, by choosingA;=o,; and B;=o,; (which satisfy
EPR's criterion of elements of realjtythe W state(2) gives

Parz(Xi=X/zj=—1)=1, (9)  the value three for the middle term in Ed.2).

Two reasons suggest that, for the three-qubit GHZ state,
inequality (11) could lead to a more conclusive clear-cut ex-
Perz(Xi=Xj=x= 7. (100  perimental test of Bell's theorem than inequalify2). As in
CH’s, inequality(11) can be put into a form which does not

The proof for the GHZ state is parallel to the one for thie involve the number of undetected particles, thereby render-

state, changing only the “always” to “in 75% of the cases” g Unnecessary the assumption of fair sampl4jl. On the

and changing the percentage of events of the fourth experfther hand, since CH and CHSH inequalities are equivalent
ment that cannot be explained with elements of reality, whic 33], and Eq.(11) and CH[Eq. (12) and CHSH inequalities
now is 50%. ha_ve the same bounds, the ratio petvveen the maximum vio-

The previous demonstrations complete the family offations shown by the GHZ and singlet states for inequality
simple proofs of Bell's theorem without inequalities for the (11) over CH's[Eq. (12) over CHSH'Y, 1+ V2 V2], sug-
main classes of twoF17—19 and three-qubif1,11,19 pure gests that Eq(11) reveals a higher violation of local realism
entangled states. than Eq.(12).

IV. BELL-CH INEQUALITIES FOR THREE QUBITS V. BELL INEQUALITIES INVOLVING TRI-
_ _ N o AND BIPARTITE CORRELATIONS
The proofs without inequalities described in Secs. Il and

Il can easily be converted into experimentally testable Bell As a final remark, the results i21] point out that bipar-

inequalities. As noted if31-33, the two-qubit Bell in- tite correlations are relevant to th& state but not to the

equalities proposed by Clauser and Hof@#1) [34] can be GHZ state. Therefore, it would be interesting to consider
put into a form in which On'y the four probab“ities of a Bell inequalities inVOIVing both tripartite and blpartlte corre-
Hardy-type argument are included. Similarly, it can easily bdations. The simplest way of obtaining such an inequality
seen that four probabilities related to those in E@—(6)  Would be by adding genuinely bipartite correlations to the
[or in Egs.(7)—(10)] must satisfy the following Bell inequal- tripartite correlations considered in Mermin’s inequality. For

ity: instance, a straightforward calculation would allow us to
prove that any local realistic theory must satisfy the follow-
—1<P(zi=—1z=—1)—P(z}= — 1X#X) ing inequality:
—P(Xi=X¢,zj=—1)=P(Xi=X;=X)<0. (11) —5<(A;A,A3)—(A;B,B3)—(B1A,B3)—(B1B,A3)
For theW state(2), the value of the first probability in Eq. —(A1A) —(A1Az) — (A,Az)<3. (13

(11) is 1, the values of the second and third probabilities are

0, and the value of the fourth is 3/4. Therefore, the middleAssuming that; andB; are local observables on plarez,
term in Eq.(11) is 0.25. This means that the violation of the and thatA;=A,=A; andB;=B,=B;, a numerical calcula-
inequality (11) is higher than the maximum violation ob- tion shows that both the GHZ al states give a maximum
tained from Hardy’s proof, where the middle term is 0.090value four for the middle term in Eq13) (for instance, by
[32,33, and even higher than the violation for a singlet state choosingA; = o,; andB; = o; in both cases Therefore, both
where the middle term is 0.2082,33. The violation exhib- states lead to theamemaximal violation of the inequality
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(13). However, if we assign a higher weight to the bipartite VI. SUMMARY
correlations appearing in the inequality, then we can reach a

Bell inequality such as In brief, we have completed the family of proofs without

inequalities for two- and three-qubit pure entangled states
with a proof for theW state that can also be extended to the

—8<(A1A,A3)—(A1B,B3)—(B1A,B3)—(B1B,A;) GHZ state and we have then obtained two Bell inequalities
for three qubits. The first could lead to more conclusive tests
—2(A1A2) = 2(A1A3) — 2(AzA3) <4, (14 of Bell's theorem. The second, involving both tri- and bipar-

tite correlations, illustrates some differences between the vio-

which is violated by thew state[for instance, by choosing lations of local realism exhibited by the GHZ akd states.

A;=0, andB;=0,;, state(2) gives the value five for the
middle term in Eq(14)] butnotby the GHZ state. Therefore,
there are scenarios involving both tripartite and bipartite cor- | thank J. L. Cereceda and C. Serra for their comments,
relations in which the quantum predictions for the GHZ stateand the organizers of the Sixth Benasque Center for Science,
can be reproduced with a local model while those for\the where this work was begun, the Junta de And@uGrant
state cannot. A more general study of multipartite Bell in-No. FQM-239, and the Spanish Ministerio de Ciencia y Tec-
equalities is presented [136,37]. nologia Grant No. BFM2000-0529 for their support.
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