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Bell’s theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger
and W states
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A proof of Bell’s theorem without inequalities valid for both inequivalent classes of three-qubit entangled
states under local operations assisted by classical communication, namely Greenberger-Horne-Zeilinger~GHZ!
andW, is described. This proof leads to a Bell inequality that allows more conclusive tests of Bell’s theorem
for three-qubit systems. Another Bell inequality involving both tri- and bipartite correlations is introduced
which illustrates the different violations of local realism exhibited by the GHZ andW states.
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I. INTRODUCTION

In recent years, Greenberger-Horne-Zeilinger~GHZ!
states of three or more qubits@1# have become ubiquitous i
quantum information theory@2–8#. However, the interest in
GHZ states began in connection with Bell’s theorem. Wh
Bell’s proof of the impossibility of Einstein, Podolsky, an
Rosen’s~EPR’s! ‘‘elements of reality’’@9# was based on sta
tistical predictions and inequalities@10#, GHZ showed that a
simpler proof can be achieved with perfect correlations a
without inequalities@1,11,12#. Subsequently, the GHZ proo
was translated into experimentally verifiable Bell inequalit
@13,14# and into real experiments@15,16#. It has recently
been found that not only the GHZ state but any two-qu
pure entangled state admits a proof of Bell’s theorem with
inequalities@17–19#.

On the other hand, over the last few years the importa
of quantum entanglement as a resource for unusual kind
communication and information processing has stimula
the mathematical study of the entanglement of multiqu
systems. In particular, there has been much interest in
classification of three-qubit pure entangled states in term
equivalences under local operations assisted by clas
communication~LOCC! @20–24#. Dür, Vidal, and Cirac@21#
have shown that there are only two classes of genuinely
partite entanglement which are inequivalent under LOC
One class is represented by the GHZ state,

uGHZ&5
1

A2
~ uy1y1y1&1uy2y2y2&), ~1!

where syuy6&56uy6&, sy being the corresponding
Pauli spin matrix. The other class is represented by theW
state@25#,

uW&5
1

A3
~ u122&1u212&1u221&), ~2!

whereszu6&56u6&. The GHZ andW states cannot be con
verted into each other by means of LOCC.
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At this point, some natural questions arise. The first be
in which applications does the use of theW state mean an
improvement over previous protocols using the GHZ sta
This question is partially addressed in@21#, where it is
pointed out that in a three-qubit system prepared in aW
~GHZ! state, if one of the qubits is traced out then the
maining two qubits are entangled~completely unentangled!.
Indeed,W is the three-qubit state whose entanglement
the highest robustness against the loss of one qubit@21#.
Moreover, from a single copy of the reduced density mat
for any two qubits belonging to a three-qubitW state, one
can always obtain a state which is arbitrarily close to a B
state by means of a filtering measurement@26#. This means
that, if one of the parties sharing the system prepared inW
~GHZ! state decides not to cooperate with the other two, o
for some reason the information about one of the qubits
lost, then the remaining two parties still can~cannot! use
entanglement resources to perform communication tasks

On the other hand, it has been shown that theW state does
not allow a GHZ-type proof of Bell’s theorem@27#. There-
fore, two other natural questions are whether theW state
admits any kind of proof of Bell’s theorem without inequa
ties and what the differences are between the violation
local realism exhibited by the GHZ andW states. In this
paper, I will describe four related results which answer th
questions. First, a proof of Bell’s theorem without inequa
ties specific for theW state. Second, an extension of th
proof which is also valid for the GHZ state. Such a pro
leads to a Bell-type inequality for three qubits which can
experimentally useful in order to achieve more conclus
tests of Bell’s theorem. Finally, a different set of Bell in
equalities is considered with the purpose of illustrating so
differences between the violations of local realism exhibi
by the GHZ andW states.

II. BELL’S THEOREM WITHOUT INEQUALITIES
FOR THE W STATE

First, I will show that theW state allows three local ob
servers to define elements of reality which are incompat
with some predictions of quantum mechanics@28#. I will use
the following notation:zq andxq will be the results (21 or
1) of measuringsz andsx on qubitq (q51,2,3). The first
step of the proof consists of showing that, in theW state, all
©2002 The American Physical Society08-1
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the zq and xq satisfy EPR’s criterion of elements of realit
EPR’s condition reads:‘‘If, without in any way disturbing a
system, we can predict with certainty (i.e., with probabil
equal to unity) the value of a physical quantity, then the
exists an element of physical reality corresponding to t
physical quantity’’ @9#. From the expression of theW state
given in Eq.~2!, it can be immediately seen thatz1 , z2, and
z3 are elements of reality, since the resultzi can be predicted
with certainty from the results of spacelike separated m
surements ofzj andzk ( i 5” j , j 5” k, andk5” i ). In addition, by
rewriting theW state in the suitable basis, it can easily
seen that, ifzi521 then, with certainty,xj5xk . Therefore,
if zi521, then by measuringxj (xk) one can predict
xk (xj ) with certainty. Therefore, ifzi521, thenxj andxk
are elements of reality. Ifzi511 then, using the expressio
~2!, it can immediately be seen thatzj521. Therefore, fol-
lowing the previous reasoning,xi and xk are elements of
reality ~althoughxi could have ceased to be an element
reality after measuringsz on particle i ). In conclusion,zq
andxq are EPR elements of reality and therefore, accord
to EPR, they should have predefined values21 or 1 before
any measurement.

However, according to quantum mechanics, such an
signment of values is impossible. The proof can be prese
in a very similar way to Hardy’s proof of Bell’s theorem fo
nonmaximally entangled states of two qubits@17# by using
four properties of the quantum state and a logical argum
based on them. For the refutation of EPR’s elements of r
ity, the relevant properties of theW state ~2!, which can
easily be checked, are

PW~zi521,zj521!51, ~3!

PW~xj5xkuzi521!51, ~4!

PW~xi5xkuzj521!51, ~5!

PW~xi5xj5xk!5
3

4
, ~6!

where PW(zi521,zj521) means the probability of two
qubits ~although we cannot tell which one! giving the result
21 when measuringsz on all three qubits, andPW(xj
5xkuzi521) is the conditional probability ofsx j and sxk
having the same result given that the result ofszi is 21.
Property~3! tells us that, when measuringsz on all three
qubits, the result21 alwaysoccurs intwo of them. Let us
call these qubitsi and j. Then let us suppose that we ha
measuredsx on qubitsj andk, instead ofsz . Then, accord-
ing to property~4!, the results would have been the sam
Therefore, following EPR, one reaches the conclusion
the predefined values corresponding to the elements of
ity xj and xk are equal. Now let us suppose that we h
measuredsx on qubitsi andk, instead ofsz . Then, accord-
ing to property~5!, the results would have been the sam
Therefore, the predefined values corresponding to the
ments of realityxi and xk are equal. Taking these two con
clusions together, one must deduce that, in theW state, the
predefined values corresponding to the elements of re
03210
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x1 , x2, andx3 alwayssatisfyx15x25x3. However, this is in
contradiction with property~6! which states that, when mea
suringsx on all three qubits, one finds results thatcannotbe
explained with elements of reality in14 of the cases. There
fore, the conclusion is that quantum predictions for theW
state cannot be ‘‘completed’’ with EPR’s elements of reali

While the structure of this proof is similar to Hardy
@17,29#, the logical argument is different: in Hardy’s, from
result thatsometimesoccurs, two local observers infer a re
sult thatneveroccurs~see Fig. 1!; here, from a result tha
alwaysoccurs, two observers infer a result thatonly some-
timesoccurs~see Fig. 2!. In addition, while in Hardy’s proof
only 9% of the runs of a certain experiment contradict lo
realism, here 25% of the runs of the last experiment can
be explained by local realism. On the other hand, while
Hardy’s proof we need both qubits to start the argument
in GHZ’s proof @11,12# all three qubits are required, in th
proof for the W state the contradiction results from infe
ences from onlytwo of all three qubits, but we cannot te
which one.

III. BELL’S THEOREM WITHOUT INEQUALITIES
FOR THE GHZ AND W STATES

For two-qubit pure states, the logical structure that can
obtained from Fig. 1 by changing the ‘‘never’’ to ‘‘fewe
times’’ is not particularly useful, since the states which s
isfy a ‘‘sometimes-always-never’’ structure like that in Fi
1, namely, nonmaximally entangled states@17#, are the same
which satisfy the extended structure@30#. However, for
three-qubit pure states, a similar extension of Fig.
‘‘always-always-sometimes’’ structure~changing the first
‘‘always’’ to ‘‘sometimes’’ and the last ‘‘sometimes’’ to
‘‘fewer times’’! allows us to extend the proof for theW state
to the GHZ state and, therefore, to obtain a common proo
Bell’s theorem without inequalities for both classes of gen

FIG. 1. Diagram for Hardy’s proof of Bell’s theorem withou
inequalities for two qubits in a nonmaximally entangled sta
@17,29#. ai andbi are alternative spin observables of qubiti.

FIG. 2. Diagram for the proof of Bell’s theorem without in
equalities for theW state.
8-2
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inely tripartite entangled states. Such a proof is illustrated
Fig. 3 and, for the GHZ state~1!, it is based on its following
four properties which can easily be checked:

PGHZ~zi521,zj521!5
3

4
, ~7!

PGHZ~xj5xkuzi521!51, ~8!

PGHZ~xi5xkuzj521!51, ~9!

PGHZ~xi5xj5xk!5
1

4
. ~10!

The proof for the GHZ state is parallel to the one for theW
state, changing only the ‘‘always’’ to ‘‘in 75% of the cases
and changing the percentage of events of the fourth exp
ment that cannot be explained with elements of reality, wh
now is 50%.

The previous demonstrations complete the family
simple proofs of Bell’s theorem without inequalities for th
main classes of two-@17–19# and three-qubit@1,11,12# pure
entangled states.

IV. BELL-CH INEQUALITIES FOR THREE QUBITS

The proofs without inequalities described in Secs. II a
III can easily be converted into experimentally testable B
inequalities. As noted in@31–33#, the two-qubit Bell in-
equalities proposed by Clauser and Horne~CH! @34# can be
put into a form in which only the four probabilities of
Hardy-type argument are included. Similarly, it can easily
seen that four probabilities related to those in Eqs.~3!–~6!
@or in Eqs.~7!–~10!# must satisfy the following Bell inequal
ity:

21<P~zi521,zj521!2P~zi521,xj5” xk!

2P~xi5xk ,zj521!2P~xi5xj5xk!<0. ~11!

For theW state~2!, the value of the first probability in Eq
~11! is 1, the values of the second and third probabilities
0, and the value of the fourth is 3/4. Therefore, the mid
term in Eq.~11! is 0.25. This means that the violation of th
inequality ~11! is higher than the maximum violation ob
tained from Hardy’s proof, where the middle term is 0.0
@32,33#, and even higher than the violation for a singlet sta
where the middle term is 0.207@32,33#. The violation exhib-

FIG. 3. Diagram for the extended proof of Bell’s theorem wit
out inequalities valid for the GHZ andW states. The diagram in Fig
2 is a particular case of this one.
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ited by the GHZ state is even higher. By using propert
~7!–~10!, it can easily be seen that the middle term in E
~11! is 0.5, which is the maximum allowed violation of
CH-type inequality and corresponds to a value four in
corresponding Clauser-Horne-Shimony-Holt~CHSH! in-
equality @35#.

A similar situation occurs in Mermin’s inequality@13#

22<^A1A2A3&2^A1B2B3&2^B1A2B3&2^B1B2A3&<2,
~12!

whereAi andBi are observables of qubiti. By choosingAi
5szi andBi5sxi , for the GHZ state~1! we obtain four for
the middle term in Eq.~12!, four being the maximum al-
lowed violation of inequality~12!. For theW state~2!, con-
sidering only local spin observables on planex-z, and that
A15A25A3 and B15B25B3, the maximum violation is
3.046 @for instance, by choosing Ai5cos(0.628)sx
2sin(0.628)sz andBi5cos(1.154)sx1sin(1.154)sz#. Alter-
natively, by choosingAi5szi and Bi5sxi ~which satisfy
EPR’s criterion of elements of reality!, theW state~2! gives
the value three for the middle term in Eq.~12!.

Two reasons suggest that, for the three-qubit GHZ st
inequality~11! could lead to a more conclusive clear-cut e
perimental test of Bell’s theorem than inequality~12!. As in
CH’s, inequality~11! can be put into a form which does no
involve the number of undetected particles, thereby rend
ing unnecessary the assumption of fair sampling@34#. On the
other hand, since CH and CHSH inequalities are equiva
@33#, and Eq.~11! and CH@Eq. ~12! and CHSH# inequalities
have the same bounds, the ratio between the maximum
lations shown by the GHZ and singlet states for inequa
~11! over CH’s @Eq. ~12! over CHSH’s#, 11A2 @A2#, sug-
gests that Eq.~11! reveals a higher violation of local realism
than Eq.~12!.

V. BELL INEQUALITIES INVOLVING TRI-
AND BIPARTITE CORRELATIONS

As a final remark, the results in@21# point out that bipar-
tite correlations are relevant to theW state but not to the
GHZ state. Therefore, it would be interesting to consid
Bell inequalities involving both tripartite and bipartite corr
lations. The simplest way of obtaining such an inequa
would be by adding genuinely bipartite correlations to t
tripartite correlations considered in Mermin’s inequality. F
instance, a straightforward calculation would allow us
prove that any local realistic theory must satisfy the follo
ing inequality:

25<^A1A2A3&2^A1B2B3&2^B1A2B3&2^B1B2A3&

2^A1A2&2^A1A3&2^A2A3&<3. ~13!

Assuming thatAi andBi are local observables on planex-z,
and thatA15A25A3 andB15B25B3, a numerical calcula-
tion shows that both the GHZ andW states give a maximum
value four for the middle term in Eq.~13! ~for instance, by
choosingAi5szi andBi5sxi in both cases!. Therefore, both
states lead to thesamemaximal violation of the inequality
8-3
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~13!. However, if we assign a higher weight to the bipart
correlations appearing in the inequality, then we can reac
Bell inequality such as

28<^A1A2A3&2^A1B2B3&2^B1A2B3&2^B1B2A3&

22^A1A2&22^A1A3&22^A2A3&<4, ~14!

which is violated by theW state@for instance, by choosing
Ai5szi and Bi5szi , state~2! gives the value five for the
middle term in Eq.~14!# but not by the GHZ state. Therefore
there are scenarios involving both tripartite and bipartite c
relations in which the quantum predictions for the GHZ st
can be reproduced with a local model while those for theW
state cannot. A more general study of multipartite Bell
equalities is presented in@36,37#.
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VI. SUMMARY

In brief, we have completed the family of proofs witho
inequalities for two- and three-qubit pure entangled sta
with a proof for theW state that can also be extended to t
GHZ state and we have then obtained two Bell inequalit
for three qubits. The first could lead to more conclusive te
of Bell’s theorem. The second, involving both tri- and bipa
tite correlations, illustrates some differences between the
lations of local realism exhibited by the GHZ andW states.
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