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Analysis of an atomicJ=0 to J=1 two-photon transition as a test of the spin-statistics connection
for photons
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Using theg-deformed commutator formalisk g mutators”, we have calculated the two-photon transition
amplitude connecting &= 0 atomic ground state tok=1 atomic excited state of the same parity. We find, in
agreement with a semiclassical calculation, that this transition amplitude vanishes for two equal-frequency
photons if the photons are traditional bosons wjth1. If q<<1 (i.e., if the spin-statistics connection is violated
for photons, then the amplitude is nonzero and is proportional te- (. Thus such an experiment, originally
proposed by Budker and DeMille, provides a sensitive test of the spin-statistics connection for photons within
the g-mutator formalism.
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[. INTRODUCTION of all these properties are currently underway. In any case,
given the importance of the spin-statistics connection in al-
The standard spin-statistics theoréin-4] is predicated most all areas of physics, it is crucial to give serious consid-
upon using only commutators or anticommutators for theeration to the possibility of its violation independent of any
algebra of creation and annihilation operators for quantizegharticular model.
fields. It has been known since at least the early 1950s that Several recent experiments have set upper limits on the
more general operator algebrfs| enlarge the number of violation of the spin-statistics connection for electrgner-
permutation symmetries of states beyond the usual symmetrally regarded, of course, as fermiof40,11, for %0 nu-
ric and antisymmetric possibilities and thus call into questiorclei [12—15 (normally regarded as bosonsnd for Be at-
the usual spin-statistics connection. More recently, an operadms[16]. Tests of the boson character of photons are much
tor algebra[6] has been introduced that allows a smoothless obvious. Man’ko and Tino have searched for an
interpolation between boson and fermion behavior. In thidntensity-dependent frequency shift of the beat note between
algebra, the usual commutators and anticommutators are rewo stabilized laserfl7]. Their experiment was interpreted
placed by a so-called mutator. The creatioa™ and annihi-  with a slightly different form of a so-calle®Q-oscillator
lation a operators satisfy model[18,19 in which the creation and annihilation opera-
tors are described by
aal —gaa=dy. (1)

aa—Qsia=Q ", 2
g is a real number lying betweeitl and—1. Forg=+1,
we get the usual commutation relation leading to boson bewhere N is the occupation number for that mode. In this
havior (symmetric multiparticle statgsFor q=—1, we get model, there is no relationship among operators for different
the fermion anticommutation relations, which lead to anti-modes.
symmetric states and the Pauli exclusion principle. Particles Several other tests for photons have been proposed. Fivel
with [g| # 1 are called “quons.” Thesq mutators have been [20] has suggested that photons not in pure bosonic states
proposed as a formalism to describe “small” violations of would lead to a maximum possible laser intensity, but this
the usual spin-statistics connectigior which half-integer  prediction has been criticized21]. In the so-called
spin-quantum-number particles are fermions and integer spig-deformed Jaynes-Cummings modg22], the atomic-
particles are bosonsLater we shall describe more precisely inversion oscillation revival times are slightly modified if the
what a small violation of the spin-statistics connection meanghotons are quons. Rydberg atoms interacting with photons
in terms of observations. f=¢'? and with suitable restric- in a highQ cavity would behave differently if the photon
tions on the product space for the particles, €g.describes state were not purely bosor{i23,24). Given current technol-
the algebra of anyon field]. ogy, however, none of these experiments leads to a high-
At present, there is no formal prediction for a violation of precision test of the spin-statistics connection for photons.
the spin-statistics connection. However, the usual spinMoreover, there are substantial theoretical ambiguitisg
statistics theoremi1,2,8| depends on several features of thefor those proposals that involve high-intensity fields and
quantum field theory(a) Lorentz invariance(b) locality, (c)  strong transition probabilities. We shall discuss some of
four-dimensional space-timég) continuity of space-time, those issues in Sec. V. Greenberg and Hilb@%], using a
and(e) commutivity of space-time variabld9]. Both theo-  simplified interaction Hamiltonian, showed that upper limits
retical and experimental investigations of possible violationson the spin-statistics violation for one species of particles,
electrons, for example, could be interpreted to give upper
limits for another species with which the first interacts, for
*Email address: rchilborn@amherst.edu example, photons. In principle, such a connection means that
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FIG. 1. The two alternative excitation routeslid arrows ver-
sus dashed arroywfrom aJ=0 ground state to a=1 final state of
the same parity through &=1 intermediate state for linearly po-
larized light. One mode is linearly polarized in thelirection, the
other in thex direction. (Recall that aJ=1, M;=0 to J=1, M,
=0 transition is forbidden.

the very low limits set on the violation probability for elec-
trons[10] can be translated into a similar low limit for pho-
tons. However, the generality of that connection remains un
explored.

More recently, DeMille, Budker, Derr, and Devenfd6]
have searched for a spin-statistics violating two-photon tran
sition in atomic barium. A cw version of that experiment is in

progresg27] and should lead to several orders of magnitude
improvement in the sensitivity of the search for a possible
spin-statistics connection violation for photons. This paper is

devoted to analyzing that experiment using the quon formal
ism.

The DeMille et al. experiment[26] uses a two-photon
atomic absorption transition fromJ= 0 atomic ground state
to aJ=1 atomic excited stat@f the same parifyas a test of
the spin-statistics connection for photons. The 0 to J

=1 transition is an unusual two-photon transition because it

requires photons of orthogonal polarizati@ither linear or
circular or any arbitrary orthogonal elliptical polarizatjpn

and the transition probability vanishes when the two photons

have the same frequenf®8,29 if photons are bosons in the
usual way. The previous analysis of this experinj@é] was

based on a semiclassical calculation in which the electric

field is treated as a classica numbej field. We shall see

that a quantized-field analysis yields the same results. We

then extend the analysis by treating the photons as quons.
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for two-photon absorption assuming that the photon creation
and annihilation operators are describeddomutators. The
goal of the calculation is to see how the two-photon absorp-
tion amplitude depends ogq We find that forq=+1 (the
usual boson conditignthe transition amplitude vanishes for
photons of the same frequency. We also find, and this is the
crucial result reported in this paper, that fp< 1, the two-
photon transition is permitted for two equal-frequeriboyt
orthogonal-polarization photons with a relative transition
amplitude proportional to (£ q).

II. FORMULATION OF THE PROBLEM

To describe the proposed experiment, we need the prob-
ability for two-photon absorption from an atomic ground
state|g) to an atomic excited state). One photon has fre-
guencyw, and the other has frequeney,. From general
second-order perturbation theory, the amplitude for the tran-
sition from a stateli) (which includes the specification of
both the atomic state and the photon-field gtatethe final
statelf) is given by

(D HD

< (f[H
Mif_; E—E, (3

whereH, is the interaction Hamiltonian anfl; and E; are

the total(atom and fielgl energies of the initial and interme-

diate stateglabeled byj), respectively[ The overall energy

conservation is enforced by the delta functiéfg; — E;) in

the Fermi golden rule for the transition probabiljtizor the

oment, we shall ignore energy-level widths and the band-

width of the photon source. Those factors will be discussed

in Sec. VI.

We will specify the initial state and final states in terms of

products of atomic states and photon number states,
[iy=1g)[ny.n,),

[f)=le}ln,—1n,~1), 4

where the initial state hag, photons in modeu and n,

The orthogonal-polarization requirement can easily behstons in mode:. (The basic features of the results will be
seen by considering the energy level diagram shown in Figynchanged for other types of initial field states, say, for co-

1. The two-photon transition must pass through an interme,
diate J=1 state(in the electric-dipole approximatignThe

herent states as we shall show explicitly in Sec) IV.
The relevant intermediate states are of two types,

usual electric-dipole selection rules then require photons of

either orthogonal linear polarization or opposite circular po-
larization or any arbitrary orthogonal elliptical polarization.

The absence of a two-equal-frequency-photon transition be-

tweenJ=0 andJ=1 states of the same parity is analogous
to the Landau-Yang theorefB0], which explains why a vec-
tor particle J=1) cannot decay into two photons. Recently,

[1)=1m)[ny=1n,),

(5

each with some intermediate atomic stat® (with energy
E.») and one photon removed from one of the modes, but not

|j>:|m>|nu1nv_1>:

Ignatiev and co-workers have used limits on the decay of théhe other.(Limiting the range of intermediate states in this
Z boson into two photons as a test for the boson character afay is the QED equivalent of the “rotating-wave approxi-

photons[31]. It is difficult to interpret this limit simply in
terms of the character of photon states becaus& fheaticle
itself does not couple to photons.

mation.” In the rotating-wave approximation, we keep only
those parts oH, that connect the appropriate initial, inter-
mediate, and final statgsThere will be two types of inter-

In order to show how a two-photon absorption experimenimediate states: those with energies
can be used as a test of the spin-statistics connection for

photons, we have performed the quantized-field calculation

Ej=EntAa(n,—l)o,+inw, (6)
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and those with energies stants of proportionality and assuming that the polarization
vectors are real, as they are for linearly polarized light, we
Ei=Enthinyw,+a(n,~1)o,. (1) may write
Under these conditions, the energy denominators in(8q. . L . -
can be written as Hfl)=A'P=bzﬁ Bop- Plapge’ > "+afe o] (13
Ei—Ej=Eg=EmThoyor,. (8) With these assumptions, the effective interaction Hamil-

We use the standard minimal-coupling interaction Ham”_tonlan can be written using the electric-dipole approximation

tonian, which in the Schidinger picture is given by (for which e "=1) and the rotating-wave approximation

(which in this case is equivalent to dropping photon-
e . € creation-operator termsn the following form:
H|=RA~p+ Z_mCAZ' (9)
Ho.— z (éuy' ﬁav7|nu_ 1!nv>|m><m|<nu_ 1!nv|éuﬁ" ﬁauﬁ
R eff ™ _

Here, A is the vector-potential operator for the electromag- mBy Eg—Emtho,

netic field andp is the momentum operator for the atomic

electrons(As usual, we have assumed that the vector poten- +uBe vy] : (19

tial is constant across the atom. The momentum operator is

e, e oS Note tal E0(1 s symmetc i the abea andiy s i
pen! I b€, NIGNeT st be for a guantum-mechanical operator describing iden-
order multipole transitions are completely negligip®s). tical particles
Greenberd?21] has raised the issue of the proper form of '

the Hamiltonian for a quon fielthere, the photoRsnteract- We can consider the atomic and electromagnetic field
) . ; 4 X ’ P parts of the transition amplitude separately. Let us focus on
ing with an “external source.” He argues that one must con-,

struct the Hamiltonian carefully to assure that all modes o he case relevant for the actual experim@@: two orthogo-

. . . . . nal linearly polarized modes, one with polarization vector
the quon field contribute in equivalent ways to the transition longz, the other along.

sgﬂ)':u_?_ﬁisqgsga;;eéigzﬂzgiﬂﬁ r:]noorge d:t%ﬁ)leiﬁrge:g 613\116:% The effective operator acting on the atomic states can be
) v Written with Cartesian components as

we show that for a weak transition of the type discussed here,
the “correction terms” to the Hamiltonian are proportional to (dimx(dmg)z  (dim)(dmo)x

1—q, and hence can be ignored for our purposes. e — , (15
For a quantized electromagnetic field, the vector-potential Eg=Entho, Eg=Emthoy
operator has the form where, for the sake of simplicity, we have suppressed the
- sum over the intermediate states. Here, we have dsfed
A(F) = 2 \ /277 [ébﬂabﬁeiﬁbqégﬂagﬁeql{b-r‘]_ the (dipole) operator for the atomic transit_ion(sThe atomic
bs Y Vop dipole matrix elements are proportional tod{)y

(100 =X(f|erjm), where the sum is over all the charged par-
R ticles) The angular momentum dependence of the matrix
V is the quantization volume. As usul, is the wave vector elements of the terms in the numerators of Edp) is easily
andéy is the unit polarization vector for photons in mddle  evaluated using the Wigner-Eckart theordB2]. (As an
B labels the components of the polarization vectg; and  aside, we note that this is the point in the calculation where
ag are the annihilation and creation operators for the fieldhe spin of the photon enters. The “statistics” enters via the
mode labeled by and g. creation- and annihilation-operator algebrBor aJ=0 to
To put the transition amplitude into an effective operatorJ=1 transition(via aJ=1 intermediate stajethe product of
form, which will be useful in seeing the angular momentummatrix elements in one numerator of E@5) is the negative
and frequency dependence of the amplitude, we define aof the other. In either the semiclassical field model or the
operatorH ¢ so that standard quantized-field calculatiewith commutatory as
we shall see, the field part of the matrix elements is the same
Mis=(f|Heqli). (11)  for both terms. Thus, when we add the amplitudes in Eq.
(15), the two terms will cancel if and only if the two photons
Comparing Egs(11) and(3), we see thaH .« takes the form  have the same frequency.
o We can also see this cancellation from more general sym-
Hoe S Hylj)<i[H (12) metry consideration$29]. The effective operato6,, is a
eff i Ei—E second-rank Cartesian tensdormed from the two vectors
R 5fm and&mg) and can be decomposed into irreducible tensors
We will focus on theA- p part of the interaction Hamiltonian of rank 0, 1, and 2. To connect k=0 initial state to aJ
since theA? term does not contribute to the two-photon am-=1 final state, we need a rank-1 irreducible tensor. The
plitude in the electric-dipole approximation. Ignoring con- rank-1 irreducible tensor is antisymmetric in the Cartesian-
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tensor label$33]. (The rank-0 and rank-2 parts are symmet-ization that takes into account the normalization of the quon
ric in these label$.So the rank-1 part can be isolated by states. The normalization for simple cases, such as a two-
writing quon state, can be easily worked out by using Eg.to
11 evaluate the amplitudé0|a,a,a’a’|0). The g-deformed
G=2(Gxz= 92, (16) number[n], reduces to the ordinary numberin the limit
q—0.
For ordinary QED, the calculation of the matrix elements
(dm)x(dmg)2 is a straightforward exercise found in many texBSee Ref.
[33], pp. 536-547; Ref.35], pp. 335-347; or Ref.36], for
example) However, forg mutators we must proceed cau-
tiously because in thg-mutator formalism, we do not have
) (17)  algebraic relations that allow us to interchange two creation
operators or two annihilation operatdi37]. We have only
where wgm=(Eg—Ep)/h. G obviously vanishes if the EQ- (1), whigh_ aII_ows us to intercha_nge a creation operator
two photons have the same frequency. and an annihilation operator. That is all, however, that we
The overall amplitude is zero for equal-frequency photondeed to evaluate the desired matrix elements. We simply start
because of destructive interference between the two alterndith an annihilation operator that has a creation operator to
tive paths: First, the atom absorbs a photon from modad its rlght and move that annihilation Operator to the rlght us-

which then yields

(1) _
Gloy wv)[ (wgm+ wu)(wgm+ w,)

o (dfm)z(dmg)x
(wgm+ wu)(wgm+ w,)

then one from mode or vice verse. ing Eq. (1) until the annihilation operator hits the vacuum
state, which then gives us 0.
IIl. QUANTIZED-FIELD CALCULATION For the simple initial state with one photon in each mode,

the two amplitudes to evaluate are
Let us now turn our attention to the field part of the tran-
sition amplitude. Referring to Eq14), we see that the effec- (0,0Ja,a,/1,1)=(0,0a,a,ala’|0,0,
tive operator whose matrix elements we need to evaluate is
(0,0a,a,/1,1)=(0,0av,a,a/a!|0,0). (23)
_ auﬁ|m><m|av—y av7| m><m|auﬁ

- Eg—Entho, Eyg—Eptfio,’

(18 Each interchange of creation and annihilation operators for

different modes introduces & function and a factor ofy.

where again we have suppressed the sum over intermediaince we are concerned with two different polarizations
states. In more detail, the matrix elements of the operators ieven if the frequencies are the samthe delta functions
the numerator of E(18) between initial and final states will will always be zero. Interchanging creation and annihilation
look like operators for the same mode then forms a polynomial.in
These polynomials are similar to those used in constructing
the number and energy operators for qupd®,39. Green-
erg[40] has given a simple graphical rule for determining
he appropriate power af for each term in the polynomial.
For more general initial number states, the necessary ma-
X elements can be expressed as

<nu_ 1vnv_ l|av|nu_ l1nv><nu_ 11nv|au| ny 7nv>' (19)

(We have temporarily dropped the polarization-componen
indices for the sake of typographical simplicjtifhe inter-
mediate photon state can be replaced with a sum over a CO"{}]
plete set of photon-number stat@snce all the other matrix
elements will be zeno The sum over the complete set is
equivalent to the identity; so, our task is reduced to evaluat-
ing the following matrix elements:

<f|avau| i>: gnunv(q)1

<f|auau|i>:qgnunv(q): (24)
<nu_11nv_1|auav|nuvnv> (20)
where the functiory is a polynomial inq that depends on the
and the matrix elements with, anda, interchanged. number of photons in each of the modes in the initial state.
The g-deformed initial (numbej state is constructed by The final states have one less photon per m¢tee results
applying quon-creation operators to the photon vac{@4  differ by the factorq because of the choice of a specific
. . ordering of the creation operators acting on the vacuum to
_ (ay"(a,)™0) produce the initial state. If we change that ordering, the fac-
[ny.ny)= [nglo'[n,]o! tor of g may move from one of Eq24) to the other. Only
LT the phase difference is importanTable | lists several spe-
where[n], (a so-calledt-deformed numberis defined to be ~ cific cases for this polynomial.
We can see some general features by examining Table I.
1-q" Except for the(1,1) initial state,g(q) is zero whemg=—1.
[”]q:m’ (22 This result should be expected becagse—1 corresponds
to anticommutators for the operators and hence leads to the
and theq factorial is[n],! =[n]g[n—1]4 --1. Equation(21) exclusion principle: all matrix elements that involve states
is just the standard two-mode number state with a normalwith more than one fermion per mode must equal zero. For

(21)
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TABLE |. The polynomialg, » (q) for several photon number q<1, the second term can be nonzero, thus signaling a vio-

states. lation of the spin-statistics connection for photons with an
» amplitude proportional to (£ q). Equation(28) is the main
Initial stateny,n, On,n, (0) result of this paper.

Equation(28) provides an interpretation of what a “small

2111 +1 2 violation” of the spin-statistics connection means for a two-
1' 5 ql+q photon transition. The first term inside the braces is symmet-
2'2 5 2q 3 ric under the interchange of the two polarization labels—a
' 5 a+ 3q +91 s boson-type amplitude. The second term is antisymmetric un-
31 9°+2q +2‘; 4 der the interchange of the two labels—a fermion-type ampli-
13 , breqr2athgn tude. Hence, we say that the two photons behave like bosons
3,2 9°+3q +4(3 +3(§ “i with an amplitude proportional to#q and like fermions
2,3 1+39+49°+39°+q with an amplitude proportional to-1q. If we were dealing

with more than two photons, there would be additional am-
. ... plitudes for photon behavior characterized by higher-
the(1,1) case the two matrix elements have the opposite S'g'gimensional representations of the permutation grpAqy.

yvhen qg=-1as requireq for amplitudes that differ by the The weights for the different permutation-group representa-
interchange of two identical fermions. On the other hand, fortions are polynomials i similar to the functiong(q) used

g= +1, we should expect the amplitude to be proportional 9 this paper.

Vnyn, in order to have the probability be proportional to the |, 4 previous papef41], the two-photon absorption ex-
product of the numbers of photons in each of the two modes,eriment was treated in terms of density matrices for the
That result combined with the normalization in Eg1) re- 5 photon states. For two quons, the two-particle density

quires  g(g=+1)=yny(n,!)(n,—1)!n,(n,)(n,—1)!,  operator can be written as
which agrees with the listings in Table[lThe (n—1)! terms
come from the normalization of the final stdte. 1+q 1—q
The results given in Table | are consistent with the fol- p(2)=Tp(52)+ Tpf,f), (29)
lowing general result:
— A1 — — where the symmetric and antisymmetric parts of the density
Gnyn, =4 VInuJolnula![nu= 1o InuJaln.Jo! [n,— 114! operator are given in terms of the symmetric and antisym-

(29) metric two-photon states by

where theg-deformed numbers are defined in Eg2). We @ @
have not yet been able to provide a general proof of(E5). ps" =)Dl pa =|da)(bal. (30)

Even without knowing the general form g{q), we can

draw the following conclusions: The transition amplitude canTn€ Symmetric and antisymmetric states are written in terms
be written in the form of the creation operators as

_ Dya(a) D, 0(a)
By Epthioy  VEg— Eptho,’

(26) alal*+alal)|0). (31)

1
|¢s,a>_ m(

The term (1= q) in the denominator of Eq31) is necessary
for normalization. Choosing the opposite order of the cre-
D_.=(d d . 2 ation operators in Eq31) results in exactly the same density
v~ (dim) (Ao @) operator; so either order can be used for calculations.
(Recall that3 and y represent general polarization compo- It is tempting to use the density-operator form in E2p)
nents) If we consider the case when the two modes have thé0 argue that the spin-statistics-connection-violatjmgb-

same frequencybut not the same polarizatipnthe ampli- ~ ability should go as (+q)/2 since that is the weighting
tude takes the form factor for the antisymmetric part of the density operator. Us-

ing Eq.(31) in Eqg. (30), however, we see that the weighting
factor (1+q)/2 for the symmetric part of the density matrix
is canceled by the normalization factor for the symmetric
state with the analogous cancellation for the antisymmetric
1-q part. The crucial point is that we need to take into account
T)(DVB_DBV)]' (28) the nonstandard normalization factors for the quon states.
The net result is that the transiti@mplitudeis proportional
As we saw previously, for 4=0 to J=1 two-photon tran- to 1—q, which as we have seen above, comes from evalu-
sition, the sum of the tw® terms in Eq.(28) vanishesgin  ating the matrix elements involving the photon-annihilation
the electric-dipole approximatiopnFor ordinary boson be- operators. If the probability were proportional to 1),
havior (=1), the second term vanishes also. However, forthen the amplitude would be proportional {& —q, and we

whereD represents products of the atomic-dipole-matrix el-
ements discussed previously,

g(q) _9(a)
E—Enthe 0T I0sI=E ZE S50

Mi¢=

1+q
2

X(D,5+Dpg,)+
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would (apparently miss the crucial overall minus sign in Eq. liY=]|a, L) g (37
(24) in the fermion limit @— —1).

To use the density-operator approach for calculations inThe two-mode coherent state takes the f¢42]
volving states with more than two photons, it would be nec-
essary to find the weighting factors for all the density opera-
tors associated with each of the possible irreducible oy, )= 1
representations of the permutation group. In practical terms, S Je([ad) Veg(le?)
it is more straightforward to use the Fock-state apprdach

its generalizationsemploying the creation and annihilation ” E“ :"
operators directly. X 2_ \/?mu ). (38
ny.n,=0 [nu]q-[nu]q-
V. COHERENT STATE EE'EDTHE PHOTON  (QUON) We need not specify the detalls of the final state except to

note that it generally involves a sum over photon number

In this section we replace the initial photon number statestates as well. If we think of the operators as acting on each
with a g-deformed coherent state. Since coherent states af the number states in E¢38), then only one term in the
better models of the output of a typical laser, the results ofinal-state sum will survive for each term in the initial sum
this section should be more directly applicable to theover number states. We can then write
DeMille-Budker experiment. As we shall show, the results
with a coherent photon state can be cast into a form analo- .
gous to those obtained with the photon number states. |n<f|avau||):n§; (ny=1n,~1la,ayny,n)Bn o (ay,a,),
particular, Eqs.(26) and (28) will still apply with suitable Y (39)
changes in notation.

First let us review the formalism associated with
g-deformed coherent states for a single mode. In analogy t
the usual coherent statggl2,43, we may define the
g-deformed coherent stafd4,45 as a superposition of pho-
ton number states,

where all of the numerical coefficients have been subsumed
fhto the B term. The matrix element in Eq39) is the same
as that given in Eq(19). Hence we may write

o n (flaagay,a,)= 2 gnunv(q)Bnunv(au )
|a> _ 1 « |n> (32 ng.Ny,
T Veg(laf?) =0 \[nggt =K(q, ey, @),
where theg-exponential function is given by
<f|auav|au,av>=qK(q,au,av). (40)
*° |a|2n
eq(|a|2):n§0 [nlg " (33)  Comparing Egs.(40) and (24) tells us that the overall

transition-matrix element for coherent states can still be writ-
As usual, the coherent state is constructed to be an eigenstd& in the form of Eqs(26) and (28).
of the annihilation operator with eigenvalue

V. THE FORM OF THE INTERACTION HAMILTONIAN

ala)g=ala)q. (34 AND RELATED ISSUES

Sincea is not a ngmitiarj operatory will be complex. The Greenberg[21,37 has noted that in constructing the
states are normalized wit{{a|a)q=1. The parametewis  pamiltonian describing the interaction between quons and
related ton, the mean photon number for the state, their “sources,” the source terms must be represented by a
, 2 generalization of Grassmann numbers in order to satisfy the

= 2eq(|a| ) conditions of(a) additivity of energies for widely separated

=al L, (35 Y ¢ o
eq(|6f| ) systems andb) equal treatment of the modes. The latter

. - . . . condition means that each of the mode labels for the quon
where the prime indicates differentiation with respect t0gq14s must enter the matrix elements in the same way.

2 . -
||, Note that two coherent states with different parameters put the quon requirements into context, we first review

arenot orthogonal, the situation for ordinary fermions. If the quons are ordinary
fermions, then the sources are represented by the usual anti-
commuting Grassmann variables. The Hamiltonian repre-

but the coherent states do form a complete set. senting _the interaction between the fermions and their
sources is of the form

To describe the two-photon absorption experiment, we
need to evaluate the following matrix elementéta,a,|i)
and(f|a,a,|i), where the initial photon state will be taken to A =S cal+c*a 41
be a coherent state for the two modes, ext ; ! e 41

(Blay|2=el~le=BP) (36)
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where the creation and annihilation operators for the fermifnonrelativistic atomic-physics electric-dipole approximation,
ons and the Grassmann variabtgsand cj* satisfy the fol-  these currents are proportional to the momentum operators

lowing anticommutation relations: for the electrons.
The prescription outlined above seems to be ignored by
cicj* +CJ* c;=0, almost all treatments of quons in the quantum-optics litera-
ture. For example, in they-deformed Jaynes-Cummings
ciajT+achi=O, model[22], the radiation field is described by creation and
annihilation operators that satisfy @mutation relation.
cla;+a;ct =0, However, the terms describing the atom to which ghgho-
tons couple are described by the standard pseudospin opera-
aja+aya;=0. (42)  tors(Pauli operatonswith the usual commutation relations
Greenberg 21,46 has pointed out that if the creation and [o.,0-1=203 and [o3,0.]=*0.. (48

annihilation operators satisfy treemutator relation This procedure seems to be valid because there is only one

t_qata — g-photon mode(so treating many modes identically is not
ama am= Smn» 43 . : -
m&n ™ 48 3m= Omn “3 relevanj, and there is no spatial variable for the atom’s lo-

then the variables and c* representing the source, must cation(so worrying about separated systems is not relgvant

satisfy For the case of the two-photon absorption experiment of
interest here, we argue that the additional terms in the Hamil-
cmC: —qctc,=0, tonian produce a contribution to the transition amplitude that

is smaller by a factor of £ q=¢ compared to the contribu-

cmal—qalc,=0, (44)  tion of the “ordinary” part of the Hamiltonian. Since we

expecte to be small for photongand other ordinary boson
particles, as well we can safely ignore the corrections to the
Hamiltonian for most kinds of experiments, where we are
Note that we do not have any specified relationship betweefle@ling with already small transition probabilities. Greenberg
a,, anda, nor betweerc,, anda, (or between their conju- [21] has pointed out that corrections are necessary for experi-

* * —
amC, —0c;a,=0.

gates. For example, if we try to impose ments in which the ordinary transition probability may be
saturated, for example, with high-intensity laser beams.
ajax—qaea; =0, (45) To see how the additional Hamiltonian terms contribute to

the transition amplitude for the two-photon experiment, let

then by interchanging the dummy labg¢landk in Eq. (45) us examine the correction terms in E¢7). For an absorp-
and substituting back foa,a;, we conclude that we must tion experiment, we focus our attention on the terms contain-
haveq?=1. Thus, only in the pure boson casg=(1) or the ing c; , which corresponds to an atomic raising operator,
pure fermion caseq=—1) do we have a simple algebraic
relationship between annihilatiqior creation operators. As
mentioned previously, we do not need those relations to com-
pute transition amplitudes or expectations values.

To satisfy the two conditions noted above, the Hamil- X (ayay—gqaay) (49

tonian describing the coupling of the quon fields to the ex- . . . _
ternal sources must satisfy We are interested in the case @f1; so let us use=1

—q in Eq. (49). We then have

|:|ext:; C;ak"'(l_qz)_lkzt (atTC: —qC’k‘atT)

[Hexakl-=ci (46) ) 1
Hea= 2 ciact 5— > (ajci —cia+ecia))
and must be written as an infinite-order polynomial in the K 2e i
creation and annihilation operators and the source terms.
Greenberd21] has given the first few terms of the polyno-

mial, Multiplying out the terms inside the sum in the previous
equation yields

X (aga;— a;a+ eaay) (50)

N t 2y-1 + +

How=2 ckataio,t (1-9) 3 (afci —acka)) L
: N i i

Hext_; Cﬁ%*’z% {a/ck aa—a/ c aay

X (aga—qaay) +(1-g?) >, (alal—qgalal
(@@ gaag+(1-q") % (a3 aaa) +ea/cfaac—crala@+cialaa—ecy alaay
X (Cray— gad) + . (47) +ecrala@a—ecyalaacteclalaay). (51)

For the case ofy photons, the source terms represent thée now argue that all of the terms inside the curly brackets
charged-particlgelectron and nucletsurrents. In the usual of Eq. (51) vanish ass? and hence the overall correction
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term is proportional t@. To see how this works, consider the a,—(1+eCya, (59
first and second terms inside the curly brackets. They can be
written as with an analogous expression fay. When we compute the
matrix elements in Eq57), we see that the numerator of the
a/c} (aa—aay). (52)  first term is related to the numerator of the second term sim-
) _ ) ply by interchanging the mode labalsand v. Equation(24)
The term in parentheses in E(b2) vanishes wherg=1  shows that interchanging the mode labels produces a factor
according to the usual boson commutation relations. Thusf ¢ difference between the two sets of matrix elements for
we must be able to write that factor as the annihilation operators. Assuming that a similar condition
holds here, we may write
(aay—a@y) =eg(ag.a) +-+, (53
whereg represents some unknowhut irrelevant function (flacCaliy=ar@)fC.aal). 59
of the operators and the ellipsis indicates terms proportionalhere R(q) allows for the possibility of other factors af
to higher powers ofe. The fourth and fifth terms can be when the operator€, are taken into accoun{Similar pow-
combined in a similar fashion. Then those two results can bers of g appear in expressions for the number and energy
joined to give operators for quon§37-39.) The crucial point is that the
e w1 two sets of matrix elements are still related by a factoq.of
(a;Cy —cay)eg(ax,ay). (54 That means that the construction leading to E2f) still
. , obtains, and in the case of equal-frequency modes we once
We now app_ly a S|m|Iar_argument to the parenthetical factoragain arrive at Eq(28), the equation that shows that the
in Eq. (54): it must vanish wherg=1, and hence we can yyo-photon absorption experiment is indeed a test of the
write quon form of a possible spin-statistics violation.
In a recent papdrd7], Chow and Greenberg have argued
(ac§ —ckay)eg(ag.a) =e*f(al ,ci)g(ac.a) +- that in a quon theory with antiparticléso that crossing re-
(59) lations can be employédand with trilinear interactions

Identical arguments show that the third, sixth, seventh, an@Mong the quons, r:equiring that the int(_erhactlilon be an effec-
eighth terms can be combined to give a term proportional té've Bose operatofthat is, it commutes with all creation and

e2. We thus see that the entire curly-bracket expression iﬁmnihilation operatpbsleads to the ponclusion that the pa-
Eq. (51) is proportional toe?. We conclude that the first rameterq must satisfyq=*1. (Their argument, however,

correction term to the Hamiltonian is proportional te-g gcr)]es nGot Ieatc)i toa specmct S.p'?%s'?at'ft;cs cc;ng;gort]liﬁ:lhe t
and hence can be neglected compared to the “ordinary™"1OW->re€nberg argument isutlicient to establish tha

Hamiltonian in computing the forbidden transition ampli- quons satisfy energy add?ti\_/ity for well-separat_epl systems.
tude, which itself is proportional tog However, we believe that it is notraecessarcondition. So

To see the effects of the “correction terms” in the Hamil- thbe _possfllltyhofqi =1 is stil quen. I\r/1|ore'over, I cljs no_tb q
tonian, let us assume that the reduction carried out in E vious that their argument applies to the situation describe

(55) leads to the following piece to be added to the intera(:-.n this paper in which only the photons are assumed to be

tion Hamiltonian for the two-photon absorption calculation: quons.
. 2 VI. EXPERIMENTAL CONSIDERATIONS AND
H’=8k21 Ciay, (56) CONCLUSIONS

In the two-photon absorption experiment, the transition is
whereC, is an operator function involving} , a,, a/, and  observed by detecting fluorescence emitted in an allowed
perhapsay itself (with a sum ovett). Note that we have not transition from the excited state to some lower state or by
yet proved that the operator must be in this form, but giverionizing the excited atoms and detecting the resulting
the previous arguments, this seems to be a reasonable foreharged particles. In principle, this test might be very sensi-
There may be other parts that involve products of o  tive because one can look for a signal against a zero back-
more) annihilation operatoréwithout any corresponding cre- ground while appropriate laser sources can provide a large
ation operators We assume that we can neglect such termslux of photons. DeMilleet al.[26] have considered a num-

at this level of approximation. ber of experimental factors that might mimic themutator
The transition amplitude without the correction term caneffect. These factors include the effects of atomic linewidths,
be written in the form laser bandwidth, higher multipole transitions, and so on.

None of these appear to make a significant contribution to
the experimental signal. They conclude that the experiment
is capable of achieving a sensitivity ef10™'* for a 1 sec
averaging time. Thus, the Budker-DeMille experiment would
where, againD contains all of the atomic-dipole-matrix- provide a test for the spin-statistics connection for photons
element information. With the correction term in the Hamil- many orders of magnitude more sensitive than other recent
tonian, we make the replacement proposals[23,24]. In a pulsed-laser version of the experi-

D (flaya,li D s(fla,a,li
Mifzz ,By<|u |>+ y,8<| u|>

m Eq—Entho, Ej—Eptho,’ 57)
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ment, DeMille et al. [26] have achieved an upper limit of width. Observing such a signal is an important test of the
1.2x10° 7 for the probability of the forbidden degenerate experiment's sensitivity.

two-photon transition compared to the allowed nondegener-

ate two-photon transition in atomic barium. In terms of the

g-mutator formalism, this result can be expressed| (s ACKNOWLEDGMENTS
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