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Analysis of an atomicJÄ0 to JÄ1 two-photon transition as a test of the spin-statistics connection
for photons

Robert C. Hilborn*
Department of Physics, Amherst College, Amherst, Massachusetts 01002

~Received 17 September 2001; published 30 January 2002!

Using theq-deformed commutator formalism~‘‘ q mutators’’!, we have calculated the two-photon transition
amplitude connecting aJ50 atomic ground state to aJ51 atomic excited state of the same parity. We find, in
agreement with a semiclassical calculation, that this transition amplitude vanishes for two equal-frequency
photons if the photons are traditional bosons withq51. If q,1 ~i.e., if the spin-statistics connection is violated
for photons!, then the amplitude is nonzero and is proportional to (12q). Thus such an experiment, originally
proposed by Budker and DeMille, provides a sensitive test of the spin-statistics connection for photons within
the q-mutator formalism.
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I. INTRODUCTION

The standard spin-statistics theorem@1–4# is predicated
upon using only commutators or anticommutators for
algebra of creation and annihilation operators for quanti
fields. It has been known since at least the early 1950s
more general operator algebras@5# enlarge the number o
permutation symmetries of states beyond the usual sym
ric and antisymmetric possibilities and thus call into quest
the usual spin-statistics connection. More recently, an op
tor algebra@6# has been introduced that allows a smoo
interpolation between boson and fermion behavior. In t
algebra, the usual commutators and anticommutators ar
placed by a so-calledq mutator. The creationa† and annihi-
lation a operators satisfy

akal
†2qal

†ak5dkl . ~1!

q is a real number lying between11 and21. For q511,
we get the usual commutation relation leading to boson
havior ~symmetric multiparticle states!. For q521, we get
the fermion anticommutation relations, which lead to an
symmetric states and the Pauli exclusion principle. Partic
with uquÞ1 are called ‘‘quons.’’ Theseq mutators have been
proposed as a formalism to describe ‘‘small’’ violations
the usual spin-statistics connection~for which half-integer
spin-quantum-number particles are fermions and integer
particles are bosons!. Later we shall describe more precise
what a small violation of the spin-statistics connection me
in terms of observations. Ifq5eiu and with suitable restric-
tions on the product space for the particles, Eq.~1! describes
the algebra of anyon fields@7#.

At present, there is no formal prediction for a violation
the spin-statistics connection. However, the usual sp
statistics theorem@1,2,8# depends on several features of t
quantum field theory:~a! Lorentz invariance,~b! locality, ~c!
four-dimensional space-time,~d! continuity of space-time,
and ~e! commutivity of space-time variables@9#. Both theo-
retical and experimental investigations of possible violatio
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of all these properties are currently underway. In any ca
given the importance of the spin-statistics connection in
most all areas of physics, it is crucial to give serious cons
eration to the possibility of its violation independent of a
particular model.

Several recent experiments have set upper limits on
violation of the spin-statistics connection for electrons~nor-
mally regarded, of course, as fermions! @10,11#, for 16O nu-
clei @12–15# ~normally regarded as bosons!, and for Be at-
oms @16#. Tests of the boson character of photons are m
less obvious. Man’ko and Tino have searched for
intensity-dependent frequency shift of the beat note betw
two stabilized lasers@17#. Their experiment was interprete
with a slightly different form of a so-calledQ-oscillator
model @18,19# in which the creation and annihilation oper
tors are described by

akak
†2Qsk

†ak5Q2N, ~2!

where N is the occupation number for that mode. In th
model, there is no relationship among operators for differ
modes.

Several other tests for photons have been proposed. F
@20# has suggested that photons not in pure bosonic st
would lead to a maximum possible laser intensity, but t
prediction has been criticized@21#. In the so-called
q-deformed Jaynes-Cummings model@22#, the atomic-
inversion oscillation revival times are slightly modified if th
photons are quons. Rydberg atoms interacting with phot
in a high-Q cavity would behave differently if the photo
state were not purely bosonic@23,24#. Given current technol-
ogy, however, none of these experiments leads to a h
precision test of the spin-statistics connection for photo
Moreover, there are substantial theoretical ambiguities@21#
for those proposals that involve high-intensity fields a
strong transition probabilities. We shall discuss some
those issues in Sec. V. Greenberg and Hilborn@25#, using a
simplified interaction Hamiltonian, showed that upper lim
on the spin-statistics violation for one species of particl
electrons, for example, could be interpreted to give up
limits for another species with which the first interacts, f
example, photons. In principle, such a connection means
©2002 The American Physical Society04-1
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ROBERT C. HILBORN PHYSICAL REVIEW A 65 032104
the very low limits set on the violation probability for elec
trons@10# can be translated into a similar low limit for pho
tons. However, the generality of that connection remains
explored.

More recently, DeMille, Budker, Derr, and Deveney@26#
have searched for a spin-statistics violating two-photon tr
sition in atomic barium. A cw version of that experiment is
progress@27# and should lead to several orders of magnitu
improvement in the sensitivity of the search for a possi
spin-statistics connection violation for photons. This pape
devoted to analyzing that experiment using the quon form
ism.

The DeMille et al. experiment@26# uses a two-photon
atomic absorption transition from aJ50 atomic ground state
to aJ51 atomic excited state~of the same parity! as a test of
the spin-statistics connection for photons. TheJ50 to J
51 transition is an unusual two-photon transition becaus
requires photons of orthogonal polarization~either linear or
circular or any arbitrary orthogonal elliptical polarization!,
and the transition probability vanishes when the two phot
have the same frequency@28,29# if photons are bosons in th
usual way. The previous analysis of this experiment@26# was
based on a semiclassical calculation in which the elec
field is treated as a classical~c number! field. We shall see
that a quantized-field analysis yields the same results.
then extend the analysis by treating the photons as quon

The orthogonal-polarization requirement can easily
seen by considering the energy level diagram shown in
1. The two-photon transition must pass through an interm
diate J51 state~in the electric-dipole approximation!. The
usual electric-dipole selection rules then require photons
either orthogonal linear polarization or opposite circular p
larization or any arbitrary orthogonal elliptical polarizatio
The absence of a two-equal-frequency-photon transition
tweenJ50 andJ51 states of the same parity is analogo
to the Landau-Yang theorem@30#, which explains why a vec-
tor particle (J51) cannot decay into two photons. Recent
Ignatiev and co-workers have used limits on the decay of
Z boson into two photons as a test for the boson characte
photons@31#. It is difficult to interpret this limit simply in
terms of the character of photon states because theZ particle
itself does not couple to photons.

In order to show how a two-photon absorption experim
can be used as a test of the spin-statistics connection
photons, we have performed the quantized-field calcula

FIG. 1. The two alternative excitation routes~solid arrows ver-
sus dashed arrows! from aJ50 ground state to aJ51 final state of
the same parity through aJ51 intermediate state for linearly po
larized light. One mode is linearly polarized in thez direction, the
other in thex direction. ~Recall that aJ51, MJ50 to J51, MJ

50 transition is forbidden.!
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for two-photon absorption assuming that the photon crea
and annihilation operators are described byq mutators. The
goal of the calculation is to see how the two-photon abso
tion amplitude depends onq. We find that forq511 ~the
usual boson condition!, the transition amplitude vanishes fo
photons of the same frequency. We also find, and this is
crucial result reported in this paper, that forq,1, the two-
photon transition is permitted for two equal-frequency~but
orthogonal-polarization! photons with a relative transition
amplitude proportional to (12q).

II. FORMULATION OF THE PROBLEM

To describe the proposed experiment, we need the p
ability for two-photon absorption from an atomic groun
stateug& to an atomic excited stateue&. One photon has fre-
quencyvu and the other has frequencyvy . From general
second-order perturbation theory, the amplitude for the tr
sition from a stateui& ~which includes the specification o
both the atomic state and the photon-field state! to the final
stateuf& is given by

Mi f 5(
j

^ f uHI u j &^ j uHI u i &
Ei2Ej

, ~3!

whereHI is the interaction Hamiltonian andEi and Ej are
the total~atom and field! energies of the initial and interme
diate states~labeled byj!, respectively.@The overall energy
conservation is enforced by the delta functiond(Ei2Ef) in
the Fermi golden rule for the transition probability.# For the
moment, we shall ignore energy-level widths and the ba
width of the photon source. Those factors will be discuss
in Sec. VI.

We will specify the initial state and final states in terms
products of atomic states and photon number states,

u i &5ug&unu ,ny&,

u f &5ue&unu21,ny21&, ~4!

where the initial state hasnu photons in modeu and ny
photons in modey. ~The basic features of the results will b
unchanged for other types of initial field states, say, for
herent states as we shall show explicitly in Sec. IV.!

The relevant intermediate states are of two types,

u j &5um&unu21,ny&,

u j &5um&unu ,ny21&, ~5!

each with some intermediate atomic stateum& ~with energy
Em! and one photon removed from one of the modes, but
the other.~Limiting the range of intermediate states in th
way is the QED equivalent of the ‘‘rotating-wave approx
mation.’’ In the rotating-wave approximation, we keep on
those parts ofHI that connect the appropriate initial, inte
mediate, and final states.! There will be two types of inter-
mediate states: those with energies

Ej5Em1\~nu21!vu1\nyvy ~6!
4-2
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and those with energies

Ej5Em1\nuvu1\~ny21!vy . ~7!

Under these conditions, the energy denominators in Eq.~3!
can be written as

Ei2Ej5Eg2Em1\vu or y . ~8!

We use the standard minimal-coupling interaction Ham
tonian, which in the Schro¨dinger picture is given by

Hl5
e

mc
AW •pW 1

e2

2mc
A2. ~9!

Here,AW is the vector-potential operator for the electroma
netic field andpW is the momentum operator for the atom
electrons.~As usual, we have assumed that the vector pot
tial is constant across the atom. The momentum operato
actually a sum over all the momenta of the electrons.! For
the experimental conditions we wish to describe, high
order multipole transitions are completely negligible@26#.

Greenberg@21# has raised the issue of the proper form
the Hamiltonian for a quon field~here, the photons! interact-
ing with an ‘‘external source.’’ He argues that one must co
struct the Hamiltonian carefully to assure that all modes
the quon field contribute in equivalent ways to the transit
amplitude, no matter where the mode appears in the s
vector. This issue is discussed in more detail in Sec. V, wh
we show that for a weak transition of the type discussed h
the ‘‘correction terms’’ to the Hamiltonian are proportional
12q, and hence can be ignored for our purposes.

For a quantized electromagnetic field, the vector-poten
operator has the form

AW ~rW !5(
b,b
A2p\

Vvb
@ «̂bbabbeikWb•rW1 «̂bb* abb

† e2 ikWb•rW#.

~10!

V is the quantization volume. As usual,kWb is the wave vector
and«̂bb is the unit polarization vector for photons in modeb.
b labels the components of the polarization vector.abb and
abb

† are the annihilation and creation operators for the fi
mode labeled byb andb.

To put the transition amplitude into an effective opera
form, which will be useful in seeing the angular momentu
and frequency dependence of the amplitude, we define
operatorHeff so that

Mi f 5^ f uHeffu i &. ~11!

Comparing Eqs.~11! and~3!, we see thatHeff takes the form

Heff5(
j

Hl u j &^ j uHl

Ei2Ej
. ~12!

We will focus on theAW •pW part of the interaction Hamiltonian
since theA2 term does not contribute to the two-photon a
plitude in the electric-dipole approximation. Ignoring co
03210
-

-

n-
is

r-

f

-
f

n
te

re
e,

al

d

r

an

-

stants of proportionality and assuming that the polarizat
vectors are real, as they are for linearly polarized light,
may write

HI
~1!5AW •pW 5(

bb
«̂bb•pW @abbeikWb•rW1abb

† e2 ikWb•rW#. ~13!

With these assumptions, the effective interaction Ham
tonian can be written using the electric-dipole approximat

~for which eikW•rW51! and the rotating-wave approximatio
~which in this case is equivalent to dropping photo
creation-operator terms! in the following form:

Heff5 (
mbg

H «̂yg•pW aygunu21,ny&um&^mu^nu21,nyu«̂ub•pW aub

Eg2Em1\vu

1ub⇔ygJ . ~14!

Note that Eq.~14! is symmetric in the labelsub andyg as it
must be for a quantum-mechanical operator describing id
tical particles.

We can consider the atomic and electromagnetic fi
parts of the transition amplitude separately. Let us focus
the case relevant for the actual experiment@26#: two orthogo-
nal linearly polarized modes, one with polarization vec
alongz, the other alongx.

The effective operator acting on the atomic states can
written with Cartesian components as

Gxz5
~df m!x~dmg!z

Eg2Em1\vy
1

~df m!z~dmg!x

Eg2Em1\vu
, ~15!

where, for the sake of simplicity, we have suppressed
sum over the intermediate states. Here, we have usedd for
the ~dipole! operator for the atomic transitions.~The atomic
dipole matrix elements are proportional to (df m)x
}S^ f uerjxum&, where the sum is over all the charged pa
ticles.! The angular momentum dependence of the ma
elements of the terms in the numerators of Eq.~15! is easily
evaluated using the Wigner-Eckart theorem@32#. ~As an
aside, we note that this is the point in the calculation wh
the spin of the photon enters. The ‘‘statistics’’ enters via t
creation- and annihilation-operator algebra.! For a J50 to
J51 transition~via aJ51 intermediate state!, the product of
matrix elements in one numerator of Eq.~15! is the negative
of the other. In either the semiclassical field model or t
standard quantized-field calculation~with commutators!, as
we shall see, the field part of the matrix elements is the sa
for both terms. Thus, when we add the amplitudes in E
~15!, the two terms will cancel if and only if the two photon
have the same frequency.

We can also see this cancellation from more general s
metry considerations@29#. The effective operatorGxz is a
second-rank Cartesian tensor~formed from the two vectors
dW f m anddW mg! and can be decomposed into irreducible tens
of rank 0, 1, and 2. To connect aJ50 initial state to aJ
51 final state, we need a rank-1 irreducible tensor. T
rank-1 irreducible tensor is antisymmetric in the Cartesi
4-3
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ROBERT C. HILBORN PHYSICAL REVIEW A 65 032104
tensor labels@33#. ~The rank-0 and rank-2 parts are symm
ric in these labels.! So the rank-1 part can be isolated b
writing

G~1!5 1
2 ~Gxz2gzx!, ~16!

which then yields

G~1!}~vu2vy!H ~df m!x~dmg!z

~vgm1vu!~vgm1vy!

2
~df m!z~dmg!x

~vgm1vu!~vgm1vy!
J , ~17!

where vgm5(Eg2Em)/\. G(1) obviously vanishes if the
two photons have the same frequency.

The overall amplitude is zero for equal-frequency photo
because of destructive interference between the two alte
tive paths: First, the atom absorbs a photon from modeu and
then one from modey or vice verse.

III. QUANTIZED-FIELD CALCULATION

Let us now turn our attention to the field part of the tra
sition amplitude. Referring to Eq.~14!, we see that the effec
tive operator whose matrix elements we need to evaluat

F5
aubum&^muayg

Eg2Em1\vy
1

aygum&^muaub

Eg2Em1\vu
, ~18!

where again we have suppressed the sum over interme
states. In more detail, the matrix elements of the operator
the numerator of Eq.~18! between initial and final states wi
look like

^nu21,ny21uayunu21,ny&^nu21,nyuauunu ,ny&. ~19!

~We have temporarily dropped the polarization-compon
indices for the sake of typographical simplicity.! The inter-
mediate photon state can be replaced with a sum over a c
plete set of photon-number states~since all the other matrix
elements will be zero!. The sum over the complete set
equivalent to the identity; so, our task is reduced to evalu
ing the following matrix elements:

^nu21,ny21uauayunu ,ny& ~20!

and the matrix elements withau anday interchanged.
The q-deformed initial~number! state is constructed b

applying quon-creation operators to the photon vacuum@34#,

unu ,ny&5
~au

†!nu~ay
†!nyu0&

A@nu#q! @ny#q!
, ~21!

where@n#q ~a so-calledq-deformed number! is defined to be

@n#q5
12qn

12q
, ~22!

and theq factorial is@n#q! 5@n#q@n21#q¯1. Equation~21!
is just the standard two-mode number state with a norm
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ization that takes into account the normalization of the qu
states. The normalization for simple cases, such as a
quon state, can be easily worked out by using Eq.~1! to
evaluate the amplitudê0uayauau

†ay
†u0&. The q-deformed

number@n#q reduces to the ordinary numbern in the limit
q→0.

For ordinary QED, the calculation of the matrix elemen
is a straightforward exercise found in many texts.~See Ref.
@33#, pp. 536–547; Ref.@35#, pp. 335–347; or Ref.@36#, for
example.! However, for q mutators we must proceed cau
tiously because in theq-mutator formalism, we do not hav
algebraic relations that allow us to interchange two creat
operators or two annihilation operators@37#. We have only
Eq. ~1!, which allows us to interchange a creation opera
and an annihilation operator. That is all, however, that
need to evaluate the desired matrix elements. We simply s
with an annihilation operator that has a creation operato
its right and move that annihilation operator to the right u
ing Eq. ~1! until the annihilation operator hits the vacuu
state, which then gives us 0.

For the simple initial state with one photon in each mod
the two amplitudes to evaluate are

^0,0,uauayu1,1&5^0,0uauayau
†ay

†u0,0&,

^0,0uayauu1,1&5^0,0uavyauau
†ay

†u0,0&. ~23!

Each interchange of creation and annihilation operators
different modes introduces ad function and a factor ofq.
Since we are concerned with two different polarizatio
~even if the frequencies are the same!, the delta functions
will always be zero. Interchanging creation and annihilati
operators for the same mode then forms a polynomial inq.
These polynomials are similar to those used in construc
the number and energy operators for quons@38,39#. Green-
berg @40# has given a simple graphical rule for determinin
the appropriate power ofq for each term in the polynomial

For more general initial number states, the necessary
trix elements can be expressed as

^ f uayauu i &5gnuny
~q!,

^ f uauayu i &5qgnuny
~q!, ~24!

where the functiong is a polynomial inq that depends on the
number of photons in each of the modes in the initial sta
The final states have one less photon per mode.~The results
differ by the factorq because of the choice of a specifi
ordering of the creation operators acting on the vacuum
produce the initial state. If we change that ordering, the f
tor of q may move from one of Eq.~24! to the other. Only
the phase difference is important.! Table I lists several spe
cific cases for this polynomial.

We can see some general features by examining Tab
Except for the~1,1! initial state,g(q) is zero whenq521.
This result should be expected becauseq521 corresponds
to anticommutators for the operators and hence leads to
exclusion principle: all matrix elements that involve stat
with more than one fermion per mode must equal zero.
4-4
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ANALYSIS OF AN ATOMIC J50 TO J51 TWO-PHOTON . . . PHYSICAL REVIEW A 65 032104
the ~1,1! case the two matrix elements have the opposite s
when q521 as required for amplitudes that differ by th
interchange of two identical fermions. On the other hand,
q511, we should expect the amplitude to be proportiona
Anuny in order to have the probability be proportional to t
product of the numbers of photons in each of the two mod
That result combined with the normalization in Eq.~21! re-
quires g(q511)5Anu(nu!)(nu21)!ny(ny!)(ny21)!,
which agrees with the listings in Table I.@The (n21)! terms
come from the normalization of the final state.#

The results given in Table I are consistent with the f
lowing general result:

gnuny
5qnu21A@nu#q@nu#q! @nu21#q! @ny#q@ny#q! @ny21#q!,

~25!

where theq-deformed numbers are defined in Eq.~22!. We
have not yet been able to provide a general proof of Eq.~25!.

Even without knowing the general form ofg(q), we can
draw the following conclusions: The transition amplitude c
be written in the form

Mi f 5
Dgbg~q!

Eg2Em1\vu
1q

Dbgg~q!

Eg2Em1\vy
, ~26!

whereD represents products of the atomic-dipole-matrix
ements discussed previously,

Dgb5~df m!g~dmg!b . ~27!

~Recall thatb and g represent general polarization comp
nents.! If we consider the case when the two modes have
same frequency~but not the same polarization!, the ampli-
tude takes the form

Mi f 5
g~q!

Eg2Em1\v
@Dgb1qDbg#5

g~q!

Eg2Em1\v H S 11q

2 D
3~Dgb1Dbg!1S 12q

2 D ~Dgb2Dbg!J . ~28!

As we saw previously, for aJ50 to J51 two-photon tran-
sition, the sum of the twoD terms in Eq.~28! vanishes~in
the electric-dipole approximation!. For ordinary boson be
havior (q51), the second term vanishes also. However,

TABLE I. The polynomialgnuny
(q) for several photon numbe

states.

Initial statenu ,ny gnuny
(q)

1,1 1
2, 1 q1q2

1, 2 11q
2,2 q12q21q3

3,1 q212q312q41q5

1,3 112q12q21q3

3,2 q213q314q413q51q6

2,3 113q14q213q31q4
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q,1, the second term can be nonzero, thus signaling a
lation of the spin-statistics connection for photons with
amplitude proportional to (12q). Equation~28! is the main
result of this paper.

Equation~28! provides an interpretation of what a ‘‘sma
violation’’ of the spin-statistics connection means for a tw
photon transition. The first term inside the braces is symm
ric under the interchange of the two polarization labels—
boson-type amplitude. The second term is antisymmetric
der the interchange of the two labels—a fermion-type am
tude. Hence, we say that the two photons behave like bos
with an amplitude proportional to 11q and like fermions
with an amplitude proportional to 12q. If we were dealing
with more than two photons, there would be additional a
plitudes for photon behavior characterized by high
dimensional representations of the permutation group@40#.
The weights for the different permutation-group represen
tions are polynomials inq similar to the functiong(q) used
in this paper.

In a previous paper@41#, the two-photon absorption ex
periment was treated in terms of density matrices for
two-photon states. For two quons, the two-particle den
operator can be written as

r~2!5
11q

2
rs

~2!1
12q

2
ra

~2! , ~29!

where the symmetric and antisymmetric parts of the den
operator are given in terms of the symmetric and antisy
metric two-photon states by

rs
~2!5ufs&^fsu, ra

~2!5ufa&^fau. ~30!

The symmetric and antisymmetric states are written in te
of the creation operators as

ufs,a&5
1

A2~16q!
~a1

†a2
†6a2

†a1
†!u0&. ~31!

The term (16q) in the denominator of Eq.~31! is necessary
for normalization. Choosing the opposite order of the c
ation operators in Eq.~31! results in exactly the same densi
operator; so either order can be used for calculations.

It is tempting to use the density-operator form in Eq.~29!
to argue that the spin-statistics-connection-violatingprob-
ability should go as (12q)/2 since that is the weighting
factor for the antisymmetric part of the density operator. U
ing Eq. ~31! in Eq. ~30!, however, we see that the weightin
factor (11q)/2 for the symmetric part of the density matr
is canceled by the normalization factor for the symmet
state with the analogous cancellation for the antisymme
part. The crucial point is that we need to take into acco
the nonstandard normalization factors for the quon sta
The net result is that the transitionamplitudeis proportional
to 12q, which as we have seen above, comes from eva
ating the matrix elements involving the photon-annihilati
operators. If the probability were proportional to (12q),
then the amplitude would be proportional toA12q, and we
4-5
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ROBERT C. HILBORN PHYSICAL REVIEW A 65 032104
would ~apparently! miss the crucial overall minus sign in Eq
~24! in the fermion limit (q→21).

To use the density-operator approach for calculations
volving states with more than two photons, it would be ne
essary to find the weighting factors for all the density ope
tors associated with each of the possible irreduci
representations of the permutation group. In practical ter
it is more straightforward to use the Fock-state approach~or
its generalizations! employing the creation and annihilatio
operators directly.

IV. COHERENT STATE FOR THE PHOTON „QUON…

FIELD

In this section we replace the initial photon number st
with a q-deformed coherent state. Since coherent states
better models of the output of a typical laser, the results
this section should be more directly applicable to t
DeMille-Budker experiment. As we shall show, the resu
with a coherent photon state can be cast into a form an
gous to those obtained with the photon number states
particular, Eqs.~26! and ~28! will still apply with suitable
changes in notation.

First let us review the formalism associated w
q-deformed coherent states for a single mode. In analog
the usual coherent states@42,43#, we may define the
q-deformed coherent state@44,45# as a superposition of pho
ton number states,

ua&q5
1

Aeq~ uau2!
(
n50

`
an

A@n#q!
un&, ~32!

where theq-exponential function is given by

eq~ uau2!5 (
n50

` uau2n

@n#q!
. ~33!

As usual, the coherent state is constructed to be an eigen
of the annihilation operator with eigenvaluea,

aua&q5aua&q . ~34!

Sincea is not a Hermitian operator,a will be complex. The
states are normalized withq^aua&q[1. The parametera is
related ton̄, the mean photon number for the state,

n̄5uau2
eq8~ uau2!

eq~ uau2!
, ~35!

where the prime indicates differentiation with respect
uau2. Note that two coherent states with different paramet
arenot orthogonal,

u^bua&u25e~2ua2bu2!, ~36!

but the coherent states do form a complete set.
To describe the two-photon absorption experiment,

need to evaluate the following matrix elements:^ f uauayu i &
and^ f uayauu i &, where the initial photon state will be taken
be a coherent state for the two modes,
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u i &5uau ,ay&q . ~37!

The two-mode coherent state takes the form@42#

uau ,ay&q5
1

Aeq~ uauu2!Aeq~ uayu2!

3 (
nu ,ny50

` au
nuay

ny

A@nu#q! @ny#q!
unu ,ny&. ~38!

We need not specify the details of the final state excep
note that it generally involves a sum over photon num
states as well. If we think of the operators as acting on e
of the number states in Eq.~38!, then only one term in the
final-state sum will survive for each term in the initial su
over number states. We can then write

^ f uayauu i &5 (
nuny

^nu21,ny21uayauunu ,ny&Bnuny
~au ,ay!,

~39!

where all of the numerical coefficients have been subsum
into theB term. The matrix element in Eq.~39! is the same
as that given in Eq.~19!. Hence we may write

^ f uayauuau ,ay&5 (
nu ,ny

gnuny
~q!Bnuny

~au ,ay!

[K~q,au ,ay!,

^ f uauayuau ,ay&5qK~q,au ,ay!. ~40!

Comparing Eqs.~40! and ~24! tells us that the overal
transition-matrix element for coherent states can still be w
ten in the form of Eqs.~26! and ~28!.

V. THE FORM OF THE INTERACTION HAMILTONIAN
AND RELATED ISSUES

Greenberg@21,37# has noted that in constructing th
Hamiltonian describing the interaction between quons a
their ‘‘sources,’’ the source terms must be represented b
generalization of Grassmann numbers in order to satisfy
conditions of~a! additivity of energies for widely separate
systems and~b! equal treatment of the modes. The latt
condition means that each of the mode labels for the q
fields must enter the matrix elements in the same way.

To put the quon requirements into context, we first revi
the situation for ordinary fermions. If the quons are ordina
fermions, then the sources are represented by the usual
commuting Grassmann variables. The Hamiltonian rep
senting the interaction between the fermions and th
sources is of the form

Ĥext5(
j

cjaj
†1cj* aj , ~41!
4-6
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where the creation and annihilation operators for the fer
ons and the Grassmann variablescj and cj* satisfy the fol-
lowing anticommutation relations:

cicj* 1cj* ci50,

ciaj
†1aj

†ci50,

ci* aj1ajci* 50,

ajak1akaj50. ~42!

Greenberg@21,46# has pointed out that if the creation an
annihilation operators satisfy theq-mutator relation

aman
†2qan

†am5dmn , ~43!

then the variablesc and c* representing the source, mu
satisfy

cmcn* 2qcn* cm50,

cman
†2qan

†cm50, ~44!

amcn* 2qcn* am50.

Note that we do not have any specified relationship betw
am andan nor betweencm andan ~or between their conju-
gates!. For example, if we try to impose

ajak2qakaj50, ~45!

then by interchanging the dummy labelsj andk in Eq. ~45!
and substituting back forakaj , we conclude that we mus
haveq251. Thus, only in the pure boson case (q51) or the
pure fermion case (q521) do we have a simple algebra
relationship between annihilation~or creation! operators. As
mentioned previously, we do not need those relations to c
pute transition amplitudes or expectations values.

To satisfy the two conditions noted above, the Ham
tonian describing the coupling of the quon fields to the
ternal sources must satisfy

@Ĥext,ak
†#25ck* ~46!

and must be written as an infinite-order polynomial in t
creation and annihilation operators and the source ter
Greenberg@21# has given the first few terms of the polyno
mial,

Ĥext5(
k

ck* ak1ak
†ck1~12q2!21(

k,t
~at

†ck* 2qck* at
†!

3~akat2qatak!1~12q2!21(
k,t

~at
†ak

†2qak
†at

†!

3~ckat2qatak!1¯ . ~47!

For the case ofq photons, the source terms represent
charged-particle~electron and nucleus! currents. In the usua
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nonrelativistic atomic-physics electric-dipole approximatio
these currents are proportional to the momentum opera
for the electrons.

The prescription outlined above seems to be ignored
almost all treatments of quons in the quantum-optics lite
ture. For example, in theq-deformed Jaynes-Cumming
model @22#, the radiation field is described by creation a
annihilation operators that satisfy aq-mutation relation.
However, the terms describing the atom to which theq pho-
tons couple are described by the standard pseudospin o
tors ~Pauli operators! with the usual commutation relations

@s1 ,s2#52s3 and @s3 ,s6#56s6 . ~48!

This procedure seems to be valid because there is only
q-photon mode~so treating many modes identically is n
relevant!, and there is no spatial variable for the atom’s l
cation~so worrying about separated systems is not releva!.

For the case of the two-photon absorption experimen
interest here, we argue that the additional terms in the Ha
tonian produce a contribution to the transition amplitude t
is smaller by a factor of 12q[« compared to the contribu
tion of the ‘‘ordinary’’ part of the Hamiltonian. Since we
expect« to be small for photons~and other ordinary boson
particles, as well!, we can safely ignore the corrections to th
Hamiltonian for most kinds of experiments, where we a
dealing with already small transition probabilities. Greenb
@21# has pointed out that corrections are necessary for exp
ments in which the ordinary transition probability may b
saturated, for example, with high-intensity laser beams.

To see how the additional Hamiltonian terms contribute
the transition amplitude for the two-photon experiment,
us examine the correction terms in Eq.~47!. For an absorp-
tion experiment, we focus our attention on the terms conta
ing ck* , which corresponds to an atomic raising operator,

Ĥext5(
k

ck* ak1~12q2!21(
k,t

~at
†ck* 2qck* at

†!

3~akat2qatak! ~49!

We are interested in the case ofq'1; so let us use«51
2q in Eq. ~49!. We then have

Ĥext5(
k

ck* ak1
1

2« (
k,t

~at
†ck* 2ck* at

†1«ck* at
†!

3~akat2atak1«atak! ~50!

Multiplying out the terms inside the sum in the previo
equation yields

Ĥext5(
k

ck* ak1
1

2« (
k,t

$at
†ck* akat2at

†ck* atak

1«at
†ck* atak2ck* at

†akat1ck* at
†atak2«ck* at

†atak

1«ck* at
†akat2«ck* at

†atak1«2ck* at
†atak%. ~51!

We now argue that all of the terms inside the curly brack
of Eq. ~51! vanish as«2 and hence the overall correctio
4-7
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term is proportional to«. To see how this works, consider th
first and second terms inside the curly brackets. They ca
written as

at
†ck* ~akat2atak!. ~52!

The term in parentheses in Eq.~52! vanishes whenq51
according to the usual boson commutation relations. Th
we must be able to write that factor as

~akat2atak!5«g~ak ,at!1¯ , ~53!

whereg represents some unknown~but irrelevant! function
of the operators and the ellipsis indicates terms proportio
to higher powers of«. The fourth and fifth terms can b
combined in a similar fashion. Then those two results can
joined to give

~at
†ck* 2ck* at

†!«g~ak ,at!. ~54!

We now apply a similar argument to the parenthetical fac
in Eq. ~54!: it must vanish whenq51, and hence we can
write

~at
†ck* 2ck* at

†!«g~ak ,at!5«2f ~at
† ,ck* !g~ak ,at!1¯ .

~55!

Identical arguments show that the third, sixth, seventh,
eighth terms can be combined to give a term proportiona
«2. We thus see that the entire curly-bracket expression
Eq. ~51! is proportional to«2. We conclude that the firs
correction term to the Hamiltonian is proportional to 12q
and hence can be neglected compared to the ‘‘ordina
Hamiltonian in computing the forbidden transition amp
tude, which itself is proportional to 12q.

To see the effects of the ‘‘correction terms’’ in the Ham
tonian, let us assume that the reduction carried out in
~55! leads to the following piece to be added to the inter
tion Hamiltonian for the two-photon absorption calculatio

Ĥ85«(
k51

2

Ckak , ~56!

whereCk is an operator function involvingck* , at , at
† , and

perhapsak itself ~with a sum overt!. Note that we have no
yet proved that the operator must be in this form, but giv
the previous arguments, this seems to be a reasonable
There may be other parts that involve products of two~or
more! annihilation operators~without any corresponding cre
ation operators!. We assume that we can neglect such ter
at this level of approximation.

The transition amplitude without the correction term c
be written in the form

Mi f 5(
m

Dbg^ f uauayu i &
Eg2Em1\vy

1
Dgb^ f uayauu i &
Eg2Em1\vu

, ~57!

where, again,D contains all of the atomic-dipole-matrix
element information. With the correction term in the Ham
tonian, we make the replacement
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au→~11«Cu!au ~58!

with an analogous expression foray . When we compute the
matrix elements in Eq.~57!, we see that the numerator of th
first term is related to the numerator of the second term s
ply by interchanging the mode labelsu andy. Equation~24!
shows that interchanging the mode labels produces a fa
of q difference between the two sets of matrix elements
the annihilation operators. Assuming that a similar condit
holds here, we may write

^ f uauCyayu i &5qR~q!^ f uCyayauu i &, ~59!

whereR(q) allows for the possibility of other factors ofq
when the operatorsCy are taken into account.~Similar pow-
ers of q appear in expressions for the number and ene
operators for quons@37–39#.! The crucial point is that the
two sets of matrix elements are still related by a factor ofq.
That means that the construction leading to Eq.~26! still
obtains, and in the case of equal-frequency modes we o
again arrive at Eq.~28!, the equation that shows that th
two-photon absorption experiment is indeed a test of
quon form of a possible spin-statistics violation.

In a recent paper@47#, Chow and Greenberg have argue
that in a quon theory with antiparticles~so that crossing re-
lations can be employed! and with trilinear interactions
among the quons, requiring that the interaction be an ef
tive Bose operator~that is, it commutes with all creation an
annihilation operators! leads to the conclusion that the p
rameterq must satisfyq561. ~Their argument, however
does not lead to a specific spin-statistics connection.! The
Chow-Greenberg argument issufficient to establish that
quons satisfy energy additivity for well-separated system
However, we believe that it is not anecessarycondition. So
the possibility ofqÞ61 is still open. Moreover, it is not
obvious that their argument applies to the situation descri
in this paper in which only the photons are assumed to
quons.

VI. EXPERIMENTAL CONSIDERATIONS AND
CONCLUSIONS

In the two-photon absorption experiment, the transition
observed by detecting fluorescence emitted in an allow
transition from the excited state to some lower state or
ionizing the excited atoms and detecting the result
charged particles. In principle, this test might be very sen
tive because one can look for a signal against a zero b
ground while appropriate laser sources can provide a la
flux of photons. DeMilleet al. @26# have considered a num
ber of experimental factors that might mimic theq-mutator
effect. These factors include the effects of atomic linewidt
laser bandwidth, higher multipole transitions, and so
None of these appear to make a significant contribution
the experimental signal. They conclude that the experim
is capable of achieving a sensitivity of,10214 for a 1 sec
averaging time. Thus, the Budker-DeMille experiment wou
provide a test for the spin-statistics connection for photo
many orders of magnitude more sensitive than other rec
proposals@23,24#. In a pulsed-laser version of the exper
4-8
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ment, DeMille et al. @26# have achieved an upper limit o
1.231027 for the probability of the forbidden degenera
two-photon transition compared to the allowed nondegen
ate two-photon transition in atomic barium. In terms of t
q-mutator formalism, this result can be expressed as@(1
2q)/2#2,1.231027. They also showed experimentally th
the two-photon transition did occur with small probabili
even with light beams of nominally the same frequency
one takes into account the finite laser bandwidth and ato
linewidth. In other words, the atom can still interact with tw
different-frequency photons because of the finite laser li
Ex
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s-

en
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width. Observing such a signal is an important test of
experiment’s sensitivity.
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