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Exact classical limit of quantum mechanics: Central potentials and specific states

Adam J. Makowski*
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~Received 13 September 2001; published 30 January 2002!

A derivation has been performed of some central potentials with no quantum correction to the Hamilton-
Jacobi equation. In this exact limit of quantum mechanics, quantum trajectories identical to the classical ones
are obtained. Interestingly, some of them are closed orbits. Applications of the found potentials in many areas
of physics are also discussed.
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I. INTRODUCTION

Newtonian mechanics can be considered as a limi
case of more general relativistic mechanics since the pre
tions of the former theory, e.g., trajectories, are deriva
from the latter one in the limit of low velocities wherev/c
!1. Instead, relations between predictions of Newtonian
namics and those of quantum mechanics are much m
subtle and delicate and, generally speaking, there is not
universal rule leading to the classical dynamics from
quantum one. In particular, taking\→0 may be treated as
classical limit, only in a restricted number of cases. In g
eral, each of the possibly considered situations requires
cial approach. Very often, it means taking large quant
numbers. If, in turn, a particle can be represented b
sharply peaked wave packet, the classical limit is reached
the evolution of averages for the position and moment
according to Ehrenfest’s Newton-like equations. Interest
relations are also given by the well-known virial theorem

All the ways of approaching the classical limit can
summarized in what we have known as Bohr’scorrespon-
dence principle,introduced in the early days of quantu
mechanics. It is based on the belief that if quantum mech
ics is correct then it must agree with classical mechanic
the appropriate limit@1#. Examples of when it is not possibl
at all are provided by classically chaotic systems@2#. De-
tailed discussion@3# of the Arnol’d macroscopic quantum
interference state clearly shows the failure of the corresp
dence principle in such cases. The recent study@4# proves the
breakdown of the principle even for large quantum numb
of all long-range potentials of2Cn /r n with n.2.

The most important reason for the weakness of the Bo
principle is the power of the Heisenberg uncertainty relat
for position and momentum, which precludes the notion
classical orbits in quantum mechanics. There is, howeve
possibility of approaching the classical limit in terms of d
terministic trajectories if the so-called generalized Hamilto
Jacobi equation is used. It is easily found if the wave fu
tion in polar form

c~r,t !5R~r,t !exp@~ i /\!S̃~r,t !#, ~1.1!

with real functionsR and S̃, is substituted into the time
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dependent Schro¨dinger equation and the real and imagina
parts are separated. As a result, we get two equations:

]S̃

]t
1~1/2m!~“S̃!21V~r,t !1Q~r,t,\!50, ~1.2!

]R2

]t
1“•~R2

“S̃/m!50. ~1.3!

The first of them is a classical Hamilton-Jacobi equation
the ordinary or outer potentialV supplemented by the inne
or quantum potentialQ5(2\2/2m)(DR/R). One has to re-
member taking the limit of\→0 thatR may be a function of
Planck constant.

If we introduce a velocity field

v5
“S̃

m
, ~1.4!

and take the gradient of Eq.~1.2!, the trajectories will evolve
according to the Newton’s equation under the influence
the force 2“(V1Q). The continuity equation~1.3! will
then guarantee that if we interpretR2 as a probability density
in a statistical ensemble of the trajectories defined in
~1.4!, and if it agrees with the Born probability conditio
R25ucu2 at some initial time, then it will hold for all time.

The idea of using the notion of trajectory in quantu
mechanics has been developed by de Broglie and Bohm@5#.
It was proved that the description of quantum phenom
with the help of deterministic trajectories~1.4! is consistent
with the statistical predictions of ordinary quantum mecha
ics. A great number of illuminating examples can be found
@6#. Of course, the quantum trajectories have nothing to
with classical trajectories. They would coincide only if th
quantum contributionQ to the classical Hamilton-Jacob
equation~1.2! vanished. It is not, however, by taking th
limit of \→0 but demandingDR50. Only in this case the
classical limit of quantum mechanics is reached exactly.

We thus have the set of three coupled partial differen
equations@Eqs. ~1.2! and ~1.3!, and DR50# for three un-
known functionsR, S̃, andV. In this way, one can look for
special potentialsV and the statesc of ~1.1! with the prop-
erty that the quantum trajectories are identical to the class
ones. It was Rosen who first raised this problem and fou
few potentials with the above property@7#. In the ensuing
©2002 The American Physical Society03-1
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years, more examples of this kind have been derived@6,8–
11# and some general formulas covering known cases
suggesting new ones were also found@12,13#.

In this paper, we shall attempt to obtain an important s
class of such potentials, possibly all central potentials
states in them, leading to the identical classical and quan
motions. This will be the subject of Sec. II. Then, in Sec. I
we discuss general properties of the special potentials
related states, among them, the shapes of trajectories.
cussion of results and some physical applications of the
rived potentials are given in Sec. IV.

II. CENTRAL POTENTIALS

The set of the partial differential equations mention
above can be solved exactly only in some cases. If we res
ourself to the potentials independent of time, then we m
assume in Eqs.~1.2! and ~1.3! that ]R/]t50 and S̃(r,t)5
2Et1S(r). This simplifies the set to the form

V5E2~1/2m!~“S!2, ~2.1!

“•~R2
“S!52R“R•“S1R2DS50, ~2.2!

DR50, ~2.3!

where the functionsR andShave to be real functions of the
arguments.

Solutions of the Laplace equation~2.3!, which guarantee
that the quantum potentialQ is exactly zero, are to be in
serted to the continuity equation~2.2!, which, in turn, guar-
antees conservation of probability flow. Finally, the solutio
for S can be used to derive potentialsV from Eq. ~2.1!.

A. Two-dimensional „2D… potentials

Let us usex5r cosw, y5r sinw with r5 ix1 jy, and ob-
serve that for the 2D central potentials to appear, the quan
(“S)2 in Eq. ~2.1! has to be a function ofr only, sayf (r).
Instead of Eqs.~2.1!–~2.3!, we thus now have

~“S!25S ]S

]r D 2

1
1

r2 S ]S

]w D 2

[ f ~r!, ~2.4!

2
]S

]r

]R

]r
12

1

r2

]S

]w

]R

]w
1R~r,w!S ]2S

]r2
1

1

r

]S

]r
1

1

r2

]2S

]w2D
50, ~2.5!

]2R

]r2
1

1

r

]R

]r
1

1

r2

]2R

]w2
50. ~2.6!

The elliptic type Laplace’s equation~2.3! or ~2.6! sepa-
rates in eleven different orthogonal coordinates@14# and the
general solution of Eq.~2.6! can be written as
03210
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R~r,w!5~aw1b!~c ln r1d!1(
k

~akr
k1bkr

2k!

3~Ak coskw1Bk sinkw!. ~2.7!

The first term corresponds tok50 and the sum is overk
561,62, . . . ,6`. There can be, also, solutions of E
~2.6!, which do not have the form of the product of function
of r and ofw. We have found an example of such solutio
that reads

R~r,w!5a ln r2b~ ln r!21bw21gw1d. ~2.8!

All letters not explained herein~e.g.,a,b,c,d) are to be un-
derstood as real constants sinceR andS were determined as
real functions. We should emphasize at this point that am
tudesR of the statesc in Eq. ~1.1!, for the potentials we are
looking for, have to belong to the class of functions in E
~2.7! or, in case of need, to those presented in Eq.~2.8!.

Now, we have to find functionsS obeying Eqs.~2.5! or
~2.2!. Since we are interested only in those that satisfy ad
tionally Eq. ~2.4!, this allows us to look for special forms o
S instead of trying to find a general solution. To this end,
have triedSas a function ofr only, of w only, and finally, all
possible functions dependent of bothr andw and satisfying
Eqs.~2.4! and ~2.5!.

For example, whenS5S(r), Eq. ~2.4! is obviously
obeyed, and Eq.~2.5! reduces to the form

]2S

]r2
1

]S

]r S 1

r
1

2

R

]R

]r D50. ~2.9!

It can be solved with the result

S~r!5C1E ~rR2!21dr1C2 . ~2.10!

The phaseS is a function ofr only if it is also the case forR.
It follows from Eqs.~2.7! and ~2.8! that this will happen if
R(r)5C ln r1d. Then, from Eq. ~2.10!, we have S(r)
52C1 /CR(r). Finally, from Eq. ~2.1!, we have the first
example of the searched potentials, i.e.,

V~r!5E2
C1

2

2m

1

r2~C ln r1d!4
, ~2.11!

and the amplitudeR and the phaseSof the functionc in Eq.
~1.1!.

Further derivations are tedious and more involved a
that is why we present just the final results. Table I gives
2D central potentials and wave functions we were able
find.

B. Three dimensional potentials

It is natural now to use the spherical coordinates:x
5r sinu cosw, y5r sinu sinw, z5r cosu with r5 ix1 jy
1kz. An exact solution of the 3D Laplace equation~2.3! has
known form of the product of functions, each dependent
only one variable
3-2
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TABLE I. The 2D central potentials and related wave functions. The functionsR andS are, respectively,

the amplitude and the phase of the function defined in Eq.~1.1!, where forE50, we haveS̃5S.

Potential R(r,w) S(r,w)

V1(r)5E2(C1
2/2m)(1/r2R1

4) R15C ln r1d,CÞ0 S152C1 /CR1 ,CÞ0

V2
(A)(r)5E2(C2

2/2m)(1/r2) R2
(A)5R1 S2

(A)5C2w

V2
(B)(r)5E2(C2/m)(1/r2) R2

(B)5R11Cw S2
(B)5R12Cw

V3(r)5E2(1/2m)(C1
2/r2R1

41C2
2/r2) R35R1 ,CÞ0 S35C2w2C1 /CR1 ,CÞ0

V4
(k)(r)5E2(ak

2/2m)r2k R4
(k)5rk11@Ak sin(k11)w S4

(k)5rk11@Ak cos(k11)w
ak

25(k11)2(Ak
21Bk

2) 2Bk cos(k11)w] 1Bk sin(k11)w]
k51,2,3, . . . k51,2,3, . . . k51,2,3, . . .

R45const S4
(k)

V5
(k)(r)5E2(bk

2/2m)r22k R5
(k)5r2k11@ak sin(k21)w S5

(k)5r2k11@ak cos(k21)w
bk

25(k21)2(ak
21bk

2) 2bk cos(k21)w] 1bk sin(k21)w]
k52,3,4, . . . k52,3,4, . . . k52,3,4, . . .

R55const S5
(k)
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Rkl~r ,u,w!5@e1 cos~ lw!1e2 sin~ lw!#

3~e3r k1e4r 2k21!Pk
l ~cosu!, ~2.12!

where l<k, and l ,k50,1,2, . . . , thesymbol Pk
l stands for

the associated Legendre polynomials, andej ( j 51,2,3,4) are
real constants. The general solution is obtained, as sum
tions overk and l are performed.

This case is much more restrictive than the 2D one. To
a central potential, (“S)2 in Eq. ~2.1! has to be a function o
r only, sayg(r ). In spherical coordinates, we obtain

~“S!25S ]S

]r D 2

1
1

r 2 S ]S

]u D 2

1
1

r 2sin2u
S ]S

]w D 2

[g~r !.

~2.13!

The form of (“S)2 strongly restricts admissible solutions
Eq. ~2.2! for S with R given in Eq. ~2.12!. A systematic
review of various possible dependences of the functionR
andSon r, u, andw we have performed, shows that the ca
of R5const andS5a/r (a is a real constant! is likely the
only one leading to a central potential in the 3D case.
will get now @7#

V6~r !5E2
a2

2m
r 24. ~2.14!

III. PROPERTIES

There are two integrals of the motion for conservat
systems in central potentials: the total energyE and angular
momentumL. This is the case in our study too. One c
solve the stationary Schro¨dinger equation for the potential
we have found and obtain all possible states correspondin
these attractive potentials withE50. There is, among them
a very restricted number of specific states for which
quantum contributionQ to the classical Hamilton-Jacob
equation~1.2! is exactly zero. Thus, we can derive traject
03210
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ries identical in both classical and quantum cases.

A. Trajectories

From the integral of energy (m/2)(ṙ21r2ẇ2)1V(r)
5E, we can find the motionr5r(w), and from the angular
momentumL[Lz5mr2ẇ5const, its time dependence. Th
case ofL50 leads tow5const and thus to lines startin
from the scattering center wherer50. The motion can be
found equivalently also from the guidance relation~1.4!,
which now readsṙ5(1/m)“S with S given in the third col-
umn of Table I for the 2D potentials.

The latter method, gives at once forV1(r), a family of
straight linesy5Ax, converging to the center of coordinate
r5Ax21y250. ForV2(r), in turn, it is convenient to inte-
grate the equation for energyE. The result is r2(w)

5r0 exp@2(1/L)AC2
22L2w#, with C2

2>L2. If C2
25L2, we

have a closed orbitr2
(A)5r0 which is a circle of radiusr0.

This corresponds to the phaseS2
(A) in Table I. Moreover, if

C2
252L252C2, then a particle is falling down to the cente

along a logarithmic spiral given above. This case cor
sponds to the phaseS2

(B) in Table I.
The next potential,V3(r), combines two previous ones

and in this case, the fastest way of deriving the correspo
ing trajectory is using the guidance equation in polar coor
nates. We thus haveC2(C ln r1d)353CC1w, where again
C25L, and for the vanishingC1 or C2, we will get the
already discussed orbits. Otherwise, we have a spiralr3(w)
5r0 exp(qw1/3) with q being a real constant different from
zero.

For two families of potentials, i.e.,V4
(k)(r) and V5

(k)(r),
the motions can be found, e.g., by integrating the equa
for energyE. The results are given by

r4
(k)~w!5H L

ak cos@~k11!~w2w0!#J
1/(k11)

,

k51,2,3, . . . , ~3.1!
3-3
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r5
(k)~w!5H bk

L
cos@~k21!~w2w0!#J 1/~k21!

,

k52,3,4, . . . . ~3.2!

In the case ofr4
(k)(w) we derive from Eq.~3.1! a hyperbola

(k51), and fork>2, figures composed ofk11 open arcs.
For the last family of potentials,V5

(k)(r), all trajectories are
represented by closed curves. Correspondingly, we will
from Eq. ~3.2! the circle (k52), the Bernoulli lemniscate
(k53), and (k21)-leaved roses fork>4.

What we have said above is summarized in Fig. 1, wh
plots of the 2D central potentials are given together w
classical orbits related to the states listed in Table I. No p
is given for V6(r ). In this case, the trajectories are straig
lines crossing the beginning of coordinates.

B. Wave functions

The states generating trajectories in Fig. 1 do not h
extrema. Their existence is precluded by the structure
Laplace equation, that the amplitudesR of our wave func-
tions must obey. Further, if we accept the definition th
bound states are represented by those solutions of the S¨-
dinger equation for which the usual normalization integra
finite, then obviously our states do not belong to this cla
Rather they represent special stationary states of scatte
potentials with closed orbits for some of them.

To see how exceptional the states are, we shall cons
an example in more detail. Let us choose the poten
V4

(1)(r)5E2(a1
2/2m)r2[V02(1/2)mg2r2 and write its

FIG. 1. An illustration of the content of Table I. The sketch
represent 2D central potentials in the vicinity of the beginning
coordinates and trajectories corresponding in each case to the
where the quantum correctionQ @Eq. ~1.2!# to the Hamilton-Jacobi
equation is exactly zero. The free constants are positively de
mined and their numerical values are chosen for convenience.
cept for V4

(k) , all the remaining potentials are singular forr50.
Two of them, V1 and V3, have another singularity forr
5exp@2d/C#. Contrary to the case ofV3, the former singularity is
not visible in the plot ofV1. The highest values of this potential a
obtained forr5exp@2(21d/C)#, which in the plot is very close to
the value ofr50.
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special state in the Cartesian coordinatesx andy. From Table
I, we have

c~x,y!5@2A1xy2B1~x22y2!#exp$~ i /\!@A1~x22y2!

12B1xy#%. ~3.3!

This potential has been a subject of many intensive stu
~see the next section! and its wave functions and eigenvalu
are well known@15#. The solutions can be separated into tw
groups: those belonging to complex-energy eigenvalues
being also the eigenstates of orbital angular momentum

E15V07 i ~nx1ny11!\g, ~3.4!

U15C1exp@6~ i /2!b2~x21y2!#Hnx

6 ~bx!Hny

6 ~by!,

~3.5!

and infinitely degenerate states with some of them having
real-energy eigenvalueV0,

E25V07 i ~nx2ny!\g, ~3.6!

U25C2exp@6~ i /2!b2~x22y2!#Hnx

6 ~bx!Hny

7 ~by!.

~3.7!

In the formulas:b5Amg/\, the signs1/2 correspond to
the outward/inward moving particles, the functionsU are
generalized functions in a Schwartz space of the Gel’fa
triplet S(R2),L 2(R2),S(R2)x @15#, and the polynomials
Hn

6 can be found from the relation@16#

Hn
6~j!5~7 i !nexp~7 i j2!

dn

djn
exp~6 i j2!. ~3.8!

The first few polynomials are:H0
6(j)51, H1

6(j)52j,
H2

6(j)54j272i , H3
6(j)58j3712i j, and Hn

6(j)*
5Hn

7(j).
We can now try to detect the state~3.3! from among the

statesU1 and U2. Since in our caseE5V0, this can only
take place whennx5ny5n in Eqs.~3.6! and~3.7!. Now, for
n51 we haveU2(n51)5cB150(x,y) if A156\b2/2 and

C25A1/2b2. It follows from Eq. ~3.3! that we have found
additional solutions for the potential under consideratio
i.e., cA150(x,y) and, of course, the full solutionc(x,y),
both not derivable by the method of separation of variab
used in Ref.@15#. For any real values ofA1 and B1, the
functionc(x,y) does not produce any quantum correctionQ
in Eq. ~1.2!.

The phaseS4
(1) of the solutionc(x,y) @Eq. ~3.3!# gives a

stationary flow that moves along the hyperbola as shown
Fig. 1. A similar type of motion~now y5C/x) is also ob-
tained when in Eq.~3.7! we setnx5ny5n50. This case
corresponds toR45const andS5S4

(1) with B150 in Table I.
Of course, we will get againQ50 in Eq. ~1.2!. When B1
Þ0 we also have another solution not found in Ref.@15# for
which Q50.

Authors of the work @15# observed . . .that the veloci-
ties. . . in both cases (n50,1) . . .do not contain any order of

f
tes

r-
x-
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\ at all. They concluded that . . .this fact indicates that thes
flows will have a kind of classical property. Our paper clearly
shows what this sentence really means. We have also sh
that the above property can also be observed for some s
not being in the form of a product of single-variable fun
tions of x and ofy only.

IV. DISCUSSION

We have presented a search for central potentials, with
property that some of their states generate quantum traje
ries identical to the classical ones. Found examples are li
in Table I. It is, of course, an open question, whether we h
discovered all of them. The set of the partial different
equations~2.1!–~2.3! is too intricate to be solved exactly an
to get a decisive answer in this way. We have also found
wave functions and the corresponding trajectories for eac
the potentials. It is interesting that in the limit of continuo
spectrum (E50) some orbits can be closed curves.

The potentialV4
(1)(r), chosen for more detailed discu

sion in Sec. III B, has been studied in the 1D version fo
long time, as the simplest model of an unstable system
quantum mechanics@16–21#. It was recently used to the de
scription of unstable states of some chemical reactions@22#.
nt

m
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A number of 2D potentials is also used in the description
low-dimensional quantum dots. Few examples are discus
in Sec. 4.2 of Ref.@23#. The 3D potential in Eq.~2.14!,
sometimes called the Maxwell potential, is widely utilized
the collision theory~see, e.g. Ref.@24#!.

The threshold value ofE50, which separates the bound
state spectrum from the continuum, is singled out to eff
our work’s purpose. Behavior of quantum systems near
threshold was recently the subject of a quite strong activ
This is motivated by advances in cold-atom collisions@25# as
well as by the need for a deeper understanding of the se
classical limit of some repulsive and attractive central pot
tials @26#.

As a final conclusion, we can state that in most cas
quantum systems do not obey the correspondence princ
and it is argued@2,3# that quantum mechanics is, therefor
incomplete. There can exist, however, some states of
known central potentials for which the correspondence p
ciple is obeyed exactly.
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