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Exact classical limit of qguantum mechanics: Central potentials and specific states
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A derivation has been performed of some central potentials with no quantum correction to the Hamilton-
Jacobi equation. In this exact limit of quantum mechanics, quantum trajectories identical to the classical ones
are obtained. Interestingly, some of them are closed orbits. Applications of the found potentials in many areas
of physics are also discussed.
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[. INTRODUCTION dependent Schdinger equation and the real and imaginary
parts are separated. As a result, we get two equations:
Newtonian mechanics can be considered as a limiting

case of more general relativistic mechanics since the predic- S .

tions of the former theory, e.g., trajectories, are derivable ¢ TW2M(VETHV(n)+Q(rth)=0, (1.2
from the latter one in the limit of low velocities whetgc

<1. Instead, relations between predictions of Newtonian dy- IR2 5

namics and those of quantum mechanics are much more T+V-(R2V8/m)=0. 1.3

subtle and delicate and, generally speaking, there is not any

uzg/r?trjril Orrlj(lae Ifaggiuﬁrt?:kfIassécﬂadyggrzfztg;og; ;heThe first of them is a classical Hamilton-Jacobi equation for
9 - NP ’ 19 y the ordinary or outer potentidl supplemented by the inner

classical limit, only in a restricted number of cases. In gen- N (2 i
eral, each of the possibly considered situations requires sp((a)-r quantum potentia = (—7#7/2m)(AR/R). One has to re

cial approach. Very often, it means taking large gquantu member taking the limit ot — 0 thatR may be a function of

numbers. If, in turn, a particle can be represented by"ADlanck constant. "
’ ’ If we introduce a velocity field

sharply peaked wave packet, the classical limit is reached by
the evolution of averages for the position and momentum
according to Ehrenfest’'s Newton-like equations. Interesting
relations are also given by the well-known virial theorem.
All the ways of approaching the classical limit can be
summarized in what we have known as Bohr&rrespon- and take the gradient of E@lL.2), the trajectories will evolve
dence principle,introduced in the early days of quantum according to the Newton’s equation under the influence of
mechanics. It is based on the belief that if quantum mecharthe force —V(V+Q). The continuity equatior(1.3) will
ics is correct then it must agree with classical mechanics ithen guarantee that if we interpief as a probability density
the appropriate limif1]. Examples of when it is not possible in a statistical ensemble of the trajectories defined in Eq.
at all are provided by classically chaotic systef2g De- (1.4), and if it agrees with the Born probability condition
tailed discussior{3] of the Arnol'd macroscopic quantum R2=|1ﬂ|2 at some initial time, then it will hold for all time.
interference state clearly shows the failure of the correspon- The idea of using the notion of trajectory in quantum
dence principle in such cases. The recent sfddiproves the mechanics has been developed by de Broglie and Bafm
breakdown of the principle even for large quantum numberdt was proved that the description of quantum phenomena
of all long-range potentials of C,/r" with n>2. with the help of deterministic trajectori¢4.4) is consistent
The most important reason for the weakness of the Bohr'gvith the statistical predictions of ordinary quantum mechan-
principle is the power of the Heisenberg uncertainty relatiorics. A great number of illuminating examples can be found in
for position and momentum, which precludes the notion of(6]. Of course, the quantum trajectories have nothing to do
classical orbits in quantum mechanics. There is, however, with classical trajectories. They would coincide only if the
possibility of approaching the classical limit in terms of de-guantum contributionQ to the classical Hamilton-Jacobi
terministic trajectories if the so-called generalized Hamilton-equation(1.2) vanished. It is not, however, by taking the
Jacobi equation is used. It is easily found if the wave funcdimit of #—0 but demandingAR=0. Only in this case the

1

, 1.9

\%
v=—r-
m

tion in polar form classical limit of quantum mechanics is reached exactly.
~ We thus have the set of three coupled partial differential
Y(r,t)=R(r,t)exd (i/h)S(r,t)], (1.1)  equations[Egs. (1.2) and (1.3), and AR=0] for three un-

5 known functionsR, S, andV. In this way, one can look for
with real functionsR and S, is substituted into the time- special potential3/ and the stategr of (1.1) with the prop-
erty that the quantum trajectories are identical to the classical
ones. It was Rosen who first raised this problem and found
*Email address:amak@phys.uni.torun.pl few potentials with the above properfy]. In the ensuing
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years, more examples of this kind have been der[\68-
11] and some general formulas covering known cases and R(p,¢)=(ae+b)(cIn P+d)+; (axp*+bp ")
suggesting new ones were also fodi®,13.

In this paper, we s_hall attempt to obtain an importgnt sub- X (A coske+ By sinke). (2.7
class of such potentials, possibly all central potentials and
states in them, leading to the identical classical and quanturhhe first term corresponds to=0 and the sum is ovek
motions. This will be the subject of Sec. IIl. Then, in Sec. Illl, =*=1,£2,...,=%. There can be, also, solutions of Eg.
we discuss general properties of the special potentials an@.6), which do not have the form of the product of functions
related states, among them, the shapes of trajectories. Dief p and of ¢. We have found an example of such solution
cussion of results and some physical applications of the dethat reads

rived potentials are given in Sec. IV. ) )
R(p,p)=alnp=pB(Inp)*+ Lo+ ye+s. (2.8

Il. CENTRAL POTENTIALS All letters not explained hereife.g.,a,b,c,d) are to be un-
h fth ial diff ial . , dderstood as real constants sirk@and S were determined as
The set of the partial differential equations mentionedye | fnctions. We should emphasize at this point that ampli-

above can be solved 'exa(':tly only in some Cases. If we restrigf gesr of the states) in Eq. (1.1), for the potentials we are
ourself to the potentials independent of time, then we may,,\ing for, have to belong to the class of functions in Eq.

assume in Egs(1.2) and (1.3) that JR/9t=0 andS(r,t)=  (2.7) or, in case of need, to those presented in @cf).
—Et+38(r). This simplifies the set to the form Now, we have to find function§ obeying Egs(2.5) or
(2.2). Since we are interested only in those that satisfy addi-
V=E—(1/2m)(VS)?, (2.1  tionally Eq.(2.4), this allows us to look for special forms of

Sinstead of trying to find a general solution. To this end, we

have triedSas a function op only, of ¢ only, and finally, all

possible functions dependent of bgttand ¢ and satisfying

Egs.(2.4) and(2.5).

AR=0, (2.3 For example, whenS=S(p), Eq. (2.4) is obviously
obeyed, and Eg2.5 reduces to the form

V- (R?VS)=2RVR:-VS+R?AS=0, (2.2

where the function® andShave to be real functions of their

2
arguments. ‘9_S+ 5_S(E+ E IR -0 2.9
Solutions of the Laplace equatid@.3), which guarantee ap? dp\p Rp ' '
that the quantum potenti®@ is exactly zero, are to be in-
serted to the continuity equatid®.2), which, in turn, guar- It can be solved with the result
antees conservation of probability flow. Finally, the solutions
for Scan be used to derive potentidfsfrom Eq. (2.1). S(P)chf (pR?)~tdp+C,. (2.10
A. Two-dimensional (2D) potentials The phas&is a function ofp only if it is also the case foR.

Let us US&X=p COS@, Y= p Sin@ with p=ix+jy, and ob- It follows from Egs.(2.7) and (2.8) that this will happen if
serve that for the 2D central potentials to appear, the quantitif(p) =CInp+d. Then, from Eq.(2.10, we have S(p)

(VS)2 in Eq. (2.1) has to be a function g5 only, sayf(p). =—C,/CR(p). Finally, from Ea. (2.1), we have the first
Instead of Eqgs(2.1)—(2.3), we thus now have example of the searched potentials, i.e.,
2
aS\2 1 [aS\? Ci 1
2| = =) = V(ip)=E— = ——"—"—, (2.11
(VS (ap + = (?(p) f(p), (2.9 P 2M 2(ClInp+d)

and the amplitud® and the phas8 of the function in Eq.
ISIR 1 3SR (azs 1S 1 (925> (1.2).
p.® - 5

%%JF ?%%WLR ? ;%tL 2 552 Further derivations are tedious and more involved and
that is why we present just the final results. Table | gives all
=0, (2.5 2D central potentials and wave functions we were able to
find.
‘92_R+ 1 @_'_ i 82—R=O (2.6) B. Three dimensional potentials
ap? P I p? g’ It is natural now to use the spherical coordinat@s:
=rsinfdcosy, y=rsindsing, z=r cosfd with r=ix+jy
The elliptic type Laplace’s equatiof?2.3) or (2.6) sepa- +kz. An exact solution of the 3D Laplace equati¢h3) has
rates in eleven different orthogonal coordindt®4] and the  known form of the product of functions, each dependent on

general solution of E¢(2.6) can be written as only one variable
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TABLE |. The 2D central potentials and related wave functions. The functbasdS are, respectively,
the amplitude and the phase of the function defined in(Ed), where forE=0, we haveS=S.

Potential R(p,¢) S(p, )

V1(p)=E— (C3/2m)(1/p?R}) R;=CInp+d,C+0 S$;=—-C;/CR;,C#0

VE(p) =E~ (C5/2m) (1/p?) RYYV=R, SP=C,e

Vi (p) =E~(C*m)(L/p?) RP=R;+Co sP=R;-C¢

V3(p)=E— (1/2m)(C3/p?R3+ C3/p?) Rs=R;,C#0 S;=C,p—C,/CR;,C#0

V§9(p) =E— (aj/2m)p® R{9=p* 1Ay sink+1)e S{9=p* A cost1)g

aZ=(k+1)*(A2+B?) — By cosk+1)¢] + By sink+1)¢]

k=1,2,3... k=1,2,3... k=1,2,3...
R,=const S

Ve (p)=E—(Bi/2m)p~* RY=p " asink-1)¢  S{=p *[a, cosk—1)¢

Bi=(k—1)*(af+bf) — by cosk—1)¢] + by sink—1)g]

k=234 ... k=2,34... k=234 ...
Rs=const SY

R (r,60,¢)=[e;coglp)+e,sinle)] ries identical in both classical and quantum cases.
X (esrk+ e4r""1)P'k(cos¢9), (2.12 A. Trajectories

wherel<k, andl,k=0,1,2 ..., thesymbol P} stands for From the integral of energyn{/2)(p?+p®¢?) +V(p)
the associated Legendre polynomials, an@j=1,2,3,4) are E, we can End the Tptlom—p(?), and from the angular
real constants. The general solution is obtained, as summgomentumL=L,=mp“p=cons, its time dependence. The
tions overk and! are performed. case ofL=0 Iea_ds top=const and thus to I|_nes starting
This case is much more restrictive than the 2D one. To geﬁromdthe spatlter|r|1g clentefr wherr?=0. fl('jhe motloln _can4 be
a central potential, ¥S)? in Eq. (2.1) has to be a function of ound equivalently also from the guidance relatich4),

umn of Table | for the 2D potentials.

45\ 2 The latter method, gives at once o (p), a family of
—) =g(r). straight linesy=Ax, converging to the center of coordinates
de _ \/ﬁ_ - o . .
p=VXx"+y“=0. ForV,(p), in turn, it is convenient to inte-
(213 grate the equation for energf. The result is ps(¢)
The form of (VS)2 strongly restricts admissible solutions of = poexf—(1/L) VC5—L2¢], with C5=L2. If C3=L? we
Eq. (2.2 for S with R given in Eq.(2.12. A systematic have a closed orbpp¥=p, which is a circle of radiugpo.
review of various possible dependences of the functi@ns This corresponds to the phas§® in Table I. Moreover, if
andSonr, 0, ande we have performed, shows that the caseC§:2L2=202, then a patrticle is falling down to the center

of R=const andS=a/r (« is a real constants likely the  along a logarithmic spiral given above. This case corre-
only one leading to a central potential in the 3D case. Wesponds to the phaﬁzB) in Table I.

2 1

Vsz_aszlas+
VO=ar] T 215 i

will get now 7] The next potentialV(p), combines two previous ones,
5 and in this case, the fastest way of deriving the correspond-
Ve(r)=E— a_r—4_ (2.14 ing trajectory is using the guidance equation in polar coordi-
2m nates. We thus hav€,(C In p+d)*>=3CC,¢, where again
C,=L, and for the vanishindC; or C,, we will get the
IIl. PROPERTIES already discussed orbits. Otherwise, we have a spi@p)

=poexp@e™®) with q being a real constant different from
There are two integrals of the motion for conservativezero.
systems in central potentials: the total enekggnd angular For two families of potentials, i.eV{?(p) and V¥ (p),

momentumL. This is the case in our study too. One canthe motions can be found, e.g., by integrating the equation
solve the stationary Schiinger equation for the potentials for energyE. The results are given by

we have found and obtain all possible states corresponding to

these attractive potentials with=0. There is, among them, 09 )= L U(k+1)

a very restricted number of specific states for which the pP3\®)= @, c03 (k+ 1) (¢— o) ] ,
guantum contributionQ to the classical Hamilton-Jacobi

equation(1.2) is exactly zero. Thus, we can derive trajecto- k=1,23..., (3.1
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Vi special state in the Cartesian coordinatesdy. From Table
%X I, we have
V2 % @ P(x,y) =[2A1xy—B1(x*—y*) Jexp{(i/7)[A (x>~ y?)
X X
+2B;xy]}. (3.3
V3
) @x This potential has been a subject of many intensive studies
(see the next sectipand its wave functions and eigenvalues
4 Y k=1 ;1‘3’5 k=2 are well known[15]. The solutions can be separated into two
X X groups: those belonging to complex-energy eigenvalues and
k;z y k=3 being also the eigenstates of orbital angular momentum
A/é’ % X
Ei=VoFi(ng+ny+Lhy, (3.9
ks ks ; 20921 y2\ T * +
X X Uy =Ciexf = (i/2) B5(X"+y*) Hn (BX)Hq (BY),
(3.9

FIG. 1. An illustration of the content of Table I. The sketches e . .
represent 2D central potentials in the vicinity of the beginning of@nd infinitely degenerate states with some of them having the

coordinates and trajectories corresponding in each case to the stat&al-€nergy eigenvalué,
where the quantum correctidd [Eq. (1.2)] to the Hamilton-Jacobi

equation is exactly zero. The free constants are positively deter- E2=V0+|(nx—ny)ﬁy, (3.6
mined and their numerical values are chosen for convenience. Ex- B . P T -

cept for V¥, all the remaining potentials are singular for=0. Uz=Coex £ (i/2) B5(X"—y*) IHn (BX)Hp (BY).
Two of them, V; and V3 have another singularity forp (3.7

=ex{d —d/C]. Contrary to the case of5, the former singularity is

not visible in the plot ofv;. The highest values of this potential are In the formulas:3=\my/#%, the signs+/— correspond to

obtained forp = exd —(2+d/C)], which in the plot is very close to the outward/inward moving particles, the functiobsare

the value ofp=0. generalized functions in a Schwartz space of the Gel'fand
triplet S(R?)C £2(R?)CS(R?)* [15], and the polynomials

k1) H, can be found from the relatidii6]

p8(e)= %cos{(k—l)(qo—wo)] ,

d
k=2,34.... (3.2) H§(§)=(1i)“exp(1i§2)d—§neXp(ii§2)- 3.9

In the case op¥(¢) we derive from Eq(3.1) a hyperbola . . . .

(k=1), and fo;lkzz, figures composed df+1 open arcs. 1he first fzexv polynomials argi_—|5('§)=1, Hi (€)= 2%

For the last family of potentials/{(p), all trajectories are H2_(§)Z4§ +2i, Hi(§)=8£+12¢, and H,(¢)

represented by closed curves. Correspondingly, we will get”Hn (€)-

from Eq. (3.2 the circle k=2), the Bernoulli lemniscate Ve can now try to detect the stat®.3) from among the

(k=3), and k—1)-leaved roses fok=4. statesU; and U,. Since in our cas& =V, this can only
What we have said above is summarized in Fig. 1, wherd2ke place whem,=n,=n in Egs.(3.6) and(3.7). NZOW’ for

plots of the 2D central potentials are given together withn=1 we haveUs(n=1)=4¢pg —o(X.y) if A;=*%p%2 and

classical orbits related to the states listed in Table I. No pIoCz=A1/2,82. It follows from Eg. (3.3 that we have found

is given forVg(r). In this case, the trajectories are straightadditional solutions for the potential under consideration,

lines crossing the beginning of coordinates. i.e., ¥a,—o(x,y) and, of course, the full solutioms(x,y),
_ both not derivable by the method of separation of variables
B. Wave functions used in Ref[15]. For any real values oA, and B,, the

The states generating trajectories in Fig. 1 do not havéunction#(x,y) does not produce any quantum correct@n
extrema. Their existence is precluded by the structure of? Eqg. (1.2.
Laplace equation, that the amplitudsof our wave func- The phases{” of the solutiony(x,y) [Eq. (3.3)] gives a
tions must obey. Further, if we accept the definition thatStationary flow that moves along the hyperbola as shown in
bound states are represented by those solutions of thé-Schifoig. 1. A similar type of motion(now y=C/x) is also ob-
dinger equation for which the usual normalization integral istained when in Eq(3.7) we setn,=ny,=n=0. This case
finite, then obviously our states do not belong to this classcorresponds t&®,=const andS= S{M with B;=0 in Table I.
Rather they represent special stationary states of scatterifgf course, we will get agaiQ=0 in Eq. (1.2. WhenB,
potentials with closed orbits for some of them. #0 we also have another solution not found in Ré&b| for
To see how exceptional the states are, we shall considevhich Q=0.
an example in more detail. Let us choose the potential Authors of the work[15] observe...that the veloci-
Vi(p)=E—(a2/2m)p?=V,y—(1/2)my?p? and write its ties... in both casesn=0,1)...do not contain any order of
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# at all. They concluded tha. .this fact indicates that these A number of 2D potentials is also used in the description of
flows will have a kind of classical propert@ur paper clearly ~low-dimensional quantum dots. Few examples are discussed
shows what this sentence really means. We have also show Sec. 4.2 of Ref[23]. The 3D potential in Eq(2.14,
that the above property can also be observed for some statégmetimes called the Maxwell potential, is widely utilized in
not being in the form of a product of single-variable func- the collision theorysee, e.g. Ref.24]).

tions ofx and ofy only. The threshold value dE=0, which separates the bound-
state spectrum from the continuum, is singled out to effect
IV. DISCUSSION our work’s purpose. Behavior of quantum systems near the

threshold was recently the subject of a quite strong activity.
We have presented a search for central potentials, with th€his is motivated by advances in cold-atom collisip®5] as

property that some of their states generate quantum trajecterell as by the need for a deeper understanding of the semi-
ries identical to the classical ones. Found examples are listetlassical limit of some repulsive and attractive central poten-
in Table I. It is, of course, an open question, whether we havéals [26].
discovered all of them. The set of the partial differential As a final conclusion, we can state that in most cases,
equationg2.1)—(2.3) is too intricate to be solved exactly and quantum systems do not obey the correspondence principle
to get a decisive answer in this way. We have also found thend it is argued2,3] that quantum mechanics is, therefore,
wave functions and the corresponding trajectories for each adhcomplete. There can exist, however, some states of the
the potentials. It is interesting that in the limit of continuous known central potentials for which the correspondence prin-

spectrum E=0) some orbits can be closed curves. ciple is obeyed exactly.
The potentialV{"(p), chosen for more detailed discus-
sion in Sec. Il B, has been studied in the 1D version for a ACKNOWLEDGMENT

long time, as the simplest model of an unstable system in
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