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Locally real states of photons and particles
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A locally real representation is derived from projections in Hilbert space without arbitrary constants. The
inherent enhancement property of the resultant states removes restriction by Bell’s theorem. Exact agreement
with quantum mechanics is demonstrated by explicit calculations of photon transmission in Malus’s law, joint
detection probability for correlated photons, spin1

2 particle transmission through successive Stern-Gerlach
analyzers, and joint detection probability for correlated spin1

2 particles. The representation is experimentally
testable with respect to quantum mechanics.

DOI: 10.1103/PhysRevA.65.032102 PACS number~s!: 03.65.Ta
of
th
r
ri
n
s
re
r

f
el
n
i

ing

th
p
u-

i
ti

n
m
ri

e
H
tio
rli
ur
T

ow
r

on

ub-
itly
ns.

cal-
that
ive.
as
il-
s.
is-
n-
m
at
ea-
pri-

ition

posi-
ly-
inly
ta-
-
lar-
s
phe-

of
um
e as

ion
eed,
ut

sub-
ers
ed

a-
ition
sis
in its
o-
im-
I. INTRODUCTION

The rapid evolution of the probabilistic interpretation
quantum mechanics from 1925 to 1927 is associated wi
departure from the classical principles of realism. In an ea
attempt to reconcile quantum mechanics and classical p
ciples, de Broglie proposed a reality-based representatio
the 1927 Solvay congress@1#, but this representation wa
generally rejected by proponents of the probabilistic interp
tation. The tenets of the probabilistic interpretation we
crystallized in 1935 by Bohr’s response@2# to the analysis of
Einstein, Podolsky, and Rosen@3# regarding the question o
quantum theory’s completeness. Some years later, B
theorem@4#, based upon apparently plausible assumptio
substantially increased interest in the examination of adm
sible locally real alternative representations by provid
testable criteria. The experimental results of such tests@5#
have widely been interpreted as a final validation of
probabilistic interpretation. Despite these events, Pop
critically examined the probabilistic interpretation partic
larly with respect to its philosophical basis@6#. Several re-
searchers, compelled by the firm belief that nonlocality
incongruent with physical reality, have persisted in inves
gating the boundaries of admissible local alternatives@7–23#.

A particular hidden variable model of locally real photo
states was presented earlier which demonstrated agree
with the probabilistic interpretation and performed expe
ments for Malus’s law and for correlated photons@24#. The
model was shown to be independent of Bell’s theorem@4,25#
as a consequence of its inherent property of enhancem
and was testable. We proceed here from projections in
bert space with the derivation of a locally real representa
that yields photon states analogous to those of that ea
model. A very closely related self-consistent derivation f
ther extends the representation to include particle states.
resultant comprehensive locally real representation is sh
to be in exact agreement with quantum mechanics while p
viding testable consequences.

States for photons and for particles are deliberately c
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structed with compatible notation and are presented in s
stantially self-contained sections in the interests of explic
elucidating the self-consistency of the respective derivatio
As we proceed, we may reasonably anticipate from the
culational success of the quantum mechanical formalism
mathematical analogs may arise in a locally real alternat
Accordingly, any such analogs must be strictly defined
locally real entities and not be imbued with any of the fam
iar nonlocal probabilistic attributes of quantum mechanic

A corollary to these concerns is that we must clearly d
tinguish the locally real representation from Bohm’s co
struction@26#. Bohm basically retains the standard quantu
formalism which, together with a potential derived from th
formalism, yields a causal interpretation of quantum m
surement processes. The Bohm interpretation is appro
ately characterized as nonlocally real.

Correlated states and spatially separated superpos
states~e.g., two-slit interference@27#! are usually identified
as the most notable phenomena that necessitate the im
tion of a nonlocal probabilistic interpretation on the under
ing standard quantum formalism. These phenomena certa
represent particularly dramatic and self-evident manifes
tions of nonlocality in the probabilistic interpretation. How
ever, the transmission of photons through successive po
ization analyzers~Malus’s law! and the passage of particle
through successive Stern-Gerlach analyzers are both
nomena well recognized as necessitating the invocation
the probabilistic interpretation given the standard quant
formalism. These phenomena are jointly categorized her
analyzer emissionprocesses.

In this regard, we first address these analyzer emiss
processes from a locally real perspective and then proc
with benefit of hindsight, to correlated states which turn o
to be closely related. Both of these phenomena can be
stantially described in the context of single channel analyz
or, equivalently, two-channel analyzers with one block
channel.

Correspondingly, we defer a detailed locally real altern
tive to quantum mechanical spatially separated superpos
states, which follows directly and consistently from the ba
of analyzer emission presented here, but necessitates,
complete form, the treatment of transmission through tw
channel analyzers with both channels open. The physical
©2002 The American Physical Society02-1



to
c
n

at
ef
r

ze
nt
s
ra
-

a
in

io
g
c-
th
f t

r-
il

o

he
he
or

en

ic
ve

t
te
-
is

-

al

th

i
ug
e

ny

en

-
xis
r

ve

axis

ig.

n-
-
ig.
t of

tes

d

de
rc
f

STUART MIRELL PHYSICAL REVIEW A 65 032102
plications of the locally real representation alternative
these spatially separated superposition states is a subje
some considerable interest and experimental conseque
have been examined@28#.

The measurement results for photon and particle st
considered here are not in any way dependent upon in
ciencies imposed, respectively, on polarization and Ste
Gerlach analyzers~distinct from their associated detectors!.
Accordingly, we are free to treat these analyzers as ideali

The phenomena we examine here, when represe
quantum mechanically, particularly characterize the tenet
the probabilistic interpretation. We will abide by the gene
convention in which that probabilistic interpretation is im
plied when using the term quantum mechanics.

II. LOCALLY REAL PHOTON STATES

A. Introduction to photon states

Following the example of quantum field theory, we tre
the vacuum field as a collection of harmonic oscillators
random ground state motion. The functional specificat
F(z,t;bg) that we utilize here for a photon propagatin
along thez axis is substantially equivalent to the wave fun
tion of the usual quantum formalism but represents in
present context a wave structure consisting of a subset o
~real! oscillators in coherent motion orthogonal toz. The
passage ofF through a local region is effectively a cohe
ence wave that drives resident random ground state osc
tors into transitory coherent~ground state! motion. A super-
position of constituent harmonic waves with a dispersion
wave numberskn givesF its functional amplitude with re-
spect to the propagation axis as shown in Fig. 1~a!. The
parameterbg is a coefficient that scales this amplitude. T
evaluation ofF* F provides a proportionate measure of t
density of oscillators in coherent ground state motion
thogonal to the propagation axis as a function ofz,t. SinceF
is not a probabilistic entity, there is no inherent requirem
to normalizeF* F.

For a specific photon emitted att50 and propagating
along thez axis, the temporal and spatial evolution ofF is
substantially equivalent to that of the quantum mechan
formalism with the explicit understanding that the wa
structure is a real entity.

F, defined ont>0, is clearly descriptive of a dominan
aspect of the photon’s structure; however, the parame
z, t, and bg provide no information regarding ‘‘polariza
tion’’ properties. For a specific photon, this information
contained in the variablesDg and ug defined in the plane
orthogonal to the propagation axis. The quantitiesDg andug
as well asbg are identifiable as ‘‘hidden variables.’’ How
ever, we shall apply the termfield variablesinstead, as more
appropriate in the full objective context of the locally re
representation.

We will necessarily have frequent occasion to assume
objective perspective in which the field variablesDg , ug ,
and bg of a given photon are specified. This perspective
permissible in a representation of real entities even tho
subjectively ~experimentally! we cannot have complet
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knowledge of the particular field variable values for a
given photon.

Objectively, the wave function of a specific photon is th
more completely specified asF(z,t;Dg ,ug ,bg). In this re-
gard we define aplanar wave packetas a subgroup of coher
ent F oscillators moving orthogonal to the propagation a
in an infinitesimal angular arcd oriented at some particula
angle about that axis as represented in Fig. 1~a!.

A given photon consists of a set of these planar wa
packets, all with a uniform amplitude coefficientbg . The
packets are contiguously arrayed about the propagation
and collectively subtend a finite angular arcDg as shown in
Fig. 1~a! and, schematically as a projective axial view, in F
1~b!. The magnitude ofDg (5Nd for some integerN) and
the orientation of theDg bisector at someug are essential
field variables characterizing a particular photon. An orie
tation atug is equivalent toug1p because of the bidirec
tionality of the planar packets. The two opposed arcs in F
1~b! are then appreciated as representing the same se
planar packets but with a relativep phase shift along the
propagation axis. In the consideration here of photon sta

FIG. 1. Photon wave structure~a! represented by the associate
wave function amplitude along thez propagation axis rotated
through an arcDg . The entire structure is scaled by an amplitu
coefficientbg . A constituent planar wave packet of infinitesimal a
d is shown near the plane of they axis. Schematic representation o
a photon’s collective planar wave packets~b! viewed projectively
along the propagation axis, shows total arc spanDg and orientation
of the photon~arc span bisector! ug . Intersection of depictedDg arc
with an analyzer’s polarization axis, e.g., along thex axis, results in
photon’s transmission.
2-2
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
and their measurement, it is convenient to treat thed of each
planar packet as a suitably small but finite angular increm
Ultimately, as the limitd→0 is applied whileN→`, Dg

5Nd remains constant and we see that the discrete pl
packet is purely a mathematical intermediary.

The general physical characteristics ofF emerging from
this construction are that all photons generated under exp
mentally equivalent conditions have substantially identi
wave structures~to within an amplitude scale factor ofbg)
with respect toz and t dependence but differ in the fixe
values ofDg , ug , andbg associated with the angularly a
rayed wave packets of a particular photon.

We shall shortly demonstrate the relationship of t
Dg , ug , andbg field variables to the ‘‘polarization’’ of the
photon and to analyzer measurement of that polarizat
However, the primary task at hand is the derivation of
underlying formalism that assigns particular field variab
values to emitted photons. This formalism generates a w
function associated with an ensemble of photons define
the emission source att,0. The allowableDg andug values,
in their proper frequency distribution, map to the members
this ensemble. As a stochastic process, a random memb
the ensemble is emitted att50 with particular objectively
fixed valuesDg and ug giving an associated wave functio
F(z,t;Dg ,ug ,bg) for t>0. We shall see that any specifi
emitted ensemble member is a real definable physical e
with an objectively deterministic transmission outcom
through some distant polarization analyzer.

The energy quantum associated with a photon exists a
excitation state on one of the constituent coherent gro
state oscillators. The excitation migrates onF with an in-
stantaneous probability along the propagation axis prop
tionate toF* F. The excitation also migrates on the contig
ous set of wave packets with a random instantane
probability on any individual packet of the angular arcDg .

The probabilities associated with the excitation locus
the photon’s wave structure are readily shown to be indep
dent of the amplitude coefficientbg . The probability inde-
pendence on the set of theDg arc of packets is immediatel
seen from the uniformity ofbg on those packets. The prob
ability independence along the propagation axis can be
preciated by observing that the density of coherent osc
tors given byF* F is scaled by the particular value ofbg

2 for
that photon. However, this scaling does not alter the rela
likelihood of the excitation being at a particularz,t on a
single spatially contiguous wave structure.

Conversely, for processes such as the intersection of
tially separated wave structures, the relative value ofbg on
each structure is critical to excitation dynamics in the res
ant wave interference. Nevertheless, because we confine
present considerations almost entirely to phenomena inv
ing single channel analyzers, such spatially separated w
structures do not arise and the specification ofbg is largely
superfluous in that regard. Most significantly in the cont
of the present paper, we will demonstrate that a photo
transmission outcome through an analyzer is also indep
dent ofbg . Accordingly, we will explicitly consider the am
plitude coefficientbg only when its inclusion contributes to
03210
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more complete understanding of the locally real structu
Otherwise, the particular value ofbg can, in principle, be
suppressed here in our specifications of field variables.

In the locally real representation, it is the excitation th
provides us with a probe of the photon wave packet struc
of F with particular regard here toz,t dependence. Various
measurement procedures applied to individual photons
reveal the instantaneous value of a parameter such as
tion z or wave numberkn associated with the excitation as
moves on the wave packet structure. Ultimately, after c
ducting a large number of such measurements on simil
emitted photons, a map ofF* F along the propagation axi
can be ascertained. TheDz,Dkn uncertainty on a real field is
seen as a manifestation of the classical relationship of
nonically conjugate variables such asz,kn in the construction
of a wave packet for whichDzDkn'2p.

B. Analyzer emission of photons

From the perspective of local reality, the statistical dist
bution of photon transmission outcomes through some
tant analyzerA8 must originate at the emitting analyzerA.
We postulate that any particular photon emitted by analy
A is a random member of an ensemble of photons and se
mathematical representation of this ensemble consistent
the physically known properties of photon transmissi
through polarization analyzers.

The ensemble necessarily arises from a photon propa
ing within the analyzer. We designate this photon as agen-
erator photongg . For a trial solution we then consider a
analyzer emission ensemblederived from projections in the
transverse plane specifically originating at the polarizat
axis asgg reaches the analyzer’s exit face. This soluti
implies that thegg wave structure is narrowly confined to th
plane of the analyzer’s polarization axis within some angu
arc d as it propagates within the analyzer. Because of t
physical confinement,gg is characterized as being ind-form.
We proceed with this physical representation ofgg as we
construct the analyzer emission ensemble and subsequ
reexamine this representation for self-consistency.

The analyzer emission ensemble that we construct con
tutes the objective specifications of a representative se
photons potentially emitted by an analyzer. We assign a
of uuk& orthonormal basis vectors in Hilbert space in one
one correspondence with the angular coordinateu5kd for
integer values ofk whereukdu<p/2. We ultimately obtain an
infinite dimensional Hilbert space asd→0. The analyzer’s
polarization axis is chosen to coincide with thex axis where
u50 in real space.

When an internally propagatingd-form generator photon
gg , associated with the basis vectoruu0&, reaches the exit
face of the analyzer, a set of projected packet state vect

ufk&5cos~kd!uuk& ~1!

is generated. This set is used to construct the analyzer e
sion ensemble.

The ensemble’sanalyzer emission superposition state
2-3
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STUART MIRELL PHYSICAL REVIEW A 65 032102
ufe&5 (
j 5m

n

uf j&5 (
j 5m

n

cos~ j d!uuj& ~2!

is constructed from the Eq.~1! state vectors wheren
5p/(2d)52m. Analyzer emission superposition states a
sociated with arbitrary polarization analyzers are all identi
to Eq. ~2! after translating to a frame in whichuu0& is asso-
ciated with thegg propagating in the plane of the emittin
analyzer’s polarization axis. The generator photongg orien-
tation and the ensemble’s ‘‘centroid’’ orientation are th
both given byuu0& in Hilbert space.

For analyzer emission ensembles, each constituentufk&
Eq. ~1! packet state vector is a single state formed with
correspondinguuk& basis vector because the projectio
originate from a single basis vector. As a consequence, e
ufk& packet state vector is identified as the projection of
ensemble’s analyzer emission superposition stateufe& into
the uuk& Hilbert subspace. In the present context, this pr
erty is of a trivial nature. However, it will be instructive t
examine the analogous projections when we consider co
lated photons.

The norm ofufk& is

ifki5^fkufk&
1/25cos~kd!, ~3!

which is equivalent to the amplitude of a particular projec
state vectorufk&,

^ukufk&5cos~kd!, ~4!

as well as the amplitude of the analyzer emission superp
tion state at someuuk&,

^ukufe&5cos~kd!. ~5!

Physically, each of these quantities may be viewed a
cos(kd) projection from thekd-distant generator photon.

Squaring either amplitude gives the probability of an e
semble planar packet at a particularuuk&:

^ukufk&
25^ukufe&

25cos2~kd!. ~6!

The functional cosine squared probability of ensemble pla
packets specified in Eq.~6! is depicted in Fig. 2. From this
probability we now seek the compilation of these plan
packets into an ensemble set of emission photons.

In the interests of determining this compilation, we co
sider the requisite criteria for transmission of a phot
through an analyzer. The photon we select is a partic
ensemble member of an emission analyzerA. That photon,
when incident on some distant analyzerA8, must first propa-
gate within that analyzer as ad-form generator photongg8
before being transmitted as an emission ensemble memb
A8. The accompaniment of the excitation in this process is
implicit requirement if the resultant emittedA8 ensemble
member is to be defined as a~potentially detectable! trans-
mitted photon.

We postulate that an excitation migrating on the photo
wave structure has physical accessibility to any particu
wave packet on some collective arcDg because of the con
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tiguity of those packets. Consistent with this property, t
excitation also has physical accessibility to thed-form wave
structure arising within the analyzer only when theDg of an
incident photon intersects the analyzer’s polarization a
Since photons emitted from an analyzer are known to hav
0.5 probability of transmission through a subsequent, r
domly oriented, analyzer, we anticipate that emission
semble members are characterized by a contiguousDg
5p/2 arc of packets which yields that 0.5 probability. W
define Dg5p/2 photons as having afull complementof
packets.

The compilation of the emission packets into an ensem
of photon members is then particularly straightforward giv
the above considerations. An inspection of the Fig. 2 co2 u
wave packet probability yields the requisite solution by n
ing that the probability as a function ofu is invariant under
an inversion of theu,0 packet contour to 12cos2 u. In the
modified form of the contour we identify the set of photo
defined by the rows of wave packets. This set of full comp
ment photons uniquely constitutes the requisite ensem
$ge%. Any singlege emitted as a stochastic process from
analyzerA is a random member~row! of the associated en
semble. Each member has a contiguous arc of packetsDg
5p/2. Summed over multiple emitted photons, the ensem
and the cos2 u wave packet probability are trivially recov
ered.

An ensemble’s wave packet probability specified by E
~6! and depicted in the modified Fig. 2 contour may also

FIG. 2. The cos2 u function gives the angular probability o
planar wave packets emitted from a polarization analyzer and a
ciated with an internally transmitted photongg with packets con-
densed along the analyzer’s polarization axis atu50. The angular
probability is unaltered by inversion of the cos2 u contour for u
,0. A photon ge emitted by the analyzer is a random memb
~row! of the ensemble$ge% defined by the modified~bold! contour.
Alternatively, for particles, substituting the quantities in parenthe
gives a cos2(u/2) contour representing the angular probability
spin wave packets emitted from a Stern-Gerlach analyzer and a
ciated with an internally transmitted particlepg with packets con-
densed along the analyzer’s magnetic axis atu50. Similarly, au
,0 inversion gives a modified contour defining the ensemble$pe%.
A particle pe emitted by the analyzer is a random member~row! of
$pe%.
2-4
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
regarded as the ensemble’s wave packet distribution. The
an effective equivalence of these two terms in the treatm
of photon ensembles since both quantities are represent
their entirety in the plane orthogonal to the propagation a
~However, in our treatment of particles we will encounter
exception to this equivalence arising from the thre
dimensionality of relevant distributions.!

We can now consider the ensemble members emi
from an analyzerA interacting with a second polarizatio
analyzerA8 rotated byu5kd with respect toA. We see that
a cos2 u fraction of the ensemble members have aDg that
intersectsu, resulting in transmission, which gives us agre
ment with Malus’s law for the representation. Note that t
representation is explicitly locally real. The state of a pho
incident on analyzerA8 is in no way altered by the physica
orientation of that analyzer. Photons are not regarded as
nary quantum objects with a horizontal or vertical polariz
tion. From the ensemble construction, the members of$ge%
have a continuum of orientations given by the bisector ang
ug of the rows in the modified contour of Fig. 2. Furthe
more, the transmission outcome for a random member i
dent onA8 is fully deterministic the instant that particula
member leaves analyzerA with an objectively defined packe
arcDg with orientationug . For that photon to be transmitte
by A8, its packet arcDg must intersect theA8 polarization
axis. The photon’s emergence fromA8 is then as a membe
of a new ensemble generated fromuu08& associated with the
A8 polarization axis atu850. Consequently, we have tran
mission consistent with Malus’s law for any number of ar
trarily rotated sequential analyzers.

It is instructive at this point to examine the underlyin
differences between the locally real representation and q
tum mechanics. For this examination, we again cons
photons transmitted through an analyzerA with its polariza-
tion axis oriented atu50 along thex axis and a subsequen
analyzerA8 rotated at someu.

The strict probabilistic interpretation of quantum mecha
ics requires that the photon transmitted through analyzeA
be in a definite stateufqm&5ux& where ux& and uy& are or-
thonormal basis vectors in a two-dimensional Hilbert spa
In this interpretation, the role of the measurement proces
central to the assignment of states. That photon, when m
sured by a subsequent analyzerA8 rotated byu, must now be
in a binary superposition state

ufqm&5~cosu!ux8&1~sinu!uy8& ~7!

by a projective transformation to the new basis pairux8& and
uy8& of A8. The respective amplitudes of the photon being
the statesux8&,uy8& are

^x8ufqm&5cosu, ^y8ufqm&5sinu ~8!

with corresponding probabilities

^x8ufqm&25cos2 u, ^y8ufqm&25sin2 u ~9!

for the inherently binary measurement outcomes.
Quantum mechanics requires that the assignable state

a binary superposition prior to measurement, and, after m
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surement, the collapse of one of the states places the ph
in a single definite state of the other. The requisite Hilb
space is two dimensional. Because of the role of the m
surement process in assigning photon states, the photon
is necessarily treated as a probabilistic entity. Moreover,
photons emitted from an analyzer are identical probabilis
entities. They are distinguishable only upon measuremen
a purely probabilistic consequence of assuming one of
two possible states of the superposition. Quantum mecha
regards these probabilistic entities as nonreal.

In the locally real representation, the transverse state
particular photong emitted by an analyzer can be objective
specified by the superposition state

uFg&5 (
j 5m

n

uuj& ~10!

defined on a Hilbert space~which becomes infinite asd
→0) with orthonormaluuj& basis vectors. HereDg5p/2
5(n2m11)d andug5 1

2 (n1m)d. Equation~10! explicitly
requires that the photon be ‘‘in’’ all of theuuj& states associ-
ated with the packet arcDg at ug . This property is demon-
strated by the probabilitŷukuFg&251 for all uuk& associated
with Dg . Each of these occupied states represents an ob
tively real planar wave packet.

In the locally real representation, any analyzerA8, posi-
tioned subsequent to an emission analyzerA, has no role in
the Eq.~10! specification of an emitted photon’s superpo
tion of states. Objectively, the infiniteuuj& states associate
with Dg exist independently of any measurement device.

If the subsequent analyzerA8 has its polarization axis a
someu associated with a particularuuk& in the Hilbert space
of the emission analyzer, a transmission outcome experim
tally establishes only thatuuk& was one of the constituen
states of the incident photonuFg& and an absorption outcom
establishes the converse. Objectively, the outcome is de
ministically fixed the instant the photon is emitted fromA
and the constituent states ofuFg& are specified.

Experimentally, however, we have knowledge only th
any photon emitted byA is a member of an ensemble co
structed from the Eq.~2! analyzer emission superpositio
stateufe&. We can then examine this ensemble using a s
sequent analyzerA8 rotated byu5kd which associatesA8
with some basis vectoruuk&. The probability of a random
ensemble member emitted byA having a constituent stat
uuk&, i.e., a planar wave packet associated with that state,
shown in Eq.~6! to be cos2(kd). Since those members havin
a state atuuk& are transmitted, we showed that cos2(kd) is
equivalently also the probability of transmitting a rando
ensemble member and, consequently, gives us Malus’s l

This result can be made even more explicit by noting t
an ensemble member is successfully transmitted throug
subsequent analyzerA8 only when it transitionally assume
the form of a generator photon as it enters that analyzer
the Hilbert space ofA8, the state of this generator photo
uFg8&5uu08& since the generator photon is, by construction,
the single state associated with theA8 polarization axis. A
rotational translation between the Hilbert spaces of the
2-5
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STUART MIRELL PHYSICAL REVIEW A 65 032102
spective analyzers implies that in the frame ofA there is a
uuk&5uu08&, resulting in a modified form of Eq.~6!:

^Fg8ufe&
25cos2~kd!. ~11!

The particular expression of Malus’s law given by E
~11! is suggestive of a quantum mechanical transition pr
ability ufe&→uFg8& at A8. However, from the objective per
spective of local reality, this interpretation is misleading b
causeufe& is not a single definite state atuu0& as in quantum
mechanics, but represents an ensemble of packet states
centroid at the basis vectoruu0& and a distribution defined
over the infinite set ofuuj& basis vectors. In the infinite di
mensional Hilbert space of the locally real representation,
ensemble is effectively a superposition of wave packet st
that, as a stochastic process, emits a random memberA
that is itself a superposition of wave packet states. Most
portantly, we must be clear thatufe& is not present atA8
since it ceased to exist the instant the ensemble membe
A.

The physical significance of a particular photon’s sup
position state Eq.~10! can further be understood by th
evaluation of

^FguFg&5N5p/~2d!. ~12!

Equation~12! gives the sum of the Eq.~10! particle’s packet
probabilities over a fullp angular span of the 2N Hilbert
space basis vectorsuuj&. The N individual unit probability
terms associated with a particular objectively specified p
ton confirm thatN packets are present on that angular sp
Equation~12! simply reminds us once again that in the l
cally real representation a photon withN packets is ‘‘in’’ all
of the states occupied by these objectively real packets.
cordingly, our sum over probabilities is appropriatelyN and
not unity. Objectively, the inherent multiplicity of packe
states in the locally real representation explicitly necessit
the use of a corresponding multidimensional Hilbert spa
which goes to infinity asd→0, in contrast to measuremen
based quantum mechanics which requires a two-dimensi
Hilbert space as a consequence of the binary observable
comes. Of course, when we reach the limitd→0, the state of
the photon is objectively described byDg andug . The for-
malism of a multidimensional Hilbert space is seen a
mathematical intermediary.

After a photon is emitted, we can examine addition
properties by representing that objectively realized photo
Euclidean space. This representation, while not applicabl
the construction of the emission ensemble, provides a p
erful tool for gaining physical insight into the structure
such realized photons. In particular, the representation in
clidean space allows us to understand the role of the am
tude coefficientbg . For these purposes, we select a refere
frame with thez axis oriented along photon trajectories a
thex axis aligned with the polarization axis of an analyzerA.

We first consider a particular incident photon such as
example in Fig. 1~b! with an arcDg i5p/2, an orientationug i
from the analyzer’s polarization axis, and a uniform pac
amplitude coefficientbg i . We can make these specificatio
03210
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for an objectively real photon and examine the measurem
consequences even though we have no experimental m
of selectively generating any particular photon at will. T
set of packets of this physically realized photon can be r
resented in the two-dimensional Euclidean space orthog
to the propagation axis by an equivalence set ofbg i magni-
tude radial vectors each oriented at the respective angle o
packet, giving

Fg i5bg i (
j 5m

n

r̂ j , ~13!

where (n2m11)d5Dg i5p/2, (n1m)d/25ug i , and the
r̂ j are unit radial vectors oriented at theu5 j d of the respec-
tive packets. Equation~13! should be compared to the corre
sponding Eq.~10! representation of a photon in Hilbe
space. Both equations relate only to the transverse aspe
a photon’s wave structure.

In Euclidean space we begin with the Eq.~13! represen-
tation of an objectively real set of packets and examine
role of the amplitude coefficient as a photon enters and e
an analyzer.

With respect to the example in Fig. 1~b!, the present
analysis of a particular photon is applied to thep/2 arc of
packets on the right. The left arc, which merely provid
mirror redundancy, represents the same packets phase sh
along the propagation axis byp.

When the photon begins to enter analyzerA, the vector
amplitudebg i of each individual packet rapidly reduces
zero and, simultaneously, projects its component along
polarization axis onto that axis~chosen here as thex axis!.
Collectively, the vector sum of these projected packet vec
components results in a ‘‘superpacket’’ of amplitude coe
cient bd (@bg i) ‘‘condensed’’ along the polarization axis o
the analyzer ind-form.

Alternatively, this superpacket amplitudebd can readily
be computed by first forming the vector sum of the incide
photon packet vectors, which yields a resultant vector o
ented atug i @5ug in Fig. 1~b!#. The magnitudeMg i of this
resultant vector can be determined by integrating the pro
tive components with respect to the bisector of an arbitr
Dg5p/2 arc. Integration of the discrete packet contributio
is valid asd→0. The magnitude of the resultant vector is

Mg i5

bg iE
2p/4

p/4

~cosu!du

d
5

A2bg i

d
. ~14!

Then the resultant vector’s component projected onto the
larization axis has an amplitude coefficient

bd5
A2bg i cosug i

d
. ~15!

The ‘‘single’’ superpacket photon

Fd5bdx̂ ~16!
2-6
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
propagates through the analyzer, condensed along the
lyzer’s polarization axis defined here as thex axis. Fd is
clearly a Euclidean space representation of a generator
ton gg . As we impose the mathematical limitd→0, the
numberN of planar wave packets that are associated with
incident photon’s finiteDg goes to infinity. Consequently
with N individual bg i amplitudes contributing their respec
tive components along the analyzer’s polarization axis,
vector sum of the resultant superpacket has an ampli
coefficient bd→` as demonstrated by Eq.~15!. However,
the integral ofFd over the angulard of the superpacket a
the polarization axis,

E
d
Fddu5bdE

d
du x5A2bg i~cosug i !x, ~17!

remains finite giving thed-form superpacket photonFd a
formal equivalence to a Diracd function.

Classical electromagnetics provides a compelling phys
rationale for this condensation process along the polariza
axis. This rationale is appropriately considered in the con
of a multiplicity of photons on a plane polarized beam. T
multiplicity of realized photons can be represented by
members of an emission ensemble. The critical property
the ensemble in this regard is the symmetrical distribution
its member’s~arc bisector! orientationsug about the centroid
orientation that coincides with the polarization axis of
emitting analyzer. We can then identify the orientation o
plane polarized beam with that of the ensemble’s centroid
is therefore meaningful to specify the ‘‘polarization’’ of a
ensemble. Subjectively, it is also appropriate to attribute
‘‘polarization’’ to all individual photons associated with
particular ensemble. Consequently, an individual phot
which subjectively has the property of ‘‘polarization,’’ objec
tively may be further specified as having a definite orien
tion at some particularug .

The familiar type of polarization analyzer we consid
here consists of a transmissive dielectric plate with an ato
structure exhibiting parallel linear conduction paths. The
larization axis lies orthogonal to these conduction paths
the plane of the analyzer.

At the level of classical electromagnetics, we examin
plane polarized beam of photons, characterized by so
electric vectorE, incident on an analyzer with its polariza
tion axis along some unit vectorr̂ u rotated byu from E. We
know that the component ofE along the conductive paths i
strongly absorbed as the beam enters the analyzer. Co
quently, the remaining beam propagating within the analy
is characterized by the component ofE projected identically
along the polarization axis,E• r̂ u r̂ u .

We hypothesize that there is a direct physical corresp
dence between the electromagnetic wave and the wave s
ture in the locally real representation. The electric field o
single photon is most logically associated with a radial v
tor at the instantaneous packet locus of the excitation. F
suitably large number of photons on a plane polarized be
the angular distribution of these vectors may be associ
with a radial vector at each of the packets on each of
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ensemble’s members~see Fig. 2!. Symmetry ensures that th
vector sum in Euclidean space is a resultant that lies al
the centroid of the ensemble. We identify that resultant v
tor with E.

Consequently, in free space, even though the locally
representation objectively implies an angular distribution
radial electric field vectors about an incident beam’s pol
ization orientation, the experimentally observable result
electric field is not distinguishable from the single vect
quantityE of classical electromagnetics.

Conversely, the analyzer’s structure explicitly applies
physical constraint that necessarily confines the electric fi
of the internally propagating wave to the plane of the a
lyzer’s polarization axis. Consistent with that constraint,
postulate that the locally real wave structure is, likewi
confined to that plane as a superposition of projections of
incident packets in the form of a single superpacket pho
Fd .

Representation in Euclidean space also provides us
additional insights specifically relating to the formation
the superpacket. We have seen that the transition of an
dent photon, with packets arrayed over an angular arcDg

5p/2, to a condensedd-form superpacket within an ana
lyzer is critical to the transmission outcome. From the p
spective of the photon’s wave structure, the interception
noninterception of the polarization axis by theDg is of minor
consequence. In the example depicted in Fig. 1~b!, if we
orient the analyzer’s polarization axis along thex axis, Dg
happens to be intercepted and a large amplituded-form su-
perpacket is formed along that axis from the projected co
ponents of the incident packets. Although a very slight co
terclockwise rotation of that particularDg arc would result in
its noninterception by the polarization axis, the amplitu
coefficientbd of the superpacket would be only marginal
reduced in magnitude. However, from the perspective of
excitation migrating on the photon wave structure enter
analyzerA, the difference between interception and nonint
ception is of paramount significance.

As the incident wave structure begins to penetrate
analyzer, the amplitude of packets on theDg arc rapidly
diminishes toward zero and, simultaneously, thed-form su-
perpacket amplitude sharply rises along the polarization a
When theDg arc of a particular incidentFg i intercepts the
polarization axis, the excitation migrating on the diminishi
packets of the arc entering the analyzer promptly locks i
the risingd-form superpacket located onDg and is transmit-
ted through the analyzer as a superpacket photonFd .

Conversely, when theDg arc of a particularFg i does not
intersect the analyzer’s polarization axis, the excitation m
grating on the diminishing packets ofDg does not encounte
the d-form superpacket since it is not contiguous withDg .
As a result, the excitation is absorbed in the analyzer and
superpacket on the polarization axis is transmitted as
‘‘empty wave’’ through the analyzer. The ‘‘empty wave’’ i
equivalent to an excitationless superpacket wave struc
Fd

0 propagating within the analyzer. We will reserve the te
‘‘photon’’ for wave structures that are excitation bearing.
the exit face a full complement excitationless empty wa
2-7
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STUART MIRELL PHYSICAL REVIEW A 65 032102
ensemble memberFg
0 is emitted. When considering discre

photon phenomena involving two-channel devices such
calcite polarization analyzers and beam splitters, quant
of the form Fg

0 and ~a ‘‘photon’’! Fg are emitted, respec
tively, from the two channels and may subsequently inters
to produce an interference. These quantities immedia
provide the means for self-consistently constructing a loc
real representation fully inclusive of such two-channel p
nomena. Quantum mechanically, such phenomena inv
spatially separated superposition states with nonlocal co
quences.

The representation in Euclidean space also allows u
compute changes in the amplitude coefficient as a pho
enters and exits an analyzer. When ad-form superpacket
photon reaches the analyzer’s exit face, a stochastic ana
emission process occurs. As a transition from the emerg
Fd , a photonFg is emitted with aDg5p/2 packet arc, an
orientation of someug , and a bg amplitude coefficient.
Aside from the specification ofbg , that emitted photon is
equivalent to one of the members of an ensemble cent
about the analyzer’s polarization axis selected here as tx
axis. We want to understand the role of the packet amplit
coefficient in the context of analyzer transmission proces

It is easily demonstrated that the amplitude coefficientbg
of the emitted photonFg is a function of that photon’s ori-
entationug and the amplitude coefficient of the superpac
bd from which it was generated. Consistent with the analy
applied to Eqs.~14! and ~15!, the projection of the super
packet amplitude vector alongug has a magnitudebd cosug .
The vector sum of the emitted photon’s packet amplitu
produces a resultant vector oriented at thisug with magni-
tudeMg5A2bg /d. Equating these magnitudes uniquely d
termines the relationship between the objective orientati
and amplitudes of the incident and the emitted photons,

bg5dbd~cosug!/A25bg i cosug i cosug . ~18!

Projectively, the analyzer emission process is recognized
reversal of the condensation process with the explicit
minder in Eq.~18! that the orientations of the incident pho
ton and the emitted photon are not generally equal.

Despite the Eq.~18! dependence of the wave packet a
plitude coefficient on the photon orientation values, t
physical role of the amplitude coefficient is not pertinent
photon transmission probability through an analyzer wh
only Dg interception by the polarization axis is relevant.

We see from Eq.~18! that, in general, the amplitude co
efficientbg is diminished each time a photon enters and e
an analyzer, thereby rescaling the complete wave func
F(z,t;Dg ,ug ,bg). Similarly, bg

2 is also diminished and pro
portionately rescales the ‘‘wave intensity’’F* F. Since the
probabilities of photon analyzer transmission and excitat
locus on that photon’s wave structure are independent of
rescaling, we are free to suppressbg . This suppression ef
fectively renormalizes the intensity each time the pho
passes through an analyzer and confers uponF* F an
equivalency to a true mathematical probability. This is c
tainly a calculational convenience, but we must not lose s
of the wave as a physically real entity.
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Before concluding our treatment of analyzer emiss
processes, we want to note that the polar coordinateu used
above in the construction of ensemble states from a gene
photon gg at u50 also represented angular positions w
respect to the analyzer’s polarization axis. We now introdu
the angular coordinateQ to define the physical orientation o
an analyzer in the laboratory frame. ChoosingQ as the angle
with respect to the polarization axis gives the equivalen
Q5u. To that extent, the introduction ofQ may be regarded
as superfluous in the treatment of analyzer emission; h
ever, in the context of correlated photons~and correlated
particles!, we shall need to distinguish the two quantities.

Finally, before leaving the topic of photon analyzer em
sion, we may reasonably ask why the locally real repres
tation is of utility if we get Malus’s law from quantum me
chanics as well. The response to this point is that quan
mechanics, aside from Bohm’s particular interpretation@26#,
has already required that we abandon the notion of phys
reality for the photon. An even more compelling differenti
tion between the two representations will occur when
consider correlated states. Quantum mechanics, including
Bohm interpretation, will impose nonlocality.

C. Correlated photons

We consider here atomic transitions emitting two cor
lated photons that together carry a net angular momentum
zero. The polarization states of the two photons are thep
out of phase, but this phase differential is not evidenced
the analyzers and quantum mechanically we expect that
photons are either vertically polarized or horizontally pola
ized.

In analogy to analyzer emission, a correlated photon p
is treated as an ‘‘independent’’gG generator photon and
‘‘dependent’’gE emission photon. The emission photongE is
a member of an ensemble$gE%, and we require zero angula
momentum within the closed system of anygG ,gE corre-
lated pair. To the extent thatgg and gG both generate an
ensemble member, the analyzer emission process for$ge%
and the correlated photon emission process for$gE% are
similar. However, the physical constraints associated with
two processes are different.

A significant difference relates to the photon arc spanDg .
In analyzer emission, projections from thegg angularly con-
fined d-form ‘‘source’’ yield a cos2 u distribution of $ge%
packets. In contrast, the ‘‘independent’’gG of a correlated
pair is unrestricted by confinement to an analyzer. Acco
ingly, gG is a full complement photon withDg5p/2 and
presents a generator source that is extended over its e
p/2 arc of packets.

An additional difference between the analyzer emiss
process and the correlated photon process is associated
the relevant reference frames. Analyzer emission is most
propriately represented in the laboratory reference fra
since the state vector ofgg is aligned with the polarization
axis of the analyzer. Conversely, the orientation of the in
pendent correlated photongG can assume any value at ra
dom in the laboratory frame for a particular event in fr
space. Consequently, it is convenient to translate to the p
2-8
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
ton reference frameK(u) in which the planar packets of a
gG photons are always in some fixed orientation relative
u. Initially, we shall find it convenient to align the exterio
wave packets ofgG with u50 andp/2 as shown in Fig. 3.
Subsequently, we will rotationally translateu50 to thegG
bisector (gG’s orientation! defined as1x in K. In either
case, with the correlated photon source interposed betwe
pair of opposed polarization analyzers, the orientations
those analyzers must be treated as completely random iK,
constrained only by their fixed relative rotation designa
by the angular variableQ in the laboratory frame.

We shall see that the analyzer transmission results for
present consideration of correlated photons are indepen
of the amplitude coefficientbg . A corresponding indepen
dence was observed earlier with respect to transmissio
the full complement analyzer emission photons. As a res
we will reexamine the role ofbg in the context of correlated
photons only very briefly in the interests of verifying th
independence.

Our principal objective here is to generalize the basic p
jective formalism of Eqs.~1!–~6! in a consistent manner ove
the extendedgG generator source. For every packet locati
along the angularly extendedgG source packets, we mus
project a contribution to the distribution of emission pack
in $gE% through all possible anglesu5kd. The operation is
conducted inK(u) as shown in Fig. 3. The projection ang
u50 (k50) imposes the boundary condition that$gE% be
identically zero outside the arc ofgG packets whereu
.p/2 since gG is itself zero in this range. Zero angula
momentum for all correlated pairs could not be satisfied
$gE% were to exceed this boundary condition.~This condition
results in transmission of any$gE% member always being
accompanied by transmission ofgG when the respective ana
lyzers have identical orientations, i.e.,Q50.!

In the interests of presenting a lucid and explicit deriv
tion of local reality, we shall first consider an approximati
of correlated photon structure in a suitably finite dimensio
Hilbert space before proceeding to the exact solutions in
infinite dimensional Hilbert space. This approximation

FIG. 3. Correlated photon pair planar wave packets forgG and
for ensemble members~rows! of $gE%. Alternatively, substituting
quantities in parentheses gives correlated particle pair spin w
packets forpG and ensemble members~rows! of $pE%.
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lows us to individually enumerate all of the relevant pro
ability outcomes. In this regard, we diverge from the co
tinuum limit of d→0 and initially examine a coarsed
530° example.

The choice ofd530° temporarily places us in a six
dimensional Hilbert space since the basis vectors must s
an arc ofp. As d→0, the dimensionality of the requisit
Hilbert space remains finite at some 2N5p/d. Ultimately,
when we impose the limitd→0 on the locally real represen
tation, the dimensionality of the Hilbert space becomes in
nite in contrast to the corresponding two-dimensionality
polarization representation in quantum mechanics.

To remind us that we are initially considering the coars
finite d530° example, angular values are expressed in
grees instead of radians. Withd530°, three basis vectors in
Hilbert space,uu1&, uu2&, and uu3&, span a full complemen
arc as depicted in Fig. 4. We have the three projections

uf1&5c1uu1&, ~19!

uf2&5c1uu1&1c2uu2&, ~20!

and

uf3&5c1uu1&1c2uu2&1c3uu3&. ~21!

The quantityuf1& is the projection of some correlated ph
ton superposition stateufE& in the Hilbert subspaceuu1&.
Similarly, uf2& and uf3& are the projections ofufE& in the
Hilbert subspacesuu1&,uu2& and uu1&,uu2&,uu3&, respectively.
Note that, because of the multiple generator packets con
uting to uf2& and uf3&, these vectors are expected to
rotated in Hilbert space away from theuui&.

For the present set of projections, only in the case ofuf1&
is there a one to one correspondence between a state v
and the basis vector from which it is constructed. This re
tionship exists becauseuf1& arises from a projection of a
single generator packet as shown in Fig. 4. Recall that
was the case for every one of theuf j& constituent state vec
tors of theufe& analyzer emission superposition state sin
all projections arose from the single generator photongg .

However, the remaining Eqs.~20! and ~21! state vectors
are each composed of a mixture of projections from multi
generator packets, two foruf2& and three foruf3&. Because
of this mixing and because the final state vectoruf3& is con-
structed over a set of basis vectorsuu1&, uu2&, anduu3& that
constitute a full complement of packets, we identify the c
related photon superposition state

ufE&5uf3&5(
j 51

3

cj uuj&. ~22!

As a consequence of the mixing, thecj coefficients must
be extracted from the simultaneous set of Eqs.~19!–~21!. We
can solve for these values by observing that, as in Eq.~3! for
analyzer emission, packet projection from a single gener
site throughkd in Hilbert space yields a projected state ve
tor with norm ifki5cos(kd). From Fig. 4, uf1& is con-
structed from the 60° projection of the generator packe

ve
2-9
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STUART MIRELL PHYSICAL REVIEW A 65 032102
uu3&. Similar constructions apply touf2& and touf3& except
that these states are formed from multiple projection con
butions. The state vectoruf2& is constructed from the 30°
projections of generator packets atuu2& anduu3&, anduf3& is
constructed from the 0° projections of generator packet
uu1&, uu2&, anduu3&. Then

if1i5^f1uf1&
1/25~c1

2!1/25cos 60°5
1

2
, ~23!

if2i5^f2uf2&
1/25~c1

21c2
2!1/25cos 30°5

A3

2
, ~24!

and

if3i5^f3uf3&
1/25~c1

21c2
21c3

2!1/25cos 0°51. ~25!

We have from Eqs.~23!–~25!

c15c35
1

2
, c25

1

A2
. ~26!

The resultant correlated photon superposition state is

ufE&5uf3&5
1

2
uu1&1

1

A2
uu2&1

1

2
uu3&. ~27!

The coefficients are the amplitudes ofuf j& ~or equivalently
of ufE&) along theuuj&. That is,

^u1uf1&5^u1ufE&5cos 60°, ~28!

^u2uf2&5^u2ufE&5cos 45°, ~29!

and

^u3uf3&5^u3ufE&5cos 60°. ~30!

FIG. 4. Correlated photon example ford530° of ensemble pla-
nar wave packet projection computation. Joint transmission is
3/4, 1/4, and 0/4 when analyzers are relatively rotated
0°, 30°, 60°, and 90°, respectively.
03210
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We see thatufE& in Hilbert space is rotated 60° from
uu1&, 45° from uu2&, and 60° fromuu3&, which is whyufE&
has nonzero amplitudes along each of theuuj&.

In order to determine the relative proportion of ensem
packets at theuuj&, we need to calculate the squared amp
tudes^uj ufE&2. We have

^u1ufE&25^u3ufE&25
1

4
, ^u2ufE&25

1

2
. ~31!

For the particular example ofd530°, the Eq.~31! values
express the relative probabilities of correlated photon
semble packets at eachuui& as depicted in Fig. 4. As previ
ously observed, the ensemble packet probability is imme
ately equivalent to the ensemble packet distribution
photons. We can then readily determine the requisite pa
configurations of ensemble members from the Fig. 4 pac
distribution. The lower packet row of$gE% is identified as a
full complement ensemble membergE1. Symmetry about the
bisector axis of that member and thegG provides the requi-
site zero net angular momentum for thegE1 ,gG pair. The
remaining single packet in the upper row of$gE% is neces-
sarily identified as the other ensemble membergE2. Symme-
try still preserves the requisite zero net angular momen
for the gE2 ,gG pair. We see that the single packetgE2, with
a total arc spanDg530° instead of the full complemen
Dg590°, is a natural and necessary outcome of the ensem
construction in Hilbert space.

Despite the coarseness ofd530°, this example proves to
be nontrivially informative, and it is instructive to examin
the predicted measurement outcomes before proceedin
the limit of d→0. We can readily enumerate all of the join
transmission probabilitiesPg(kd) by inspection of the
packet ensemble distribution in Fig. 4 when the opposed a
lyzers have the relative angular separations ofQ
50°, 30°, 60°, and 90°. We begin withPg(0°) which is a
summation of the 0° samplings in Fig. 4, i.e., both analyz
intersectgG and$gE% at the sameuui&. We have

Pg~0°!5
1

12
~112111330!. ~32!

The 1/12 factor is the requisite normalization for the to
number of samplings. These include the three samplings
sociated withuu1&, uu2&, and uu3& which intersectgG and
$gE%. Additionally, we must include the three additional sam
plings atuu4&, uu5&, and uu6& for which neithergG or $gE%
are intersected. These six samplings must be doubled t
because there are two ensemble members. The first t
terms in the factor in parentheses give the summation of
ensemble packets atuu1&, uu2&, and uu3& for which a gG
packet is correspondingly always intersected. The 330 term
reflects the noninterception of bothgG and $gE% for
uu4&, uu5&, anduu6&.

Similarly, Pg(30°) is computed from the 30° offset o
analyzer orientations as shown in Fig. 4 and we have

Pg~30°!5
1

12
~1121430!. ~33!

4,
y
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
Since we are computing joint transmission, the zeros in
rentheses include sampling nonintersection with bothgG and
$gE% as well as nonintersection with eithergG or $gE%. By
the same process we have

Pg~60°!5
1

12
~11530!, Pg~90°!5

1

12
~630!.

~34!

All of these joint transmission probabilities can be compac
expressed in terms of the squared Eq.~31! amplitudes, giving

Pg~kd!5
4

12 (
i 51

32k

^ui ufE&25
1

2 S 2

3D (
i 51

32k

ci
25

1

2 S 2

3D cos2~kd!.

~35!

We recognize that the extracted1
2 factor in Eq.~35! arises

from the gG occupying half of the complete set of Hilbe
space unit vectorsuu1&, . . . ,uu6&. The extracted2

3 factor is
defined as thefractional occupancy Fg of packets in the
uu1&,uu2&,uu3& subspace of the ensemble distribution, Fig.
This fractional occupancy arises naturally from the constr
tion of the correlated photon superposition stateufE& and has
profound implications with regard to the applicability o
Bell’s theorem@4,25#. Because of this fractional packet o
cupancy, agG transmission is accompanied by agE trans-
mission only two-thirds of the time when the analyzers
aligned (k50). Equivalently, the average arc span of an e
semble member is

^Dg&5Fg90°5
1
2 ~90°130°!

90°
90°560°, ~36!

which is two-thirds of a full complementDg590°. However,
because of the coarseness of thed530° example, the two-
thirds fractional occupancy of the ensemble packet distri
tion converges to a modified value asd→0. We shall reex-
amine the significance of the fractional packet occupa
factor Fg after taking this limit.

Finally, before leaving thed530° example, we observ
that the normalized ensemble packet distribution can be
ted to a sin(2u) function at the five indicated points shown
Fig. 4.

As d→0, the number of Hilbert space orthonormal ba
vectors spanning aDg5p/2 full complement arc increase
from the present three~for d530°) to someN5p/(2d).
The Hilbert space increases from six dimensional to 2N di-
mensional. The construction ofuf1& throughufN& proceeds
as before, yielding a set ofN readily solvable simultaneou
equations in diagonal form analogous to Eqs.~23!–~25!.
Equation~35! becomes

Pg~kd!5
1

2
Fg (

i 51

N2k

^ui ufE&25
1

2
Fg cos2~kd!, ~37!

giving the joint transmission probabilities for any integ
value ofk5Q/d. The exact value ofFg can be determined
from Eq. ~37! for sufficiently largeN. However, we shall
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obtainFg below after converting the summation to an int
gral equation as we reach the limitd→0.

The integral form of Eq.~37! is

Pg~Q!5
1

2
FgE

0

p/22Q

Eg~u!du5
1

2
Fg cos2 Q, ~38!

for which the ensemble packet distribution is given by t
function Eg(u). The solution of this integral equation i
Eg(u)5sin 2u, and we can now identify this solution with
the packet ensemble envelope of$gE% depicted in Fig. 3. The
packet occupancy fraction is

Fg5

E
0

p/2

sin~2u!du

E
0

p/2

du

5
2

p
~39!

and demonstrates that the packet occupation fractionFg di-
minishes from 2/3 ford530° to 2/p for d→0.

Then the joint transmission probability in the limitd→0
is

Pg~Q!5
1

p
cos2 Q. ~40!

At this point, we apply ap/4 rotational translation ofu
50 in K(u) thereby aligning the bisector~orientation! of gG
with the defined axisx noted in Fig. 3. Under this translation
the envelope of ensemble packetsEg(u)5cos 2u and thegG
packets are symmetrized aboutx without alteringPg(Q).

We can now proceed with the construction of the emiss
ensemble members$gE% from the Fig. 3 distribution of en-
semble packets. This process is a trivial extension of thd
530° example. Zero net angular momentum for allgG ,gE
correlated pairs and packet contiguity require identificat
of the Fig. 3 packet rows as the constituent$gE% members.
These $gE% members have a continuous spectrum of
spans ranging from zero top/2. The packet occupation frac
tion gives an average ensemble member arc span of

^Dg&5Fg

p

2
51. ~41!

For any particular correlated photon pair, thegE is a ran-
dom member~row! of the emission ensemble$gE%. The gE
and its associatedgG share an orientationug that is random
in the laboratory frame and is identically zero inK.

In order to calculate the predicted ‘‘joint probability
`g(Q) for detectors placed beyond each of the analyzers
need to derive expressions for the coincidence ratesR(Q)
with analyzers~relatively rotated byQ) andR0 without ana-
lyzers. We have

R~Q!5RTf Pg~Q!h2 ~42!

whereRT is the true production rate of correlated photo
from the source andf is the fractional angular acceptanc
cone of the opposed analyzer-detector sets. The joint tr
2-11
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STUART MIRELL PHYSICAL REVIEW A 65 032102
mission probabilityPg(Q) is given in Eq.~40! andh is the
detector efficiency for the analyzer transmitted photons. C
respondingly, without analyzers, the coincidence rate is

R05RTf h^hE&. ~43!

The notable feature of this expression is the efficiency^hE&
associated with the detector intersecting an emission
semble member. The other detector intercepts the
complementgG for which detection efficiency ish.

This photon-specific dependence of detection efficienc
related to the relative interaction cross section of the pho
which is a function of itsDg arc span. As the photon propa
gates through a detector, the wave frequency mediates
rate at which the excitation migrates to random points alo
Dg . Accordingly, as the wave progresses a short distanc
the detector, the excitation rapidly reaches the entirety of
Dg arc span.~At optical frequencies, the requisite distance
on the order of several micrometers.! Moreover, this distance
is further diminished as the phase velocity exceeds the gr
velocity since the latter gives the average excitation velo
along the propagation axis.

Consequently, the effective cross section of interact
presented to the detector for a given photon is proportion
to that photon’s packet arc spanDg . Over the range that a
detector exhibits aDg-proportionate efficiency, the detector
response is defined as having the property oflinearity. From
the averagedDg values of the$gE% ensemble members, th
detection efficiency

^hE&5Fgh5
2

p
h. ~44!

The quantity ^hE& did not arise inR(Q) because the
transmission ofgE through the analyzer is accompanied
the associated packets condensing along polarization a
The history of the incidentgE arc span is erased in the pro
cess of transmission. The emergent photon is a full com
ment member of an analyzer emission ensemble$ge% and
consequently is detected with an efficiencyh. The detection
efficiency of thegE photons is naturally ‘‘enhanced’’ in the
process of transmission through an analyzer. It may
readily appreciated that these results are independent o
amplitude coefficientbg . This independence is consiste
with the analyzer interaction phenomenon we conside
earlier.

The ratio of the Eqs.~42! and~43! coincidence rates give
the expression for the ‘‘joint probability’’

`g~Q!5
R~Q!

R0
5

RTf Pg~Q!h2

RTf h^hE&
5

1

2
cos2 Q. ~45!

We then have agreement between the locally real repre
tation and quantum mechanics. This outcome clearly
pends upon the linearity of the detector’s efficiency with
spect to the intercepted photon’s arc span as expressed i
~44!. The property of linearity is compatible with ‘‘low effi-
ciency’’ detectors. Nevertheless, the range of linearity
bounded and detectors beyond that boundary are predict
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yield a joint probability different from that of Eq.~45!. This
predicted difference was considered earlier@24#.

More specifically, the locally real representation predi
that the Eq.~45! result is necessarily violated only whe
^hE&.2/p ~63.7%! since linearity would requireh.1 for
full complement photons. Equivalently, the detector e
ciency must exceed the efficiency

^hm&5
1

2 S 2

p
11D'81.8% ~46!

for an equal population mixture ofgE’s and full complement
gG’s. Equation~46! demonstrates that the locally real repr
sentation presented here is testable with respect to quan
mechanics.

If linearity is maintained up to the maximum limit o
^hE&, then the predicted difference must manifest itself a
convergence of the 1/2 coefficient in Eq.~45! to 1/p as^hE&
progresses from 2/p to 1 while h remains at 1.

However, it should be stressed that the Eq.~45! result,
which is in agreement with quantum mechanics, rema
consistent even with presently available detectors commo
regarded as ‘‘high efficiency.’’ For example, a detector with
90% efficiency for full complement photons would, by lin
earity, be expected to exhibit an average (2/p)90%
'57.3% efficiency for the$gE% ensemble members and
with ^hm&'73.6%, the Eq.~46! condition is not exceeded.

III. LOCALLY REAL PARTICLE STATES

A. Introduction to particle states

We consider here the construction of locally real parti
states in analogy to those of photons. We will examine spi1

2

particles, but our results are readily extendable to particle
different spin composition.

The construction begins in the rest frame of a parti
with the fundamental entity of aspin packetdefined on the
vacuum field of oscillators in random ground state motion
spin packet is characterized by rotational coherence
ground state oscillator motion in a plane about some sp
fied point as depicted in Fig. 5~a!. That point can be selecte
as the origin of a coordinate frame. A bivectors, extending
from the origin and normal to the rotational plane, specifi
the orientation and sense of rotation of the spin packet.
intersection of the particular bivectors on the unit sphere
designates an infinitesimal conic intersection area or, equ
lently, a solid anglead . The planar infinitesimal angular ar
d of ad is of particular utility and, in relation to the spin
packet, is functionally analogous to thed quantity for a pla-
nar wave packet with respect to the construction of part
states.

The set of all variously oriented spin packets at a comm
point map their associatedad to cover a zone on the uni
sphere and collectively define aspin structure. ~The zones
we shall be considering are defined as the spherical sur
between a plane transecting the unit sphere and a par
plane tangent to the sphere. The point of tangency defines
pole of the zone. The orientation of this pole is a critic
specification.! The phase of the rotational coherence is t
2-12
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
same on all spin packets of a particular spin structure.
specification of a particular spin structure includes the as
ciated zone’s total planar arcDp and the zone’s pole orien
tation up ,wp in spherical coordinates. These three quantit
arefield variablesof a particle. For afull complementspin 1

2

particle, the solid angle of the spin structure’s zone is 2p,
giving a planar arcDp5p.

We shall have frequent occasion to consider here parti
emitted from asourcesuch as a Stern-Gerlach analyzer. As
particle is emitted, the spin structure is replicated along
propagation axis as shown schematically in Fig. 5~b!. These
spin structures are all identical with respect to a particu
particle’s fixed values of theDp ,up ,wp field variables. How-
ever, the phase of the spin structures varies along the pr
gation axis chosen here asx. An amplitude coefficientbp
constitutes an additional field variable that scales the am
tude of the physically realized spin structures. Additiona
there is typically a dispersion of values for canonically co
jugate variables such asx andpx ~the momentum componen
on x). Superposition over this dispersion for constitue
waves yields a relative density of coherently moving osci

FIG. 5. Schematic representation of spin1
2 particle. For a con-

stituent ~a! spin structure, a rotational oscillator coherence at
origin constitutes a spin wave packet characterized by a bive
intersecting the unit sphere over somead solid angle. Only a single
typical spin wave packet is depicted. The set of all spin wave pa
ets covers a spherical zone of planar arc spanDp that defines the
spin structure. A particle propagating along an axis~x! consists of
~b! a sequence of spin structures with fixed orientation but vary
in rotational phase and coherent oscillator density~collectively
scaled by an amplitude coefficientbp).
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tors on the individual spin structures that varies as a func
of x. These variations in the spin structures alongx are given
by the configuration space wave functionC(x,t) on t>0
associated with the standard quantum formalism~but not
with its probabilistic interpretation!.

We then identifyC as the descriptor of relative phase o
these spin structures as a function ofx. The envelopeC* C
provides a measure of the density of coherently moving
cillators on particular spin structures again as a function ox.
The density over the entire envelope is scaled by a facto
bp

2 .
The set of these spin structures constitutes the total w

structure of a particular particle. In the locally real represe
tation, we are reminded that, for a particular particle, t
field variablesDp ,up ,wp as well asbp are some fixed values
the instant emission occurs and functionallyC t>0

5C(x,t;Dp ,up ,wp ,bp). This total wave structure togethe
with an excitation state, instantaneously residing on one
the spin packets located on one of the spin structures, sp
fies that particular particle. The excitation migrates on
coherently moving oscillators of this wave structure with
relative probability along the set of spin structures given
C* C and a random probability on any particular spin pac
of the spin structure on which it instantaneously resides.
with photons, both of these probabilities as well as analy
transmission probabilities are independent of the amplit
coefficientbp . The primary benefit derived from considerin
bp in the present context of single channel analyzers is o
to emphasize that the wave structure of a particle is a
scalable entity.

We have then a general physical representation of the
ticle that is closely analogous to that of the photon. Measu
ments of canonically conjugate variables such asx andpx on
a large number of similarly generated particles effectiv
sample the instantaneous values of those variables assu
by the excitation on those particles. The collective set
such measurements can, for example, reconstruct the e
lope ofC* (x,t)C(x,t) in configuration space since this en
velope is essentially identical for all of the similarly gene
ated particles aside from the scale factor introduced bybp

2 .
That scale factor does not alter the relative probabilities
the excitation on a particle’s wave structure.

As with photons, the relationship ofDx and Dpx uncer-
tainties obtained from a collective set of measurements
the canonically conjugatex and px variables is a conse
quence of the classical uncertainty associated with
waves in their composition from harmonic waves expres
in dispersions of those variables.

The specification of a particular emitted particle’s sp
however, is given by fixed values of the field variabl
Dp ,up ,wp . We shall demonstrate the spin measurement o
come for particles as a function of these variables in cl
analogy to photon polarization measurement, but our
mary task will be to derive the formalism that assigns t
fixed values of these field variables to the emitted partic
This derivation for particles follows consistently from that
photons.
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STUART MIRELL PHYSICAL REVIEW A 65 032102
The formalism we seek generates a wave functionc at
the emission source fort,0. An ensemble of particles hav
ing the proper frequency distribution of the allowableDp and
up values is specified byc ~and the spherical coordinat
anglewp assumes a random value on@0,2p# in our present
representation!. In a stochastic process att50, a random
ensemble member described byC(x,t;Dp ,up ,wp) is emitted
with fixed Dp andup ,wp values.

The emitted particle also has some particular value
amplitude coefficientbp . However, as withbg for photons,
the value ofbp is not directly related to the process of co
structing ensemble states which is our principal objective
further analogy with photon states, the excitation probabi
on the particle’s wave structure and the particle’s transm
sion probability through an analyzer are both independen
bp . The primary remaining benefits derived from consid
ing bp in the present context of single channel analyzers
only to further emphasize that the wave structure of a part
is a real scalable entity and to gain some measure of phy
insight into particle structure and analyzer interaction. Sin
the close analogs to these subjects have both been exp
in our treatment of photon states, we will forego here a
similar extensive examination forbp .

B. Analyzer emission of particles

The Stern-Gerlach analyzer for spin1
2 fermions is a two-

channel analyzer. The present treatment of analyzer emis
and correlated particles requires only consideration of sin
channel transmission with the other channel blocked. As w
our treatment of photon analyzer emission and correla
photons, we defer a more detailed consideration of~spin!
packet transmission in analyzers with both channels ope
a subsequent treatment that provides a locally real repre
tation of quantum mechanical spatially separated superp
tion states.

We begin with a randomly oriented full complement pa
ticle incident on an analyzer with a single open channel.
random choices of the fixed azimuthalup values, there are12
probabilities thatup,p/2 and thatup.p/2. If we select the
analyzer’s open channel axis to be along its positive m
netic field 1B51z, there is a1

2 probability that the parti-
cle’s spin packet structure will intersect1z. When this in-
tersection occurs, spin packets from this structure and
excitation condense to the1z axis ~in d-form analogous to
that of photons! and propagate through the analyzer.

Conversely, there is a12 probability that the spin packe
structure will intercept the analyzer’s2z axis. In this case
the excitation is absorbed as it proceeds along the bloc
channel while residing on the spin packets condensed
2z and no detectable particle emerges.~Nevertheless, spin
packets still condense along the1z axis and an ‘‘empty
wave’’ ensemble member is emitted by the open channe!

For the transmission case, we designate thed-form par-
ticle propagating in the analyzer as thegenerator particle
pg . As pg emerges from the analyzer, itsd-form spin packet
along 1z @associated with the basis vectoruv0& in a 2N
(52p/d) dimensional Hilbert space# generates a set of en
semble emission state vectors
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uck&5cosS kd

2 D uvk&. ~47!

The set ofuvk& are orthonormal basis vectors associated,
spectively, withu5kd for integer values ofk where ukdu
<p. The half-angle cosine factor in Eq.~47! gives the ap-
propriate coefficient for the rotational projection of a bive
tor quantity such as the spin packet.~The associated Hilber
space becomes infinite dimensional when we ultimately t
the limit d→0.!

The amplitude of a projection state vectoruck& is

^vkuck&5cosS kd

2 D ~48!

and is equivalent to the norm ofuck&,

icki5^ckuck&
1/25cosS kd

2 D . ~49!

The probability of an ensemble spin packet atuvk& is given
by the squared amplitude

^vkuck&
25cos2S kd

2 D . ~50!

Through the projective process, the right side of Fig. 2~i.e.,
u>0) is the azimuthal spin packet probability in any pla
inclusive of the magnetic field axis1B51z upon applying
the alternative quantities in parentheses in the figure. T
plane can be chosen asxz without loss of generality. In
spherical coordinates, the azimuthal dependence can be
fined entirely on the positive value range@0,p#. However, in
the present case we can reflect the spin packet probab
about the1z axis. From this reflection, we obtain an una
tered cos2(u/2) spin packet probability in thexz plane where
u, now as a polar coordinate aboutz, can assume positive
and negative values in close analogy to the role ofu in the
photon’s planar wave packet probability. Figure 2 is th
dually applicable to photon analyzer emission processes
upon applying the alternative quantities, to particle analy
emission processes.

Similarly, we can also invert theu,0 contour without
altering the spin packet probability in thexz plane. The par-
ticle’s spin packet probability contour with this modificatio
is, likewise, closely analogous to the photon’s planar wa
packet probability following a comparable inversion.

There is, nevertheless, a significant distinction betwe
the packet probabilities of photons and of particles. The co
plete set of the photon ensemble planar packets assoc
with polarization analyzer emission lie entirely in the pla
orthogonal to the propagation axis. Accordingly, Fig. 2 a
plied to photon analyzer emission, in addition to giving t
angular packet probability, also represents the angular di
bution of the entire set of planar packets. Additionally, b
cause a complete set is given, the planar packet compos
of the $ge% members as the rows of the Fig. 2 modifie
contour is immediately identifiable.
2-14
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
Conversely, while the Fig. 2 modified contour is also t
spin packet probability in anyazimuthal plane~i.e., a plane
inclusive of 1z), the actual distribution of spin packets
three dimensional and must be discerned from the proba
ties. Accordingly, the spin packet rows each correlate resp
tively with the packet probability of full complement (Dp
5p) ensemble memberspe of $pe%. However, theorienta-
tion of each row is the consequence of rotational averag
of a particularpe about z ~through w), where we are re-
minded that the orientation of a row is equivalent to theup
bisector angle at the row’s center. Thepe orientation prior to
rotation is not typically the same as its probability orientati
in Fig. 2.

The transformation from a presently unknown distributi
of ensemble members to the Fig. 2 probability of ensem
members may be derived from an examination of a sin
arbitrary$pe% member at some fixed orientationup . We can
choose the prerotation plane of thatpe to bexz without loss
of generality. Then the zone ofpe is shown in cross section
in Fig. 6~a! and the packets of this zone intersected by thexz
plane are depicted in Fig. 6~b! as a function ofu.

In order to obtain the associated packet probability,pe
must be rotated aboutz from its present orientationw5p to
w53p/2 while keepingup fixed. Thepe packets intersected
by thexz plane averaged over this rotation give us the pac
probability of some specific row in the Fig. 2 modified co
tour. The transformation, computed for this arbitrarype , al-
lows us to map from the$pe% with all members oriented in
xz to the ~postrotation! packet probabilities of Fig. 2. Note
that symmetry allows us to confine the rotation to thew
5@p,3p/2# quadrant of thexy plane. Thew5@p/2,p# quad-
rant gives a redundant result. Alternatively, if we had
lected instead aup.0, a rotation in thew5@0,p/2# quadrant
would have sufficed.

For calculational purposes, we will leave our arbitrarype
oriented in thexz plane as in Fig. 6~a! and, instead, perform
the requisite rotational averaging by sweeping the vector
along the base surface ofpe from an azimuthal angle ofuA at
w50 ~in the xz plane! to w5p/2 along the1y axis where
the azimuthal angle ofr increases top/2 as shown in Fig.
6~c!. Clearly, the averaged azimuthal value ofr over this
rotation is some angle intermediate betweenuA and p/2.
This value is equivalent to the maximal azimuthal extentuB
of one of the packet probability rows in the upper half of F
2.

Then, qualitatively, the Fig. 6~a! pe(uA) ensemble mem-
ber, with its initial Fig. 6~b! row of xz packets, is displaced
~transformed! to the right touB after rotational averaging a
indicated in the figure.

We now turn to a quantitative determination of theuA
→uB transformation. The base ofpe(uA) in Fig. 6~a! along
which r is swept is the planex/z5tanuA as defined in Fig.
6~c!. After rotation ofr through somew, we have

tanuC5
z

L
5

x

L tanuA
5

cosw

tanuA
. ~51!

The complementary angleuB5p/22uC represents the
maximal azimuthal extent ofpe(uA) at w. From Eq.~51!
03210
li-
c-

g

le
le

t

-

.

uB~uA ,w!5tan21S tanuA

cosw D ~52!

and the probability ofuB over the entire rotationw5kDw is

^uB&5
2

p (
k50

p/(2Dw)

uB~uA ,kDw!Dw

5
2

pE0

p/2

uB~uA ,w!dw

52 cos21A12
uA

p
. ~53!

We recognizê uB& as the maximal extent inu of the en-
semble member packet probability rows in the upper half of
Fig. 2. The inverse of Eq.~53!,

uA5p sin2 ^uB&
2

, ~54!

gives us a transformation that can be applied to these prob-
ability rows to obtain the corresponding~prerotation! maxi-
mal u extent of the ensemble members oriented in thexz
plane. Symmetry considerations permit application of this
transformation to the entire Fig. 2 modified contour, i.e., the

FIG. 6. Spin structure orientation of typical particle ensemble
member~analyzer emission! prior to rotational averaging~a! as a
zone inxz plane and~b! in corresponding polar angle representation
showinguA→^uB& postaveraging translation. To rotationally aver-
age the typical spin structure,~c! sweepr along zone ‘‘base’’ from
xz plane toyz plane.
2-15
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STUART MIRELL PHYSICAL REVIEW A 65 032102
completeu extent of the members. The cross-sectional d
tribution of the $pe% ensemble members oriented in thexz
plane is shown in Fig. 7~a! as a function ofu. We readily
identify the underlying ensemble members as a set of s
structures linearly distributed inu by the Eq.~53! transfor-
mation.

As a consequence of our conversion from azimuthalu to
polaru, we see that in the final construction of the ensem
members, the upper and lower sets of rows in Fig. 7~a! are
mutually redundant. Either set, upon rotational averag
over a fullw52p, generates an azimuthal~not a polar! angle
probability of packets in agreement with the azimuthal pro
ability shown in Fig. 2 foru.0.

Then, an elegantly simple ensemble consisting of a se
full complement particles with orientations linearly distri
uted in azimuthalu over @0,p/2# is associated with emissio
from a Stern-Gerlach analyzer with a single open chan
@see Fig. 7~b!#. The members are also randomly distribut
in w over @0,2p#, but this aspect is not depicted in Fig. 7~b!.

For analyzer emission of particles, the laboratory fra
angleQ with respect to the1z51B axis of the analyzer is
identical tou used in the construction of the ensemble. Sim
larly, the analyzer’s angular orientation in thexy plane of the
laboratory frame isF5w. Given these equivalences, we c
substituteQ,F for u,w. The rationale for this substitution i
realized when we treat correlated particles for whichu andw
assume the role of integration variables.

A subsequent Stern-Gerlach analyzerA8 rotated fromA
by some azimuthalQ then serves as an analyzer of theA
output. From the construction of the ensemble, we obta
cos2(Q/2) probability of transmittingA emission ensemble
members throughA8 in agreement with the probabilistic in
terpretation of quantum mechanics.

However, in the locally real representation, particles em

FIG. 7. Analyzer emission ensemble spin packet distribut
showing linearu dependence of member orientations~a! in a polar
representation, including postaveraging probability envelo
~dashed line! and ~b! as a set of zones in thexz plane.
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ted from analyzerA are not probabilistic binary quantum
objects with spin up or spin down but are, instead, real e
ties stochastically selected from$pe%. An arbitrary ensemble
memberpe has a full complement spin structure with a ra
dom orientation overQ5@0,p/2# and F5@0,2p# of some
Qp ,Fp (5up ,wp). At the instantt50 that particlepe is
emitted fromA, the outcome is fully determined for trans
mission through a subsequent Stern-Gerlach analyzerA8, ro-
tated azimuthally byQ at someF with respect toA. As with
photons, the outcome is independent of the amplitude c
ficient.

C. Correlated particles

In our investigation of correlated particles, we conside
process in which a pair of emitted spin1

2 particles carry a net
angular momentum of zero. The spin states of these parti
are then expected to be opposite.

In analogy to analyzer emission of particles and to pho
states, a correlated particle pair is identified as an indep
dent generator particlepG and a dependent emission partic
pE . As in the construction of correlated photon states,pE is
a member of an ensemble$pE%.

Also in further close analogy to photons, the genera
particlepg in analyzer emission is physically constrained to
d-form within the analyzer along the transmission chan
axis whereas no such constraint is present for the correl
generator particlepG which is created as a full complemen
particle with Dp5p. This full complementpG , unlike the
d-form pg , presents an angularly extended generator sou
contributing to the construction of$pE% spin packets as
shown in the Fig. 3 cross-sectional depiction upon apply
the alternative quantities in parentheses.

Furthermore, within the closed system of anypG ,pE pair
emitted in free space, the orientation of the pair is random
the laboratory frame as defined by the pole of, e.g.,pG . As
in the case of correlated photons, we find that it is exped
to transform to the particle reference frameK in which pG
has a fixed orientation. Initially, for the convenience of co
puting projections, we choose to align the spin packet
spanDp of pG with the angleu in K spanning 0 top as
shown in Fig. 3.~Later, we will rotationally translateu as we
previously did for correlated photons.!

The correlated particle source is situated between oppo
Stern-Gerlach analyzersA1 andA2 that have their respective
magnetic fieldB1 andB2 vector axes relatively rotated byQ.
Aside from this relative angular displacement, the vectorsB1
and B2 assume random orientations inK for any particular
pair of correlated particles.

Then, Fig. 3 is the probability of spin packets ford→0 in
an arbitrary plane inK, such asxz with u presently refer-
enced to1x, and the rows define the ensemble memb
transecting that plane. The functional form of the probabil
envelope is yet to be determined. We must also ascertain
full three-dimensional probability and distribution of the e
semble members and then calculate the Stern-Gerlach
lyzer joint transmission probability over the ensemble bef
finally calculating the joint~detection! probability.

n

e
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Symmetry properties of the correlatedpG and$pE% mem-
bers arising from zero net angular momentum require
the xz spin packet probability be maintained upon rotati
about 1z. Accordingly, rotation of the Fig. 3 probability
immediately gives the full three-dimensional probability
the ensemble members as a set of coaxial zones orient
1z. Moreover, rotational symmetry imposes equivalence
spin packet probability with spin packet distribution f
$pE%. We saw that this equivalence was not applicable
$pe%.

However, before proceeding with the calculation of t
ensemble state vector for this set where we have an infi
dimensional Hilbert space, we temporarily revert to a coa
d example in order to demonstrate calculation of the
semble state vector with a finitely countable number of s
packets as we did for correlated photon states. We shall
express angular quantities in degrees as a reminder tha
are examining this coarsed example.

In the particle reference frameK we choosed560°,
which gives three angular increments for a full complem
particle in analogy to the choice ofd530° for photons. The
corresponding Hilbert space is six dimensional in spann
360°. For the emission ensemble we have an orthonorma
of basis vectorsuv1&, uv2&, and uv3& in Hilbert space that
can be respectively associated with the orientati
130°, 190°, and1150° in a plane that we can choose
xz without loss of generality. The orientations are defined
polar angles measured from the1x axis.

The respective basis vectors atuv4&, uv5&, and uv6& are
associated with thepG spin packets at the supplementa
angles 1210°, 1270°, and 1330°. The generator spin
packet bivector atuv6& is physically antiparallel to an emis
sion spin packet bivector atuv3&. Effectively, uv6& contrib-
utes a zero angle projection (k50) to the emission ensembl
at uv3&. Similarly, the uv6& contribution to the emission en
semble atuv2& is treated as a 60° projection (k51).

More generally, the projection angle from the basis vec
of the generator packet to a particular basis vector of
emission ensemble is computed from the supplemen
angle of the generator packet basis vector. As a result,
ticle projections@Fig. 8~a!# are computed in close analogy
photon projections~Fig. 4!. ~In the latter case, transformatio
to a supplementary angle basis vector in computing pro
tions was not essential with regard to the calculational f
malism because of the bidirectionality of the planar wa
packets but would, nevertheless, have been appropriate
the physical perspective of thep phase differential betwee
gG andgE .)

Then, projecting thepG generator spin packets throug
kd, k53, 2, and 1 in Hilbert space, yields subspace p
jections of the emission particle ensemble state ve
uc1&, uc2&, anduc3&, respectively, whereuc1& is constructed
from the single 120° projection of the generator packet
uv6& to uv1&. Similarly, uc2& is the 60° projection of the
generator packets atuv5& and uv6& to uv1& and uv2&, respec-
tively, and uc3& is the 0° projection of the generator pack
at uv4&, uv5&, anduv6& to uv1&, uv2&, anduv3&, respectively.
These projections give
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uc1&5c1uv1&, ~55!

uc2&5c1uv1&1c2uv2&, ~56!

and

FIG. 8. Correlated particle example ford560° of ~a! ensemble
spin wave packet projection computation in an azimuthal plane,~b!
schematic three-dimensional representation of ensemble spin w
packets with six singly occupied circumferential sites and one d
bly occupied polar site, and~c! joint transmission probability cal-
culation giving 8/8, 6/8, 2/8, and 0/8 when analyzers are relativ
rotated by 0°, 60°, 120°, and 180°, respectively.
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STUART MIRELL PHYSICAL REVIEW A 65 032102
uc3&5c1uv1&1c2uv2&1c3uv3&. ~57!

The norms of these projections are

icki5^ckuck&
1/25cosS kd

2 D ~58!

as in analyzer emission, but theuck& are now constructed
over the extended generator states ofpG . Imposing Eq.~58!
on Eqs.~55!–~57! we have

ic1i5@c1
2#1/25cosS 120°

2 D5
1

2
, ~59!

ic2i5@c1
21c2

2#1/25cosS 60°

2 D5
A3

2
, ~60!

and

ic3i5@c1
21c2

21c3
2#1/25cosS 0°

2 D51, ~61!

which yield theuc1&, uc2&, anduc3& coefficients,

c15c35
1

2
, c25

1

A2
. ~62!

Since uc3& is a projection into a subspace spanning a f
complement set of basis vectors, it is equivalent to thecor-
related particle superposition state

ucE&5uc3&5
1

2
uv1&1

1

A2
uv2&1

1

2
uv3& ~63!

for the ensemble.
The squared amplitudes,

^v1uc&25^v3uc&25
1

4
, ^v2uc&25

1

2
~64!

specify the relative ensemble spin packet probabilities in
azimuthal plane as shown in Fig. 8~a!. An inspection of this
coarsed560° example demonstrates that the spin pac
probability is functionally consistent with sinu at the indi-
cated points following normalization. From related resu
for photons, we can readily verify that in the limit asd→0
the normalized set ofci

2 values,i 51 to N/d, is vanishingly
close to sinu.

Although we readily obtain cos2(kd/2) packet expecta

tions of 1,3
4 , 1

4 , and 0 withkd/250°, 30°, 60°, and 90°,
respectively, we must remember that Eq.~64! and Fig. 8~a!
represent packet probabilities in an arbitrary azimuthal pla
However, zero angular momentum of every correlated p
pG ,pE imposes rotational symmetry upon the full distrib
tion of packets. Accordingly, Fig. 8~a! is also the distribution
of spin packets in an arbitrary azimuthal plane and we
immediately construct a full three-dimensional distributi
of ensemble spin packets mapped onto a 2p hemispherical
surface as shown in Fig. 8~b!.
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At 1z in K, the central~pole! packet site is doubly occu
pied while the remaining six circumferential sites are sing
occupied. Symmetry withpG further facilitates identification
of the two ensemble members. One member consists of
full complement set of seven spin packets while the ot
member is the single additional spin packet at the1z pole.
Clearly, the circumferential distribution of six sites is not a
exact rotational symmetry about1z and the mapping itself
is not accomplished without some minor areal distortion
the ad . However, both of these concerns are attributable
the finiteness of the presentd560° example and are re
solved asd→0. The associated generator particlepG is rep-
resented by a full complement seven-site 2p hemispherical
zone oriented at2z in K.

We want to use this three-dimensional distribution
compute joint transmission probabilities when a correla
particle source is positioned between opposed Stern-Ger
analyzersA1 and A2. The respective magnetic field vecto
B1 andB2 of the analyzers are rotated byQ relative to each
other, but these vectors are otherwise random inK. We
choose spin up as the open channel ofA1 and spin down as
the open channel ofA2. In the present representation, th
probability for joint analyzer transmission is then equiv
lently the two-vector probability of intersecting a member
the $pE% distribution with B1 and intersecting the full
complementpG with 2B2. This determination can be greatl
simplified by symmetry properties. Since$pE% is rotationally
symmetric, we can azimuthally rotate the pole ofpG by Q
1p at any w and observe that the joint intersection of
single vector with$pE% members and a rotatedpG is equiva-
lent to the above two-vector probability problem@see Fig. 9#.

The single vector joint intersection is readily evaluated
the presentd560° example. WhenpG is rotated byQ1p
about $pE% where Q5kd50°, 60°, 120°, or 180°, the
joint overlap ofpG with $pE% is calculated in each case from
the transection of the$pE% spin packets by a plane. Tha
plane is identified as the base of thepG hemispherical zone
The $pE% transections for theseQ are depicted in Fig. 8~c!.

For Q50°, the joint overlap is all eight spin packets an
the joint transmission probability is

Pp~0°!5
1

28
~8!, ~65!

where the normalization factor 28 accounts for all of the s
packet sites that must be interrogated by the single vec
Since there are two ensemble members,$pE% represents 2
37 sites. However, there are an additional 237 sites that
must be included representing the 50% chance of the si
vector not intersecting$pE%. Similarly, we have

Pp~60°!5
1

28
~6!, Pp~120°!5

1

28
~2!,

Pp~180°!5
1

28
~0!. ~66!

These probabilities can be summarized and reorganized
2-18
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Pp~kd!5
8

28 (
i 51

32k

^v i uc&25
1

2 S 4

7D (
i 51

32k

ci
25

1

2 S 4

7D cos2S kd

2 D .

~67!

The origin of the extracted12 factor in Eq.~67! may be
identified as the probability of intersecting the 2p solid
angle ofpG at some random orientation~e.g., that of the axis
for a Stern-Gerlach channel!. The adjacent factor is the frac
tional occupancy of spin packets in$pE% designated asFp .
Since the probability of encountering a spin packet on$pE%
is unity at the polar site and12 for the six circumferential
sites, we haveFp5 1

7 (11 1
2 36)5 4

7 . The summation factor is
recognized as equivalent in form to the corresponding s
mation factor in Eq.~35! for photons but here, ford560°,
yields cos2(kd/2). This similarity originates with the con
struction of$pE% states from projections in azimuthal plan
in analogy to the construction of$gE% states from projections
in the plane orthogonal to the propagation axis. Then, des
the three-dimensionality of$pE%, probabilities in azimuthal
planes are functionally analogous to the probabilities ass
ated with$gE%. The functional analogs of these probabiliti
are related by au→u/2 change of variable. This is exempl
fied by the Fig. 8~a! $pE% probabilities which can be fitted to
a sinu function. We recall that the Fig. 4$gE% probabilities
can be fitted to sin(2u).

The functional aspect ofPp(kd) that is uniquely related
to the three-dimensionality of spin packet structure reside
Fp .

Upon proceeding toward the limitd→0, we have

Pp~kd!5
1

2
Fp (

i 51

N2k

^v i ucE&25
1

2
Fp cos2S kd

2 D ~68!

for arbitrarily large 2N52p/d in a 2N-dimensional Hilbert
space whereN basis vectors span a full complement sp
structure zone. Recognizing that the~exact! value of the spin
packet occupation fraction arises from the full thre
dimensional distribution of spin packets, we have left th
value unspecified for the moment asFp .

When we reach the limitd→0, the corresponding Hilber
space is infinite dimensional and the integral form of E
~68! in analogy to Eq.~38! is

FIG. 9. Calculational technique for determining correlated p
ticle joint transmission probability by rotatingpG zone throughQ
1p in K.
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Pp~Q!5
1

2
FpE

0

p2Q

Ep~u!du5
1

2
Fp cos2S Q

2 D , ~69!

whereEp(u) represents the spin packet probability. The s
lution to Eq. ~69! is Ep(u)5sinu and gives the functiona
form of the Fig. 3$pE% probability envelope.

We are reminded that projections for$pE% were computed
in an arbitrary azimuthal plane which was selected asxz. In
these projections,u was treated as the polar angle referenc
to 1x in K. This choice was convenient in computing th
sinu $pE% probability envelope. However, sinceu is merely
an integration variable, we are free to rotationally transl
u50 by p/2 to 1z. In an azimuthal plane we can treatu as
a polar coordinate about1z and spin packet probabilities ar
then functionally given byEp(u)5cosu. This cosu spin
packet probability is applicable to an arbitrary azimuth
plane, but because of zero angular momentum for all co
lated pairs, we have rotational symmetry about1z which
requires that cosu is equivalently also the spin packet distr
bution in any azimuthal plane.~This equivalence of spin
packet probability and distribution in azimuthal planes w
not applicable in particle analyzer emission.!

The construction of the members of the correlated part
emission ensemble$pE% is then trivially obtained from the
spin packet distribution in an azimuthal plane, unlike that
the analyzer emission ensemble$pe%. Zero net angular mo-
mentum for all pG ,pE correlated pairs requires rotation
symmetry about thepG orientation. This symmetry togethe
with the spin packet contiguity identifies the Fig. 3 sp
packet expectation rows as the ensemble members of$pE%
with each row representing the member’s spin packet dis
bution in any arbitrary azimuthal plane. The thre
dimensional distribution of the ensemble members cons
of coaxial zones about1z in K with respective planar arc
spansDp given by the Fig. 3 rows. The frequency distrib
tion or densityof ensemble members is given by cosu as a
function of u (<p/2). The$pE% members, with a continu-
ous spectrum ofDp values ranging from 0 top, have an
average ensemble member planar arc span^Dp&52.

In the particle frameK, all $pE% members andpG are
oriented at1z and2z, respectively, as shown schematica
in Fig. 10. In the laboratory frame, the orientations ofpG and
pE for each correlated pair are mutually antiparallel but a
otherwise random.

As we seek the joint transmission probability, we mu
proceed with care. Equation~69! is explicitly constructed in
an azimuthal plane ofK. This restriction is perfectly accept
able with regard to ascertaining the azimuthal plane distri
tion of ensemble members~and the spin packets! since that
distribution is necessarily rotationally symmetric for zero n
angular momentum. However, treating Eq.~69! as a joint
transmission result effectively assumes that the oppo
Stern-Gerlach analyzers have theirB1 andB2 axes~rotation-
ally separated by someQ) in the same azimuthal plane inK.
This assumption is not generally valid since theB1 ,B2 pair
~aside from a fixed relativeQ rotation! has totally random
orientation inK. Accordingly, we must rigorously comput
the joint analyzer transmission probabilityPp(Q) for appro-

-
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STUART MIRELL PHYSICAL REVIEW A 65 032102
priately randomized orientations of theB1 ,B2 pair.
We again use the calculational methodology of rotat

pG by Q1p with respect to$pE% in order to reduce the join
transmission problem to that of a single vector intersecti
Figure 9 is still applicable.

Without loss of generality, we can select an orientation
pG in the xz plane at some arbitraryQ and atw5p in the
correlated particle frameK. The base of thepG hemispheri-
cal zone is the plane defined by

tanQC5
x

z
5

sinu cosw

cosu
, ~70!

whereu is the azimuthal integration variable in the partic
frame andQC is the complement ofQ. Thenu, functionally
dependent uponw, is

u~w!5tan21S tanQC

cosw D . ~71!

The transmission probability is determined by computing
three-dimensional angular surface integralI 1 over the en-
semble spin packet distribution inx,0 and also the corre
sponding integralI 2 over the ensemble spin packet distrib
tion in x.0, but bounded by thepG base~Fig. 9!. Symmetry
permitsw integration over a quadrant for both integrals a
doubling their values. The quantity cosu in these integrals is
effectively the density function of spin packets as determin
above and expressed azimuthally.

The normalization factor of 2p is simply the angular in-
tegral over the hemisphere. A factor of1

2 must also be in-
cluded to account for thepG transmission probability. Then
the joint analyzer transmission probability is

Pp~Q!5
1

2

2I 112I 2

2p

5
1

2pE0

p

cosu sinu duE
p/2

p

dw

1
1

2pE0

p/2E
0

u(w)

cosu sinu dudw

5
1

8
1

1

4pE0

p/2

sin2F tan21S tanQC

cosw D Gdw

5
1

4
sin2

QC

2
5

1

4
cos2

Q

2
. ~72!

The spin packet occupancy fraction in thed→0 limit is

FIG. 10. Correlated particles in particle frameK showing repre-
sentative ensemble members of$pE% with a cosu distribution ofDp

arc spans and antiparallel matepG .
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Fp5
4I 1

2p
5

1

2
, ~73!

which is a decrease from the47 approximation associate
with the coarsed560° example. From Eq.~69!, we recog-
nize thatFp is a 1

2 factor extracted from the14 numerical
coefficient in Eq.~72!.

The calculation of the predicted joint probability for co
related particles proceeds in a manner analogous to tha
photons. However, for the three-dimensional spin pac
structure, the detection interaction cross section over$pE% is
proportionate to the average area of the ensemble zones
cordingly, the relevant parameter isFp and not^Dp&. With
the cross section linear to the zone area, the average d
tion efficiency over$pE% is

^hE&5Fph5
1

2
h, ~74!

where h is the detection efficiency for a full complemen
particle. Equation~74! constitutes thelinearity criterion for
particle detectors. Equation~74! is dependent only upon th
angular geometrical aspects of the spin structure zones a
not a function of the amplitude coefficientbp .

Then, with the quantitiesR(Q), R0 , RT , and f defined
in direct analogy to those of correlated photons, the ‘‘jo
probability’’ for particles is

`p~Q!5
R~Q!

R0
5

RTf Pp~Q!h2

RTf h^hE&
5

1

2
cos2

Q

2
, ~75!

in agreement with the probabilistic interpretation of quantu
mechanics.

A comparison to correlated photons readily demonstra
that this agreement is a consequence of natural enhancem
and when^hE&. 1

2 h the locally real representation is tes
able with respect to the probabilistic interpretation.

IV. DISCUSSION

The inherent asymmetry of the correlated locally re
states for both photons and particles, as manifested by
packet occupation fraction, has important implications w
regard to Bell’s theorem@4#. It has been shown that ‘‘nonen
hancement’’ is an implicit assumption of Bell’s theorem@25#.
This assumption is generally regarded as plausible sinc
requires that insertion of an analyzer in the path of a co
lated photon or particle must reduce or, at least, leave inv
ant the resultant detection probability. Conversely, Be
theorem is not applicable to the class of hidden varia
theories exhibiting enhancement, i.e., detection probab
potentially increases upon inserting an analyzer. Accordin
this class has not been excluded by performed experime
However, theories exhibiting enhancement are not gener
perceived as a viable alternative to the probabilistic interp
tation because of the apparent implausibility of enhancem
and its typically arbitrary imposition in those theories. It
therefore a critical aspect of the present locally real repres
2-20
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LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW A65 032102
tation that enhancement arises as a natural and plau
property.

In retrospect, is of some interest here to note the com
ling and prognostic advice of Ferrero, Marshall, and San
@19# that it would be productive to examine modifications
the standard quantum mechanical formalism in the inter
of achieving compatibility with local realism despite the su
cesses of the probabilistic interpretation of quantum mech
ics. They anticipated that these modifications would yiel
theory that naturally violated Bell’s plausible assumptio
@4,25#.

Similarly, it is of further interest here that several inve
tigations, including those of Selleri and Zeilinger@20#, Lep-
ore and Selleri@21#, and Ferrero, Marshall, and Santos@19#,
have identified the detector low efficiency ‘‘loophole’’ as
likely critical aspect of a viable locally real representation

In the present context, the testable consequences
which the locally real representation derived here diver
from quantum mechanics relate to the use of a detector
exceeds the linearity criterion. Nevertheless, the diverge
is subtle in that the numerical coefficients of the joint det
tion probabilities Eqs.~45! and ~75! are altered, but the co
sine squared function ofQ does not change. In contrast,
more readily discernible linearization ofQ dependence is
predicted for those locally real hidden variable theories c
sistent with Bell’s inherent assumptions@4,25#.

It is also pertinent here to examine the relative diverge
of the locally real representation from the quantum mecha
cal treatment of spatially separated superposition sta
These states arise when considering phenomena invol
devices such as beam splitters and two-channel analyze

Quantum mechanically, the probabilistic photons and p
ticles are divided by such devices into two states that
necessarily represented as a nonlocal spatially separate
perposition state. Conversely, in the locally real represe
tion, the outputs of these devices produce two independ
wave structures. Objectively, one structure is excitation be
ing and the other is empty.

When only ‘‘non-analyzer’’ devices such as simple bea
splitters are involved, the independent wave structures f
both output channels are each immediately compatible w
representation by the wave functions of the quantum m
chanical formalism, e.g.,F(z,t) or C(x,t), but not with the
probabilistic interpretation of that formalism. Howeve
when the devices include two-channel analyzers, the c
plete objective specifications of the two independent out
wave functions must now be constructed from analy
emission states. Each output wave function can then ob
tively be identified as a particular ensemble member deri
from those analyzer emission states.

Consequently, quantum mechanical spatially separated
perposition states associated with ‘‘nonanalyzer’’ as well
analyzer two-channel phenomena can both be given a loc
real representation.~This would include phenomena that a
supposedly characteristic of purely quantum mechanical
havior such as ‘‘interaction-free measurement’’@29,30#.! We
reiterate, though, that analyzer phenomena necessitate a
semble construction augmenting the wave functionsF(z,t)
andC(x,t) of the quantum mechanical formalism.
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The necessary imposition of an ensemble construction
the wave functions of the quantum mechanical formali
was, of course, initially seen in the context of single prop
gating entities when analyzer measurements were con
ered.

Clearly then, there is some profound physical interact
that underlies the significant divergence of the locally r
representation from the quantum mechanical formali
when analyzer measurement is considered. To unders
this divergence, we first consider a set of individual~nonana-
lyzer! detector measurements performed on a large num
of discrete photons or particles each of which is prepa
under identical experimental conditions.~The appropriate
wave function might represent a superposition of ene
states.! Individual measurements reveal a random state
stantaneously occupied by the excitation at the time of m
surement. Accordingly, the collective measurements then
jectively yield the constituent states in their proper statisti
distribution.

However, from the locally real perspective, analyzer m
surements are distinctive in that they are noninstantane
processes that occur as a wave structure is incident on
analyzer. The excitation, migrating on the diminishing co
stituent packets entering the analyzer, locks into thed-form
superpacket forming along the analyzer’s axis if that a
should happen to intersect one of those constituent pack
Effectively, the analyzer inherently biases the excitation
cus to the analyzer’s axis for these events. Subjectively, th
we lose information regarding the excitation’s instantane
locus as the incident packets begin to enter the analyzer

Accordingly, we postulate that analyzer measurements
noninstantaneous processes that bias the final excitation
cation to the particular state at the analyzer’s axis. If suc
process has physical validity, then the quantum mechan
treatment that places analyzer measured states on an
footing with conventional detector measured states is
doubt. That position is taken in the present paper and p
vides the basis for proceeding with the derivation of the
semble of analyzer emission states on which the excita
may instantaneously reside prior to analyzer measureme

V. CONCLUSIONS

We must emphasize that the locally real representa
presented here does not present any conflict with the ca
lational success of the standard quantum mechanical form
ism. We have noted that we begin with the quantum m
chanical formalism that specifies the wave functions
photons and particles along the propagation axis, resp
tively F(z,t) and C(x,t) in configuration space, and trea
these wave functions as incomplete. We derive an ensem
wave function associated with a source that yields emiss
states. The wave functions of these emission states are n
rally augmented with field variables that define outcomes
measurement processes normally requiring the invocatio
a nonlocal probabilistic interpretation. However, these a
mented emission state wave functions remain fully consis
with the standard quantum formalism~but not with the
probabilistic interpretation! as valid solutions of the appro
2-21
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priate wave equation and boundary conditions. The co
pletely specified wave function of an emitted photon or p
ticle objectively determines transmission through
subsequent analyzer. The resultant locally real representa
gives exact agreement with quantum mechanics for pho
transmission through successive polarization analyzers,
particle transmission through successive Stern-Gerlach
lyzers, for correlated pairs of photons, and for correla
pairs of particles while providing testable consequenc
Spatially separated quantum mechanical superposition s
can also be given a locally real representation.

The construction of the respective ensembles associ
with these phenomena proceeds in a self-consistent ma
An ensemble of states~for photons or for particles! described
by a wave function (f or c) is formed from projections in
an infinite dimensional Hilbert space at the emission sou
for t,0. The states are specifications of~planar or spin!
wave packets. Att50, a random member formed from th
states of the ensemble is emitted as a stochastic process
specific objectively real field variable values of packet a
span (Dg or Dp) and orientation (ug or up ,wp). The wave
function is scaled by an amplitude coefficient (bg or bp).
The general wave function of the emitted member fort>0
can be expressed in configuration space@F(z,t;Dg ,ug ,bg)
or C(x,t;Dp ,up ,wp ,bp)# along the propagation axis (z or
x). Effectively, the transition from the ensemble state to
particular emission state (f→F or c→C) can be defined
as ‘‘stochastic realism’’@19#.

For any similarly generated emitted members of the
semble, regardless of the fixed field variable values, the
sociated wave function structures (F or C) are all essen-
tially identical when examined only with respect to th
ti-
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configuration and momentum space variables along
propagation axis. A measurement procedure based on t
variables for a particular emitted member may be used
reveal a single point on the envelope of the wave functio
squared modulus (F* F or C* C). That point is determined
by the value that the migrating excitation happens to assu
at the instant of measurement on the structure of the w
function. When applied to many similarly generated even
such measurements map the entire envelope of the w
function’s squared modulus along the propagation axis.

More significantly in the present context, for a particul
discrete entity~photon or particle!, with field variable values
then necessarily objectively fixed, the transmission outco
through an analyzer~polarization or Stern-Gerlach! is fully
determined for allt.0 and can be identified as ‘‘determin
istic realism’’ @19#. Quantum mechanically, the transmissio
outcomes are interpreted as evidence that these entitie
necessarily probabilistic. The perception that photons
particles are probabilistic entities is derived from the bias
selection of a particular constituent state by the measurem
analyzer.

When the wave function (F or C) for a particular dis-
crete entity objectively specifies fewer than a full comp
ment of packets (Dg,p/2 or Dp,p), transmission through
an analyzer increases the arc span to a full complement
naturally enhances detectability. The correlated emiss
states exhibiting this property of natural enhancement
explicitly local in contrast to quantum mechanical correlat
states which are necessarily nonlocally entangled. The
ception of entanglement is a consequence of the subtlet
enhancement.
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