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Locally real states of photons and particles
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A locally real representation is derived from projections in Hilbert space without arbitrary constants. The
inherent enhancement property of the resultant states removes restriction by Bell's theorem. Exact agreement
with quantum mechanics is demonstrated by explicit calculations of photon transmission in Malus’s law, joint
detection probability for correlated photons, s;ﬁnparticle transmission through successive Stern-Gerlach
analyzers, and joint detection probability for correlated éoiparticles. The representation is experimentally
testable with respect to quantum mechanics.
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[. INTRODUCTION structed with compatible notation and are presented in sub-
stantially self-contained sections in the interests of explicitly
The rapid evolution of the probabilistic interpretation of elucidating the self-consistency of the respective derivations.
guantum mechanics from 1925 to 1927 is associated with As we proceed, we may reasonably anticipate from the cal-
departure from the classical principles of realism. In an earlyulational success of the quantum mechanical formalism that
attempt to reconcile quantum mechanics and classical prirnathematical analogs may arise in a locally real alternative.
ciples, de Broglie proposed a reality-based representation &iccordingly, any such analogs must be strictly defined as
the 1927 Solvay congredd], but this representation was locally real entities and not be imbued with any of the famil-
generally rejected by proponents of the probabilistic interpretar nonlocal probabilistic attributes of quantum mechanics.
tation. The tenets of the probabilistic interpretation were A corollary to these concerns is that we must clearly dis-
crystallized in 1935 by Bohr’s responf2] to the analysis of tinguish the locally real representation from Bohm’s con-
Einstein, Podolsky, and Ros¢8] regarding the question of struction[26]. Bohm basically retains the standard quantum
quantum theory’s completeness. Some years later, Bell'formalism which, together with a potential derived from that
theorem[4], based upon apparently plausible assumptionsformalism, yields a causal interpretation of quantum mea-
substantially increased interest in the examination of admissurement processes. The Bohm interpretation is appropri-
sible locally real alternative representations by providingately characterized as nonlocally real.
testable criteria. The experimental results of such tEsks Correlated states and spatially separated superposition
have widely been interpreted as a final validation of thestates(e.g., two-slit interferenc€27]) are usually identified
probabilistic interpretation. Despite these events, Poppedis the most notable phenomena that necessitate the imposi-
critically examined the probabilistic interpretation particu- tion of a nonlocal probabilistic interpretation on the underly-
larly with respect to its philosophical badi§]. Several re- ing standard quantum formalism. These phenomena certainly
searchers, compelled by the firm belief that nonlocality isrepresent particularly dramatic and self-evident manifesta-
incongruent with physical reality, have persisted in investi-tions of nonlocality in the probabilistic interpretation. How-
gating the boundaries of admissible local alternat[ves23). ever, the transmission of photons through successive polar-
A particular hidden variable model of locally real photon ization analyzer§Malus'’s law and the passage of particles
states was presented earlier which demonstrated agreemehtough successive Stern-Gerlach analyzers are both phe-
with the probabilistic interpretation and performed experi-nomena well recognized as necessitating the invocation of
ments for Malus’s law and for correlated photdi2¢]. The the probabilistic interpretation given the standard quantum
model was shown to be independent of Bell's theofdtg5]  formalism. These phenomena are jointly categorized here as
as a consequence of its inherent property of enhancemeahalyzer emissioprocesses.
and was testable. We proceed here from projections in Hil- In this regard, we first address these analyzer emission
bert space with the derivation of a locally real representatiomprocesses from a locally real perspective and then proceed,
that yields photon states analogous to those of that earlievith benefit of hindsight, to correlated states which turn out
model. A very closely related self-consistent derivation fur-to be closely related. Both of these phenomena can be sub-
ther extends the representation to include particle states. Thgantially described in the context of single channel analyzers
resultant comprehensive locally real representation is showar, equivalently, two-channel analyzers with one blocked
to be in exact agreement with quantum mechanics while prochannel.
viding testable consequences. Correspondingly, we defer a detailed locally real alterna-
States for photons and for particles are deliberately contive to quantum mechanical spatially separated superposition
states, which follows directly and consistently from the basis
of analyzer emission presented here, but necessitates, in its
*Email address: smirell@ucla.edu complete form, the treatment of transmission through two-
"Mailing address. channel analyzers with both channels open. The physical im-
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plications of the locally real representation alternative to (a)
these spatially separated superposition states is a subject o
some considerable interest and experimental consequence:

have been examingd@8].
The measurement results for photon and particle states

considered here are not in any way dependent upon ineffi-
ciencies imposed, respectively, on polarization and Stern-
Gerlach analyzergdistinct from their associated detectors
Accordingly, we are free to treat these analyzers as idealized.

The phenomena we examine here, when represented
guantum mechanically, particularly characterize the tenets of
the probabilistic interpretation. We will abide by the general
convention in which that probabilistic interpretation is im- )
plied when using the term quantum mechanics.

II. LOCALLY REAL PHOTON STATES 0&7
-+

A. Introduction to photon states

Following the example of quantum field theory, we treat

the vacuum field as a collection of harmonic oscillators in 5/
random ground state motion. The functional specification
®(z,t;b,) that we utilize here for a photon propagating A,

along thez axis is substantially equivalent to the wave func-

tion of the usual quantum formalism but represents in the

present context a wave structure consisting of a subset of the

(rea) oscillators in coherent motion orthogonal 0 The

passage ofp throu'gh a Iogal region is effectively a coher'- FIG. 1. Photon wave structufe) represented by the associated
ence wave that drives resident random ground state osCillggaye function amplitude along the propagation axis rotated
tors into transitory cohereriground statemotion. A super-  hrough an ard\,. The entire structure is scaled by an amplitude
position of constituent harmonic waves with a dispersion Ofeoefficientb,, . A constituent planar wave packet of infinitesimal arc
wave numberk,, gives @ its functional amplitude with re- s is shown near the plane of tiyeaxis. Schematic representation of
spect to the propagation axis as shown in Figa).1The  a photon’s collective planar wave packebs viewed projectively
parameteib,, is a coefficient that scales this amplitude. Thealong the propagation axis, shows total arc spgrand orientation
evaluation of®* ® provides a proportionate measure of the of the photor(arc span bisectp®,, . Intersection of depicted , arc
density of oscillators in coherent ground state motion or-with an analyzer’s polarization axis, e.g., along exis, results in
thogonal to the propagation axis as a functioz,0f Since® photon’s transmission.

is not a probabilistic entity, there is no inherent requirement

to normalized* ®. knowledge of the particular field variable values for any
For a specific photon emitted at=0 and propagating given photon.
along thez axis, the temporal and spatial evolution ®fis Objectively, the wave function of a specific photon is then

substantially equivalent to that of the quantum mechanicamore completely specified aB(z,t;A,,6,,b,). In this re-
formalism with the explicit understanding that the wave gard we define alanar wave packeds a subgroup of coher-
structure is a real entity. ent® oscillators moving orthogonal to the propagation axis
@, defined ont=0, is clearly descriptive of a dominant in an infinitesimal angular aré oriented at some particular
aspect of the photon’s structure; however, the parametem@ngle about that axis as represented in Fig).1
z, t, and b, provide no information regarding “polariza- A given photon consists of a set of these planar wave
tion” properties. For a specific photon, this information is packets, all with a uniform amplitude coefficiebt,. The
contained in the variabled , and ¢, defined in the plane packets are contiguously arrayed about the propagation axis
orthogonal to the propagation axis. The quantifigsand#,  and collectively subtend a finite angular ag¢ as shown in
as well ash,, are identifiable as “hidden variables.” How- Fig. 1(a) and, schematically as a projective axial view, in Fig.
ever, we shall apply the terfield variablesinstead, as more 1(b). The magnitude ofA,, (=N¢ for some integeiN) and
appropriate in the full objective context of the locally real the orientation of thed , bisector at som&), are essential
representation. field variables characterizing a particular photon. An orien-
We will necessarily have frequent occasion to assume thigation até,, is equivalent tod,+ 7 because of the bidirec-
objective perspective in which the field variablasg, 6., tionality of the planar packets. The two opposed arcs in Fig.
andb, of a given photon are specified. This perspective isl(b) are then appreciated as representing the same set of
permissible in a representation of real entities even thougplanar packets but with a relative phase shift along the
subjectively (experimentally we cannot have complete propagation axis. In the consideration here of photon states
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and their measurement, it is convenient to treatdluéd each  more complete understanding of the locally real structure.
planar packet as a suitably small but finite angular incrementOtherwise, the particular value d&f, can, in principle, be
Ultimately, as the limito—O0 is applied whileN—o, A,  suppressed here in our specifications of field variables.
=Né remains constant and we see that the discrete planar In the locally real representation, it is the excitation that
packet is purely a mathematical intermediary. provides us with a probe of the photon wave packet structure
The general physical characteristics®femerging from  of ® with particular regard here tp,t dependence. Various
this construction are that all photons generated under expernineasurement procedures applied to individual photons can
mentally equivalent conditions have substantially identicalreveal the instantaneous value of a parameter such as posi-
wave structuresto within an amplitude scale factor df) tion z or wave numbek, associated with the excitation as it
with respect toz andt dependence but differ in the fixed moves on the wave packet structure. Ultimately, after con-
values ofA,, 6,, andb, associated with the angularly ar- ducting a large number of such measurements on similarly
rayed wave packets of a particular photon. emitted photons, a map @* ® along the propagation axis
We shall shortly demonstrate the relationship of thecan be ascertained. Thez, Ak, uncertainty on a real field is
A,, 6,, andb, field variables to the “polarization” of the seen as a manifestation of the classical relationship of ca-
photon and to analyzer measurement of that polarizatiomonically conjugate variables suchak,, in the construction
However, the primary task at hand is the derivation of theof a wave packet for whicthzAk,~ 2.
underlying formalism that assigns particular field variable
values to emitted photons. This formalism generates a wave B. Analyzer emission of photons
function associated with an ensemble of photons defined at g, the perspective of local reality, the statistical distri-

the emission source &t-0. The allowabled , andé, values, o of photon transmission outcomes through some dis-
|n_the|r proper frequency dlstr_|but|on, map to the members ot analyzerA’ must originate at the emitting analyzAr

this ensemble. As a stochastic process, a random member @je postulate that any particular photon emitted by analyzer
the ensemble is emitted at=0 with particular objectively A is a random member of an ensemble of photons and seek a
fixed valuesA, and 6, giving an associated wave function mathematical representation of this ensemble consistent with
®(zt;A,,6,.,b,) for t=0. We shall see that any specific the physically known properties of photon transmission
emitted ensemble member is a real definable physical entitf,hrough polarization analyzers.

with an Objectively deterministic transmission outcome The ensemble necessar”y arises from a photon propagat_
through some distant polarization analyzer. _ ing within the analyzer. We designate this photon agea-

The energy quantum associated with a photon exists as &tator photony,. For a trial solution we then consider an
excitation' state on one qf the constituent coherent groungna|yzer emission ensemiderived from projections in the
state oscillators. The excitation migrates énwith an in-  transverse plane specifically originating at the polarization
stantaneous probability along the propagation axis proporaxis asy, reaches the analyzer's exit face. This solution
tionate to®* ®. The excitation also migrates on the contigu- implies that they, wave structure is narrowly confined to the
ous set of wave packets with a random instantaneougjane of the analyzer’s polarization axis within some angular
probability on any individual packet of the angular &¢. a1 5 as it propagates within the analyzer. Because of this

The probabilities associated with the excitation locus Ophysical confinementy, is characterized as being &form.
the photon’s wave structure_a_re readily shown tq _be _indeperwe proceed with this physical representationgf as we
dent of the amplitude coefficiert, . The probability inde-  construct the analyzer emission ensemble and subsequently
pendence on the set of the, arc of packets is immediately reexamine this representation for self-consistency.
seen from the uniformity ob, on those packets. The prob-  The analyzer emission ensemble that we construct consti-
ability independence along the propagation axis can be aRutes the objective specifications of a representative set of
preciated by observing that the density of coherent oscillaphotons potentially emitted by an analyzer. We assign a set
tors given byd* @ is scaled by the particular value bf for  of |u,) orthonormal basis vectors in Hilbert space in one to
that photon. However, this scaling does not alter the relativene correspondence with the angular coordinateks for
likelihood of the excitation being at a particulart on a  integer values ok where|k&|< /2. We ultimately obtain an
single spatially contiguous wave structure. infinite dimensional Hilbert space a$—0. The analyzer's

Conversely, for processes such as the intersection of spgolarization axis is chosen to coincide with thexis where
tially separated wave structures, the relative valué pbn 6=0 in real space.

each structure is critical to excitation dynamics in the result- When an interna”y propagatin@_form generator photon
ant wave interference. Nevertheless, because we confine oyr  associated with the basis vectar,), reaches the exit

present considerations almost entirely to phenomena involviace of the analyzer, a set of projected packet state vectors
ing single channel analyzers, such spatially separated wave

structures do not arise and the specificatiorb pfis largely | 1) = cog ké)|uy) (1)
superfluous in that regard. Most significantly in the context

of the present paper, we will demonstrate that a photon’s

transmission outcome through an analyzer is also indeperis generated. This set is used to construct the analyzer emis-
dent ofb,,. Accordingly, we will explicitly consider the am- sion ensemble.

plitude coefficienb,, only when its inclusion contributestoa  The ensemble’ainalyzer emission superposition state
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n n . tz (+z)
|¢e>:j§m |¢j>:j§m COS(J 5)|uj> (2) _— ?J-\

\ y
is constructed from the Eq(l) state vectors wheren {7e} \ A
({reh) £

=/(26)=—m. Analyzer emission superposition states as- 5

sociated with arbitrary polarization analyzers are all identical Y
to Eq. (2) after translating to a frame in whidhiy) is asso- A
ciated with they, propagating in the plane of the emitting /TX

9 ; : A\
analyzer’s polarization axis. The generator phojgnorien- /1N \
tation and the ensemble’s “centroid” orientation are then AN

both given by|up) in Hilbert space. ,/' I T J\..‘__
For analyzer emission ensembles, each constitlggt —7/2 0 /2

Eq. (1) packet state vector is a single state formed with the (—) 0— ——ké (+7)

corresponding|u,) basis vector because the projections Yg D

originate from a single basis vector. As a consequence, each (pg)

acket state vector is identified as the projection of the
|¢k> P pro) FIG. 2. The co$6 function gives the angular probability of

ensemble’s analyzer emission superposition s into lanar wave packets emitted from a polarization analyzer and asso-
the |uy) Hilbert subspace. In the present context, this prop-p. ave pa map X Y

: L o . : ciated with an internally transmitted photar with packets con-
erty is of a trivial nature. However, it will be instructive to

ine th | ecti h id densed along the analyzer’s polarization axi®at0. The angular
El)iggmpnﬁotoﬁsana 0gous projections when we consider Corr‘?)'robability is unaltered by inversion of the éascontour for ¢

<0. A photon y, emitted by the analyzer is a random member

The norm of| ¢y) is (row) of the ensembléy,} defined by the modifie¢bold) contour.
Alternatively, for particles, substituting the quantities in parentheses
_ 12_
idl={bidl i ™= cogks), 3 gives a co¥#/2) contour representing the angular probability of

dspin wave packets emitted from a Stern-Gerlach analyzer and asso-
ciated with an internally transmitted partigg with packets con-
densed along the analyzer’'s magnetic axigat0. Similarly, a#
_ <0 inversion gives a modified contour defining the enserfipl$.
u =cogkd), 4 ) _ X
{ kl ) 1k9) @ A particle p, emitted by the analyzer is a random membew) of

which is equivalent to the amplitude of a particular projecte
state vectot ¢y),

as well as the amplitude of the analyzer emission superpos{pe}-

tion state at someu), tiguity of those packets. Consistent with this property, the
_ excitation also has physical accessibility to théorm wave
(U de) =cogkd). ®) structure arising within the analyzer only when the of an

Physically, each of these quantities may be viewed as }gcident photon ir!tersects the analyzer’s polarization axis.
coské) projection from thek s-distant generator photon. Since photons emitted from an analyzer are known to have a

Squaring either amplitude gives the probability of an en-0-5 probability of transmission through a subsequent, ran-
semble planar packet at a particular): domly oriented, analyzer, we anticipate that emission en-

semble members are characterized by a contigudys
(U p)y?={(uy] pe)y?>=cog(ks). (6) = /2 arc of packets which yields that 0.5 probability. We
define A, =m/2 photons as having &ll complementof
The functional cosine squared probability of ensemble planapackets.
packets specified in Ed6) is depicted in Fig. 2. From this The compilation of the emission packets into an ensemble
probability we now seek the compilation of these planarof photon members is then particularly straightforward given
packets into an ensemble set of emission photons. the above considerations. An inspection of the Fig. 2 6os
In the interests of determining this compilation, we con-wave packet probability yields the requisite solution by not-
sider the requisite criteria for transmission of a photoning that the probability as a function @fis invariant under
through an analyzer. The photon we select is a particulagn inversion of the#<<O packet contour to 4+ cog 6. In the
ensemble member of an emission analy&eiThat photon, modified form of the contour we identify the set of photons
when incident on some distant analyZer, must first propa-  defined by the rows of wave packets. This set of full comple-
gate within that analyzer as &form generator photor’yé ment photons uniquely constitutes the requisite ensemble
before being transmitted as an emission ensemble member {f,.}. Any single y, emitted as a stochastic process from an
A’. The accompaniment of the excitation in this process is amnalyzerA is a random membeirow) of the associated en-
implicit requirement if the resultant emitted’ ensemble semble. Each member has a contiguous arc of padkets
member is to be defined as(potentially detectabjetrans- = #z/2. Summed over multiple emitted photons, the ensemble
mitted photon. and the co%6 wave packet probability are trivially recov-
We postulate that an excitation migrating on the photon’sered.
wave structure has physical accessibility to any particular An ensemble’s wave packet probability specified by Eq.
wave packet on some collective akc, because of the con- (6) and depicted in the modified Fig. 2 contour may also be
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regarded as the ensemble’s wave packet distribution. There &irement, the collapse of one of the states places the photon
an effective equivalence of these two terms in the treatmerih a single definite state of the other. The requisite Hilbert
of photon ensembles since both quantities are represented space is two dimensional. Because of the role of the mea-
their entirety in the plane orthogonal to the propagation axissurement process in assigning photon states, the photon itself
(However, in our treatment of particles we will encounter anis necessarily treated as a probabilistic entity. Moreover, all
exception to this equivalence arising from the three-photons emitted from an analyzer are identical probabilistic
dimensionality of relevant distributions. entities. They are distinguishable only upon measurement as
We can now consider the ensemble members emitted purely probabilistic consequence of assuming one of the
from an analyzerA interacting with a second polarization two possible states of the superposition. Quantum mechanics
analyzerA' rotated by6=kd with respect toA. We see that regards these probabilistic entities as nonreal.
a cog d fraction of the ensemble members have\ a that In the locally real representation, the transverse state of a
intersectsd, resulting in transmission, which gives us agree-particular photony emitted by an analyzer can be objectively
ment with Malus’s law for the representation. Note that thespecified by the superposition state
representation is explicitly locally real. The state of a photon
incident on analyzeA’ is in no way altered by the physical n
orientation of that analyzer. Photons are not regarded as bi- |D,)= Z luj) (10
nary quantum objects with a horizontal or vertical polariza- J=m
tion. From the ensemble construction, the membergygf
have a continuum of orientations given by the bisector anglegefined on a Hilbert spacévhich becomes infinite as
6., of the rows in the modified contour of Fig. 2. Further- —0) with orthonormal|u;) basis vectors. Herd = /2
more, the transmission outcome for a random member inci=(N—m-+1)5 and 6,,= 3 (n+m) 5. Equation(10) explicitly
dent onA’ is fully deterministic the instant that particular requires that the photon be “in” all of thiy;) states associ-
member leaves analyzArwith an objectively defined packet ated with the packet ar&, at 6,,. This property is demon-
arcA, with orientations,,. For that photon to be transmitted Strated by the probabilitju,| ®,)*=1 for all |uy) associated
by A’, its packet arcA ., must intersect thé’ polarization with A, . Each of these occupied states represents an objec-
axis. The photon’s emergence froii is then as a member tively real planar wave packet.
of a new ensemble generated frou}) associated with the ~ In the locally real representation, any analy2€r, posi-
A’ polarization axis a#’ =0. Consequently, we have trans- tioned subsequent to an emission analyxehas no role in
mission consistent with Malus’s law for any number of arbi- the Ed.(10) specification of an emitted photon’s superposi-
trarily rotated sequential analyzers. tion of states. Objectively, the infinite);) states associated
It is instructive at this point to examine the underlying With A, exist independently of any measurement device.
differences between the locally real representation and quan- If the subsequent analyz&’ has its polarization axis at
tum mechanics. For this examination, we again considepomed associated with a particulau) in the Hilbert space
photons transmitted through an analy2ewith its polariza- ~ Of the emission analyzer, a transmission outcome experimen-
tion axis oriented ab=0 along thex axis and a subsequent tally establishes only thaty,) was one of the constituent
analyzerA’ rotated at soméd. states of the incident photdd ,) and an absorption outcome
The strict probabilistic interpretation of quantum mechan-establishes the converse. Objectively, the outcome is deter-
ics requires that the photon transmitted through analyzer ministically fixed the instant the photon is emitted fron
be in a definite statgpqm =|x) where|x) and|y) are or- and the constituent states |@7> are specified.
thonormal basis vectors in a two-dimensional Hilbert space. EXperimentally, however, we have knowledge only that
In this interpretation, the role of the measurement process i8Ny photon emitted byA is a member of an ensemble con-
central to the assignment of states. That photon, when meé&tructed from the Eq(2) analyzer emission superposition
sured by a subsequent analy2€rrotated byd, must now be ~ State|¢.). We can then examine this ensemble using a sub-

in a binary superposition state sequent analyzeh’ rotated by#=kd which associated\’
with some basis vectdu,). The probability of a random
| pqm) = (cosB)|x")+(sinG)]y’) (7)  ensemble member emitted &y having a constituent state

o . ) |uy), i.e., a planar wave packet associated with that state, was
by a projective transformation to the new basis pai) and  shown in Eq(6) to be cod(kd). Since those members having
ly’) of A’. The respective amplitudes of the photon being ing state afuy) are transmitted, we showed that &) is

the stategx’),|y") are equivalently also the probability of transmitting a random
, B , . ensemble member and, consequently, gives us Malus’s law.
(X'|pgmy=c0s6, (y'[pqm)=sin6 (8) This result can be made even more explicit by noting that

an ensemble member is successfully transmitted through a

with corresponding probabilities . o
P gp subsequent analyzét’ only when it transitionally assumes

(X'|pqmy?=cog 0, (y'|pqm=Ssir? 0 (99  the form of a generator photon as it enters that analyzer. In
the Hilbert space ofA’, the state of this generator photon
for the inherently binary measurement outcomes. |CI>§’J)= |ug) since the generator photon is, by construction, in

Quantum mechanics requires that the assignable states tiee single state associated with tAé polarization axis. A
a binary superposition prior to measurement, and, after meaetational translation between the Hilbert spaces of the re-
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spective analyzers implies that in the frame/fothere is a  for an objectively real photon and examine the measurement

[uy=|ugp), resulting in a modified form of Eq6): consequences even though we have no experimental means
of selectively generating any particular photon at will. The
<CI>é|¢e>2=cos?(k5). (11 set of packets of this physically realized photon can be rep-

resented in the two-dimensional Euclidean space orthogonal
The particular expression of Malus's law given by Eqg. to the propagation axis by an equivalence sebgfmagni-

(11) is suggestive of a quantum mechanical transition probtude radial vectors each oriented at the respective angle of its
ability | pe)—|Pg) at A’. However, from the objective per- packet, giving
spective of local reality, this interpretation is misleading be-
cause ¢.) is not a single definite state pty) as in quantum
mechanics, but represents an ensemble of packet states with @,i=b,
centroid at the basis vectduy) and a distribution defined :

over t_he |nf|r_1|te set ofu;) basis vectors. In the |nf|n|t_e di- \here f—m+1)6=A ;=m/2, (n+m)sl2=0,;, and the
mensional Hilbert space of the locally real representation, the . . . .
. are unit radial vectors oriented at the= j § of the respec-

ensemble is effectively a superposition of wave packet stateg .
that, as a stochastic process, emits a random membr attive packets. EquatiofiL3) should be compared to the corre-

that is itself a superposition of wave packet states. Most im-Spondlng Eq.(10) representation of a photon in Hilbert
portantly, we must be clear théi,) is not present af’ space. Both equations relate only to the transverse aspect of
1 (S

since it ceased to exist the instant the ensemble member |ez.=hphotons_ wave struciure. L
A In Euclidean space we begin with the Ed3) represen-

tation of an objectively real set of packets and examine the
role of the amplitude coefficient as a photon enters and exits
an analyzer.
With respect to the example in Fig.(k), the present

O |P V=N=m/(265). 12 analysis of a particular photon is applied to thé& arc of

( 7' ” ml(29) (12 packets on the right. The left arc, which merely provides
Equation(12) gives the sum of the E10) particle’s packet mirror redundancy, .repres.,ents the same packets phase shifted
probabilities over a fullr angular span of the )2 Hilbert ~ &l0ng the propagation axis by.
space basis vectotsi;). The N individual unit probability When the photon begins to enter analyZerthe vector
terms associated with a particular objectively specified pho@MPlitudeb,; of each individual packet rapidly reduces to
ton confirm thatN packets are present on that angular spanZ€"© @nd, simultaneously, projects its component along the
Equation(12) simply reminds us once again that in the lo- Polarization axis onto that axichosen here as theaxis).
cally real representation a photon withpackets is “in” all Collectively, the vector sum of these projected packet vector
of the states occupied by these objectively real packets. AcOMPONents results in a "superpacket” of amplitude coeffi-
cordingly, our sum over probabilities is appropriattlyand ~ Ci€ntPs (>b,;) “condensed” along the polarization axis of
not unity. Objectively, the inherent multiplicity of packet the analyzer ino-form.

states in the locally real representation explicitly necessitates Altérnatively, this superpacket amplitudg; can readily
the use of a corresponding multidimensional Hilbert spaceP® computed by first forming the vector sum of the incident

which goes to infinity asi— 0, in contrast to measurement- Photon packet vectors, which yields a resultant vector ori-
based quantum mechanics which requires a two-dimension&nted atf,; [= 6, in Fig. 1(b)]. The magnitudeM ,; of this

Hilbert space as a consequence of the binary observable ojgSultant vector can be determined by integrating the projec-
comes. Of course. when we reach the lighit: 0. the state of V€ components with respect to the bisector of an arbitrary

the photon is objectively described by, and 6.,. The for- A, =m/2 arc. Integration of the discrete packet contributions
’}/ ’y - . . . .
malism of a multidimensional Hilbert space is seen as 45 valid asé—0. The magnitude of the resultant vector is

mathematical intermediary.

2, T}, (13

m

The physical significance of a particular photon’s super
position state Eq(10) can further be understood by the
evaluation of

l4

After a photon is emitted, we can examine additional b.. (cos6)de
. ) e . ) yi
properties by representing that objectively realized photon in —ml4 \/Eb,/i
Euclidean space. This representation, while not applicable to M,i= 5 =75 (14)

the construction of the emission ensemble, provides a pow-

erful tool for gaining physical insight into the structure of o the resultant vector's component projected onto the po-
such realized photons. In particular, the representation in EUzi-ation axis has an amplitude coefficient

clidean space allows us to understand the role of the ampli-

tude coefficienb.,. For these purposes, we select a reference
. y- FOrt ctate \J2b.,; cosé.,

frame with thez axis oriented along photon trajectories and 5= Y n (15)
thex axis aligned with the polarization axis of an analy2er 9

We first consider a particular incident photon such as the )
example in Fig. () with an arcA ;= 7/2, an orientatiorg,; ~ 1he “single” superpacket photon
from the analyzer’s polarization axis, and a uniform packet R
amplitude coefficienb,;. We can make these specifications D 5= Db sx (16)
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propagates through the analyzer, condensed along the arensemble’s membefsee Fig. 2. Symmetry ensures that the
lyzer's polarization axis defined here as theaxis. @5 is  vector sum in Euclidean space is a resultant that lies along
clearly a Euclidean space representation of a generator ph¢he centroid of the ensemble. We identify that resultant vec-
ton y4. As we impose the mathematical lim&—0, the tor with E.

numberN of planar wave packets that are associated with an  Consequently, in free space, even though the locally real
incident photon’s finiteA, goes to infinity. Consequently, representation objectively implies an angular distribution of
with N individual b,; amplitudes contributing their respec- radial electric field vectors about an incident beam’s polar-
tive components along the analyzer's polarization axis, th,ation orientation, the experimentally observable resultant
vector sum of the resultant superpacket has an amplitudgiectric field is not distinguishable from the single vector
coefﬂmentb&—wo as demonstrated by E@l5). However, quantity E of classical electromagnetics.

the integral of®, over the angulas of the superpacket at  cqnyersely, the analyzer's structure explicitly applies a

the polarization axis, physical constraint that necessarily confines the electric field
of the internally propagating wave to the plane of the ana-
f <I>5d6=b5f dox= \/Ebyi(coseyi)x, (17) lyzer’s polarization axis. Consistent with that co_nstrgint, _we
P) P postulate that the locally real wave structure is, likewise,
confined to that plane as a superposition of projections of the
remains finite giving thes-form superpacket photo®; a  incident packets in the form of a single superpacket photon
formal equivalence to a Dirag function. D;.

Classical electromagnetics provides a compelling physical Representation in Euclidean space also provides us with
rationale for this condensation process along the polarizatioadditional insights specifically relating to the formation of
axis. This rationale is appropriately considered in the contexthe superpacket. We have seen that the transition of an inci-
of a multiplicity of photons on a plane polarized beam. Thedent photon, with packets arrayed over an angularm}[c
muItIpI|C|ty of realized phOtOﬂS can be represented by the— /2, to a condensed-form Superpacket within an ana-
members of an emission ensemble. The critical property Ofyzer s critical to the transmission outcome. From the per-
the ensemble in this regard is the symmetrical distribution oEpective of the photon’s wave structure, the interception or
its member'sarc bisectororientationsf,, about the centroid  oninterception of the polarization axis by the is of minor
orientation that coincides with the polarization axis of anconsequence. In the example depicted in Figp),1if we
emitting analyzer. We can then identify the orientation of agrient the analyzer's polarization axis along thexis, A,
plane polarized beam with that of the ensemble’s centroid. Ihappens to be intercepted and a large amplitdderm su-
is therefore meaningful to specify the “polarization” of an perpacket is formed along that axis from the projected com-
ensemble. Subjectively, it is also appropriate to attribute thig,onents of the incident packets. Although a very slight coun-
“polarization” to all individual photons associated with a terciockwise rotation of that particuldr, arc would result in
particular ensemble. Consequently, an individual photonits poninterception by the polarization axis, the amplitude
which subjectively has the property of “polarization,” objec- qefficientb, of the superpacket would be only marginally
tively may be further specified as having a definite orientaygqyced in magnitude. However, from the perspective of the
tion at some particulad,, . excitation migrating on the photon wave structure entering

The familiar type of polarization analyzer we consider gnaiyzera, the difference between interception and noninter-
here consists of a transmissive dielectric plate with an atom"éeption is of paramount significance.

structure exhibiting parallel linear conduction paths. The po- 'aAg the incident wave structure begins to penetrate the
larization axis lies orthogonal to these conduction paths i’hnalyzer, the amplitude of packets on the arc rapidly
the plane of the analyzer. _ _diminishes toward zero and, simultaneously, théorm su-

At the level of classical electromagnetics, we examine &erpacket amplitude sharply rises along the polarization axis.
plane polarized beam of photons, characterized by Somgpen theA, arc of a particular inciden®.; intercepts the
electric vectorE, incident on an analyzer with its polariza- ho|arization axis, the excitation migrating on the diminishing
tion axis along some unit vectoy, rotated byg from E. We  packets of the arc entering the analyzer promptly locks into
know that the component & along the conductive paths is  the risings-form superpacket located ah, and is transmit-
strongly absorbed as the beam enters the analyzer. Consed through the analyzer as a superpacket phdign
quently, the remaining beam propagating within the analyzer Conversely, when tha , arc of a particulad.; does not
is characterized by the component®frojected identically  intersect the analyzer’s polarization axis, the excitation mi-
along the polarization axi€-r . grating on the diminishing packets 4f, does not encounter

We hypothesize that there is a direct physical corresponthe é-form superpacket since it is not contiguous wiH.
dence between the electromagnetic wave and the wave struBs a result, the excitation is absorbed in the analyzer and the
ture in the locally real representation. The electric field of asuperpacket on the polarization axis is transmitted as an
single photon is most logically associated with a radial vec-‘empty wave” through the analyzer. The “empty wave” is
tor at the instantaneous packet locus of the excitation. For equivalent to an excitationless superpacket wave structure
suitably large number of photons on a plane polarized beamp?S propagating within the analyzer. We will reserve the term
the angular distribution of these vectors may be associatetbhoton” for wave structures that are excitation bearing. At
with a radial vector at each of the packets on each of amhe exit face a full complement excitationless empty wave
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ensemble membab) is emitted. When considering discrete ~ Before concluding our treatment of analyzer emission
photon phenomena involving two-channel devices such aBrocesses, we want to note that the polar coordinatised
calcite polarization analyzers and beam splitters, quantitie§Pove in the construction of ensemble states from a generator
of the form q,f; and (a “photon”) ®,, are emitted, respec- photon y, at #=0 also repres.entgd angular positions with
tively, from the two channels and may subsequently intersedi€SPect to the analyzer’s polarization axis. We now introduce
to produce an interference. These quantities immediatel{€ angular coordinat® to define the physical orientation of
provide the means for self-consistently constructing a locally@ analyzer in the laboratory frame. Choosthas the angle
real representation fully inclusive of such two-channel pheWith respect to the polarization axis gives the equivalence
nomena. Quantum mechanically, such phenomena invok@ = 6. To that extent, the introduction 6 may be regarded
spatially separated superposition states with nonlocal cons@S superfluous in the treatment of analyzer emission; how-
quences. ever, in the context of correlated photofend correlated
The representation in Euclidean space also allows us tgarticles, we shall need to distinguish the two quantities.
compute changes in the amplitude coefficient as a photon Finally, before leaving the topic of photon analyzer emis-
enters and exits an analyzer. Whensdorm superpacket Sion, we may reasonably ask why the locally real represen-
photon reaches the analyzer’s exit face, a stochastic analyzE#ion is of utility if we get Malus'’s law from quantum me-
emission process occurs. As a transition from the emerger@anics as well. The response to this point is that guantum
®,;, a photond,, is emitted with aA = /2 packet arc, an mechanics, aS|de_ from Bohm'’s particular mterpretaﬁbﬁ], _
orientation of somed,, and ab, amplitude coefficient. has_already required that we abandon the n(_)tlon _of phy:_;|cal
Aside from the specification db.,, that emitted photon is r_eallty for the photon. An even more compellmg differentia-
equivalent to one of the members of an ensemble centerdiPn between the two representations will occur when we
about the analyzer’s polarization axis selected here ag theConsider correlated states. Quantum mechanics, including the
axis. We want to understand the role of the packet amplitud®°hm interpretation, will impose nonlocality.
coefficient in the context of analyzer transmission processes.
It is easily demonstrated that the amplitude coeffickent
of the emitted photob,, is a function of that photon’s ori- ] ) - o
entationd., and the amplitude coefficient of the superpacket \We consider here atomic transitions emitting two corre-
b, from which it was generated. Consistent with the analysidatéd photons that together carry a net angular momentum of
applied to Egs(14) and (15), the projection of the super- Z€ro- The polanzatl(_)n states o_f the Mo _photons are then
packet amplitude vector along, has a magnitudb ; cosd, . out of phase, but this phase d|ﬁerentlal is not evidenced by
The vector sum of the emitted photon’s packet amplitudedh® analyzers and quantum mechanically we expect that both
produces a resultant vector oriented at thiswith magni- photons are either vertically polarized or horizontally polar-

tudeM = \2b, /8. Equating these magnitudes uniquely de—izeld' | | . ated bh .

termines the relationship between the objective orientations " @nalogy to analyzer emission, a correlated p otog pair

and amplitudes of the incident and the emitted photons, 'S réated as an “independent/s generator photon and a
“dependent”yg emission photon. The emission photpais

b,= 6b5(C0307)/\/§: b, cos6,; cosd, . (18 @ member of an _ensembﬂe/E}, and we require zero angular
momentum within the closed system of amy,yg corre-
Projectively, the analyzer emission process is recognized aslated pair. To the extent thag, and ys both generate an
reversal of the condensation process with the explicit reensemble member, the analyzer emission proces$gr
minder in Eq.(18) that the orientations of the incident pho- and the correlated photon emission process {fgg} are
ton and the emitted photon are not generally equal. similar. However, the physical constraints associated with the
Despite the Eq(18) dependence of the wave packet am-two processes are different.
plitude coefficient on the photon orientation values, the A significant difference relates to the photon arc spgn
physical role of the amplitude coefficient is not pertinent toln analyzer emission, projections from thg angularly con-
photon transmission probability through an analyzer wherdined 5-form “source” yield a cog 6 distribution of {ye}
only A, interception by the polarization axis is relevant.  packets. In contrast, the “independenf of a correlated
We see from Eq(18) that, in general, the amplitude co- pair is unrestricted by confinement to an analyzer. Accord-
efficientb,, is diminished each time a photon enters and exitdngly, yg is a full complement photon witih = /2 and
an analyzer, thereby rescaling the complete wave functiopresents a generator source that is extended over its entire
®(zt;A,,60,,b,). Similarly, bi is also diminished and pro- /2 arc of packets.
portionately rescales the “wave intensityp* ®. Since the An additional difference between the analyzer emission
probabilities of photon analyzer transmission and excitatiorprocess and the correlated photon process is associated with
locus on that photon’s wave structure are independent of anthe relevant reference frames. Analyzer emission is most ap-
rescaling, we are free to suppréess. This suppression ef- propriately represented in the laboratory reference frame
fectively renormalizes the intensity each time the photorsince the state vector ofy is aligned with the polarization
passes through an analyzer and confers ugoid an  axis of the analyzer. Conversely, the orientation of the inde-
equivalency to a true mathematical probability. This is cer-pendent correlated photoyg can assume any value at ran-
tainly a calculational convenience, but we must not lose sightiom in the laboratory frame for a particular event in free
of the wave as a physically real entity. space. Consequently, it is convenient to translate to the pho-

C. Correlated photons
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Lﬁ (+2) lows us to individually enumerate all of the relevant prob-
{vg} | I~ ability outcomes. In this regard, we diverge from the con-
™ tinuum limit of 6—0 and initially examine a coarsé
({re}) A N\ —30°
= example.
L \\ The choice of §=30° temporarily places us in a six-
/ \ dimensional Hilbert space since the basis vectors must span
[ \ an arc ofw. As 6—0, the dimensionality of the requisite
/A A\ Hilbert space remains finite at som&2 =/ 4. Ultimately,
,F r when we impose the limié— 0 on the locally real represen-
0 +7/2 tation, the dimensionality of the Hilbert space becomes infi-
L—_ ““““““““““ - (+7) nite in contrast to the corresponding two-dimensionality of
ké—— 6 — polarization representation in quantum mechanics.
e T 1 I A N N O . _To remind us that we are initially considering the coa.rsely
(pc) finite §=30° example, angular values are expressed in de-

grees instead of radians. With=30°, three basis vectors in

FIG. 3. Correlated photon pair planar wave packetsyfgrand Hilbert Space]ul), |u2>, and|u3), span a full complement

for en_s@ml_ale member@ows)_ of {re}. Alternatlve_ly, SUb_St'tUt_'ng arc as depicted in Fig. 4. We have the three projections
quantities in parentheses gives correlated particle pair spin wave

packets fompg and ensemble membefows) of {pg}. |1y =cqluy), (19)

ton reference fram& () in which the planar packets of all |$2)=C1lus)+Caluy), (20
vs photons are always in some fixed orientation relative to

6. Initially, we shall find it convenient to align the exterior and

wave packets ofyg with /=0 and /2 as shown in Fig. 3. _

Subsequently, we will rotationally translate=0 to the yg | $s)=Caluy) +Cfuz) +c5lus). (22)

bisector (yg's orientation defined as+x in K. In either The quantity| is the proiection of some correlated pho-
case, with the correlated photon source interposed between Q quantity ¢.1> ! project . P
on superposition statgpe) in the Hilbert subspacéu,).

pair of opposed polarization analyzers, the orientations OE. , S ;
those analyzers must be treated as completely randdfy in !mnatrly, L¢2> and|¢s) are tge projections of¢se) Irt]' thle
constrained only by their fixed relative rotation designatecﬂ' ert subspacefuy), |u) an |_u1>,|u2),|u3>, respectively.
by the angular variabl@® in the laboratory frame ote that, because of the multiple generator packets contrib-
We shall see that the analyzer transmission results for oufting to |#2) and |$s), these vectors are expected to be

present consideration of correlated photons are independeﬁ%talted ri]n Hilbert spacefawa_y frpm tlhei>|' in th
of the amplitude coefficienb,,. A corresponding indepen- For the present set of projections, only in the casg/aj

dence was observed earlier with respect to transmission ¢f (Neré @ one to one correspondence between a state vector
the full complement analyzer emission photons. As a resul@"d the basis vector from which it is constructed. This rela-
we will reexamine the role db,, in the context of correlated tionship exists becausgp;) arises from a projection of a -
photons only very briefly in the interests of verifying this single generator packet as shown in Flg._ 4, Recall that this
independence. was the case for every one of Fhﬁj) constituent state vec-

Our principal objective here is to generalize the basic pro{0rs Of the|de) analyzer emission superposition state since

jective formalism of Eqs(1)—(6) in a consistent manner over 2!l Projections arose from the single generator phoggn

the extendedye generator source. For every packet location HOWever, the remaining Eq¢20) and (21) state vectors
along the angularly extendegls source packets, we must are each composed of a mixture of projections from multiple

project a contribution to the distribution of emission packetsdeNerator packets, two fot,) and three fori ¢5). Because
in {yg} through all possible angleg&=ks. The operation is of this mixing and becausg the final state vedtps) is con-
conducted irK (6) as shown in Fig. 3. The projection angle Structed over a set of basis vectous), |u,), and|us) that
#=0 (k=0) imposes the boundary condition tHatc! be constitute a full complem_e_nt of packets, we identify the cor-
identically zero outside the arc ofs packets wherep ~ '€lated photon superposition state
>r/2 since yg is itself zero in this range. Zero angular 3
momentum for all correlated pairs could not be satisfied if _ _ .
{ye} were to exceed this boundary conditigihhis condition |e)=1d3) 121 Cilu;)- 22
results in transmission of anfryg} member always being
accompanied by transmission g§ when the respective ana- ~ As a consequence of the mixing, thecoefficients must
lyzers have identical orientations, i.€),=0.) be extracted from the simultaneous set of Ef9)—(21). We

In the interests of presenting a lucid and explicit deriva-can solve for these values by observing that, as in(Bdor
tion of local reality, we shall first consider an approximation analyzer emission, packet projection from a single generator
of correlated photon structure in a suitably finite dimensionakite throughké in Hilbert space yields a projected state vec-
Hilbert space before proceeding to the exact solutions in ator with norm ||¢,||=coskés). From Fig. 4,|¢,) is con-
infinite dimensional Hilbert space. This approximation al-structed from the 60° projection of the generator packet at
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We see that|¢g) in Hilbert space is rotated 60° from
|uy), 45° from|u,), and 60° from|us), which is why| ¢g)
has nonzero amplitudes along each of fiag.

In order to determine the relative proportion of ensemble
packets at th¢uj>, we need to calculate the squared ampli-
tudes(uj| ¢g)2. We have

1 1
<u1|¢E>2:<u3|¢E>2221 <U2|¢E>2:§- (31

For the particular example of=30°, the Eq.(31) values
express the relative probabilities of correlated photon en-
semble packets at ea¢h;) as depicted in Fig. 4. As previ-
ously observed, the ensemble packet probability is immedi-
ately equivalent to the ensemble packet distribution for
photons. We can then readily determine the requisite packet
configurations of ensemble members from the Fig. 4 packet

nar wave packet projection computation. Joint transmission is 4/4distribution The lower packet row ofyg} is identified as a
3/4, 1/4, and 0/4 when analyzers are relatively rotated byfull complement ensemble membeg;. Symmetry about the

0°, 30°, 60°, and 90°, respectively.

|uz). Similar constructions apply tap,) and to| ¢3) except

bisector axis of that member and thg provides the requi-
site zero net angular momentum for the,,yg pair. The
remaining single packet in the upper row {ofe} is neces-

that these states are formed from multiple projection contrisarily identified as the other ensemble mempgy. Symme-
butions. The state vectdip,) is constructed from the 30° try still preserves the requisite zero net angular momentum

projections of generator packets|a) and|us), and|¢3) is

for the yg,, vg pair. We see that the single packgt,, with

constructed from the 0° projections of generator packets @ total arc spam,=30° instead of the full complement

|uy), |up), and|ug). Then

1
[all=(bal $2)*= ()= cos60=5, (23

3
||¢>2||=<¢2|¢2>”2=<ci+c§>1’2=cos30<eg, (24

and
[pall=( b3l ) 2= (c5+c5+c5) >=cos 0°=1. (25)
We have from Eqs(23)—(25)

1 1
5, Cop=—.
2 22

The resultant correlated photon superposition state is

C1:C3: (26)

1 1 1
|¢E>=|¢3>:§|U1)+E|U2>+§|U3>- (27)

The coefficients are the amplitudes |ef;) (or equivalently
of |¢g)) along thelu;). That is,

(1] 1) =(uy| pg) =cos 60°, (28)

(U2| ) =(u;| ) = cos 457, (29
and

(U3| h3) =(u3| pg) = cos 60°. (30

A,=090°, is a natural and necessary outcome of the ensemble
construction in Hilbert space.

Despite the coarseness & 30°, this example proves to
be nontrivially informative, and it is instructive to examine
the predicted measurement outcomes before proceeding to
the limit of 5—0. We can readily enumerate all of the joint
transmission probabilitiesP (k) by inspection of the
packet ensemble distribution in Fig. 4 when the opposed ana-
lyzers have the relative angular separations 6f
=0°, 30°, 60°, and 90°. We begin with,(0°) which is a
summation of the 0° samplings in Fig. 4, i.e., both analyzers
intersectyg and{yg} at the sameu;). We have

1
P (0°)=1—2(1+2+1+3><0). (32

y

The 1/12 factor is the requisite normalization for the total
number of samplings. These include the three samplings as-
sociated with|uy), |u,), and|us) which intersectys and
{ve}. Additionally, we must include the three additional sam-
plings at|u,), |us), and|ug) for which neitheryg or {yg}
are intersected. These six samplings must be doubled to 12
because there are two ensemble members. The first three
terms in the factor in parentheses give the summation of the
ensemble packets dti;), |u,), and |uz) for which a yg
packet is correspondingly always intersected. TheD3term
reflects the noninterception of bothg and {yg} for
lug), |us), and|ug).

Similarly, P,(30°) is computed from the 30° offset of
analyzer orientations as shown in Fig. 4 and we have

1
P,(30°)= 5 (1+2+4X0). (33

12
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Since we are computing joint transmission, the zeros in paebtainF ., below after converting the summation to an inte-
rentheses include sampling nonintersection with bgitand  gral equation as we reach the lindit-0.
{ve} as well as nonintersection with eitheg or {yg}. By The integral form of Eq(37) is
the same process we have
1 72— 0 1
1 1 F>y((~))=§|:yfO E,(0)do=5F,cos®, (3§
P.,(60°) = 1—2(1+5><0), P,(90°) = 1—2(6><0).
(34  for which the ensemble packet distribution is given by the
function E (¢). The solution of this integral equation is
All of these joint transmission probabilities can be compactIyEy( #)=sin 2, and we can now identify this solution with
expressed in terms of the squared B1) amplitudes, giving  the packet ensemble envelope{ ot} depicted in Fig. 3. The
packet occupancy fraction is

3k 3-k
4 1/2 1/2

P (k&)= — U 2:—(—) 02:_(_)Co§ ké). .

(ko) =15 2, (ulge)’=5|3| 2 cf=5]|3|cos(ks) f ? 20

(35 0
Fye—Fm =% (39

We recognize that the extractgédactor in Eq.(35) arises f de
from the yg5 occupying half of the complete set of Hilbert 0
space unit vectorfu,), ... |ug). The extracted factor is

and demonstrates that the packet occupation fractipuli-
minishes from 2/3 fors=30° to 2/r for 6—0.
Then the joint transmission probability in the lindt-0

defined as thdractional occupancy E of packets in the
|ui),|us),|us) subspace of the ensemble distribution, Fig. 4.
This fractional occupancy arises naturally from the construc-
tion of the correlated photon superposition statg) and has
profound implications with regard to the applicability of 1
Bell's theorem[4,25]. Because of this fractional packet oc- P(O)= ;cos2 0. (40
cupancy, ayg transmission is accompanied byya trans-

mjssion only two—th_irds of the time when the analyzers are  a; thig point, we apply ar/4 rotational translation of
aligned k=0). Equwalently, the average arc span of an en-_ i, K(8) thereby aligning the bisectdorientation of ye
semble member is with the defined axig noted in Fig. 3. Under this translation,
the envelope of ensemble packety #) =cos 2 and theyg
packets are symmetrized abouwithout alteringP ().

We can now proceed with the construction of the emission
ensemble membefsyg} from the Fig. 3 distribution of en-
which is two-thirds of a full complement ,=90°. However, semble packets. This process is a trivial extension of&he
because of the coarseness of #e30° example, the two- =30° example. Zero net angular momentum for &dl, ve
thirds fractional occupancy of the ensemble packet distribucorrelated pairs and packet contiguity require identification
tion converges to a modified value as-0. We shall reex- of the Fig. 3 packet rows as the constitu¢nt} members.
amine the significance of the fractional packet occupancyrhese{yg} members have a continuous spectrum of arc
factor F, after taking this limit. spans ranging from zero t@/2. The packet occupation frac-

Finally, before leaving thes=30° example, we observe tion gives an average ensemble member arc span of
that the normalized ensemble packet distribution can be fit-
te_d to a sin(2) function at the five indicated points shown in (A)=F T _ 1 (41)

Fig. 4. Y v2

As 6—0, the number of Hilbert space orthonormal basis . ) )
vectors spanning & = /2 full complement arc increases  For any particular correlated photon pair, tgis a ran-
from the present threéfor 6=30°) to someN=r/(25). dom membexrow) of the emission ensembleye}. The ye
The Hilbert space increases from six dimensional kodl- ~ and its associategls share an orientation,, that is random
mensional. The construction ¢f,) through|¢y) proceeds in the laboratory frame and is identically zerokn N
as before, yielding a set df readily solvable simultaneous I order to calculate the predicted “joint probability”

equations in diagonal form analogous to E¢83)—(25). ¢ ,(0) for detectors placed beyond each of the analyzers we
Equation(35) becomes need to derive expressions for the coincidence r&@3)

with analyzerdqrelatively rotated by®) andR, without ana-
1 NZK 1 lyzers. We have
P(k8)=5F, 2 (ulge)*=5F,cos(kd), (37

1(90°+30°)

(A,)=F,90°=——

90°=60°, (36)

R(®)=RfP,(0)7* (42)
giving the joint transmission probabilities for any integer where Ry is the true production rate of correlated photons

value ofk=0/4. The exact value oF , can be determined from the source and is the fractional angular acceptance
from Eq. (37) for sufficiently largeN. However, we shall cone of the opposed analyzer-detector sets. The joint trans-
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mission probabilityP (®) is given in Eq.(40) and » is the  yield a joint probability different from that of Eq45). This
detector efficiency for the analyzer transmitted photons. Corpredicted difference was considered eari24].

respondingly, without analyzers, the coincidence rate is More specifically, the locally real representation predicts
that the Eq.(45) result is necessarily violated only when
Ro=R+f 7(7g). (43 (ye)>2/mr (63.7% since linearity would require;>1 for

full complement photons. Equivalently, the detector effi-
The notable feature of this expression is the efficiefgy)  ciency must exceed the efficiency

associated with the detector intersecting an emission en-

semble member. The other detector intercepts the full 1

complementyg for which detection efficiency is. (7m) = 2
This photon-specific dependence of detection efficiency is

related to the relative interaction cross section of the photorfor an equal population mixture ofz’s and full complement

which is a function of itsA ,, arc span. As the photon propa- yg's. Equation(46) demonstrates that the locally real repre-

gates through a detector, the wave frequency mediates thntation presented here is testable with respect to quantum

rate at which the excitation migrates to random points alongnechanics.

A,. Accordingly, as the wave progresses a short distance in If linearity is maintained up to the maximum limit of

the detector, the excitation rapidly reaches the entirety of thés;), then the predicted difference must manifest itself as a

A, arc span(At optical frequencies, the requisite distance isconvergence of the 1/2 coefficient in E45) to 1/m as(ng)

on the order of several micrometgriloreover, this distance progresses from 2/ to 1 while 5 remains at 1.

is further diminished as the phase velocity exceeds the group However, it should be stressed that the E4p) result,

velocity since the latter gives the average excitation velocitywhich is in agreement with quantum mechanics, remains

along the propagation axis. consistent even with presently available detectors commonly
Consequently, the effective cross section of interactiorregarded as “high efficiency.” For example, a detector with a

presented to the detector for a given photon is proportionate0% efficiency for full complement photons would, by lin-

to that photon’s packet arc spdn,. Over the range that a earity, be expected to exhibit an average m®0%

detector exhibits & ,-proportionate efficiency, the detector’s ~57.3% efficiency for the{yg} ensemble members and,

response is defined as having the propertiingarity. From  with ( 7,,)~73.6%), the Eq(46) condition is not exceeded.

the averaged , values of the{yg} ensemble members, the

2
;+1) ~81.8% (46)

detection efficiency Ill. LOCALLY REAL PARTICLE STATES
2 A. Introduction to particle states
=F p=—n. 44 ) . .
{ne)=Fyn ! “4 We consider here the construction of locally real particle

states in analogy to those of photons. We will examine $pin

The quantity(7g) did not arise inR(®) because the particles, but our results are readily extendable to particles of
transmission ofyg through the analyzer is accompanied by different spin composition.
the associated packets condensing along polarization axes. The construction begins in the rest frame of a particle
The history of the incideny arc span is erased in the pro- with the fundamental entity of apin packetefined on the
cess of transmission. The emergent photon is a full complevacuum field of oscillators in random ground state motion. A
ment member of an analyzer emission ensenfblg and  spin packet is characterized by rotational coherence of
consequently is detected with an efficiengyThe detection ground state oscillator motion in a plane about some speci-
efficiency of theyg photons is naturally “enhanced” in the fied point as depicted in Fig(&. That point can be selected
process of transmission through an analyzer. It may beas the origin of a coordinate frame. A bivec®rextending
readily appreciated that these results are independent of tlieom the origin and normal to the rotational plane, specifies
amplitude coefficient,. This independence is consistent the orientation and sense of rotation of the spin packet. The
with the analyzer interaction phenomenon we considereéhtersection of the particular bivect@ on the unit sphere

earlier. designates an infinitesimal conic intersection area or, equiva-
The ratio of the Eqs42) and(43) coincidence rates gives lently, a solid angleas. The planar infinitesimal angular arc
the expression for the “joint probability” 8 of a; is of particular utility and, in relation to the spin

packet, is functionally analogous to tidequantity for a pla-
nar wave packet with respect to the construction of particle
states.

The set of all variously oriented spin packets at a common
We then have agreement between the locally real represepeoint map their associatea; to cover a zone on the unit
tation and quantum mechanics. This outcome clearly desphere and collectively define spin structure (The zones
pends upon the linearity of the detector’s efficiency with re-we shall be considering are defined as the spherical surface
spect to the intercepted photon’s arc span as expressed in Hzptween a plane transecting the unit sphere and a parallel
(44). The property of linearity is compatible with “low effi- plane tangent to the sphere. The point of tangency defines the
ciency” detectors. Nevertheless, the range of linearity ispole of the zone. The orientation of this pole is a critical
bounded and detectors beyond that boundary are predicted $pecification. The phase of the rotational coherence is the

R(O) RfP(0)7° 1

AR T Ry(rg 20 49

032102-12



LOCALLY REAL STATES OF PHOTONS AND PARTICLES PHYSICAL REVIEW &5 032102

tors on the individual spin structures that varies as a function
of x. These variations in the spin structures alarage given
by the configuration space wave functidn(x,t) on t=0
associated with the standard quantum formaliut not
with its probabilistic interpretation

We then identify# as the descriptor of relative phase on
these spin structures as a functionxofThe envelopel* W
provides a measure of the density of coherently moving os-
cillators on particular spin structures again as a functiox of
The density over the entire envelope is scaled by a factor of
b3.

P The set of these spin structures constitutes the total wave
structure of a particular particle. In the locally real represen-
tation, we are reminded that, for a particular particle, the
field variablesA,, 6, , ¢, as well ash, are some fixed values
the instant emission occurs and functionally,-g
=W¥(x,t;A,,0,,¢,,bp). This total wave structure together
with an excitation state, instantaneously residing on one of
(b) the spin packets located on one of the spin structures, speci-
fies that particular particle. The excitation migrates on the
coherently moving oscillators of this wave structure with a
relative probability along the set of spin structures given by

A Ny WP*¥ and a random probability on any particular spin packet
U \/ \/ U z of the spin structure on which it instantaneously resides. As

with photons, both of these probabilities as well as analyzer
transmission probabilities are independent of the amplitude
FIG. 5. Schematic representation of sgirparticle. For a con- coefficientb, . The primary benefit derived from considering
stituent (a) spin structure, a rotational oscillator coherence at theb,, in the present context of single channel analyzers is only
origin constitutes a spin wave packet characterized by a bivectolp emphasize that the wave structure of a particle is a real
intersecting the unit sphere over somgsolid angle. Only a single  scalable entity.
typical spin wave pgcket is depicted. The set of all spin wave pack- \ne have then a general physical representation of the par-
ets covers a spherical zone of planar arc spgrthat defines the o ot s closely analogous to that of the photon. Measure-

spin structure. A particle propagating along an axjsconsists of ments of canonically coniuaate variables such asdp. on
(b) a sequence of spin structures with fixed orientation but varying y JUug Px

in rotational phase and coherent oscillator densitgllectively a large number of similarly generated partlclgs effectively
scaled by an amplitude coefficieng). sample the instantaneous values of those variables assumed

by the excitation on those particles. The collective set of

same on all spin packets of a particular spin structure. ThEUCN measurements can, for example, reconstruct the enve-
specification of a particular spin structure includes the assd®P€ of ¥* (x,)¥(x,t) in configuration space since this en-
ciated zone's total planar atk, and the zone's pole orien- velope is. essentl_ally identical for all of the. similarly gener-
tation 6, ¢, in spherical coordinates. These three quantitiestted particles aside from the scale factor introducedpy
arefield variablesof a particle. For dull complemenspin & That scale factor does not alter the relative probabilities of
particle, the solid angle of the spin structure’s zone is, 2 the excitation on a particle’s wave structure.

giving a planar ard\ ,= . As with photons, the relationship dx and Ap, uncer-

We shall have frequent occasion to consider here particleginties obtained from a collective set of measurements on
emitted from asourcesuch as a Stern-Gerlach analyzer. As athe canonically conjugate and p, variables is a conse-
particle is emitted, the spin structure is replicated along theuence of the classical uncertainty associated with real
propagation axis as shown schematically in Fign)5These  waves in their composition from harmonic waves expressed
spin structures are all identical with respect to a particulain dispersions of those variables.
particle’s fixed values of tha,, 6, , ¢, field variables. How- The specification of a particular emitted particle’s spin,
ever, the phase of the spin structures varies along the propaewever, is given by fixed values of the field variables
gation axis chosen here as An amplitude coefficienb,  Aj,6,,¢,. We shall demonstrate the spin measurement out-
constitutes an additional field variable that scales the amplieome for particles as a function of these variables in close
tude of the physically realized spin structures. Additionally,analogy to photon polarization measurement, but our pri-
there is typically a dispersion of values for canonically con-mary task will be to derive the formalism that assigns the
jugate variables such asandp, (the momentum component fixed values of these field variables to the emitted particles.
on x). Superposition over this dispersion for constituentThis derivation for particles follows consistently from that of
waves yields a relative density of coherently moving oscilla-photons.
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The formalism we seek generates a wave funcijoat ks
the emission source far< 0. An ensemble of particles hav- | =co > Vi) (47
ing the proper frequency distribution of the allowaldlgand

0, values is specified by (and the spherical coordinate The set ofjy,) are orthonormal basis vectors associated, re-

angle¢, assumes a random value p®,2r] in our present  spectively, with #=ks for integer values ok where |kd|

representation In a stochastic process &0, a random <. The half-angle cosine factor in EG47) gives the ap-

ensemble member describedbyx,t;A,,6,,¢,) is emitted  propriate coefficient for the rotational projection of a bivec-

with fixed A, and 6, , ¢, values. tor quantity such as the spin packéthe associated Hilbert
The emitted particle also has some particular value obpace becomes infinite dimensional when we ultimately take

amplitude coefficienb,. However, as withb,, for photons, the limit 6—0.)

the value ofb, is not directly related to the process of con-  The amplitude of a projection state vectds) is

structing ensemble states which is our principal objective. In

further analogy with photon states, the excitation probability

on the particle’s wave structure and the particle’s transmis- (vid ¢//k>=co{?

sion probability through an analyzer are both independent of

by, . The primary remaining benefits derived from consider-and is equivalent to the norm #,),

ing b, in the present context of single channel analyzers are

only to further emphasize that the wave structure of a particle ko

is a real scalable entity and to gain some measure of physical ol =l ) 2= 00{7

insight into particle structure and analyzer interaction. Since

the close analogs to these subjects have both been explor

in our treatment of photon states, we will forego here an

similar extensive examination fd, .

(48)

. (49

?ﬂe probability of an ensemble spin packe{at) is given
Yoy the squared amplitude
)
B. Analyzer emission of particles (vl ) ?= Co§(?) . (50)

The Stern-Gerlach analyzer for spinfermions is a two-
channel analyzer. The present treatment of analyzer emissiarhrough the projective process, the right side of Figi.&.,
and correlated particles requires only consideration of singl@=0) is the azimuthal spin packet probability in any plane
channel transmission with the other channel blocked. As withinclusive of the magnetic field axis B= + z upon applying
our treatment of photon analyzer emission and correlatethe alternative quantities in parentheses in the figure. This
photons, we defer a more detailed consideration(spin)  plane can be chosen asz without loss of generality. In
packet transmission in analyzers with both channels open tepherical coordinates, the azimuthal dependence can be de-
a subsequent treatment that provides a locally real represefined entirely on the positive value ranp@,7]. However, in
tation of quantum mechanical spatially separated superposine present case we can reflect the spin packet probability
tion states. about the+z axis. From this reflection, we obtain an unal-

We begin with a randomly oriented full complement par- tered co§6/2) spin packet probability in thez plane where
ticle incident on an analyzer with a single open channel. Fop, now as a polar coordinate abomtcan assume positive
random choices of the fixed azimuth® values, there are and negative values in close analogy to the rol& af the
probabilities that,< /2 and thaty,> /2. If we selectthe photon’s planar wave packet probability. Figure 2 is then
analyzer's open channel axis to be along its positive magdually applicable to photon analyzer emission processes and,
netic field +B= +z, there is a; probability that the parti- upon applying the alternative quantities, to particle analyzer
cle’s spin packet structure will interseetz. When this in-  emission processes.
tersection occurs, spin packets from this structure and the Similarly, we can also invert th&#<0 contour without
excitation condense to the z axis (in 6-form analogous to  altering the spin packet probability in ttxa plane. The par-
that of photonsand propagate through the analyzer. ticle’s spin packet probability contour with this modification

Conversely, there is & probability that the spin packet is, likewise, closely analogous to the photon’s planar wave
structure will intercept the analyzer’sz axis. In this case packet probability following a comparable inversion.
the excitation is absorbed as it proceeds along the blocked There is, nevertheless, a significant distinction between
channel while residing on the spin packets condensed othe packet probabilities of photons and of particles. The com-
—z and no detectable particle emergédevertheless, spin plete set of the photon ensemble planar packets associated
packets still condense along thez axis and an “empty with polarization analyzer emission lie entirely in the plane
wave” ensemble member is emitted by the open chahnel. orthogonal to the propagation axis. Accordingly, Fig. 2 ap-

For the transmission case, we designate dHerm par-  plied to photon analyzer emission, in addition to giving the
ticle propagating in the analyzer as thenerator particle angular packet probability, also represents the angular distri-
pg- As pg emerges from the analyzer, ifsform spin packet bution of the entire set of planar packets. Additionally, be-
along +z [associated with the basis vectary) in a 2N cause a complete set is given, the planar packet composition
(=2=/6) dimensional Hilbert spadegenerates a set of en- of the {y.} members as the rows of the Fig. 2 modified
semble emission state vectors contour is immediately identifiable.
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Conversely, while the Fig. 2 modified contour is also the (a) +z (b)
spin packet probability in angzimuthal plandi.e., a plane —9
inclusive of +2), the actual distribution of spin packets is N,
three dimensional and must be discerned from the probabili
ties. Accordingly, the spin packet rows each correlate respec crrrtrr—
tively with the packet probability of full complementAg
=) ensemble members, of {p}. However, theorienta- +z
tion of each row is the consequence of rotational averaging 9' éA (JB>
of a particularp, aboutz (through ¢), where we are re- 4 9 —
minded that the orientation of a row is equivalent to the
bisector angle at the row’s center. Thgorientation prior to +z
rotation is not typically the same as its probability orientation
in Fig. 2. T /

The transformation from a presently unknown distribution (©)
of ensemble members to the Fig. 2 probability of ensemble
members may be derived from an examination of a single
arbitrary{p.} member at some fixed orientatighy. We can v
choose the prerotation plane of thmtto bexz without loss \ s
of generality. Then the zone @f, is shown in cross section T P
in Fig. 6(@) and the packets of this zone intersected byxthe ,OC/ ’
plane are depicted in Fig(l6 as a function off. _ 12

In order to obtain the associated packet probability, - /
must be rotated abouatfrom its present orientatiop= 7 to - L
¢=3m/2 while keepingd, fixed. Thep, packets intersected -
by thexz plane averaged over this rotation give us the packe +y
probability of some specific row in the Fig. 2 modified con- ] ) _ ) )
tour. The transformation, computed for this arbitrary; al- FIG. 6. Spin struc_tur_e orlc_entatlon of_ typical partl_cle ensemble
lows us to map from thépe} with all members oriented in memper(analyzer em|§3|onpr|or to rptatlonal averaginga) as a.
Xz to the (postrotation packet probabilities of Fig. 2. Note Z°N€ INxz plane andb) in corresponding polar angle representation
that symmetry allows us to confine the rotation to the showing 6,—( 6z) postaveraging translation. To rotationally aver-

=[m,37/2] quadrant of thxy plane. Thep=[ 7/2,7] quad- jgelolt;r?et}t/g;cza;aﬂz structurég) sweepr along zone "base” from

rant gives a redundant result. Alternatively, if we had se- '

lected instead @,>0, a rotation in thep=[0,7/2] quadrant

would have sufflced. . . Og(0a,¢)=tan !
For calculational purposes, we will leave our arbitragy

oriented in thexz plane as in Fig. @ and, instead, perform

the requisite rotational averaging by sweeping the vecto

tanf,
COSs¢

(52

¢ and the probability oz over the entire rotatiop=kA ¢ is

along the base surface pf from an azimuthal angle df, at 71(2A0)

¢=0 (in the xz plane to ¢= /2 along the+y axis where (0g)=— 2 050, KA @) A
the azimuthal angle of increases tar/2 as shown in Fig. T k=0

6(c). Clearly, the averaged azimuthal value rofover this

rotation is some angle intermediate betwen and /2. :Ef”/zg (0x,0)d

This value is equivalent to the maximal azimuthal extegt mlo P APIRe

of one of the packet probability rows in the upper half of Fig.

2. Ccosin/1 2
Then, qualitatively, the Fig. (@ p.(84) ensemble mem- 2 cos 1 T (53)

ber, with its initial Fig. &b) row of xz packets, is displaced

(transformedl to the right to# after rotational averaging as We recognize(fg) as the maximal extent i@ of the en-

indicated in the figure. semble member packet probability rows in the upper half of
We now turn to a quantitative determination of thg  Fig. 2. The inverse of Eq53),

— @ transformation. The base @f(6,) in Fig. 6@ along

whichr is swept is the plan&/z=tand, as defined in Fig. 0r= wsin2<08> (54)
6(c). After rotation ofr through somep, we have A 2’
z X COS¢p gives us a transformation that can be applied to these prob-
ta”HC:[: L tanf, - tané,’ (5D ability rows to obtain the correspondirigrerotation maxi-

mal ¢ extent of the ensemble members oriented in xke
The complementary angléz= w/2— 6- represents the plane. Symmetry considerations permit application of this
maximal azimuthal extent gs(6,) at ¢. From Eq.(51) transformation to the entire Fig. 2 modified contour, i.e., the
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ted from analyzerA are not probabilistic binary quantum
(a) (b) objects with spin up or spin down but are, instead, real enti-
ties stochastically selected frofpe}. An arbitrary ensemble
1— Q memberp, has a full complement spin structure with a ran-
dom orientation ove® =[0,7/2] and ®=[0,27] of some
- 6a 0p,,P, (=0p,9p). At the instantt=0 that particlep, is
1—>\ " 2— 0 emitted fromA, the outcome is fully determined for trans-
2\ ~ * ~ (0p) mission through a subsequent Stern-Gerlach analyzero-
3— ANQ tated azimuthally byY at somed with respect toA. As with
4— 3— Q

photons, the outcome is independent of the amplitude coef-

\
5 \\ N\ ficient.
\\ =

C. Correlated particles

\ In our investigation of correlated particles, we consider a
v - 9— Q process in which a pair of emitted spjrparticles carry a net

-7 0 +7 angular momentum of zero. The spin states of these particles

0 — are then expected to be opposite.
In analogy to analyzer emission of particles and to photon

FIG. 7. Analyzer emission ensemble spin packet distributionStates’ a correlateq particle pair is identified as an indgpen-
showing linearf dependence of member orientatidasin a polar dent ge_nerator partlclpg and a dependent emission pa_rtlcle
representation, including postaveraging probability envelopd’e - AS in the construction of correlated photon staggsjs

(dashed lingand(b) as a set of zones in thez plane. a memb_er of an ensembi@g}.
Also in further close analogy to photons, the generator

completed extent of the members. The cross-sectional disparticlepy in analyzer emission is physically constrained to a
tribution of the{p.} ensemble members oriented in tke  d-form within the analyzer along the transmission channel
plane is shown in Fig. (3) as a function off. We readily  axis whereas no such constraint is present for the correlated
identify the underlying ensemble members as a set of spigenerator particlgpe which is created as a full complement
structures linearly distributed ifl by the Eq.(53) transfor-  particle with A,= . This full complementpg, unlike the
mation. o-form pgy, presents an angularly extended generator source

As a consequence of our conversion from azimuth&d  contributing to the construction ofpg} spin packets as
polar 6, we see that in the final construction of the ensembleshown in the Fig. 3 cross-sectional depiction upon applying
members, the upper and lower sets of rows in Fig) are the alternative quantities in parentheses.
mutually redundant. Either set, upon rotational averaging Furthermore, within the closed system of gmy, pg pair
over a fullo= 27, generates an azimuth@lot a polay angle  emitted in free space, the orientation of the pair is random in
probability of packets in agreement with the azimuthal prob-the laboratory frame as defined by the pole of, epg., As
ability shown in Fig. 2 for6>0. in the case of correlated photons, we find that it is expedient

Then, an elegantly simple ensemble consisting of a set db transform to the particle reference fraidein which pg
full complement particles with orientations linearly distrib- has a fixed orientation. Initially, for the convenience of com-
uted in azimuthab over[ 0,77/2] is associated with emission puting projections, we choose to align the spin packet arc
from a Stern-Gerlach analyzer with a single open channetpanA, of pg with the angled in K spanning 0 tor as
[see Fig. T)]. The members are also randomly distributedshown in Fig. 3(Later, we will rotationally translaté as we
in ¢ over[0,27], but this aspect is not depicted in Figby. previously did for correlated photons.

For analyzer emission of particles, the laboratory frame The correlated particle source is situated between opposed
angle® with respect to ther z= + B axis of the analyzer is Stern-Gerlach analyze#s, andA, that have their respective
identical to# used in the construction of the ensemble. Simi-magnetic fieldB,; andB, vector axes relatively rotated &Y.
larly, the analyzer’s angular orientation in the plane of the  Aside from this relative angular displacement, the vecByrs
laboratory frame isb = ¢. Given these equivalences, we canand B, assume random orientations khfor any particular
substitute®,d for 6, ¢. The rationale for this substitution is pair of correlated particles.
realized when we treat correlated particles for whilcéind ¢ Then, Fig. 3 is the probability of spin packets & 0 in
assume the role of integration variables. an arbitrary plane irK, such asxz with @ presently refer-

A subsequent Stern-Gerlach analy2€r rotated fromA  enced to+x, and the rows define the ensemble members
by some azimutha® then serves as an analyzer of the transecting that plane. The functional form of the probability
output. From the construction of the ensemble, we obtain &nvelope is yet to be determined. We must also ascertain the
cos(0/2) probability of transmittingA emission ensemble full three-dimensional probability and distribution of the en-
members througld\’ in agreement with the probabilistic in- semble members and then calculate the Stern-Gerlach ana-
terpretation of quantum mechanics. lyzer joint transmission probability over the ensemble before

However, in the locally real representation, particles emitfinally calculating the joint{detection probability.
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Symmetry properties of the correlatpd and{pg} mem- ——
bers arising from zero net angular momentum require that 6 = 60° {pe}
the xz spin packet probability be maintained upon rotation
about +z. Accordingly, rotation of the Fig. 3 probability l ‘
immediately gives the full three-dimensional probability of T T T
the ensemble members as a set of coaxial zones oriented at 30° 90° 150° 9 —
+2z. Moreover, rotational symmetry imposes equivalence of o) ) [vs)
spin packet probability with spin packet distribution for L 120°
{pe}. We saw that this equivalence was not applicable to ]
{Pe}- — 60°
However, before proceeding with the calculation of the I___‘
ensemble state vector for this set where we have an infinite T _____ -] 0°

dimensional Hilbert space, we temporarily revert to a coarse

6 example in order to demonstrate calculation of the en- ) vs) lve)
semble state vector with a finitely countable number of spin 210° 270°  330°
packets as we did for correlated photon states. We shall also 1 1 1
express angular quantities in degrees as a reminder that we (2)
are examining this coars& example.

In the particle reference frami we choosed=60°,
which gives three angular increments for a full complement +z
particle in analogy to the choice &= 30° for photons. The
corresponding Hilbert space is six dimensional in spanning Q K
360°. For the emission ensemble we have an orthonormal set
of basis vectordv,), |v,), and|v3) in Hilbert space that
can be respectively associated with the orientations (b)
+30°, +90°, and+150° in a plane that we can choose as
xz without loss of generality. The orientations are defined as
polar angles measured from tHex axis.

The respective basis vectors [ay;), |vs), and|vg) are 180°  120° 60° 00 =6
associated with th@g spin packets at the supplementary
angles +210°, +270°, and +330°. The generator spin
packet bivector atvg) is physically antiparallel to an emis-
sion spin packet bivector db3). Effectively, |vg) contrib-
utes a zero angle projectiok£0) to the emission ensemble m
at |v3). Similarly, the|vg) contribution to the emission en-
semble afv,) is treated as a 60° projectiok£1).

More generally, the projection angle from the basis vector
of the generator packet to a particular basis vector of the
emission ensemble is computed from the supplementary
angle of the generator packet basis vector. As a result, par-
ticle projectiong Fig. 8(@] are computed in close analogy to
photon projectionsgFig. 4). (In the latter case, transformation
to a supplementary angle basis vector in computing projec- (o)
tions was not essential with regard to the calculational for-
malism because of the bidirectionality of the planar wave
packets but would, nevertheless, have been appropriate from FIG. 8. Correlated particle example fér=60° of () ensemble
the physical perspective of the phase differential between SPin wave packet projection computation in an azimuthal pléoe,
ve and yg .) schematic three-dimensional representation of ensemble spin wave

P : packets with six singly occupied circumferential sites and one dou-
K 6Tf|1(e:né pré)je;rglggl trnqal?li|g:rr;esr;g)cresgir;|gscskuel§2pt:£gugrr:)-bly occupied polar site, an¢t) joint transmission probability cal-
jeC’tions ’of ,the emission particle énsemble state vectoCUIation giving 8/8, 6/8, 2/8, and 0/8 when analyzers are relatively

fotated by 0°, 60°, 120°, and 180°, respectively.
|41y, |i,), and|3), respectively, whergy, ) is constructed e ’ ’ : fesP y
from the single 120° projection of the generator packet at

Pc

0

\_/

lve) to |vq). Similarly, |¢,) is the 60° projection of the |41 =cilva), (59)
generator packets &ts) and|vg) to |v4) and|v,), respec-

tively, and|3) is the 0° projection of the generator packet |h2) = C1lv 1)+ C3lv2), (56)
at|vy), |vs), and|vg) to|vy), |v,), and|vs), respectively.

These projections give and

032102-17



STUART MIRELL

|¢h3) =Calv1) +Colv2) +C5lus). (57
The norms of these projections are
ks
ol = nd i)™= coa( 3) (58)

as in analyzer emission, but the,) are now constructed
over the extended generator statepgf Imposing Eq.(58)
on Egs.(55—(57) we have

120° 1
_ra2712_ _=
pd=teii=cod 2|5 69
60° 3
lpall =[ 3+ c31%= cos( —) = £, (60)
2 2
and
2 2 211/2 0°
l[43l|=[c1+c3+c3]M*=co > =1, (61)
which yield the|¢1), |#,), and|y3) coefficients,
= —l = ! 62
01—03—51 Cz—ﬁ- (62)

Since |#3) is a projection into a subspace spanning a full

complement set of basis vectors, it is equivalent todbe
related particle superposition state

1

1 1
|9//E>=|l/fs>=§|vl>+ \/§|Uz>+§|vs> (63
for the ensemble.
The squared amplitudes,
2 2 1 2 1
(V1| ¥)>=(v3ly) =1 (vl ) =3 (64)

PHYSICAL REVIEW A 65 032102

At +zin K, the centralpole) packet site is doubly occu-
pied while the remaining six circumferential sites are singly
occupied. Symmetry witlpg further facilitates identification
of the two ensemble members. One member consists of the
full complement set of seven spin packets while the other
member is the single additional spin packet at the pole.
Clearly, the circumferential distribution of six sites is not an
exact rotational symmetry abottz and the mapping itself
is not accomplished without some minor areal distortion of
the as. However, both of these concerns are attributable to
the finiteness of the preserdi=60° example and are re-
solved asd— 0. The associated generator partipleis rep-
resented by a full complement seven-site Bemispherical
zone oriented at-z in K.

We want to use this three-dimensional distribution to
compute joint transmission probabilities when a correlated
particle source is positioned between opposed Stern-Gerlach
analyzersA; and A,. The respective magnetic field vectors
B, andB, of the analyzers are rotated iy relative to each
other, but these vectors are otherwise randonKinWe
choose spin up as the open channeRgfand spin down as
the open channel of,. In the present representation, the
probability for joint analyzer transmission is then equiva-
lently the two-vector probability of intersecting a member in
the {pg} distribution with B, and intersecting the full
complemenpg with —B,. This determination can be greatly
simplified by symmetry properties. Sin¢pg} is rotationally
symmetric, we can azimuthally rotate the polepef by ©
+ at any ¢ and observe that the joint intersection of a
single vector with{ pg} members and a rotatga}; is equiva-
lent to the above two-vector probability problésee Fig. 9.

The single vector joint intersection is readily evaluated in
the present=60° example. Whempg is rotated by® + 7
about {pg} where ®=ks=0°, 60°, 120°, or 180°, the
joint overlap ofpg with {pg} is calculated in each case from
the transection of thg¢pg} spin packets by a plane. That
plane is identified as the base of thg hemispherical zone.
The{pg} transections for thes® are depicted in Fig. @).

For ®=0°, the joint overlap is all eight spin packets and

specify the relative ensemble spin packet probabilities in arIIhe joint transmission probability is

azimuthal plane as shown in Fig(a. An inspection of this

coarse5=60° example demonstrates that the spin packet

probability is functionally consistent with sthat the indi-

1
P,(0°)= 2—8(8), (65)

cated points following normalization. From related results

for photons, we can readily verify that in the limit &-0
the normalized set orfi2 values,i=1 to N/§, is vanishingly
close to sim.

Although we readily obtain céé/2) packet expecta-

3 1

tions of 1,7, 7, and 0 withks/2=0°, 30°, 60°, and 90°,
respectively, we must remember that E64) and Fig. &a)

where the normalization factor 28 accounts for all of the spin
packet sites that must be interrogated by the single vector.
Since there are two ensemble membéps} represents 2

X7 sites. However, there are an additionat 2 sites that
must be included representing the 50% chance of the single
vector not intersectingpg}. Similarly, we have

represent packet probabilities in an arbitrary azimuthal plane.
However, zero angular momentum of every correlated pair
Pc.Pe imposes rotational symmetry upon the full distribu-
tion of packets. Accordingly, Fig.(8) is also the distribution

of spin packets in an arbitrary azimuthal plane and we can
immediately construct a full three-dimensional distribution
of ensemble spin packets mapped ontoma tZemispherical
surface as shown in Fig.(13).

1 1
Pp(60°) = 55(6),  Pp(120°)=55(2),

1
P,(180°) = 2—8(0). (66)

These probabilities can be summarized and reorganized as
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pp<®)=%prow_® E,(0)d0= 5F cosz( ) (69)

whereE( ) represents the spin packet probability. The so-
lution to Eq.(69) is Ey(#)=sing and gives the functional
form of the Fig. 3{pg} probability envelope.

We are reminded that projections fgug} were computed

A

F* \ in an arbitrary azimuthal plane which was selectecadn
e _>\ l +z these projectionsy was treated as the polar angle referenced
{pe} to +x in K. This choice was convenient in computing the

sin@ {pg} probability envelope. However, sinagkis merely
FIG. 9. Calculational technique for determining correlated par-an integration variable, we are free to rotationally translate
ticle joint transmission probability by rotating; zone through® 0=0 by 7/2 to +z. In an azimuthal plane we can treats

+ 7 in K. a polar coordinate aboutz and spin packet probabilities are
then functionally given byE,(6)=cos6. This cos? spin
3-k 3—k A . . .
38 4 1/4 kS packet probability is applicable to an arbitrary azimuthal
p(Kd)= 53 2 (vilp)?= cizz— —|cog| — plane, but because of zero angular momentum for all corre-
28 (= = 2\7 2 X . :
67) lated pairs, we have rotational symmetry abatz which

requires that co8 is equivalently also the spin packet distri-
bution in any azimuthal plangThis equivalence of spin
packet probability and distribution in azimuthal planes was
not applicable in particle analyzer emission.

The construction of the members of the correlated particle
emission ensemblépe} is then trivially obtained from the
spin packet distribution in an azimuthal plane, unlike that of
the analyzer emission ensemHle.}. Zero net angular mo-
mentum for allpg,pg correlated pairs requires rotational
symmetry about th@g orientation. This symmetry together
with the spin packet contiguity identifies the Fig. 3 spin
packet expectation rows as the ensemble membef{pgf

struction of{pg} states from projections in azimuthal planes with each row representing the member’s spin packet distri-
Pe pro) P bution in any arbitrary azimuthal plane. The three-

in analogy to the construction ¢fg} states from projections dimensional distribution of the ensemble members consists
in the plane orthogonal to the propagation axis. Then, despite

the three-dimensionality ofpg}, probabilities in azimuthal Of coaxial zones about z in K with respective planar arc
Y OfPes. P spansA , given by the Fig. 3 rows. The frequency distribu-

planes are functionally analogous to the probabilities assock: P
ion or densityof ensemble members is given by abas a

ated with{yg}. The functional analogs of these probabilities
are related by @— 6/2 change of variable. This is exempli- function of ¢ (< /2). The{pe} members with a continu-
. ; . : ous spectrum ofA, values ranging from 0 tar, have an
fied by the Fig. 8 {pg} probabilities which can be fitted to average ensemble) member olanar arc —5
a sind function. We recall that the Fig. fyg} probabilities 9 . b dpay) = 2.

In the particle frameK, all {pg} members ands are

can be fitted to sin(@. oriented at+ z and —z, respectively, as shown schematically
The functional aspect dPp(k) that is uniquely related n Fig. 10. In the laboratory frame, the orientationgpgfand

E)the three-dimensionality of spin packet structure resides i |rE)E for each correlated pair are mutually antiparallel but are

otherwise random.
As we seek the joint transmission probability, we must
proceed with care. Equatidi$9) is explicitly constructed in
(68) an azimuthal plane df. This restriction is perfectly accept-
able with regard to ascertaining the azimuthal plane distribu-
tion of ensemble membeikand the spin packetsince that
for arbitrarily large N=27/6 in a 2N-dimensional Hilbert distribution is necessarily rotationally symmetric for zero net
space whereN basis vectors span a full complement spinangular momentum. However, treating H§9) as a joint
structure zone. Recognizing that tlexac} value of the spin  transmission result effectively assumes that the opposed
packet occupation fraction arises from the full three-Stern-Gerlach analyzers have thBirandB, axes(rotation-
dimensional distribution of spin packets, we have left thatally separated by som@) in the same azimuthal plane i
value unspecified for the moment &g . This assumption is not generally valid since g B, pair
When we reach the limié— 0, the corresponding Hilbert (aside from a fixed relativ® rotation has totally random
space is infinite dimensional and the integral form of Eg.orientation inK. Accordingly, we must rigorously compute
(68) in analogy to Eq(39) is the joint analyzer transmission probabil®y,(®) for appro-

The origin of the extracteg factor in Eq.(67) may be
identified as the probability of intersecting ther2solid
angle ofpg at some random orientatige.g., that of the axis
for a Stern-Gerlach channellhe adjacent factor is the frac-
tional occupancy of spin packets {pg} designated af,, .
Since the probability of encountering a spin packet pp}
is unity at the polar site and for the six circumferential
sites, we havé =1(1+3}x6)=4%. The summation factor is
recognized as equalent in form to the corresponding sum-
mation factor in Eq(35) for photons but here, fo6=60°,
yields coé(kd/2). This similarity originates with the con-

Upon proceeding toward the lim@— 0, we have

1 Nk 5
Pp(kd)=5Fp 2, (vilve)? -5F coé(
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{pe} . Fomat= = 73

T NN~ e 2m 2

FIG. 10. Correlated particles in particle frardeshowing repre-
sentative ensemble members{p} with a cose distribution ofA
arc spans and antiparallel maig .

which is a decrease from thg approximation associated
with the coarseS=60° example. From Eq69), we recog-
nize thatF, is a 3 factor extracted from thé numerical
coefficient in Eq.(72).

: . : : : The calculation of the predicted joint probability for cor-
priately randomized orientations of i, B, pa. related particles proceeds in a manner analogous to that of

We again use the calculational methodology of rOtatir]gphotons However, for the three-dimensional spin packet
Pg by © + m with respect tqpe} in order to reduce the joint structure, the detection interaction cross section ¢pef is

transmission problem to that of a single vector intersection:; :
Figure 9 is still applicable. proportionate to the average area of the ensemble zones. Ac-

Without loss of generality, we can select an orientation Offr?éd(l;?ggg ;r;itirgrl]eﬁgggrpgi?eet;’é& ;22 nt?]téif\’}ér\év'teh detec-
pc in the Xz plane at some arbitrar® and ate= 7 in the ' 9

correlated particle frami. The base of thgg hemispheri- tion efficiency overpg} is
cal zone is the plane defined by 1

=Fyn=5m, (74)
X _sinfcose (me)=Fp7 27

tan@C:——

z cosf '’ (70

where 7 is the detection efficiency for a full complement
particle. Equation(74) constitutes thdinearity criterion for
particle detectors. Equatiai74) is dependent only upon the
angular geometrical aspects of the spin structure zones and is
not a function of the amplitude coefficieht, .

Then, with the quantitieR(0®), Ry, Ry, andf defined

where ¢ is the azimuthal integration variable in the particle
frame and® . is the complement o®. Then g, functionally
dependent upow, is

0(¢)=tan tan@c)_ (71  in direct analogy to those of correlated photons, the “joint
Cose probability” for particles is
The transmission probability is determined by computing the R(®) RfP,(0)72 1
three-dimensional angular surface integralover the en- 9p(0)= R, TR fs7<77 ) =§Co§§, (75)
0 T E

semble spin packet distribution <0 and also the corre-
sponding integral , over the ensemble spin packet distribu- . . S .
tion in x>0, but bounded by thpg base(Fig. 9. Symmetry in agreement with the probabilistic interpretation of quantum

permits¢ integration over a quadrant for both integrals andmeChan'CS' . .
doubling their values. The quantity césn these integrals is A comparison to correlated photons readily demonstrates

effectively the density function of spin packets as determineéh"’lt this agreemelnt is a consequence of nafural _enhancement,
above and expressed azimuthally and when(7g)>3 5 the locally real representation is test-

The normalization factor of 2 is simply the angular in- able with respect to the probabilistic interpretation.
tegral over the hemisphere. A factor §fmust also be in-
cluded to account for thpg transmission probability. Then IV. DISCUSSION

the joint analyzer transmission probability is The inherent asymmetry of the correlated locally real

states for both photons and particles, as manifested by the
121,+2l,

P,(0)== ——= packet occupation fraction, has important implications with
P 2 2w regard to Bell's theorerfd]. It has been shown that “nonen-
1 = . hancement” is an implicit assumption of Bell's theorg2s].

- Cosgsingdgf de This_assumpt_ion is_ generally regardeq as plausible since it

2m Jo w2 requires that insertion of an analyzer in the path of a corre-

1 (w2 (00e) lated photon or particle must reduce or, at least, leave invari-

+ J cosfsingdade ant the resultant detection probability. Conversely, Bell's

2m]o Jo theorem is not applicable to the class of hidden variable

1 1 (a2 tan® theories exhibiting enhancement, i.e., detection probability

-4 _J sir?| tan 1 an C) de po_tentially increases upon inserting an analyzer. Accordingly,
8 4m)o Cose this class has not been excluded by performed experiments.

1 1 ® However, theories exhibiting enhancement are not generally

nz% =~ co2—. (72) perceived as a viable alternative to the probabilistic interpre-

2 4 2 tation because of the apparent implausibility of enhancement
and its typically arbitrary imposition in those theories. It is

The spin packet occupancy fraction in the-0 limit is therefore a critical aspect of the present locally real represen-

ZSI
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tation that enhancement arises as a natural and plausible The necessary imposition of an ensemble construction on
property. the wave functions of the quantum mechanical formalism
In retrospect, is of some interest here to note the compewas, of course, initially seen in the context of single propa-
ling and prognostic advice of Ferrero, Marshall, and Santogating entities when analyzer measurements were consid-
[19] that it would be productive to examine modifications of ered. _ o _
the standard quantum mechanical formalism in the interests Clearly then, there is some profound physical interaction
of achieving compatibility with local realism despite the suc-that underlies the significant divergence of the locally real
cesses of the probabilistic interpretation of quantum mecharf€presentation from the quantum mechanical formalism
ics. They anticipated that these modifications would yield avhen analyzer measurement is considered. To understand
theory that naturally violated Bell's plausible assumptionsthis divergence, we first consider a set of individ(rminana-
[4,25]. lyzer) detector measurements performed on a large number
Similarly, it is of further interest here that several inves-©f discrete photons or particles each of which is prepared
tigations, including those of Selleri and Zeiling@0], Lep- ~ uUnder identical experimental condition§The appropriate
ore and Sellerf21], and Ferrero, Marshall, and San{d®], Wwave func'thn might represent a superposition of energy
have identified the detector low efficiency “loophole” as a States. Individual measurements reveal a random state in-
likely critical aspect of a viable locally real representation. Stantaneously occupied by the excitation at the time of mea-
In the present context, the testable consequences f@urement. Accordingly, the collective measurements then ob-
which the locally real representation derived here divergep_ctl\./ely.yleld the constituent states in their proper statistical
from quantum mechanics relate to the use of a detector th&liStribution. _
exceeds the linearity criterion. Nevertheless, the divergence However, from the locally real perspective, analyzer mea-
is subtle in that the numerical coefficients of the joint detec-Surements are distinctive in that they are noninstantaneous
tion probabilities Eqs(45) and (75) are altered, but the co- Processes that occur as a wave structure is incident on an
sine squared function d® does not change. In contrast, a ar)alyzer. The excitation, migrating on the dlr_mmshmg con-
more readily discernible linearization @ dependence is Stituent packets entering the analyzer, locks intodierm
predicted for those locally real hidden variable theories conSUperpacket forming along the analyzer's axis if that axis
sistent with Bell's inherent assumptiof,25). should happen to intersect one of those constituent packets.
It is also pertinent here to examine the relative divergencé&fectively, the analyzer inherently biases the excitation lo-
of the locally real representation from the quantum mechanicUs o the analyzer's axis for these events. Subjectively, then,
cal treatment of spatially separated superposition state¥/€ lose mfor_ma.tlon regarding the'excnatlon’s instantaneous
These states arise when considering phenomena involvid§cus as the incident packets begin to enter the analyzer.
devices such as beam splitters and two-channel analyzers. Accordingly, we postulate that analyzer measurements are
Quantum mechanically, the probabilistic photons and paroninstantaneous processes that bias the final excitation lo-
ticles are divided by such devices into two states that ar&ation to the particular state at the analyzer's axis. If such a
necessarily represented as a nonlocal spatially separated ffocess has physical validity, then the quantum mechanical
perposition state. Conversely, in the locally real representdféatment that places analyzer measured states on an equal
tion, the outputs of these devices produce two independerﬁ?onng with conventional detector measured states is in

wave structures. Objectively, one structure is excitation bea/dOUbt. That position is taken in the present paper and pro-
ing and the other is empty. vides the basis for proceeding with the derivation of the en-

When only “non-analyzer” devices such as simple beamsemble of analyzer emi;sion _states on which the excitation
splitters are involved, the independent wave structures frorf?@y instantaneously reside prior to analyzer measurement.
both output channels are each immediately compatible with
representation by the wave functions of the quantum me-
chanical formalism, e.g®(z,t) or ¥(x,t), but not with the
probabilistic interpretation of that formalism. However, =~ We must emphasize that the locally real representation
when the devices include two-channel analyzers, the conpresented here does not present any conflict with the calcu-
plete objective specifications of the two independent outpulational success of the standard quantum mechanical formal-
wave functions must now be constructed from analyzeism. We have noted that we begin with the quantum me-
emission states. Each output wave function can then objechanical formalism that specifies the wave functions for
tively be identified as a particular ensemble member deriveghotons and particles along the propagation axis, respec-
from those analyzer emission states. tively ®(z,t) and ¥ (x,t) in configuration space, and treat

Consequently, guantum mechanical spatially separated sthese wave functions as incomplete. We derive an ensemble
perposition states associated with “nonanalyzer” as well asvave function associated with a source that yields emission
analyzer two-channel phenomena can both be given a locallstates. The wave functions of these emission states are natu-
real representatior{This would include phenomena that are rally augmented with field variables that define outcomes for
supposedly characteristic of purely quantum mechanical beneasurement processes normally requiring the invocation of
havior such as “interaction-free measuremef9,30.) We  a nonlocal probabilistic interpretation. However, these aug-
reiterate, though, that analyzer phenomena necessitate an enented emission state wave functions remain fully consistent
semble construction augmenting the wave functidrz,t) with the standard quantum formalisitibut not with the
andW¥(x,t) of the quantum mechanical formalism. probabilistic interpretationas valid solutions of the appro-

V. CONCLUSIONS
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priate wave equation and boundary conditions. The comeonfiguration and momentum space variables along the
pletely specified wave function of an emitted photon or par{propagation axis. A measurement procedure based on these
ticle objectively determines transmission through avariables for a particular emitted member may be used to
subsequent analyzer. The resultant locally real representatigveal a single point on the envelope of the wave function’s
gives exact agreement with quantum mechanics for photogquared modulusd* ® or ¥*¥). That point is determined
transmission through successive polarization analyzers, fQjy the value that the migrating excitation happens to assume
particle transmission through successive Stern-Gerlach angy the instant of measurement on the structure of the wave
lyzers, for correlated pairs of photons, and for correlatednction. When applied to many similarly generated events,
pairs of particles while providing testable consequencesg;,.h measurements map the entire envelope of the wave
Spatially separated quantum mechanical superposition states ction's squared modulus along the propagation axis.

can also be given a locally real representation. . More significantly in the present context, for a particular
The construction of the respective ensembles assomated:i . . S )
iscrete entity(photon or particlg with field variable values

with these phenomena proceeds in a self-consistent mann%r].en necessarily objectively fixed, the transmission outcome
An ensemble of state$or photons or for particlesdescribed y 00 e ' )
through an analyzefpolarization or Stern-Gerlaghs fully

by a wave function ¢ or i) is formed from projections in X . . ) .

an infinite dimensional Hilbert space at the emission sourc@étérmined for alt>0 and can be identified as "determin-

for t<0. The states are specifications @lanar or spif istic realism”[19]. Quantum mechanically, the transmission
wave packets. At=0, a random member formed from the outcomes are interpreted as evidence that these entities are

states of the ensemble is emitted as a stochastic process wiigcessarily probabilistic. The perception that photons and
specific objectively real field variable values of packet arcParticles are probabilistic entities is derived from the biased
span (A, or A,) and orientation ¢, or 6,,¢,). The wave selection of a particular constituent state by the measurement
function is scaled by an amplitude coefficierit, (or by). analyzer.
The general wave function of the emitted member tfei0 When the wave functiond or W) for a particular dis-
can be expressed in configuration spagdzt;A,,60,,b,) crete entity objectively specifies fewer than a full comple-
or ¥(x,t;A,,6p,¢p,0bp)] along the propagation axig (or ~ ment of packets{ ,< /2 or A <), transmission through
x). Effectively, the transition from the ensemble state to aan analyzer increases the arc span to a full complement and
particular emission state—® or y— V) can be defined naturally enhances detectability. The correlated emission
as “stochastic realism{19]. states exhibiting this property of natural enhancement are
For any similarly generated emitted members of the enexplicitly local in contrast to quantum mechanical correlated
semble, regardless of the fixed field variable values, the astates which are necessarily nonlocally entangled. The per-
sociated wave function structure® (or V) are all essen- ception of entanglement is a consequence of the subtlety of
tially identical when examined only with respect to the enhancement.
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