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Recently, a lot of attention has been devoted to finding physically realizable operations that realize as closely
as possible certain desired transformations between quantum states, e.g., quantum cloning, teleportation, quan-
tum gates, etc. Mathematically, this problem boils down to finding a completely positive trace-preserving
(CPTB linear map that maximizes tHenean fidelity between the map itself and the desired transformation.

In this communication, we want to draw attention to the fact that this problem belongs to the class of so-called
semidefinite programming@SDP) problems. As SDP problems are convex, it immediately follows that they do

not suffer from local optima. Furthermore, this implies that the numerical optimization of the CPTP map can,
and should, be done using methods from the well-established SDP field, as these methods exploit convexity
and are guaranteed to converge to the real solution. Finally, we show how the duality inherent to convex and
SDP problems can be exploited to prove analytically the optimality of a proposed solution. We give an example
of how to apply this proof method by proving the optimality of Hardy and Song’s optimal qukhifter
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The basic problem considered by a number of author$én general, optimization problefa cannot be solved analyti-
[1-3] is: what physically realizable gquantum operationcally and one must resort to numerical methods. Most au-
comes closest to a given, but potentially unphysical, transthors try to solveP usingad hociteration schemes involving
formation between quantum states? The operation is mostagrange multipliers. Using these schemes, various useful
generally described by a linear maj) the physical realiz- results have been obtained. However, in our view, the con-
ability requires that the map is completely positive and tracgergence properties of these schemes are questionable, as it
preservingCPTP. The desired transformation can be speci-has not been proved that the solution obtained is actually the
fied in a number of ways, for example, by enumerating allgjobal optimum. In fact, these methods reportedly get stuck
possible input-output pairs of pure statfén,k),|outk)}.  now and then in suboptimal local optinil.

The dimensions of the input and output Hilbert spades, In this communication, we wish to draw attention to the
and™M,;, denotedd; andd,, respectively, can in general be fact that problenP belongs to a well-studied class of opti-
different. The symbok labels the different pairs and can mization problems called semidefinite progra(89P. The
either be discrete or continuous. importance of this fact cannot be overestimated. First of all,

In the most commonly used formalisft,4,5], the CPTP  semidefinite programs are a subclass of the class of convex
mapS that is to implement the transformation is representedptimization problems, and convex problems have the very
by an operatorX acting on the Hilbert spacé(,®H,y,.  desirable property that a local optimum is automatically a
Given any orthonormal basid/;} for the space of all such global optimum. Keeping this in mind we see that the re-
operators X is expressed aX=X3;S(V;)®V} , where the ported presence of local optima in the above iteration
asterisk denotes complgxot Hermitian conjugation. The schemes is due to the scheme itself, and not to the problem
requirements of complete positivity and trace preservatiorbeing solved.
result in the constraintX=0, Tr, X=1;,. Second, very efficient numerical methods have been de-

The requirement that the map must implement the transvised to solve SDPs, as these problems occur over and over
formation as closely as possible can be quantified by thegain in various engineering disciplines, operations research,
mean fidelity F: F=Z3,(outk|S(]in,k)(in,k|)|outk). The etc. These methods have very good convergence properties,
sum in this equation must be an integral with anand, moreover, their output includesartificateof conver-
appropriate measure férif k is continuous. In terms of the gence consisting of a numerical interval within which the
operator X, the fidelity is given by F=TrXR, with  actual solution must lie. Using a sufficient number of itera-
R=3(]in,k)(in,k])T®|outk)(outk|. The great virtue of tions, the width of this interval can be made arbitrarily small
this measure-of-goodness of the map is that the fidelity igapart from numerical errors and given the validity of some
linear in the operatoX. In this way the problem has been technical requiremenisin other words: convergence to the

formulated as an optimization problem real solution is almost always guaranteed and certified.
Third, the way in which these numerical methods work
maximize TrXR can be exploited to prove analytically that a given proposed

1 x=0 solution, e.g., an analytical Ansatz based on an educated
P - guess and on the outcome of numerical experiments, is actu-
Tr oueX= lin. ally the correct solution.
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In the rest of this section we will first discuss the basicreal vector space of dimension the square of the matrix di-
mathematical facts of semidefinite programming and themension. Since we are dealing with matrices over the bipar-
apply them to the problem at hand. For a short introductioriite Hilbert spaceH;,® H,, it iS convenient to choose the
to the subject, we refer 7], and for an in-depth treatment pasis vectors of the matrix space accordingly. {et} and
to [8]. Note that[9] presents another application of SDP to {7k} he orthogonal bases for Hermitian matrices oy
guantum mechanics, na_mely, to fin_ding bounds on the distilly g Hou, respectively, theqol@ 75} forms an orthogonal
able entanglement of mixed bipartite quantum states. basis forH;,® He,. Furthermore, choose the bases so that

The basic SDP problem is ;[nhe minimization of a lineary ., 0 4140 are the identity matrixof appropriate dimen-
functpn Of_ a r_eal Tvarlable<e R%, Sl,f]bjem to a matrix In- sion) and all othero! and 7* are traceless Hermitian matri-
equality minimizec X, F(x)=Fo+Zi=,xF=0, where the oo " A ghvious choice would be the set of Pauli matrices
= sign means thak(x) is positive semidefinitéhence, the {a*,a¥,0%} or generalizations thereof to higher dimensions.

termm SDB. - The ~ problem d_ata are the ~vector We thus have the following parametrization of the makfix
ce R™ and them+1 real symmetric matriceB;. Alterna- P11
1 2

tively, the F; can also be complex Hermitian but this is an X=2,2,7>,2 , Xjkol®7X With this parametrization, the
atypical formulation within the SDP communityn engi- TP requirement can be expressed in a straightforward way.
neering one typically deals with real quantities The condition Tg,X=1;,= ¢ is fulfilled if and only if ;o

This problem is called thprimal problem. Vectorscthat =g for all j>0, andxq= 1/d,. By changing the parametri-

satisfy the constrainF(x)=0 are calledprimal feasible ,ation of X, this can be taken care of implicitly,
points and if they satisfyF(x)>0 they are calledstrictly @2-1

2 2

feasible pointsThe minimal objective value'x is by con- X:Ejdillzk:l XikUJ‘X’TkJFEizzllXOk"O@Tul/dZ- From
vention denoted ap* (no complex conjugationand is  this parametrization, and the additional requiremert0, it
called theprimal optimal value immediately follows that the matricds; (in the SDP prob-

Of paramount importance is the corresponditugl prob-  lem) are given byF,=1/d,, F..;» =l ® 7%, with k#0. The
lem, associated with the primal one, maximizZér FyZ, Z index “i” in the left-hand side refers to the of the SDP
=0, TrFiZ=c;, i=1,... m. Here the variable is the real problem, and corresponds to all possible pajt&) of right-
symmetric(or Hermitiar) matrix Z, and the data,F; are the  hand side indices with# 0. As a shorthand for summation
same as in the primal problem. Correspondingly, matri£es qyer all these pairs we will use the symbf, .
satisfying the constraints are callddal feasible(or strictly Finally, we can assign values to the vector coefficients

dual feasibleif Z>0). The maximal objective value g foliows. The fidelityF is to be maximized, so we need an

- . . "
TrFoZ, _thedual optimal vaIL_1e|s denqted as! " additional minus sign; furthermore, in termsxf ,F equals
The objective value of a primal feasible point is an upperc _ s« Tr(oi® KR + 1/d h h d th

bound onp*, and the objective value of a dual feasible point, _ =ik ((0"®7"R)+1/d;, where we have used the

’ fact that TlR=1. This yields for the coefficients; c.;» =

is a lower bound ord*. The main reason why one is inter- ik : o

ested in the dual problem is that one can prove that, under 1" (0?®7°R), and for the Oft'mal fidelity, in terms of the
relatively mild assumptionsp* =d*. This holds, for ex- Primal optimal valueF = —p* + 1/d;. .
ample, if either the primal problem or the dual problem are  Using these expressions for the veotaand the matrices
strictly feasible, i.e., there either exist strictly primal feasible Fi (which are only dependent on the dimensions of the prob-
points or strictly dual feasible points. If this or other condi- lem), one can go about solving the problémumerically.
tions are not fulfilled, we still have that* <p*. Further- Again we wish to make a case for the use of freely or com-
more, when both the primal and dual problems are strictlynercially available SDP software in contrast to home-brewn
feasible, one proves the following optimality conditionxan ~ solvers. Current SDP solving methods are highly optimized
x is optimal if and only ifx is primal feasible and there is a With respect to execution speed and convergence and are
dual feasibleZ such thatZF(x)=0. This latter condition is €asy to use. As some of ti§ are complex, one has to use

called thecomplementary slacknessndition. SDP software that explicitly allows for complex entries
In one way or another, numerical methods for solving(€.g.,[11]).
SDP problems always exploit the inequalitys d* <p* <p, With the above assignments, the dual problem can now be

whered andp are the objective values for any dual feasibleformulated in a rather nice way. The dual objective, to be
point and primal feasible point, respectively. The differencemaximized over alZz=0, isd=—TrFoZ=—TrZ/d,. The
p—d is called the duality gap, and the optimal valpe is  constraint TiF;Z=c; gets an interesting form T’/ 7(Z
always “bracketed” inside the interv@tl,p]. These numeri- +R)]=0, with k#0. AsZ andR are both Hermitian, this
cal methods try to minimize the duality gap by subsequentlyneans that the matriZ+R must be of the formZ+R
choosing better feasible points. Under the requirements of @gl+2j.0a;0'®1, or, in other words,Z=a,l+A®1
the above-mentioned theorem, the duality gap can be madeR, with A a traceless Hermitian matrix. With this param-
arbitrarily small(as far as numerical precision allowdhis  etrization for all dual feasibl&, the dual objective becomes
is precisely the reason why one should be happy when aél=—d;a,+ 1/d,. Maximizing d thus amounts to minimiz-
optimization problem turns out to be an SDP problem. ing a, over all traceless Hermitian matricéssuch that the
We now apply these generalities to our problem at handresultingZ is still positive semidefinite. From the parametri-
ProblemP can immediately be rewritten as(primal) SDP  zation ofZ one sees that the smallest feasible valuaqgfor
problem by noting that the set of Hermitian matrices form aa fixed matrixA is given byag(A) = — A\ min(A®1—R), where
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N\ min Signifies the minimal eigenvalue of the matrix. The dual 115
problem finally becomes: find the optimal traceless Hermit-
ian matrix A such that thisag(A) is minimal. The dual opti-
mal value is therd* = —d; miny ag(A)+1/d,. Note that we osr
have significantly reduced the number of unknown param- 1
eters: from €,d,)? for Z to d?—1 for A.

These expressions for the primal and dual problems car
be used for proving that a certain proposed solution is opti-
mal. To that purpose one needs to propose primal and due  ossf i
feasible pointsx and A; if the resulting primal and dual ob- 0sh /;,
jective valueg andd turn out to be equal to each other, then stsouton |
x andA are optimal feasible points amq=d=p* =d*. Al- I :
ternatively, any feasible choice farand A gives upper and o7f l
lower bounds on the optimal valye , resulting in lower and . i
upper bounds, respectively, for the fidelity of probl@xFor ’ *
example, settind\=0 givesag(A)=AaR) resulting in the

upper boundF<d;\ .(R), Which was already derived in FIG. 1. Optimal mean fidelity of the @ shifter in terms of the
[3] shifting anglea, obtained from solving the associated SDP prob-

Using the method of the previous paraaraph. one can te I«—i:m. The dotted lines represent the two solutions outside of their
9 P paragrapn, espective region of applicability. The full line represents the actual

whether the feasible points are optimal or not, but it does nog ), +o
solve the problem of finding these points. As there is no hope
for solving the primal and dual problems analytically for all

second solution

) ! ! ! !
1 15 2 25 3 35

but the simplest problems, one must resort to numerical i 0 0 15
methods. Luckily, efficient methods abound and some imple- 0O r, 0 O
mentations are freely available on the web. From the numeri- R= 0 0 ry O
cal results one can then try to guess the analytical form of the

solution, or at least try to propose an Ansatz containing a few rs 0 0 1y

unknown parameters. If the number of parameters is small
they could be found by solving the primal and dual problemwith r,;=1/4+c—s, r,=1/4—c+s, r3=1/4—c—s, 1,
using the Ansatz. =1/4+c+s, rs=2¢, =1 CoSa, ands=(7/16)sina.
Even this could be relatively complicated, especially for
the dual problem, as this is an eigenvalue problem. An alter- The ansatz for the primal feasible point, which was al-
native for solving the dual problem is offered by the comple-ready given by Fiurase3], is
mentary slacknes§CS) condition, which does not require
solving an eigenvalue equation. Supposing that a correct

guess has been made érof the primal problem, one then cosg 0 0 cosB
has to solve théinear equation 6yl +A®1—R)X=0 in the 0 Sirt8 0 0
unknownsa, and A. Of course, one then still has to prove X= 0 0 0

that the resulting is dual feasible, i.e., is positive semidefi-

nite, and this could still require solving an eigenvalue prob- cosp 0 0 1
lem.

As an example of this proof technique, we now considerThere are two regimes, depending on the valueroFor «
the problem of constructing an optimal quisitshifter, first < =arctan(8/3r), put cos8=1, and for a=a,, cosB
considered by Hardy and Sorfd0] and prove that their =c/(s—c). This gives as primal objective fidelitf=(1
“quantum scheme” shiftefsee alsd3]) is optimal. +cosa)l2 for a<a,, F=1/2+2s+2c%(s—c), for «a

A qubit ¢ shifter is a device that transforms a pure state= «,. Going over to the dual problem, we now present our
(0, ¢) = cos(l2)|0) +exp(¢)sin(6/2)| 1) into another pure  own Ansatz for the dual feasible poiAt which was inspired
statey(6+ a, ¢). This is a nonphysical operation and has, by numerical results: simply considdiagonal Aonly. This
therefore, to be approximated. Hardy and Song consider botfheans thaf\ is parametrized by a single number, syand
a universal approximated shifter, with fidelity independent ofequalsA= s52. This gives forz

0, and a shifter withd-dependent fidelity optimizing the

meanfidelity. The mean fidelity of the nonuniversal shifter is
better than for the universal one. Hardy and Song proposed agto—ry 0 0 —rIs
an optimal schem¢‘quantum schemey for 6 shifting and

proved its optimality using a method of Buzek, Hillery, and 7= 0 3+ 0-r 0 0
Werner[12]. We will now do the same, but using our general 0 0 ag—O0—r3 0
approach.

The matrixR for the shifter is given by —Is 0 0 89— 0Ty
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To prove optimality of Fiurasek’s primal Ansatz and our dualsolutions ap=1/4+3c, 6=—s, cosf=1, and ap=1/4+s
Ansatz, we use the complementary slackness condifn | ¢2/(s—¢), s§=-s/(s—c), (r,—r;)cosB=rs. The
finding the optimal value foe, and 6). The CS condition  third equation of each set shows us that the first solution
ZX=0 gives rise to just three independent equatioag ( pertains to the case<a, and the second solution to the
+8—ry)cosf—rs=0, (ag+d—ry)si’B=0, (ap—3S—r,)  other case. The mean fidelity, resulting from these solutions
—rgcosB=0. As could be expected, there are two differentis then

2(1/4+3c)=(1+cosa)/2, for a<ay,

| 124+ 2s+2c?/(s—c)=1/2+ (w/8)sina+2 cofal (97 sina— 12 cosa), for a> a0, @

which is depicted in Fig. 1. These values are exactly the onegrogramming(SDP problem. From this observation, it fol-
obtained in the Primal problem, so this proves the optimalitjows thatP can be efficiently solved using standard SDP
of the two Ansatze, provideA=0 in both cases. It is a basic Software, and that there is no need &t hocsolution meth--
exercise in linear algebra to calculate the eigenvalugsipf ~ 2dS: Which could suffer from bad convergence properties.

] . . Furthermore, we presented a method for proving analytically
both cases; noting that<ds<2c in the casea<ay, andc that an Ansatz for the solution &f is optimal. We hope that

<s in the other case, one can indeed show tha always  the present communication will be useful for those working
positive semidefinite, proving its feasibility. in the field of determining optimal CP maps or optimal quan-
To conclude, we have noted that the problemvhich has  tum measurements.

to be solved for finding CPTP maps that optimally approxi-  This work has been supported by the IUAP-P4-02 pro-
mate certain desired qubit transformations, is a semidefinitgram of the Belgian state.
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