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Optimizing completely positive maps using semidefinite programming
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Recently, a lot of attention has been devoted to finding physically realizable operations that realize as closely
as possible certain desired transformations between quantum states, e.g., quantum cloning, teleportation, quan-
tum gates, etc. Mathematically, this problem boils down to finding a completely positive trace-preserving
~CPTP! linear map that maximizes the~mean! fidelity between the map itself and the desired transformation.
In this communication, we want to draw attention to the fact that this problem belongs to the class of so-called
semidefinite programming~SDP! problems. As SDP problems are convex, it immediately follows that they do
not suffer from local optima. Furthermore, this implies that the numerical optimization of the CPTP map can,
and should, be done using methods from the well-established SDP field, as these methods exploit convexity
and are guaranteed to converge to the real solution. Finally, we show how the duality inherent to convex and
SDP problems can be exploited to prove analytically the optimality of a proposed solution. We give an example
of how to apply this proof method by proving the optimality of Hardy and Song’s optimal qubitu shifter
~e-print quant-ph/0102100!.
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The basic problem considered by a number of auth
@1–3# is: what physically realizable quantum operati
comes closest to a given, but potentially unphysical, tra
formation between quantum states? The operation is m
generally described by a linear mapS; the physical realiz-
ability requires that the map is completely positive and tra
preserving~CPTP!. The desired transformation can be spe
fied in a number of ways, for example, by enumerating
possible input-output pairs of pure states$u in,k&,uout,k&%.
The dimensions of the input and output Hilbert spaces,Hin
andHout, denotedd1 andd2, respectively, can in general b
different. The symbolk labels the different pairs and ca
either be discrete or continuous.

In the most commonly used formalism@1,4,5#, the CPTP
mapS that is to implement the transformation is represen
by an operatorX acting on the Hilbert spaceHin^ Hout.
Given any orthonormal basis$Vi% for the space of all such
operators,X is expressed asX5( iS(Vi) ^ Vi* , where the
asterisk denotes complex~not Hermitian! conjugation. The
requirements of complete positivity and trace preserva
result in the constraintsX>0, TroutX51in .

The requirement that the map must implement the tra
formation as closely as possible can be quantified by
mean fidelity F: F5(k^out,kuS(u in,k&^ in,ku)uout,k&. The
sum in this equation must be an integral with
appropriate measure fork if k is continuous. In terms of the
operator X, the fidelity is given by F5Tr XR, with
R5(k(u in,k&^ in,ku)T

^ uout,k&^out,ku. The great virtue of
this measure-of-goodness of the map is that the fidelity
linear in the operatorX. In this way the problem has bee
formulated as an optimization problem

P:H maximize TrXR

X>0

Tr outX51in .
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In general, optimization problemP cannot be solved analyti
cally and one must resort to numerical methods. Most
thors try to solveP usingad hociteration schemes involving
Lagrange multipliers. Using these schemes, various us
results have been obtained. However, in our view, the c
vergence properties of these schemes are questionable,
has not been proved that the solution obtained is actually
global optimum. In fact, these methods reportedly get st
now and then in suboptimal local optima@6#.

In this communication, we wish to draw attention to th
fact that problemP belongs to a well-studied class of opt
mization problems called semidefinite programs~SDP!. The
importance of this fact cannot be overestimated. First of
semidefinite programs are a subclass of the class of con
optimization problems, and convex problems have the v
desirable property that a local optimum is automatically
global optimum. Keeping this in mind we see that the
ported presence of local optima in the above iterat
schemes is due to the scheme itself, and not to the prob
being solved.

Second, very efficient numerical methods have been
vised to solve SDPs, as these problems occur over and
again in various engineering disciplines, operations resea
etc. These methods have very good convergence prope
and, moreover, their output includes acertificateof conver-
gence consisting of a numerical interval within which t
actual solution must lie. Using a sufficient number of iter
tions, the width of this interval can be made arbitrarily sm
~apart from numerical errors and given the validity of som
technical requirements!. In other words: convergence to th
real solution is almost always guaranteed and certified.

Third, the way in which these numerical methods wo
can be exploited to prove analytically that a given propos
solution, e.g., an analytical Ansatz based on an educ
guess and on the outcome of numerical experiments, is a
ally the correct solution.
©2002 The American Physical Society02-1
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In the rest of this section we will first discuss the ba
mathematical facts of semidefinite programming and th
apply them to the problem at hand. For a short introduct
to the subject, we refer to@7#, and for an in-depth treatmen
to @8#. Note that@9# presents another application of SDP
quantum mechanics, namely, to finding bounds on the dis
able entanglement of mixed bipartite quantum states.

The basic SDP problem is the minimization of a line
function of a real variablexPRm, subject to a matrix in-
equality minimizecTx, F(x)5F01( i 51

m xiFi>0, where the
> sign means thatF(x) is positive semidefinite~hence, the
term SDP!. The problem data are the vecto
cPRm and them11 real symmetric matricesFi . Alterna-
tively, the Fi can also be complex Hermitian but this is a
atypical formulation within the SDP community~in engi-
neering one typically deals with real quantities!.

This problem is called theprimal problem. Vectorsx that
satisfy the constraintF(x)>0 are calledprimal feasible
points, and if they satisfyF(x).0 they are calledstrictly
feasible points. The minimal objective valuecTx is by con-
vention denoted asp* ~no complex conjugation! and is
called theprimal optimal value.

Of paramount importance is the correspondingdual prob-
lem, associated with the primal one, maximize2Tr F0Z, Z
>0, TrFiZ5ci , i 51, . . . ,m. Here the variable is the rea
symmetric~or Hermitian! matrix Z, and the datac,Fi are the
same as in the primal problem. Correspondingly, matriceZ
satisfying the constraints are calleddual feasible~or strictly
dual feasible if Z.0). The maximal objective value
2Tr F0Z, thedual optimal value, is denoted asd* .

The objective value of a primal feasible point is an upp
bound onp* , and the objective value of a dual feasible po
is a lower bound ond* . The main reason why one is inte
ested in the dual problem is that one can prove that, un
relatively mild assumptions,p* 5d* . This holds, for ex-
ample, if either the primal problem or the dual problem a
strictly feasible, i.e., there either exist strictly primal feasib
points or strictly dual feasible points. If this or other cond
tions are not fulfilled, we still have thatd* <p* . Further-
more, when both the primal and dual problems are stric
feasible, one proves the following optimality condition onx:
x is optimal if and only ifx is primal feasible and there is
dual feasibleZ such thatZF(x)50. This latter condition is
called thecomplementary slacknesscondition.

In one way or another, numerical methods for solvi
SDP problems always exploit the inequalityd<d* <p* <p,
whered andp are the objective values for any dual feasib
point and primal feasible point, respectively. The differen
p2d is called the duality gap, and the optimal valuep* is
always ‘‘bracketed’’ inside the interval@d,p#. These numeri-
cal methods try to minimize the duality gap by subsequen
choosing better feasible points. Under the requirements
the above-mentioned theorem, the duality gap can be m
arbitrarily small~as far as numerical precision allows!. This
is precisely the reason why one should be happy when
optimization problem turns out to be an SDP problem.

We now apply these generalities to our problem at ha
ProblemP can immediately be rewritten as a~primal! SDP
problem by noting that the set of Hermitian matrices form
03030
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real vector space of dimension the square of the matrix
mension. Since we are dealing with matrices over the bip
tite Hilbert spaceHin^ Hout it is convenient to choose th
basis vectors of the matrix space accordingly. Let$s j% and
$t k% be orthogonal bases for Hermitian matrices overHin

and Hout, respectively, then$s j
^ t k% forms an orthogonal

basis forHin^ Hout. Furthermore, choose the bases so t
boths0 andt0 are the identity matrix~of appropriate dimen-
sion! and all others j andt k are traceless Hermitian matr
ces. An obvious choice would be the set of Pauli matric
$s x,sy,sz% or generalizations thereof to higher dimension
We thus have the following parametrization of the matrixX:

X5(
j 50
d1

2
21

(
k50
d2

2
21

xjks j
^ t k. With this parametrization, the

TP requirement can be expressed in a straightforward w
The condition TroutX51in5s0 is fulfilled if and only if xj 0

50 for all j .0, andx0051/d2. By changing the parametri
zation of X, this can be taken care of implicitly

X5(
j 51
d1

2
21

(
k51
d2

2
21

xjks j
^ t k1(

k51
d2

2
21

x0ks
0

^ t k11/d2 . From
this parametrization, and the additional requirementX>0, it
immediately follows that the matricesFi ~in the SDP prob-
lem! are given byF051/d2 , F ‘ ‘ i ’ ’ 5s j

^ t k, with kÞ0. The
index ‘‘i ’’ in the left-hand side refers to thei of the SDP
problem, and corresponds to all possible pairs (j ,k) of right-
hand side indices withkÞ0. As a shorthand for summatio
over all these pairs we will use the symbol( j ,k* .

Finally, we can assign values to the vector coefficientsci

as follows. The fidelityF is to be maximized, so we need a
additional minus sign; furthermore, in terms ofxjk ,F equals
F5( j ,k* xjk Tr(s j

^ t kR)11/d2 , where we have used th
fact that TrR51. This yields for the coefficientsci c‘ ‘ i ’ ’ 5
2Tr (s j

^ t kR), and for the optimal fidelity, in terms of the
primal optimal valueFopt52p* 11/d2 .

Using these expressions for the vectorc and the matrices
Fi ~which are only dependent on the dimensions of the pr
lem!, one can go about solving the problemP numerically.
Again we wish to make a case for the use of freely or co
mercially available SDP software in contrast to home-bre
solvers. Current SDP solving methods are highly optimiz
with respect to execution speed and convergence and
easy to use. As some of theFi are complex, one has to us
SDP software that explicitly allows for complex entrie
~e.g.,@11#!.

With the above assignments, the dual problem can now
formulated in a rather nice way. The dual objective, to
maximized over allZ>0, is d52Tr F0Z52Tr Z/d2 . The
constraint TrFiZ5ci gets an interesting form Tr@s j

^ tk(Z
1R)#50, with kÞ0. As Z and R are both Hermitian, this
means that the matrixZ1R must be of the formZ1R
5a011( j Þ0ajs

j
^ 1, or, in other words,Z5a011A^ 1

2R, with A a traceless Hermitian matrix. With this param
etrization for all dual feasibleZ, the dual objective become
d52d1a011/d2 . Maximizing d thus amounts to minimiz-
ing a0 over all traceless Hermitian matricesA such that the
resultingZ is still positive semidefinite. From the parametr
zation ofZ one sees that the smallest feasible value ofa0 for
a fixed matrixA is given bya0(A)52lmin(A^12R), where
2-2
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lmin signifies the minimal eigenvalue of the matrix. The du
problem finally becomes: find the optimal traceless Herm
ian matrixA such that thisa0(A) is minimal. The dual opti-
mal value is thend* 52d1 minA a0(A)11/d2 . Note that we
have significantly reduced the number of unknown para
eters: from (d1d2)2 for Z to d1

221 for A.
These expressions for the primal and dual problems

be used for proving that a certain proposed solution is o
mal. To that purpose one needs to propose primal and
feasible pointsx andA; if the resulting primal and dual ob
jective valuesp andd turn out to be equal to each other, the
x andA are optimal feasible points andp5d5p* 5d* . Al-
ternatively, any feasible choice forx andA gives upper and
lower bounds on the optimal valuep* , resulting in lower and
upper bounds, respectively, for the fidelity of problemP. For
example, settingA50 givesa0(A)5lmax(R) resulting in the
upper boundF<d1lmax(R), which was already derived in
@3#.

Using the method of the previous paragraph, one can
whether the feasible points are optimal or not, but it does
solve the problem of finding these points. As there is no h
for solving the primal and dual problems analytically for a
but the simplest problems, one must resort to numer
methods. Luckily, efficient methods abound and some imp
mentations are freely available on the web. From the num
cal results one can then try to guess the analytical form of
solution, or at least try to propose an Ansatz containing a
unknown parameters. If the number of parameters is sm
they could be found by solving the primal and dual proble
using the Ansatz.

Even this could be relatively complicated, especially
the dual problem, as this is an eigenvalue problem. An al
native for solving the dual problem is offered by the comp
mentary slackness~CS! condition, which does not requir
solving an eigenvalue equation. Supposing that a cor
guess has been made forX of the primal problem, one then
has to solve thelinear equation (a011A^ 12R)X50 in the
unknownsa0 and A. Of course, one then still has to prov
that the resultingZ is dual feasible, i.e., is positive semide
nite, and this could still require solving an eigenvalue pro
lem.

As an example of this proof technique, we now consid
the problem of constructing an optimal qubitu shifter, first
considered by Hardy and Song@10# and prove that their
‘‘quantum scheme’’ shifter~see also@3#! is optimal.

A qubit u shifter is a device that transforms a pure st
c(u,f)5cos(u/2)u0&1exp(if)sin(u/2)u1& into another pure
statec(u1a,f). This is a nonphysical operation and ha
therefore, to be approximated. Hardy and Song consider
a universal approximated shifter, with fidelity independent
u, and a shifter withu-dependent fidelity optimizing the
meanfidelity. The mean fidelity of the nonuniversal shifter
better than for the universal one. Hardy and Song propo
an optimal scheme~‘‘quantum scheme’’! for u shifting and
proved its optimality using a method of Buzek, Hillery, an
Werner@12#. We will now do the same, but using our gene
approach.

The matrixR for the shifter is given by
03030
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R5F r 1 0 0 r 5

0 r 2 0 0

0 0 r 3 0

r 5 0 0 r 4

G ,

with r 151/41c2s, r 251/42c1s, r 351/42c2s, r 4
51/41c1s, r 552c, c5 1

12 cosa, ands5(p/16)sina.

The ansatz for the primal feasible point, which was
ready given by Fiurasek@3#, is

X5F cos2b 0 0 cosb

0 sin2b 0 0

0 0 0 0

cosb 0 0 1

G .

There are two regimes, depending on the value ofa. For a
<a05arctan(8/3p), put cosb51, and for a>a0 , cosb
5c/(s2c). This gives as primal objective fidelityF5(1
1cosa)/2 for a<a0 , F51/212s12c2/(s2c), for a
>a0 . Going over to the dual problem, we now present o
own Ansatz for the dual feasible pointA, which was inspired
by numerical results: simply considerdiagonal Aonly. This
means thatA is parametrized by a single number, sayd, and
equalsA5dsz. This gives forZ

Z5F a01d2r 1 0 0 2r 5

0 a01d2r 2 0 0

0 0 a02d2r 3 0

2r 5 0 0 a02d2r 4

G .

FIG. 1. Optimal mean fidelityF of the u shifter in terms of the
shifting anglea, obtained from solving the associated SDP pro
lem. The dotted lines represent the two solutions outside of t
respective region of applicability. The full line represents the act
solution.
2-3
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To prove optimality of Fiurasek’s primal Ansatz and our du
Ansatz, we use the complementary slackness condition~for
finding the optimal value fora0 and d). The CS condition
ZX50 gives rise to just three independent equationsa0
1d2r 1)cosb2r550, (a01d2r 2)sin2b50, (a02d2r 4)
2r 5cosb50. As could be expected, there are two differe
n
lit
c

xi
ni

03030
l
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solutions a051/413c, d52s, cosb51, and a051/41s
1c2/(s2c), d52s/(s2c), (r 22r 1)cosb5r5. The
third equation of each set shows us that the first solut
pertains to the casea<a0 and the second solution to th
other case. The mean fidelity, resulting from these soluti
is then
F5H 2~1/413c!5~11cosa!/2, for a<a0 ,

1/212s12c2/~s2c!51/21~p/8!sina12 cos2a/~9p sina212 cosa!, for a.a0,
~1!
-
P
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ng
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which is depicted in Fig. 1. These values are exactly the o
obtained in the Primal problem, so this proves the optima
of the two Ansatze, providedZ>0 in both cases. It is a basi
exercise in linear algebra to calculate the eigenvalues ofZ in
both cases; noting that 0<s<2c in the casea<a0, andc
<s in the other case, one can indeed show thatZ is always
positive semidefinite, proving its feasibility.

To conclude, we have noted that the problemP, which has
to be solved for finding CPTP maps that optimally appro
mate certain desired qubit transformations, is a semidefi
es
y

-
te

programming~SDP! problem. From this observation, it fol
lows that P can be efficiently solved using standard SD
software, and that there is no need forad hocsolution meth-
ods, which could suffer from bad convergence propert
Furthermore, we presented a method for proving analytic
that an Ansatz for the solution ofP is optimal. We hope that
the present communication will be useful for those worki
in the field of determining optimal CP maps or optimal qua
tum measurements.
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