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Phase-shift amplification for precision measurements without nonclassical states
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We propose a practical arrangement that allows one to reach the Heisenberg limit in precision phase-shift
measurements. This is achieved via phase-shift amplification. The arrangement we propose is based on experi-
mental processes already carried out and does not require the use of any special quantum state.
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The quantum nature of physical processes limits how p
cisely some quantities can be measured. In this context,
detection of phase shifts is one of the most sensitive meth
for determining very diverse physical magnitudes. Optim
phase-shift measurements are of importance to many a
including precision spectroscopy and metrology, for instan
The quantum limits to phase-shift measurements are sum
rized by the so-called Heisenberg limit. By a variety of a
guments it has been shown that the minimum detecta
phase shift is of the order of the inverse of the number
particles involved in the measurement@1,2#.

Most approaches to the problem conclude that to re
the ultimate accuracy it is necessary to use quantum s
with highly nonclassical properties@2#. In this work we show
that this is not always the case. We demonstrate that
maximum precision can be achieved without using spe
quantum states. This is interesting because the use of
classical states imposes very stringent conditions to pro
them against pernicious influences, such as decohere
which can degrade their theoretical efficiency. The arran
ment presented in this work allows to use classical or se
classical states having a large number of particles~leading to
an accordingly large resolution! without degrading the per
formance. The Heisenberg limit is reached via phase-s
amplification and employs currently available technolo
Moreover, it is based on experimental processes already
ried out successfully in the field of cavity quantum elect
dynamics@3#. Similar schemes in the context of trapped io
can also be used for the precision phase-shift measure
presented in this work@4,5#.

We will consider a system consisting of a single boso
degree of freedom~representing photons, phonons, or atom
for example! described by the annihilation operatora, and a
two-level system spanned by two orthogonal vectorsue&, ug&.
For simplicity we assume that these are two internal e
tronic states of an atom.

The initial stateuC& undergoing the phase shift is th
product of an arbitrary stateuc& in modea and a 50% super
position of ug& and ue&,

uC&5uc&uw&, ~1!

where
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uw&5
1

&
~ ug&1eif0ue&) ~2!

andf0 is a constant. The state in modea is assumed to be
pure for simplicity. We would obtain exactly the same co
clusions using mixed states.

The mechanism generating the phase shift is a disper
coupling between the modea and the two-level atom gov
erned by an interaction Hamiltonian of the form

H}ue&^eua†a. ~3!

This can be easily implemented in practice whena is a field
mode as well as when it represents the vibrational motion
a trapped ion@3,5,6#.

After a given interaction time, the evolution governed
the Hamiltonian~3! leads to the output state

uCf&5exp@ ifa†aue&^eu#uC&

5
1

&
~ uc&ug&1eif0eifa†auc&ue&). ~4!

In order to infer the phase shiftf we consider a measure
ment performed on the two-level system described by p
jection on the states

uw6&5
1

&
~ ug&6ue&), ~5!

while no measurement is performed on the modea. This
measurement can be carried out by detecting the inte
state of the atom~ue& or ug&! after applying a resonant lase
pulse transforminguw6& into ue&, ug& ~i.e., ap/2 pulse! @3#.
There are only two possible outcomes~1 and2! that appear
with probabilities

p65 1
2 $16Re@eif0C~f!#%, ~6!

where

C~f!5^cueifa†auc&5 (
n50

`

einfP~n! ~7!
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andC~f! andP(n) are the characteristic function and pro
ability distribution, respectively, associated with the numb
operatora†a in the stateuc& @7#.

The performance of this arrangement as a phase-shift
tector depends on the functionC~f! ~which has been alread
used to study phase uncertainty in Ref.@8#!. For simplicity,
we assume a Gaussian form forP(n),

P~n!}expF2
~n2n̄!2

2~Dn!2 G , ~8!

where

n̄5^cua†auc&,

~Dn!25^cu~a†a!2uc&2^cua†auc&2. ~9!

This particularP(n) is representative enough since it pr
vides a useful approximation for many relevant states suc
coherent and squeezed states of high intensity and mod
squeezing.~Nevertheless, for coherent and squeezed st
there are simple exact expressions forC~f! @7#.! Whenn̄ and
Dn are large enough the sum in Eq.~7! can be safely re-
placed by an integral

C~f!.
1

A2pDn
E

2`

`

dn einfexpF ~n2n̄!2

2~Dn!2 G
5eifn̄e2~Dn!2f2/2. ~10!

This leads to the following expression for the measu
probabilities:

p65 1
2 @16e2~Dn!2f2/2 cos~ n̄f1f0!#. ~11!

The arrangement we are analyzing can be interprete
an atomic interferometer of the Ramsey type, whereug& and
ue& play the role of two interferometric paths that are reco
bined by atomic detection@3#. We can appreciate that th
interference term depends onn̄f instead of the dependenc
on f of standard interferometry. Therefore we can say t
the phase shiftf has been amplified by a factorn̄. The
interference term is modulated by an exponential factor
termining the visibility. This progressive lack of coheren
depends on the number fluctuationsDn. Unit visibility is
obtained provided that the phase shift is within some coh
ence range determined by the conditionf!1/Dn. Actually
this is not a restrictive condition since quantum limits a
only meaningful for the detection of extremely minute pha
shifts.

Next we examine the phase sensitivity of this scheme.
assume naturally that the phase shift to be detected is w
the coherence range (f!1/Dn) and we takef052p/2. In
these conditions, the probabilities~6! become

p6. 1
2 @16sin~ n̄f!#. ~12!
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Every single measurement has only two possible outcom
Therefore, in order to obtain meaningful conclusions t
measurement must be repeated several times. AfterN repeti-
tions, the probability that the outcome1 is obtainedm times
is given by the binomial distribution

PN~m!5S N
mD p1

mp2
N2m . ~13!

In the limit of largeN the quotientm/N can be regarded a
effectively continuous and the binomial distribution tends
be Gaussian,

PN~ x̃!.A N

2p
expF2

N

2
~ x̃2x!2G , ~14!

wherex̃52m/N21, x5sin(n̄f), and we have assumed th
x!1. We can appreciate that the measured variablex̃ is a
suitable estimator of the true but unknownx. The uncertainty
of this estimation can be expressed by the relation

D x̃5
1

AN
. ~15!

Since we are assuming thatx!1 we can consider the linear
ization x.n̄f and x̃.n̄f̃, where f̃ is the estimate off.
Then, Eq.~15! leads to

Df̃5
1

n̄AN
. ~16!

The phase resolution scales as the inverse of the mean n
ber of particles, so this measuring strategy approaches
Heisenberg limit.

For the sake of illustration we have represented in Fig
the probability distribution~13! without any approximation
using the exact probabilities~6! for a coherent state,

p65 1
2 @16e22n̄sin2~f/2! cos~ n̄ sinf1f0#. ~17!

FIG. 1. Plot of the probability distributionPN(m) as a function
of m for N5100 and a coherent state withn̄5109. We have repre-
sentedPN(m) for two particular phase shifts:f50 ~solid line! and

f52Df̃52310210 ~dashed line!. No approximation has been
made to obtain this plot.
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We have used the parametersn̄5109, N5100, and two

phase shifts:f50 ~solid line! and f52Df̃52310210

~dashed line!. This plot confirms the correctness of the res
lution ~16!. It can be easily seen that the plot in Fig. 1 do
not depend appreciably onn̄, so the accuracy can be arb
trarily increased by using a coherent state withn̄ as large as
possible.

In order to be precise, we recall that a phase-shift de
tion scheme reaches the Heisenberg limit when for a sin

measurement employingn̄ particles, the sensitivity isDf̃
51/n̄ ~up to a multiplicative constant of the order of unity!.
This implies that when the measurement is repeatedN times
and a maximum-likelihood analysis is used, the uncerta
is Df̃51/(n̄AN), as in Eq.~16!. This is the sense in which
we say that the arrangement presented in this work rea
the Heisenberg limit for repeated measurements. Due to
lack of direct phase measurements, phase is always par
measured and partially inferred, and then the exact per
mance of the estimation depends on the data analysis
@9#. It must be also noted that the total number of partic
used in a repeated measurement isn̄N. Therefore, the ar-
rangements reaching the Heisenberg limit should obtai
much better resolution if all then̄N particles are used in a
single measurement, at least in principle. Nevertheless,
actual quantum limits for multiple repeated measureme
are not yet well known@10#.

In this sense it is worth noting that, strictly speaking, t
resolution~16! is only valid provided that we have a prio
knowledge off with accuracy of the order of 1/n̄ ~this ap-
plies also to the proposals in Ref.@11#, which rely also on
phase-shift amplification!. This is because of the combina
tion of periodicity and amplification in Eqs.~11! and ~12!:
for largen̄/Dn two phase shifts differing by 2p/n̄ within the
coherence range are indistinguishable since they lead to
same statisticsp6 . In the preceding calculations we hav
removed this ambiguity by assuming thatf was close
enough to zero, so that Eq.~16! is fully meaningful. In most
situations thisa priori knowledge off can be obtained from
the theory supporting the measurement. As a matter of fa
simple upper bound forf can be enough. For example, it
expected that the pass of a gravitational wave would ind
an interferometric phase shift of the order off.10219 @12#.
This situation parallels the free spectral range in spec
scopic measurements using Fabry-Perot interferometer
diffraction gratings@13#. In such an analogyn̄ plays the role
of the order of interference whileAN plays the role of the
finesse~Fabry-Perot! or the number of slits~diffraction grat-
ing!.

Phase-shift amplification can be achieved also by us
maximally entangled states@2,11#. These states are highl
nonclassical and can be regarded as examples of Schro¨dinger
cats: a coherent superposition of distinct states@14#. It is
worth stressing that in our case no entanglement is requ
The amplification can be obtained for a very large class
states without special quantum properties. For instance,
herent states can be used. We may say that in our cas
quantum nature is put to the atom interacting with the lig
field ~in the form of a coherent superposition ofue& and ug&!
02580
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instead of the light itself. We think that this is advantageo
because these atomic superpositions are nowadays effici
produced in the laboratory, in contrast to special quant
states of light such as maximally entangled states. Moreo
this allows to increase arbitrarily the numbern̄ of particles
without the degrading effects caused by the decoherence
strongly affects the nonclassical states of light.

Furthermore, we obtain exactly the same results if
initial state is mixed instead of pure. For example, for
coherent state it can be seen in Eq.~17! that the statistics do
not depend on the phase of the corresponding complex
plitude. This means that a phase-averaged coherent
reaches exactly the same sensitivity. This further simplifi
the practical implementation of this scheme. We can a
exclude the generation of Schro¨dinger cats during the pro

cess. On the contrary, the statesuc& andeifa†auc& in Eq. ~4!
must not be distinct if interference with meaningful visibilit
is desired. Visibility close to 1 implies thatf!1/Dn, so

from Eq. ~10! we have thatu^cueifa†auc&u.1.
We stress that this measuring arrangement can be im

mented in practice since it is based on processes alre
proposed and carried out experimentally. As a matter of f
the probabilities~11! have been already obtained in the fiel
of cavity quantum electrodynamics@3# and trapped ions@4,5#
when studying the generation of Schro¨dinger cats.

Finally, we note that this phase-shift amplification is d
ferent from the phase-amplification concept contained
Ref. @15#. In our case we have the effective amplification
a classical parameter, the phase shift. This must not be
fused with the amplification of quantum variables, such
the quantum phase as it has been studied in Ref.@15#. In
particular, it can be noted that this parameter amplificat
does not require any additional physical process or exte
energy supply. This is purely an effect of the measuring st
egy adopted leading to the statistics of the form~6!. All this
means that the phase-shift amplification is not constrained
the conditions that quantum mechanics~mainly the commu-
tation relations! imposes on the amplification of quantu
variables, usually leading to the addition of noise@16#.
Among the differences that this fact introduces we have t
the amplification of the quantum phase variable is indep
dent of the state of the system, at the expense of unavoid
introducing additional noise, while the phase-shift amplific
tion discussed here depends on the state of the system, b
fluctuations are added.

Summarizing, we have proposed a practical measu
arrangement for reaching the Heisenberg limit, which
based on currently available experimental processes. The
tistics of the proposed measurement reveals that ther
phase amplification between the application of the ph
shift and its detection. In contrast to other schemes, in
case the quantum limit is reached without employing a
kind of special quantum states. This is interesting since
allows one to use states with very large numbers of partic
without caring about decoherence effects that are so pe
cious for special quantum states such as maximally
tangled states or Schro¨dinger cats.
2-3
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