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Phase-shift amplification for precision measurements without nonclassical states
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We propose a practical arrangement that allows one to reach the Heisenberg limit in precision phase-shift
measurements. This is achieved via phase-shift amplification. The arrangement we propose is based on experi-
mental processes already carried out and does not require the use of any special quantum state.
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The quantum nature of physical processes limits how pre- 1
cisely some quantities can be measured. In this context, the le)=—(|g)+€ %)) (2
detection of phase shifts is one of the most sensitive methods V2
for determining very diverse physical magnitudes. Optimal
phase-shift measurements are of importance to many area®)d ¢, is a constant. The state in modes assumed to be
including precision spectroscopy and metrology, for instancepure for simplicity. We would obtain exactly the same con-
The quantum limits to phase-shift measurements are summalusions using mixed states.
rized by the so-called Heisenberg limit. By a variety of ar- The mechanism generating the phase shift is a dispersive
guments it has been shown that the minimum detectableoupling between the mode and the two-level atom gov-
phase shift is of the order of the inverse of the number ofrned by an interaction Hamiltonian of the form
particles involved in the measuremét2].

Most approaches to the problem conclude that to reach Hoc|e><e|aTa. 3)
the ultimate accuracy it is necessary to use quantum states
with highly nonclassical properti¢&]. In this work we show  This can be easily implemented in practice wizeis a field
that this is not always the case. We demonstrate that theode as well as when it represents the vibrational motion of
maximum precision can be achieved without using speciaa trapped iori3,5,6).
quantum states. This is interesting because the use of non- After a given interaction time, the evolution governed by
classical states imposes very stringent conditions to protec¢he Hamiltonian(3) leads to the output state
them against pernicious influences, such as decoherence,
which can degrade their theoretical efficiency. The arrange- |V ) =exiipa’ale)(e|]|V)
ment presented in this work allows to use classical or semi-
classical states having a large number of partidiesding to 1 o
an accordingly large resolutipmwithout degrading the per- = ‘E(WMQHGI el y)e)). (4)
formance. The Heisenberg limit is reached via phase-shift
amplification and employs currently available technology.
Moreover, it is based on experimental processes already ¢
ried out successfully in the field of cavity quantum electro-
dynamicg 3]. Similar schemes in the context of trapped ions
can also be used for the precision phase-shift measurement
presented in this work4,5].

We will consider a system consisting of a single bosonic
degree of freedonrepresenting photons, phonons, or atoms,
for examplg described by the annihilation operat@rand a  \ynile no measurement is performed on the madeThis
two-level system spanned by two orthogonal vecte}s|g).  measurement can be carried out by detecting the internal
For _S|mpI|C|ty we assume that these are two internal elecsiate of the atonle) or |g)) after applying a resonant laser
tronic states of an atom. pulse transformingde-.) into |e), |g) (i.e., aw/2 pulse [3].

The initial state|¥) undergoing the phase shift is the There are only two possible outcormes and —) that appear
product of an arbitrary state) in modea and a 50% super- with probabilities

position of|g) and|e),

In order to infer the phase shitb we consider a measure-
ent performed on the two-level system described by pro-
jection on the states

1
|<pi>=5(|g>t|e>), 5)

+:l liR i¢OC , 6
[W)=[¥)]e), (1) p-=>{1=Ree™C(¢)]} (6)
where
where
- igala /\_ S ing
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1050-2947/2002/62)/0258024)/$20.00 65 025802-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A 65 025802

andC(¢) andP(n) are the characteristic function and prob- 0.08 }

ability distribution, respectively, associated with the number

operatora'a in the statdy) [7]. PN(ITI)
The performance of this arrangement as a phase-shift de-

tector depends on the functidiig) (which has been already 0.04 ¢

used to study phase uncertainty in Ref]). For simplicity,
we assume a Gaussian form B(n),

20

P (n-m? 8
nycexg — =———=z
( ) € 2(An)2 ’ ( ) m
FIG. 1. Plot of the probability distributio”Ry(m) as a function
where of mfor N=100 and a coherent state witi=10°. We have repre-
sentedPy(m) for two particular phase shiftgp=0 (solid line) and
n=(y|ataly), ¢=2A$h=2x10"1° (dashed ling No approximation has been
made to obtain this plot.
(An)?=(yl(a'a)?|y)—(yla'aly). )

Every single measurement has only two possible outcomes.

This particularP(n) is representative enough since it pro- Therefore, in order to obtain meamngfu_l conclusmng the
vides a useful approximation for many relevant states such dyeasurement must be repeated Seve'fa' times. Nfrepetl—
coherent and squeezed states of high intensity and moderaqgnfs’ the probab!llty that the putc;omles obtainedm times
squeezing(Nevertheless, for coherent and squeezed statd§ 91Ven by the binomial distribution

there are simple exact expressionsd@op) [7].) Whenn and N
An are large enough the sum in E() can be safely re- PN(m):(m

. pTpN M. (13)
placed by an integral

In the limit of largeN the quotientm/N can be regarded as
effectively continuous and the binomial distribution tends to

o _ A2
f dn ei”"sexp{M

1
= G

—o 2(An)* be Gaussian,
— gl g~ (An?e12, (10 N N
Pn(X)= /5 —ex —E(i—x)z : (14)
This leads to the following expression for the measured .
probabilities: - .
whereX=2m/N— 1, x=sin(n¢), and we have assumed that
L (AM242 — x<1. We can appreciate that the measured varigbie a
p.=b[1xe SV Reognpt gg)]. (1D o

suitable estimator of the true but unknowrilhe uncertainty

. . of this estimation can be expressed by the relation
The arrangement we are analyzing can be interpreted as

an atomic interferometer of the Ramsey type, whgyeand

le) play the role of two interferometric paths that are recom- AR = — (15)

bined by atomic detectiof3]. We can appreciate that the JN

interference term depends orp instead of the dependence

on ¢ of standard interferometry. Therefore we can say thaSince we are assuming tha& 1 we can consider the linear-

the phase shifty has been amplified by a facter. The jzation x=n¢ and%=n, where is the estimate ofp.

interference term is modulated by an exponential factor deThen, Eq.(15) leads to

termining the visibility. This progressive lack of coherence

depends on the number fluctuatioa®. Unit visibility is 1

obtained provided that the phase shift is within some coher- Ap=——.

ence range determined by the conditipre 1/An. Actually /N

this is not a restrictive condition since quantum limits are

only meaningful for the detection of extremely minute phasel he phase resolution scales as the inverse of the mean num-

shifts. ber of particles, so this measuring strategy approaches the
Next we examine the phase sensitivity of this scheme. Wéleisenberg limit.

assume naturally that the phase shift to be detected is within For the sake of illustration we have represented in Fig. 1

the coherence rangesc 1/An) and we takep,=—=/2. In  the probability distribution(13) without any approximation

these conditions, the probabilitié6) become using the exact probabilitie®) for a coherent state,

(16)

p.=3[1=sinMg)]. (12 p.=3[1+e @2 cogMsing+ o). (17)
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We have used the parametéms=10°, N=100, and two instead of the light itself. We think that this is advantageous
phase shifts:¢=0 (solid line and ¢=2A¢p=2x10"1° because these atomic superpositions are nowadays efficiently

(dashed ling This plot confirms the correctness of the reso-Produced in the laboratory, in contrast to special quantum
lution (16). It can be easily seen that the plot in Fig. 1 doesstates of light such as maximally entangled states. Moreover,
not depend appreciably am so the accuracy can be arbi- this allows to increase arbitrarily the numberof particles
trarily increased by using a coherent state withs large as  Without the degrading effects caused by the decoherence that
possible. strongly affects the nonclassical states of light.

In order to be precise, we recall that a phase-shift detec- Furthermore, we obtain exactly the same results if the
tion scheme reaches the Heisenberg limit when for a singléitial state is mixed instead of pure. For example, for a
measurement employing particles, the sensitivity is\ % coherent state it can be seen in E4j7) that thg statistics do
=1/n (up to a multiplicative constant of the order of unity not depenq on the phase of the corresponding complex am-
This implies that when the measurement is repebléithes plitude. This means that a phase-averaged coherent state
and a maximum-likelihood analysis is used, the uncertaint;?eaChes exactly the same sensitivity. This further simplifies

o~ . . . . the practical implementation of this scheme. We can also
is A¢=1/MVN), as in Eq.(16). This is the sense in which exclude the generation of Scliinger cats during the pro-

we say that the arrangement presented in this work reaches igatal o
the Heisenberg limit for repeated measurements. Due to tHeeSs- On the contrary, the statg ande'®® #|y) in Eq. (4)

lack of direct phase measurements, phase is always partialfjpust not be distinct if interference with meaningful visibility
measured and partially inferred, and then the exact perfoiS desired. Visibility close to 1 implies thap<1/An, so
mance of the estimation depends on the data analysis usé@m Eq. (10) we have that(¢|e‘¢aTa| Uy =1.
[9]. It must be also noted that the total number of particles e stress that this measuring arrangement can be imple-
used in a repeated measuremennls. Therefore, the ar- mented in practice since it is based on processes already
rangements reaching the Heisenberg limit should obtain @roposed and carried out experimentally. As a matter of fact,
much better resolution if all theN particles are used in a the probabilitieg11) have been already obtained in the fields
single measurement, at least in principle. Nevertheless, thgs cavity quantum electrodynami¢3] and trapped ionf4,5]
actual quantum limits for multiple repeated measurementg,en studying the generation of Sctiuger cats.
are not yet well knowr10]. _ _ Finally, we note that this phase-shift amplification is dif-
In this sense it is worth noting that, strictly speaking, thefrent from the phase-amplification concept contained in
resolution(16) is (_)nly valid provided that we Have_ a prior Ref.[15]. In our case we have the effective amplification of
knowledge of¢ with accuracy of the order of @/(this ap- a classical parameter, the phase shift. This must not be con-

B::Z‘Zee}lssﬁf:oag:sliﬁ;%%gia.:_iig] iS%ﬂelgél\fgcgf rtilg g:)Snc;bci)rTa- fused with the amplification of quantum variables, such as

tion of periodicity and amplification in Eq$11) and (12): b _quantu_m phase as it has begn studied in R‘Eﬂ'. _In .

for largen/An two phase shifts differing by 2/n within the particular, it can be noted that this parameter amplification
Hg)es not require any additional physical process or external

coherence range are indistinguishable since they lead to t . ,
same statisticp.. . In the preceding calculations we have €N€rgy supply. This is purely an effect of the measuring strat-

removed this ambiguity by assuming that was close ©9Y adopted leading to the stati.st'ics'of the faen All th.is
enough to zero, so that E€L6) is fully meaningful. In most Means that the phase-shift amplification is not constrained by
situations thisa priori knowledge of¢ can be obtained from the conditions that quantum mechanigsainly the commu-
the theory supporting the measurement. As a matter of fact &@tion relations imposes on the amplification of quantum
simple upper bound fos can be enough. For example, it is variables, usually leading to the addition of noigs].
expected that the pass of a gravitational wave would inducémong the differences that this fact introduces we have that
an interferometric phase shift of the ordergp#=10"1°[12].  the amplification of the quantum phase variable is indepen-
This situation parallels the free spectral range in spectrodent of the state of the system, at the expense of unavoidably
scopic measurements using Fabry-Perot interferometers amtroducing additional noise, while the phase-shift amplifica-
diffraction gratingqd 13]. In such an analogy plays the role tion discussed here depends on the state of the system, but no
of the order of interference whilgN plays the role of the fluctuations are added.
finesse(Fabry-Perotor the number of slit¢diffraction grat- Summarizing, we have proposed a practical measuring
ing). arrangement for reaching the Heisenberg limit, which is
Phase-shift amplification can be achieved also by usindpased on currently available experimental processes. The sta-
maximally entangled statg®,11]. These states are highly tistics of the proposed measurement reveals that there is
nonclassical and can be regarded as examples of @ioger  phase amplification between the application of the phase
cats: a coherent superposition of distinct stdte4]. It is  shift and its detection. In contrast to other schemes, in this
worth stressing that in our case no entanglement is requiredase the quantum limit is reached without employing any
The amplification can be obtained for a very large class okind of special quantum states. This is interesting since it
states without special quantum properties. For instance, ca@llows one to use states with very large numbers of particles
herent states can be used. We may say that in our case théthout caring about decoherence effects that are so perni-
guantum nature is put to the atom interacting with the lightcious for special quantum states such as maximally en-
field (in the form of a coherent superposition |ef and|g))  tangled states or Schdimger cats.
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