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Calculations of the 1sµ2se-electron-excitedS„LÄ0… states in helium-muonic atoms

Alexei M. Frolov
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The bound-state energies and other properties are determined to high accuracy for the ground and first
electron-excitedS(L50) states in the3He21m2e2 and 4He21m2e2 helium-muonic atoms. Such highly ac-
curate calculations are performed with the use of an advanced, recently developed, multibox variational
approach. In particular the hyperfine splitting has been calculated for the 1sm2se-electron-excited states in both
helium-muonic atoms. The corresponding hyperfine splittings for these states are'520.786 MHz
(3He21m2e2) and '558.055 MHz (4He21m2e2). The analogous splittings for the ground states are
Dn(3He21m2e2)'4166.393 MHz andDn(4He21m2e2)'4464.555 MHz, respectively.
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In this Brief Report we report the results of highly acc
rate calculations for the bound, electron-excitedS(L50)
states~or 1sm2se states, for short! in the helium-muonic
3He21m2e2 and 4He21m2e2 atoms. Such calculations ar
performed with the use of our recently developed, multib
variational approach@1#. Our main goal is to determine th
bound-state properties and hyperfine splitting for th
electron-excited states in both helium-muonic atoms. N
that recently significant progress has been made in our
derstanding of basic geometrical and dynamical propertie
the 3He21m2e2 and 4He21m2e2 atoms in their ground
states@2–8#. In particular, in@8# the expectation values fo
the electron-nucleuŝd(re2He)& and electron-muonic delta
functions^d(re2m2)& have been determined to very high a
curacy. In fact, the absolute errors for these expectation
ues were less than 131027 a.u. By using botĥ d(re2He)&
and^d(re2m2)& expectation values, we determined in@8# the
hyperfine splitting for the ground states in both heliu
muonic atoms. The appropriate computational results for
hyperfine splitting are 4166.392 MHz for the3He21m2e2

atom and 4464.555 MHz for the4He21m2e2 atom@8#. The
absolute errors in both cases are less than 1 kHz. Moreo
these figures are very close to the known experimental va
for these atoms, which equal 4166.41 MHz and 4464
MHz, respectively~see references and discussions in@2,4#!.

However, the recent progress is quite modest for
bound, electron-excited 1sm2se states in the helium-muoni
systems. Indeed, the total energies for these states are k
only approximately@7#, i.e., with relatively large errors. An
analogous situation can be found for a number of bound-s
properties in the 1sm2se states in the helium-muonic atom
Furthermore, in@7# we estimated the hyperfine splitting fo
these excited states as 527.8 MHz (3He21m2e2) and 570.3
MHz (4He21m2e2). Our present results indicate clearly th
these results from@7# were determined with absolute erro
> 10 MHz ~see below!. The main source of such large erro
is obvious, since the expectation values of the electr
nucleus and muon-electrond functions were computed@7#
only approximately. Presently, our results for all bound-st
properties in the helium-muonic atoms, includingd func-
tions, have been improved significantly. Finally, now we c
predict the hyperfine splittings for the electron-excit
1sm2se states in the helium-muonic atoms to the accura
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'0.5– 1 kHz~comparable with the accuracy obtained for t
ground states in these systems!. In fact, for the electron-
excited states the hyperfine splitting has never been m
sured. However, it can be done, e.g., by using the techn
used for the ground 1sm1se(L50) states.

The main computational problem here is related with
fact that our approach@8# was not very effective for the
excited states. Later, however, an advanced, relatively sim
and reliable approach has been developed and tested
many three-body systems@1#. This approach works very suc
cessfully for an arbitrary state~excited or ground! in various
three-body systems, including so-called adiabatic syste
such as the H2

1 ion. Moreover, it was found that the late
approach produces significantly more accurate wave fu
tions than is possible by using competitive methods@1#. In
particular, by using this approach we finally solved the lon
standing problem of highly accurate determination of t
weakly bound~1,1! states in theddm anddtm muonic mo-
lecular ions@1#. Presently, the same approach@1# is applied
to study the helium-muonic3He21m2e2 and 4He21m2e2

atoms in their 1sm2se-electron-excitedS(L50) states.
For the S(L50) states in an arbitrary Coulomb thre

body system, the trial variational wave function is repr
sented in the form~the general case is discussed in@1#!

cLM5~11kP12!(
i 51

N

Ci exp~2a iu12b iu22g iu3!, ~1!

whereCi are the linear~or variational! parameters,a i , b i ,
and g i are the real nonlinear parameters. The parametek
equals zero identically for nonsymmetric three-body s
tems. For symmetric systemsk51 for the singlet states an
k521 for the triplet states. Such choices ofk correspond to
the cases when the spatial part of the total wave function
symmetric and antysymmetric, respectively. The opera
P12 permutes the identical particles~1 and 2! in the symmet-
ric systems. Also, in Eq.~1! u1 , u2 , and u3 are the three
perimetric coordinates ~see, e.g., @1#!. These three-
coordinates are expressed as the linear combinations o
relative coordinatesui5

1
2(r ik1r i j 2r jk), where (i , j ,k)

5(1,2,3). Here,r i j 5urW i2rW j u are the three interparticle dis
tances (r i j 5r j i ). The inverse relation betweenu1 , u2 , u3
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW A 65 024701
and r 32, r 31, r 21 takes a very simple formr i j 5ui1uj ,
whereiÞ j 5(1,2,3). The use of three perimetric coordinat
u1 , u2 , andu3 instead of the relativer 32, r 31, r 21 coordi-
nates is an obvious advantage of the later approach@1#. This
follows from the fact that the perimetric coordinates are tr
independent, and each of them varies from 0 to1`. This
means that all nonlinear parameters in Eq.~1! are positive
real numbers. The optimization of such nonlinear parame
in Eq. ~1! can be performed very effectively, since there a
no additional conditions for these parameters. In cont
with this, if the relative coordinates are used in Eq.~1!, then
a number of additional conditions must be obeyed, which
needed to guarantee convergence of all essential integ
Obviously, in this case the optimization of the nonlinear p
rameters cannot be very effective.

The main improvement in@1# has been done in the opt
mization of the nonlinear parameters in Eq.~1!. Note that an
actual variational~trial! wave function may include a few
thousand nonlinear parameters~see, e.g., below!. Obviously,
their detail optimization cannot be completed at realis
times. In @8#, for each of the considered systems, we op
mized carefully only a small partC1 of the total wave func-
tion. Usually, such a small~or cluster! part contains only a
few hundred nonlinear parameters. This is the first step of
procedure@8# that generates the so-called booster funct
C1(N0), whereN0 is the number of basis functions used
constructC1 . Note that in the present case each of the ba
functions contains only three nonlinear parameters. For c
structing the second stage functionC2(N2Ni j ) in @8# we
used a quasirandom choice@9,10# of the nonlinear param
eters from one parallelotop~or box!. The boundaries of such
a parallelotop are chosen from the results of separate ca
lations and later they never changed. Obviously, in this c
the second-stage wave functionC2(N2N0) is not an opti-
mal variational supplement to the initial booster functi
C1(N0).

In contrast with this, in@1# the choice of nonlinear param
eters in the variational wave function is performed from
few different parallelotops~or boxes!. The boundaries of
these boxes are the real nonlinear parameters of the me
By varying these and a few additional scaling parameters
can obtain significantly better~i.e., lower! variational ener-
gies, than have been determined for the considered t
body systems with the use of any other method@1#. This
approach has been called@1# the multibox strategy for choos
ing the nonlinear parameters in the three-body bound-s
wave functions. In fact, in@1# the three parallelotops hav
been used for each of the considered systems. It can
shown that now the second-stage wave functionC2(N
2N0) is an optimal supplement to the given booster funct
C1(N0). Note also, that the procedure proposed in@1# works
very well even in the case whenN050, i.e., when no booste
function C1(N0) has been constructed.

To illustrate the efficiency of this approach presently
performed highly accurate, variational calculations for t
2 3S(L50) state in the`He atom. The total energies for th
system ~in atomic units mc51, \51, and e51! can be
found in Table I. Presently, for simplicity, we apply the sam
three-box version of the procedure@1#. The total number of
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nonlinear parameters in this version equals 28. These 28
linear parameters have been optimized with the use of 1
basis functions in each of the trial wave functions. The o
served convergence for the variational results onN is ex-
tremely high. Finally, we could determine at least four ad
tional significant figures for the total energy of the 23S(L
50) state in the`He atom in comparison with the results o
previous calculations~except@1# where the same method wa
used!. In fact, our present approach@1# allows one to repro-
duce as many exact significant figures in the total energy
needed. Below, the same approach is used to perform hi
accurate calculations for the 1sm2se-electron-excitedS(L
50) states in the helium-muonic atoms.

The results of numerical calculations for the ground a
first electron-excitedS(L50) states of the helium-muoni
atoms are presented in Tables II–IV. Table II contains va
tional energies for the both3He21m2e2 and 4He21m2e2

atoms in the ground and first electron-excitedS(L50)
states. Our present calculations have been performe
atomic units~\51, me51, and e51!. In these units the
following values for the particle masses@11,12#

mm5206.768 262, M3He2155495.8852,

M3He2157294.2996

were used in calculations. The numerical values for ot
physical constants used in our present calculations~for more
detail, see@8#! have also been chosen from@11,12#. To recal-
culate the energies from a.u. to MHz, the conversion fac
6.579 683 920 613109 @11# has been used.

The energies from Table II are significantly more accur
than the values from previous calculations for the heliu
muonic atoms. In particular, the energies obtained forN
5700 basis functions are better than the corresponding
ergies from@8# computed withN52500 basis functions. In
fact, by using the method@1# one can easily increase th
overall accuracy and determine the next six to ten signific
figures for the total energies in both helium-muonic atom
However, this step will certainly require extensive compu
tional resources. For our present purposes, however, it is
portant to note that a very high convergence rate for res
presented in Table II allows us to stabilize 20–21 signific
figures in the final energies. The convergence for

TABLE I. The convergence of the total energiesE in atomic
units for the 23S(L50) state in the`He atom.

Na E

1000 22.175 229 378 236 791 305 733 900
1800 22.175 229 378 236 791 305 738 718
2000 22.175 229 378 236 791 305 738 805
2250 22.175 229 378 236 791 305 738 866
2400 22.175 229 378 236 791 305 738 891
Eb 22.175 229 378 236 791 305 738 4

aThe number of basis functions used in calculations.
bThe best results determined in previous calculations@1#.
1-2
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TABLE II. The convergence of the total energies in atomic units for the first electron-excited 1sm2se

states~* ! and ground 1sm1se states in the helium-mounic atoms.

Na (3He21m2e2)* (4He21m2e2)*

700 2398.66739108745739419922 2402.26230156525181323033
1000 2398.66739108745739433625 2402.26230156525181346636
2100 2398.66739108745739439414 2402.26230156525181353478
2300 2398.66739108745739439590 2402.26230156525181353673
2500 2398.66739108745739439767 2402.26230156525181353867

2398.66739108745739b 2402.2623015652484b

Na 3He21m2e2 4He21m2e2

700 2399.04233683286253333860 2402.63726303513545316784
1000 2399.04233683286253433727 2402.63726303513545383910
2100 2399.04233683286253474368 2402.63726303513545399718
2300 2399.04233683286253475716 2402.63726303513545400209
2500 2399.04233683286253476960 2402.63726303513545400481

2399.04233683286252384b 2402.63726303513544403b

aThe number of basis functions used in calculations.
bThe best results determined in previous calculations@1#.
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electron-muon and electron-nucleusd-function expectation
values is shown in Table III. However, in contrast with t
energy, there is no bound principle for the expectation val
of d functions. This means that the observed convergence
the d functions differs qualitively from the convergence f
the energies shown in Table II. The expectation values
some selected geometrical and dynamical properties@13# can
be found in Table IV~for the excited states in the helium
muonic atoms!. The presently obtained values are also s
nificantly more accurate than values known from previo
calculations~see, e.g.,@7#!.

By using the numerical values for the expectation valu
of thed functions presented in Table III, one can evaluate
hyperfine splitting for the 1sm2se-electron-excited and
1sm1sc ground states in the helium-muonic atoms. The f
mulas for the hyperfine splitting in theS(L50) states of the
02470
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helium-muonic atoms takes the form~for more details see
e.g.,@4#, @8#, and also@14#!

Dn~3He21m21e21!

510 671.885 079 542^d~re2m2!&

12553.907 751 447 6̂d~re2He!& MHz, ~2!

Dn~4He21m2e2!514 229.180 061 055^d~re2m2!& MHz,

where^d(re2m2)& and^d(re2He)& are the expectation value
for the electron-muonic and electron-nucleusd functions, re-
spectively. The expectation values of alld functions in Eqs.
~2! are expressed in atomic units.
TABLE III. Convergence of the expectation values of electron-muon and electron-nucleusd function in
atomic units for the ground 1sm1se states and first electron-excited 1sm2se states~* ! in the helium-muonic
atoms.

^d(rWe2m)& 3He21m2e2 4He21m2e2 (3He21m2e2)* (4He21m2e2)*

700 3.13682200331021 3.13760500131021 3.92092649831022 3.92190411131022

1000 3.13682203931021 3.13760498531021 3.92092645031022 3.92190451231022

2100 3.13682263831021 3.13760517631021 3.920927205031022 3.92190519231022

2300 3.13682268331021 3.13760520831021 3.920927260931022 3.92190528731022

2500 3.13682274931021 3.13760524931021 3.920927340631022 3.92190535931022

^d(rWe2He)&
3He21m2e2 4He21m2e2 (3He21m2e2)* (4He21m2e2)*

700 3.20611405131021 3.20631724931021 4.00755717031022 4.00781090031022

1000 3.20611458331021 3.20631739031021 4.00755784331022 4.00781077931022

2100 3.20611501631021 3.20631770931021 4.00755830431022 4.00781156231022

2300 3.20611501531021 3.20631772431021 4.00755829731022 4.00781161331022

2500 3.20611508631021 3.20631772631021 4.00755839131022 4.00781166831022
1-3
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TABLE IV. The expectation values~in atomic units! of some properties for the first electron-excitedS
states (L50) of the 3He21m2e2 and 4He21m2e2 atoms. Below, the subscript 3 designates the heli
nucleus, 2 stands for muon, and 1 denotes the electron.

System 3He21m2e2 4He21m2e2

^r 21
21& 0.249 959 239 476 657 0.249 969 739 782 088 733

^r 31
21& 0.249 961 061 388 004 0.249 971 551 933 312

^r 32
21& 398.542 409 645 807 402.137 314 883 210

^d(rW32)& 2.01499399563107 2.07001384783107

^d(rW321)& 8.01732403105 8.23728673105

^2
1
2 ¹1

2& 0.124 961 160 140 246 0.124 971 647 880 655

^2
1
2 ¹2

2& 7.94 180 263 037 4793104 8.08 572 101 067 6463104

^(r 31r 32)
21& 99.6 200 394 831 515 5 100.522 844 889 408 4

^(r 31r 21)
21& 0.249 000 723 411 012 4 0.249 029 798 384 398 0
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Finally, the corresponding hyperfine splittings for th
electron-excited 1sm2se states are '520.786 MHz
(3He21m2e2) and '558.055 MHz (4He21m2e2). The
analogous splittings for the ground 1sm1se states are
Dn(3He21m2e2)'4166.393 MHz andDn(4He21m2e2)
'4464.555 MHz respectively. These values are very ac
rate ~their uncertainties are less than 1 kHz!. For the
electron-excited 1sm2se states these values correct our p
vious results for the hyperfine splittings in both helium
muonic atoms by'7 MHz ~3He21m2e2 atom! and by'12
MHz ~4He21m2e2 atom!, respectively. The computationa
results for the ground states are very close to the experim
tally known valuesDn(3He21m2e2)'4166.41 MHz and
Dn(4He21m2e2)'4464.95 MHz, respectively~see, e.g.,
discussion in@8# and references therein!. The future experi-
mental figures for the electron-excited 1sm2se states in both
02470
u-

-
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helium-muonic atoms are also expected to be close to
presently computed values. Further deviations for
helium-muonic atoms~'0.02–0.5 MHz! can be explained
by considering the relativistic and quantum-electrodynam
~radiative! corrections@15,16#. Analysis of such corrections
require a separate discussion. Now, we want to note only
the results of these high-precision measurements of the
perfine splitting for both the helium-muonic atom
3He21m2e2 and 4He21m2e2 ~in their ground and electron
excited states! are of paramount importance for providin
further progress in theoretical studies of such systems. Ho
fully, our work will stimulate further experimental activity to
perform high-precision measurements for the hyperfine sp
ting and other properties in the helium-muonic atoms.
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