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Stochastic initiation of superradiance in a cavity: An approximation scheme within quantum
trajectory theory

James P. Clemens and H. J. Carmichael
Department of Physics, University of Oregon, Eugene, Oregon 97403-1274

~Received 15 August 2001; published 16 January 2002!

We investigate the stochastic initiation of superradiant emission from a collection of excited two-state atoms
coupled through a low-Q cavity mode. Noncollective emission into other modes of the electromagnetic field is
included, allowing us to describe the transition from predominantly noncollective to collective behavior as the
number of atoms is increased. We examine the dependence of the photon statistics on the number of atoms and
the ratio of collective to noncollective decay rates. Numerical results for a few to 106 atoms are obtained using
an approximation scheme developed within the framework of quantum trajectory theory. Results are compared
with those for a pure collective emission process and an earlier treatment of noncollective effects.
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I. INTRODUCTION

The collective interaction of atoms with light is a topic
fundamental interest in quantum optics. There exists a la
literature on superradiance and superfluorescence, in par
lar, dating back to the seminal paper by Dicke@1#. The sim-
plest theoretical formulation of superradiance holds
Dicke’s small sample case where all atoms are contained
volume much smaller than a cubic wavelength. In this
stance, it is readily seen that the symmetric, half-inver
atomic state~precisely half the atoms excited! radiates at a
rate proportional to the square of the number of atoms, in
cating the presence of coherence between the radiation e
ted by different atoms. A complete picture of the pheno
enon requires, however, that the method of excitation
taken into account. Specifically, direct excitation by a la
pulse from the ground state leaves the atomic sample in
session of a macroscopic polarization~an uncertain numbe
of atoms excited!. Under these conditions, the subsequ
radiation can be understood from the semiclassical poin
view taken in the theory of magnetic resonance@2,3# ~Dicke
nevertheless still speaks of ‘‘super-radiant’’ states!. On the
other hand, when the sample is excited to the fully inver
state and then allowed to relax, it apparently passes thro
a cascade of states of precise, though diminishing, excita
The quantum fluctuations in the emission process bec
important and the appearance of any coherence is neces
spontaneous. It is this more interesting situation that
present paper addresses.

While the word ‘‘superfluorescence’’ is sometimes used
distinguish initial states that lack a macroscopic polarizat
@4#, we choose to follow the older and still common practi
of employing the term ‘‘superradiance’’ without regard to t
initial state.

Collective emission can arise when the atomic sampl
not confined within a cubic wavelength. Indeed, with o
notable exception@5#, all superradiance experiments de
with something more complex than the idealized sm
sample case@6#. A widely adopted approach to the unde
standing of extended systems is to assume that after the
earliest stage of the spontaneous decay process, emi
1050-2947/2002/65~2!/023815~8!/$20.00 65 0238
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into just one mode of the radiation field predominates. T
assumption leads to the so-called ‘‘single-mode’’ model@7#,
which turns out to be formally equivalent to Dicke’s sma
sample model. Most work on the quantum statistics of sup
radiance is based upon the ‘‘single-mode’’ assumpt
@8–13#. For most initial conditions, these treatments rep
duce the semiclassical pulse structure obtained by Eberly
Rehler@14,15#, but they also provide an account of fluctu
tions when the excitation brings the system close to the fu
excited state.

We are interested in understanding collective emission
systems that do not meet the small sample or single-m
criteria. We expect that new insights can be brought to
problem by a quantum trajectory formulation. The most ge
eral situation requires the atoms to couple to all modes of
field, while in addition diffraction and propagation effec
must be taken into account. We retain the Markov appro
mation, however, assuming the propagation time between
oms to be much shorter than the duration of the collect
decay. We thus aim for the level of description provided
the general superradiance master equation@16–18#. Car-
michael and Kim have obtained the quantum trajectory
raveling of this equation@19#.

In his 1972 essay, Eberly speaks of treating the radia
decay process as ‘‘a quantum-classical interpolation pr
lem’’ @20#. The imagery is particularly appropriate, sinc
while the initiation of collective emission requires a statis
cal treatment within quantum mechanics, what results, s
by shot, is an essentially ‘‘classical’’ pulse of light. Appa
ently the single pulse emission does, indeed, interpolate,
physical process, between quantum and classical regime
evolution. The process, however, is manifestly stochastic
not very accessible if it is kept buried under the quantu
mechanical average. Whereas Eberly had in mind a met
of extraction grounded in the physical intuition of semicla
sical Bloch equations, quantum trajectory theory provide
rigorous formulation of the stochastic initiation and develo
ment of the individual pulses.

Even in quantum trajectory theory, we must neverthel
introduce simplifications if we are to go any distance beyo
a mere formulation. Naive numerical simulation will not tak
us very far, as only a few tens of two-state atoms yield
©2002 The American Physical Society15-1
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Hilbert space dimension well beyond the capacity of a
computer. As a first step toward understanding the gen
stochastic process for spatially distributed atoms formula
by Carmichael and Kim@19#, we study, in this paper, a
model with two emission channels. We coupleN two-state
atoms collectively to one mode of the radiation field a
each atom, independently, to all other modes of the field.
model may be realized by placing the atoms~at low density!
in a low-Q resonant cavity. It was a popular model for the
retical work on the bad-cavity limit of optical bistabilit
@21–23#. Surprisingly, despite the close approximation cav
systems make to Dicke’s original proposal, there are on
few experiments to date on superradiance in resonant cav
@24–27#.

The neglect of independent coupling of the atoms to n
cavity modes is a major deficiency of nearly all previo
quantum-statistical studies of superradiance. The stoch
initiation of emission from the fully excited state is largely
competition between collective and noncollective decay. T
competing noncollective decay is especially important in
case of a relatively small number of atoms. When the ato
are too few, there is insufficient time for the collective e
hancement of the emission to develop before the excita
energy is lost to noncollective modes. We show that a
consequence of the competition, on increasing the numbe
atoms, superradiance emerges through a broad transitio
gion featuring large fluctuations in the delay time, width, a
intensity of the pulse coupled out through the cavity mo
We make comparisons with the work of Lee@28,29#, who
has explicitly considered some aspects of the competi
from noncollective emission.

Our calculations are based on an approximation that
duces the exact quantum trajectory description to a t
channel rate process. The trajectory formulation offers a p
to the approximation because it permits the use of b
states which are adapted, throughout a simulation, to the
quence of past photon emissions. The approximation all
us to calculate the statistics of the emitted radiation for a
to 106 atoms, and for various ratios of collective to nonco
lective decay rates, with only a modest investment of co
puter resources. Our method provides access to any num
of statistical properties, including the correlations betwe
the pulse intensity and the pulse delay time and width.

We outline the two-channel model and its quantum traj
tory formulation in Sec. II. In Sec. III we describe the sim
lation scheme used to calculate time-dependent quanti
and we derive a difference equation for the photon num
distribution of the collective pulse in Sec. IV. We prese
results in Sec. V, including results on the photon statistics
the emitted light throughout the transition region as well
delay time statistics and time-intensity correlations. We co
pare our results with previous work. Conclusions are p
sented in Sec. VI.

II. MODEL AND ITS QUANTUM TRAJECTORY
FORMULATION

We considerN two-state atoms inside an optical cavit
The atoms couple collectively, and on resonance, to one
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ity mode; either they are located at antinodes of a stand
wave and couple through collective operatorsĴ6

5S i 51
N ŝ i 6 , where ŝ i 6 are raising and lowering operator

for an individual atom, or they reside in a ring cavity an
couple throughĴ65S i 51

N e6 ik0ziŝ i 6 , wherek0 is the mode
wave number andzi denotes the position of an atom alon
the cavity axis. The cavity decay rate isk and the atoms have
a spontaneous decay rateg to other modes of the radiatio
field; it is assumed that the spontaneous emission to o
modes is independent for each atom. In the bad-cavity li
~k larger than the rate of collective emission!, the cavity field
adiabatically follows the atomic polarization. The mas
equation~valid for times larger thank21! is then given by
@7,30#

ṙ5
G

2
~2Ĵ2r Ĵ12 Ĵ1Ĵ2r2r Ĵ1Ĵ2!1

g

2 (
i 51

N

~2ŝ i 2rŝ i 1

2ŝ i 1ŝ i 2r2rŝ i 1ŝ i 2!, ~1!

where the first term describes the cavity-assisted collec
emission and the second describes the noncollective e
sion due to spontaneous decay. The collective decay ra
determined to beG52g2/k, whereg is the atomic dipole
coupling constant.

While our model is most reliable for the cavity situatio
to make a connection with a distribution of atoms in fr
space we might alternatively define the collective emiss
rate byG5*dV I 0(kW )F(kW ,kW8), whereI 0(kW ) is the intensity
of spontaneous emission from a single atom in the direc
kW , and F(kW ,kW8)5u^exp@i(kW2kW8)•rW#&u, @2# where the angular
brackets denote an average over atomic positions;kW8 points
in a preferred direction, the axis of a narrow cylindrical d
tribution of atoms for example@14,18,29#. Any atomic dis-
tribution that shows clear directionality of emission shou
yield a smallG, since this rate is approximately proportion
to the solid angle into which the emission occurs. We th
pay particular attention to the parameter regimeG/g!1. In a
cavity, or course, much larger values ofG/g are possible,
even when the solid angle of the radiation coupled
through the cavity mode is small.

The usual strategy in proceeding from Eq.~1! is to as-
sume that the collective emission dominates, at least aft
very short time, and thus to solve the equation keeping o
the first term on the right-hand side. A variety of metho
and approximations have been used to arrive at a solu
@9–13#. Our aim is to avoid the assumption. Instead, we u
the quantum trajectory formalism to convert the master eq
tion into a stochastic process which can be simulated o
computer to account for the competition between collect
and noncollective decay. The difficulty with keeping bo
terms in Eq.~1! is that while a basis of Dicke states is co
venient for treating the first term, it is a particularly inco
venient choice for treating the second. The difficulty is n
removed completely in the quantum trajectory formulatio
The approach does show a way around it, however, if
are prepared to make a different, though less serio
approximation.
5-2
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STOCHASTIC INITIATION OF SUPERRADIANCE IN A . . . PHYSICAL REVIEW A65 023815
Using an unraveling of the master equation~1! based on
counting of the emitted photons, we decompose the den
operator into a sum over pure states,

r~ t !5(
REC

PRECucc~ t !&^cc~ t !u, ~2!

where REC denotes a particular record of photon emissi
up to timet ~type—collective or noncollective—and time o
emission!, PREC is the probability for that record, an
ucc(t)& is the state of the atoms conditioned on the seque
of emissions@31#. The unnormalizedstate conditioned on a
particular record ofn emissions is given by

uc̄c~ t !&5B̂~ t2tn!Ĉn¯B̂~ t22t1!Ĉ1B̂~ t1!uc~0!&, ~3!

whereĈk and tk are the jump operator and time for thekth
emission, withĈk5AG Ĵ2 or Ĉk5Agŝ i 2 ~somei! for col-
lective or noncollective emissions, respectively;B̂(t)
5exp(2iĤt/\) generates the continuous time evolution
between emissions, where the non-Hermitian Hamiltonia

Ĥ52 i\
G

2
Ĵ1Ĵ22 i\

g

2 (
i 51

N

ŝ i 1ŝ i 2 . ~4!

The probability for a particular record is

PREC5^c̄c~ t !uc̄c~ t !&dtn¯dt1 , ~5!

where the photon emissions occur in time intervals (tk ,tk
1dtk), k51, . . . ,n.

If we introduce an approximation within this scheme,
extremely efficient numerical algorithm is made available
simulating the emission sequences.

III. AN APPROXIMATION SCHEME ENABLING
LARGE- N SIMULATIONS

We consider a set of basis states that are product
Dicke states and single-atom ground states. A general b
stateu j ,m&2 j u2& i 1

¯u2& i N22 j
has atomsi 1 ,...,i N22 j in their

ground states and the remaining 2j atoms in a Dicke state o

maximum cooperation number, wherej 5(0,1
2 ),...,N/2, m

52 j ,...,j . The fully inverted initial state is denote
uN/2,N/2&N . The actions of the atomic operators on the
states are

Ĵ2u j ,m&2 j u2& i 1
¯u2& i N22 j

5A~ j 1m!~ j 2m11!u j ,m21&2 j u2& i 1
¯u2& i N22 j

,

~6a!

ŝ l 2u j ,m&2 j u2& i 1
¯u2& i N22 j

5Aj 1m

2 j
u j 2 1

2 ,m2 1
2 &2 j 21u2& i 1

¯u2& i N22 j
u2& l

~6b!
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These actions are the actions of the jump operatorsĈk . Col-
lective emission jumps preserve the cooperation number
the 2j Dicke-state atoms while leaving the labeled ato
i 1 ,...,i N22 j alone. A noncollective emission jump puts on
more atom in the ground state, leaving the remainingj
21 atoms in a Dicke state of reduced cooperation num
Thus, with every noncollective emission one atom is iden
fied ~labeled! through spontaneous emission and hence
moved from the population of collective atoms. A particul
sequence of photon emissions produces a cascade dow
ladder of the basis states according to these rules.

The story of the evolution along a quantum trajectory
not yet complete, however. There is also the evolution
between jumps, generated by the non-Hermitian Hamilton
~4!, and while the jumps move the system from one ba
state to another, between them the continuous evolution
ates a superposition of states; more importantly, new st
are brought in from outside the defined basis through ps
dospin exchange. To see how this works, we may divide
collective operatorsĴ6 into two pieces, writing

Ĵ65L̂61Ŝ6 , ~7!

whereL̂6 sums over all atoms that have not yet been id
tified through spontaneous emission andŜ6 sums over the
labeled atoms,i 1 ,...,i N22 j . The Hamiltonian is then the sum
of two pieces,Ĥ5Ĥ01Ĥ1 , with

Ĥ052 i
G

2
~ L̂1L̂21Ŝ1Ŝ2!2 i\

g

2 (
i 51

N

ŝ i 1ŝ i 2 , ~8a!

Ĥ152 i
G

2
~ L̂1Ŝ21L̂2Ŝ1!. ~8b!

Now after n5 j 2m collective emissions andk2n5N22 j
noncollective emissions~k emissions in total!, we assume
the state reached is the one obtained by applying
jump operators alone, i.e., neglecting the evolution
between the jumps; the state is thus assumed to
u j ,m&2 j u2& i i 1

¯u2& i N22 j
, which we write, alternatively, as a

product of two Dicke states,

u j ,m&2 j u
1
2 N2 j ,2 1

2 N1 j &~ i 1 ,...,i N22 j !
. ~9a!

This state is an eigenstate ofĤ0 ; however, it is coupled by
Ĥ1 to

u j ,m21&2 j u
1
2 N2 j ,2 1

2 N1 j 11&$ i 1 ,...,i N22 j %
. ~9b!

At higher orders the pseudo-spin exchange introduces
more Dicke state products.

In this paper, we make the approximation of neglecti
the pseudospin exchange. In this way, we reduce the q
tum trajectory evolution to a two-channel rate process. Tre
ing Ĥ1 as a perturbation, one can show that the validity
the approximation requires
5-3
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JAMES P. CLEMENS AND H. J. CARMICHAEL PHYSICAL REVIEW A65 023815
G~n11!

g1G~n11!

k2n

~N2k!~n11!
!1. ~10!

The inequality can be satisfied by makingG/g arbitrarily
small, but this leads to the dominance of noncollective em
sion, an uninteresting regime. The second ratio of the pr
uct is the most important one, and it sets a more and m
restrictive condition as the photon-emission seque
progresses. In the interval between the second to last an
very last emissionk5N21; here the requirement is@N
2(n11)#/(n11)!1. Thus the majority of the jumps mus
be collective in order for the approximation to be go
throughout the entire decay process; collective emiss
must be well established and dominate any noncollec
emission. This result goes counter to the aim of our pa
Nevertheless, halfway through the decay, withk5N/2, the
requirement is relaxed to (N22n)/@N(n11)#!1. With N
sufficiently large, this can be satisfied even if a majority
the jumps are noncollective.

We expect, then, that our approximation can describe
initiation phase of superradiance, but will not, in general,
accurate in describing the second half of the collective ra
tion pulse, unless during the first half the amount of nonc
lective emission is insignificant. These statements are s
ported by exact simulations carried out for up to 20 atom
Results will be presented in a separate publication.

It is interesting to note that Dicke makes precisely t
same approximation in Eq.~84! of his paper@1#. There, the
conditional state after the emission ofs21 photons is ex-
pressed in terms of an initial density operator,r0 , sur-
rounded bys21 nested jump operators, which account f
the sequence of previous emissions. Notably, there is no
tinuous evolution in between the jumps. The omission is j
tified in this case under Dicke’s assumption of ‘‘widely sep
rated molecules.’’ Generally, though, as we see he
superradiance is not describable as a pure rate process. T
is in addition this pseudospin exchange in between jump
is the most difficult piece of the entire decay process
accommodate.

Accepting the rate approximation leads to a dramatic
duction in the computational resources needed for a num
cal simulation of the photon-emission sequences. The a
rithm consists of evolving a pure state in time steps,dt,
where in a given step, the state either develops un
B̂0(t)5exp(2iĤ0 t/\.) or a jump~photon emission! of one
type or the other takes place. Since the state under
scheme is preserved as an eigenstate ofĤ0 , B̂0(t) generates
a trivial scaling which is removed on renormalization.
effect, there are only the jumps and the evolving rates for
jumps to account for. The branch to be taken in a given ti
step is decided by comparing a random number with
branching probabilities determined from the record proba
ity ~5!: the probability for a noncollective emission jump,

Pnoncoll5~gdt!(
i 51

N

^cc~ t !uŝ i 1ŝ i 2ucc~ t !&, ~11a!

for a collective emission jump,
02381
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Pcoll5~Gdt!^cc~ t !uĴ1Ĵ2ucc~ t !&, ~11b!

and a probabilityPB512Pnoncoll2Pcoll for no effective evo-
lution.

We can explicitly evaluatePnoncoll andPcoll in terms of the
numbers of previous emissions without regard to their ord
After k emissions withn of them collective, the state is give
by Eq. ~9a! and the rates of emission out of this state are

Rnoncoll
k,n 5g~N2k! ~12a!

and

Rcoll
k,n5G~N2k!~n11!. ~12b!

The time to the next emission is then determined by sa
pling the conditional waiting time distribution

w~t!5~Rnoncoll
k,n 1Rcoll

k,n!exp@2~Rnoncoll
k,n 1Rcoll

k,n!t#. ~13!

The type of emission is decided by a random selection, ei
noncollective or collective in the ratioRnoncoll

k,n : Rcoll
k,n .

Numerical results obtained with this algorithm are r
ported in Sec. V. Before discussing them, we derive a diff
ence equation satisfied by the photon counting distributio

IV. A DIFFERENCE EQUATION FOR PHOTON
STATISTICS

If we neglect the pseudospin exchange, the quantu
trajectory formalism leads us directly to a difference equ
tion for the photon number distribution,Pk(n), for n collec-
tive emissions in the firstk emissions, regardless of the time
of the emissions or what happens following thekth emission.
The probability is given by summing Eq.~5! over all records
havingn collective emissions among the firstk emissions:

P~k!~n!5 (
S@n,k#

E
0

`

dt1¯

3E
tk21

`

dtk^N/2,N/2uD̂ @n,k#
† D̂ @n,k#uN/2,N/2&,

~14!

whereD̂ @n,k#[ĈkB̂(tk2tk21)¯Ĉ1B̂(t1) andSS@n,k# denotes
the sum over all sequences ofn collective jumps amongk
jumps. The sum over records following thekth emission is
already taken in this expression. We substituteB̂0(t) for
B̂(t) and explicitly write out the sum over the two possibi
ties for thekth jump, to find

P~k!~n!5g~N2k11! (
S@n,k21#

E
0

`

dt1¯

3E
tk21

`

dtke
2Ln

k21
~ tk2tk21!^N/2,N/2uD̂ @n,k21#

†

3D̂ @n,k21#uN/2,N/2&1G~N2k11!n
5-4
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3 (
S@n21,k21#

E
0

`

dt1¯E
tk21

`

dtke
2Ln21

k21
~ tk2tk21!

3^N/2,N/2uD̂ @n21,k21#
† D̂ @n21,k21#uN/2,N/2&,

~15!

whereLn
k215(N2k11)@g1G(n11)# is twice the eigen-

value of the HamiltonianĤ0 following n collective emis-
sions out ofk21 emissions. Performing thetk integral then
yields the difference equation

P~k!~n!5
g

g1G~n11!
P~k21!~n!1

Gn

g1Gn
P~k21!~n21!.

~16!

Equation~16! is similar to an equation given by Lee@28#,
who has also made an analysis of superradiance with n
collective emission processes included. Lee’s analysis
more ambitious as it deals with spatially distributed ato
and no cavity. We are unable, however, to obtain agreem
with his rates even in a limiting case. We return to Le
work in the next section. It will be seen that his solution
the rate equation uses an approximation that renders a
tailed comparison moot.

We are able to solve our rate equation iteratively fork
5106 using only moderate computational resources. The
mal solution fork5N is

P~N!~n!5n!gN2nGn
1

g1G (
k25max~1,11n2N!

min~1,n!

¯

3 (
kN5max~kN21 ,n21!

min~kN2111,n! S )
j 52

N
1

@g1G~kj11!# D ,

~17!

where the limits on the sums account for all possible ord
ings of the emissions.

V. RESULTS

We have generated photon-emission sequences by M
Carlo simulation based on Eqs.~12a!–~13! and solved Eq.
~16! by explicit numerical iteration. We compute a number
statistical properties of the emitted light. Our results dem
strate the presence of additional fluctuations over the sin
mode model due to the competition between collective
noncollective decay. We find, in particular, that the decay
primarily noncollective ~collective! when NG/g is suffi-
ciently small~large!; there is no sharp transition, however,
at the threshold of a laser. ForG/g;1023, the transition
point ~point of maximum fluctuations! occurs atNG/g;10,
but there is a transition region extending over more than
order of magnitude. The transition region broadens sign
cantly asG/g is reduced although the transition point itse
shows only a weakG/g dependence.

First, let us illustrate some of the changes brou
to the collective emission pulses within the transition regi
Figure 1 illustrates the effect of the noncollectiv
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emission in reducing the average intensity,I (t)/NG

[^cc(t)uĴ1Ĵ2ucc(t)&/N, and increasing the width of the
collective emission pulse; the peak of the pulse is a
shifted a little. The dashed curve reproduces the result fr
the single-mode model. It is calculated in our treatment
setting g50. The quantum fluctuations included in th
single-mode model already give some reduction in peak
tensity compared with the hyperbolic secant pulse obtai
in the semiclassical approximation@14,20#; Bonifacio et al.,
for example, find a 23% reduction forN5200 @9#. As curve
~ii ! shows in particular, far greater reductions can come fr
the noncollective emission.

Going beyond the mean intensity, there are pulse-to-pu
intensity fluctuations and correlated fluctuations in the pu
delay time and width. We illustrate the correlation in Figs
and 3. In Fig. 2, we plot some examples of conditiona
averaged pulse intensities with the average conditioned
the total number of collective emissions per pulse; here
distribution in the number of emissions is relatively broa
similar to curve~ii ! in Fig. 4. Notice the variations in the
time of the peak intensity and the pulse width. Fluctuatio
of this sort are completely absent in the single-mode mo
which always has exactlyN collective emissions per pulse

FIG. 1. Mean intensity of the collective emission pulse forN
51000 atoms andG/g50.1 ~i! and 0.01~ii !. The dashed curve is
the result from the single-mode model (G/g→`).

FIG. 2. Mean intensity of some collective emission pulses
given integrated photon number: forN5100,G/g50.1, and given
an integrated photon number ofn575 ~i!, 57 ~ii !, and 31~iii !. The
dashed curve is the average overn and the most probable photo
number isn557.
5-5
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Figure 3 shows the correlation between intensity and
lay time in more detail, for a larger number of atoms but t
same NG/g. The narrowness of the distribution, show
clearly in the perspective of the lower plot, indicates that
correlation is a strong one, except when the peak intensi
small. Thus, the fluctuations in delay time that track t
variation in peak intensity are much larger than the fluct
tions at a fixed intensity. A similar correlation can be de
onstrated for the pulse width, with the width and delay tim
linearly correlated.

The photon-number fluctuations in the collective pu
provide a global picture of the transition from noncollecti
to collective emission. In the single-mode model, the coll
tive emission photon-number distribution is ad function,
P(N)(n)5dnN ; since there is only one output channel, eve
excited atom necessarily contributes one photon to the
lective pulse. For our two-channel model, this is no long
the case. WhenNG/g is too small, most, if not all, of the

FIG. 3. Correlation between collective pulse delay timetp and

peak intensityI p[G^cc(tp)uĴ1Ĵ2ucc(tp)& for N51000 andG/g
50.01.

FIG. 4. The collective emission photon number distribution
N51000 andG/g51023 ~i!, 1022 ~ii !, 1021 ~iii !, and 1~iv!.
02381
-
e

e
is

-
-

-

l-
r

photons are emitted as noncollective spontaneous emis
For there to be strong collective emission,NG/g must be
increased. The development of the collective emiss
photon-number distribution with increasingG/g, at fixed N
51000, is shown in Fig. 4. We observe a transition from
sharp distribution peaked aroundn50 through a series o
broad distributions peaked at increasing values ofn to a
sharp distribution once again peaked at a value ofn close to
N. Previous treatments of quantum fluctuations in superra
ance assume the extreme values ofNG/g that takePN(n)
towards the delta functiondnN @8–13#.

The transition region is conveniently traced by solvi
Eq. ~16! for fixed G/g. The solutionP(k)(n) is the final col-
lective emission photon-number distribution forN5k atoms,
and also the distribution reached afterk emissions—of either
type—for anyN larger thank. We show one result obtaine
by numerically iterating Eq.~16! in Fig. 5. The transition,
illustrated in Fig. 4 as a function ofG/g, at fixedN, appears
here in similar form as a function ofN at fixedG/g.

From theP(N)(n) for various valuesG/g we obtain the
results for the mean photon number and Fano factorF
5^Dn2&/^n&) plotted in Fig. 6. Here we see that the colle
tive emission ‘‘turns on’’ where the photon-number distrib
tion is most broad, in all cases aroundNG/g510, although
there is a weak dependence onG/g. The peak in the Fano
factor is, however, extremely broad, and appears to incre
inversely withG/g.

We turn finally to a comparison of our results with the o
previous treatment we have found of noncollective emiss
effects in superradiance. We compare with the work of L
@28,29#, which is based on an elaborate calculation of tra
sition matrix elements between Dicke states for the m
difficult problem of atoms distributed in free space@32#. The
model in this work is also a two-channel model, with th
transitions characterized as eitherr-conserving or

r

FIG. 5. The collective emission photon-number distribution a
function of N for G/g51021. The distribution is discrete and
continuous line connects the discrete points. The first curve in
lower plot is forN525.
5-6
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r-nonconserving, wherer is the cooperation number; there
a loose identification with our collective and noncollecti
transitions. Lee applies his derived matrix elements to
analysis of the ‘‘transition point of superradiance’’@29#.

The transition point considered by Lee is quite differe
however, from that shown in Figs. 5 and 6. In fact, L
makes an approximation that amounts to neglecting
depletion of the atomic excitation. Its effect within our mod
is to replace A( j 1m)( j 2m11)5A(N2k)(n11) by
AN(n11) in Eq. ~6a!, and A( j 1m)/2j 5A(N2k)/N by
unity in Eq.~6b!. This results in an elementary description
which the average number of noncollective emissions gro
linearly in time,

^k2n&5Ngt, ~18!

while there is an exponential growth,

^n&5eNGt21, ~19!

in the number of collective emissions. Thus, in Lee’s mo
the collective emission will always dominate for lon
enough times; his ‘‘transition point’’ refers to the time
which the collective emission becomes dominant. We, on
other hand, treat the competition between collective and n
collective emission without any presumption that the form
will ultimately dominate.

In Fig. 7, we compare the behavior given by Eqs.~18! and
~19! with our results forN5100 atoms andG/g50.1. There
is good agreement for short times, as one would exp
Lee’s approximation cannot, however, describe the phen
enon of a superradiantpulse, nor can it describe the fluctua
tions in pulse characteristics illustrated in Figs. 1–6.

FIG. 6. Mean photon number~a! and the Fano factor~b! for the
collective emission, as a function of the number of atoms:
G/g51 ~i!, 1021 ~ii !, 1022 ~iii !, and 1023 ~iv!.
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VI. CONCLUSIONS

We have investigated a model of the initiation of super
diance in a cavity in which we account for the effects
noncollective spontaneous emission. Formulating the pr
lem within quantum trajectory theory led us to the appro
mation of neglecting pseudospin exchange. We thus redu
the stochastic Schro¨dinger evolution to a two-channel rat
process, and efficient Monte Carlo simulations of the res
ing photon-emission sequences have been carried out.

Our approach proves the foundation of an approximat
that can be traced back to the earliest papers on super
ance. We plan to develop it in future work into a gene
multichannel scheme for treating arbitrary free-space dis
butions of atoms.

In the present context, we have computed photon-num
distributions for the collective emission pulses and sho
how superradiance turns on as the number of atoms is
creased. We found that there is a broad transition reg
throughout which large fluctuations occur. We calculated
Fano factor to characterize the fluctuations in photon num
and also illustrated the correlations that exist between p
photon number, or intensity, and pulse delay time and wid
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r FIG. 7. Mean numbers of noncollective~a! and collective~b!
photon emissions as a function of time forN5100 andG/g50.1.
The dashed lines show the linear and exponential growth, res
tively, from Ref. @29# and the solid lines are the results from o
model.
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