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Stochastic initiation of superradiance in a cavity: An approximation scheme within quantum
trajectory theory
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We investigate the stochastic initiation of superradiant emission from a collection of excited two-state atoms
coupled through a lov@ cavity mode. Noncollective emission into other modes of the electromagnetic field is
included, allowing us to describe the transition from predominantly noncollective to collective behavior as the
number of atoms is increased. We examine the dependence of the photon statistics on the number of atoms and
the ratio of collective to noncollective decay rates. Numerical results for a fewPtatifns are obtained using
an approximation scheme developed within the framework of quantum trajectory theory. Results are compared
with those for a pure collective emission process and an earlier treatment of noncollective effects.
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I. INTRODUCTION into just one mode of the radiation field predominates. The
assumption leads to the so-called “single-mode” mdda)

The collective interaction of atoms with light is a topic of which turns out to be formally equivalent to Dicke’s small
fundamental interest in quantum optics. There exists a larggéample model. Most work on the quantum statistics of super-
literature on superradiance and superfluorescence, in particidiance is based upon the “single-mode” assumption
lar, dating back to the seminal paper by Didké. The sim- [8—13. For most initial conditions, these treatments repro-
plest theoretical formulation of superradiance holds forduce the semiclassical pulse structure obtained by Eberly and

Dicke’s small sample case where all atoms are contained in Rehler[14,15, but they also provide an account of fluctua-
volume much smaller than a cubic wavelength. In this in-tions when the excitation brings the system close to the fully

stance, it is readily seen that the symmetric, half-invertecXCited state.

atomic stateprecisely half the atoms excitedadiates at a systV\éemzr?rlgie(;ES;%(: Q;eqdﬁ]rjtgpndgngsggﬁg“ﬁ gir:gﬁ:cr)nnoge
rate proportional to the square of the number of atoms, indi- riteria. We expect that new insights can be brought to the

cating the presence of coherence between the radiation em| foblem by a quantum trajectory formulation. The most gen-

ted by different atoms. A complete picture of the IOhenom'eraI situation requires the atoms to couple to all modes of the

enon requires, however, that the method of excitation bgjg|y \hile in addition diffraction and propagation effects
taken into account. Specifically, direct excnqnon by a,lasermust be taken into account. We retain the Markov approxi-
pulse from the ground state leaves the atomic sample in pogjation, however, assuming the propagation time between at-
session of a macroscopic polarizati@m uncertain number omg to be much shorter than the duration of the collective
of atoms excitefl Under these conditions, the subsequenigecay. We thus aim for the level of description provided by
radiation can be understood from the semiclassical point ofhe general superradiance master equafibb—18. Car-
view taken in the theory of magnetic resonafi2zgg] (Dicke  michael and Kim have obtained the quantum trajectory un-
nevertheless still speaks of “super-radiant” stateSn the  raveling of this equatiofi19].
other hand, when the sample is excited to the fully inverted In his 1972 essay, Eberly speaks of treating the radiative
state and then allowed to relax, it apparently passes througitecay process as “a quantum-classical interpolation prob-
a cascade of states of precise, though diminishing, excitatiolem” [20]. The imagery is particularly appropriate, since
The quantum fluctuations in the emission process becomehile the initiation of collective emission requires a statisti-
important and the appearance of any coherence is necessarigl treatment within quantum mechanics, what results, shot
spontaneous. It is this more interesting situation that thdyy shot, is an essentially “classical” pulse of light. Appar-
present paper addresses. ently the single pulse emission does, indeed, interpolate, as a
While the word “superfluorescence” is sometimes used tophysical process, between quantum and classical regimes of
distinguish initial states that lack a macroscopic polarizatiorevolution. The process, however, is manifestly stochastic and
[4], we choose to follow the older and still common practicenot very accessible if it is kept buried under the quantum-
of employing the term “superradiance” without regard to the mechanical average. Whereas Eberly had in mind a method
initial state. of extraction grounded in the physical intuition of semiclas-
Collective emission can arise when the atomic sample isical Bloch equations, quantum trajectory theory provides a
not confined within a cubic wavelength. Indeed, with onerigorous formulation of the stochastic initiation and develop-
notable exceptior[5], all superradiance experiments deal ment of the individual pulses.
with something more complex than the idealized small Even in quantum trajectory theory, we must nevertheless
sample casé6]. A widely adopted approach to the under- introduce simplifications if we are to go any distance beyond
standing of extended systems is to assume that after the veaymere formulation. Naive numerical simulation will not take
earliest stage of the spontaneous decay process, emissios very far, as only a few tens of two-state atoms yield a
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Hilbert space dimension well beyond the capacity of anyity mode; either they are located at antinodes of a standing

computer. As a first step toward understanding the generglave and couple through collective operatord,
stochastic process for spatially distributed atoms formulated__gil\lzlg,_i+’ where &, . are raising and lowering operajtors

by Carmichael and Kin{19], we study, in this paper, a for an individual atom, or they reside in a ring cavity and
model with two emission channels. We couetwo-state
atoms collectively to one mode of the radiation field and
each atom, independently, to all other modes of the field. Th
model may be realized by placing the atotaslow density

in a low-Q resonant cavity. It was a popular model for theo-_ 75~ " o
retical work on the bad-cavity limit of optical bistability :Lec:(:l,elst iI: iﬁzzurgr?gem?‘g:heea;?%?;ﬂelonutshgrggj-lggv}[to ?i::ﬁr
[21-23. Surprisingly, despite the close approximation cavity | th tF;] te of collecti L i ity fi >Ild
systems make to Dicke’s original proposal, there are only 5" arger than the rate of collective emissjpthe cavity fie

few experiments to date on superradiance in resonant cavitigsd'ab?t'ca”y. fOHOW.S s polfalr|;at|on. The master
[24-27 equation(valid for times larger thanc<™ *) is then given by

The neglect of independent coupling of the atoms to non—[7’30]

cavity modes is a major deficiency of nearly all previous ) N

uantume-statistical studies of superradiance. The stochastic: _ 3.3 3 3 73 N N
iqnitiation of emission from the fuII;F/’ excited state is largely a  © 2 (23-pds=did-p=pdid)t 5 .21 (251-pis
competition between collective and noncollective decay. The A o
competing noncollective decay is especially important in the ~ 040 p~ P04 Ti), @
case of a relatively small number of atoms. When the atoms ) ) _ _ )
are too few, there is insufficient time for the collective en-Where the first term describes the cavity-assisted collective

hancement of the emission to develop before the excitatiofMission and the second describes the noncollective emis-
energy is lost to noncollective modes. We show that as &i°n due to spontaneogs decay. The collective decay rate is
consequence of the competition, on increasing the number §€términed to bd’=2g“/«, whereg is the atomic dipole
atoms, superradiance emerges through a broad transition re2UPling constant. - _ o

gion featuring large fluctuations in the delay time, width, and  While our model is most reliable for the cavity situation,
intensity of the pulse coupled out through the cavity mode!© Make a connection with a distribution of atoms in free
We make comparisons with the work of LE28,29, who  SPace we might aIEernajl\iely define th? collective emission
has explicitly considered some aspects of the competitiofiate by’ = [d€ 4(K)F(k,k"), wherely(k) is the intensity
from noncollective emission. of spontaneous emission from a single atom in the direction

Our calculations are based on an approximation that rek, and F(k,k’)=|(exfi(k—Kk')-F])|, [2] where the angular
duces the exact quantum trajectory description 10 @ tWOprackets denote an average over atomic positiehgoints
channel rate process. The trajectory formulation offers a patfy, 5 preferred direction, the axis of a narrow cylindrical dis-
to the ap'proximation because it permit; the use of basigiphytion of atoms for examplél4,18,29. Any atomic dis-
states which are adapted, throughout a simulation, to the sg;hytion that shows clear directionality of emission should
quence of past photon emissions. The approximation allowgie|q a smalll, since this rate is approximately proportional
us to calculate the statistics of the emitted radiation for a fewq the solid angle into which the emission occurs. We thus
to 1¢° atoms, and for various ratios of collective to noncol- pay particular attention to the parameter regite<1. In a
lective decay rates, with only a modest investment of COMzavity, or course, much larger values Bfy are possible,
puter resources. Our method provides access to any numbg{en, when the solid angle of the radiation coupled out
of statistical properties, including the correlations between[hrough the cavity mode is small.
the pulse i_ntensity and the pulse delay time and width. _ The usual strategy in proceeding from Ha) is to as-

We outline the two-channel model and its quantum trajeCxme that the collective emission dominates, at least after a
tory formulation in Sec. Il. In Sec. I_II we describe the SIMU- yery short time, and thus to solve the equation keeping only
lation scher_ne use_d to calculate _tlme-dependent quantitieghe first term on the right-hand side. A variety of methods
and we derive a difference equation for the photon numbeg,q approximations have been used to arrive at a solution
distribution of the collective pulse in Sec. IV. We present 9-13. Our aim is to avoid the assumption. Instead, we use
results in Sec. V, including results on the photon statistics O{he quantum trajectory formalism to convert the master equa-
the emitted light throughout the transition region as well as;jgn into a stochastic process which can be simulated on a
delay time statistics and time-intensity correlations. We comeomputer to account for the competition between collective
pare our results with previous work. Conclusions are preuyng noncollective decay. The difficulty with keeping both
sented in Sec. VI. terms in Eq.(1) is that while a basis of Dicke states is con-
venient for treating the first term, it is a particularly incon-
venient choice for treating the second. The difficulty is not
removed completely in the quantum trajectory formulation.
The approach does show a way around it, however, if we

We considerN two-state atoms inside an optical cavity. are prepared to make a different, though less serious,
The atoms couple collectively, and on resonance, to one cawapproximation.

couple throughl. =3N e* k%5, , wherek, is the mode
ave number and; denotes the position of an atom along
e cavity axis. The cavity decay ratedisnd the atoms have

a spontaneous decay rageto other modes of the radiation

Il. MODEL AND ITS QUANTUM TRAJECTORY
FORMULATION
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Using an unraveling of the master equatidy based on  These actions are the actions of the jump operaiqrsCol-
counting of the emitted photons, we decompose the densitigctive emission jumps preserve the cooperation number for

operator into a sum over pure states, the 2j Dicke-state atoms while leaving the labeled atoms
i1,....in—2; alone. A noncollective emission jump puts one
p(t)=2, Pred the(t)){(e(t)], (2) ~ more atom in the; ground state, leaving the remaining 2

REC —1 atoms in a Dicke state of reduced cooperation number.

] .. Thus, with every noncollective emission one atom is identi-
where REC denotes a particular record of photon emissiongieq (jabeled through spontaneous emission and hence re-
up to timet (type—collective or noncollective—and time of qyeqd from the population of collective atoms. A particular
emission, Pgec is the probability for that record, and gequence of photon emissions produces a cascade down the
| (1)) is the state of the atoms conditioned on the sequencRdder of the basis states according to these rules.
of emissiong31]. The unnormalizedstate conditioned on a  The story of the evolution along a quantum trajectory is
particular record o emissions is given by not yet complete, however. There is also the evolution in

— N . . A between jumps, generated by the non-Hermitian Hamiltonian
[e(1))=B(t—ty)C - B(t,— 1) C1B(t1)[#4(0)),  (3)  (4), and while the jumps move the system from one basis

- ) ) state to another, between them the continuous evolution cre-
whereC, andt, are the jump operator and time for tkéh  ates a superposition of states; more importantly, new states
emission, withC,=\TJ_ or C,=/y5;_ (somei) for col-  are brought in from outside the defined basis through pseu-
lective or noncollective emissions, respectivelfg(r)  dospin exchange. To see how this works, we may divide the

=exp(~iA /%) generates the continuous time evolution in collective operators . into two pieces, writing
between emissions, where the non-Hermitian Hamiltonian is

j: =L.+ é: ) (7)
N
T e 2~ HU
H= _'ﬁ§J+‘]—_'ﬁ —21 Ti+0i-- (4) wherelL . sums over all atoms that have not yet been iden-
N _ _ tified through spontaneous emission a®d sums over the
The probability for a particular record is labeled atoms,y , ... iN—»j . The Hamiltonian is then the sum
— of two piecesH=Hy+H;, with
PREC=<¢c(t)|¢c(t)>dtn' —dty, )
N
where the photon emissions occur in time intervals, tg Ho=—i £(|:+|:,+§+AS,)—ihZZ &0, (83
+dtk),k:1,...,n. 2 21
If we introduce an approximation within this scheme, an
extremely efficient numerical algorithm is made available for . xr o ..
simulating the emission sequences. Hy=—1 §( +S-+L-Sy). (8b)
ll. AN APPROXIMATION SCHEME ENABLING Now aftern=j—m collective emissions and—n=N—2j
LARGE-N SIMULATIONS noncollective emissiongk emissions in tota) we assume

tpe state reached is the one obtained by applying the
ump operators alone, i.e., neglecting the evolution in
jetween the jumps; the state is thus assumed to be
lj ,m)2j|—)ii1---|—>iN_2j, which we write, alternatively, as a
product of two Dicke states,

We consider a set of basis states that are products
Dicke states and single-atom ground states. A general ba
state|1,m)zj|—)il---|—>iN72j has atoms,...,iN—p; in their
ground states and the remaining &oms in a Dicke state of
maximum cooperation number, wheje=(0,3),...,N/2, m

|T\|/_21N/2>]N ?ﬁi a]:léltli)c/)nismc/)?riﬁg ail?ci)ﬁlc f)f(te?atic?rsdc?r? Ot';1eedse [1:m)2i ZN =1, = 2N+ Dy - (%3
ales are This state is an eigenstate Bf; however, it is coupled by
j—“'m>21|_>i1"'|_>iN72j H, to
=G+ mG=mtD)]jm=1)5 =i [ =iy 0 =1 N1 - IN+ + D e (OB

(6a) At higher orders the pseudo-spin exchange introduces still
PO more Dicke state products.
- 11mM)ail =iy 1Dy In this paper, we make the approximation of neglecting
irm the psgudospin exchange. In this way, we reduce the quan-
= /T“ —3m- %>2j71| _>i1"'| _>iN—2'| -\ tum:[rajectory evolution to a two-channel rate process. Treat-
J : ing H, as a perturbation, one can show that the validity of
(6b)  the approximation requires
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I'(n+1) k=n Peor= (Tdt)(we()[ I I_| (1)), (11b)
y+T(n+1) (N—k)(n+1)<1' (10) I

and a probabilityPg=1— P ,oncoi— Pcon fOr no effective evo-
The inequality can be satisfied by makidyy arbitrarily  lution.
small, but this leads to the dominance of noncollective emis- We can explicitly evaluat® oo andPq in terms of the
sion, an uninteresting regime. The second ratio of the prodaumbers of previous emissions without regard to their order.
uct is the most important one, and it sets a more and moréfter k emissions witm of them collective, the state is given
restrictive condition as the photon-emission sequenc®y Eq.(9a) and the rates of emission out of this state are
progresses. In the interval between the second to last and the .
very last emissiork=N—1; here the requirement iEN Rnoncoi= Y(N—K) (123
—(n+1)]/(n+1)<1. Thus the majority of the jumps must
be collective in order for the approximation to be goodand
throughout the entire decay process; collective emission
must be well established and dominate any noncollective
emission. This result goes counter to the aim of our paper, . L .
Nevertheless, halfway through the decay, with N/2, the The time to the_ next emission 1S t'her_1 dgtermmed by sam-
requirement is relaxed toN— 2n)/[N(n+1)]<1. With N pling the conditional waiting time distribution
sufficiently large, this can be satisfied even if a majority of
the jumps are noncollective.

We expect, then, that our approximation can describe th";I"he type of emission is decided by a random selection, either

initiation phase of superradiance, but will not, in general, benoncollective or collective in the ratig" - R&"

accurate in describing the second half of the collective radia- Numerical results obtained with t?ﬁ?c’& o?i’tnﬁm are re-

tion pulse, unless during the first half the amount of noncol- . . . 9 X .
orted in Sec. V. Before discussing them, we derive a differ-

I;OCrttlgg g;n ;S;%? Slismlﬂaggglscigtr'rilge;& ?é?tsg] ?c? tzsoagforsnuﬁ;nce equation satisfied by the photon counting distribution.
Results will be presented in a separate publication.

It is interesting to note that Dicke makes precisely the IV. A DIFFERENCE EQUATION FOR PHOTON
same approximation in Eq84) of his paper[1]. There, the STATISTICS
conditional state after the emission ®f 1 photons is ex-
pressed in terms of an initial density operatpg, sur-
rounded bys—1 nested jump operators, which account for
the sequence of previous emissions. Notably, there is no co
tinuous evolution in between the jumps. The omission is jus

tified in this case under Dicke’s assumption of “widely sepa-the probability is given by summing E¢B) over all records

rated mpleculgs. Ge”ef?‘"y' though, as we see herehavingn collective emissions among the filsemissions:
superradiance is not describable as a pure rate process. There

is in addition this pseudospin exchange in between jumps. It o
is the most difficult piece of the entire decay process to P®(n)= >, dty- -

RN =T'(N—k)(n+1). (12b)

W( T) = (Rﬁbnncoll"_ R§6T|)GXF{ - (Rﬁbnncoll"_ REbTI) T]' (13)

If we neglect the pseudospin exchange, the quantum-
trajectory formalism leads us directly to a difference equa-
tion for the photon number distributio®*(n), for n collec-

Hve emissions in the firdt emissions, regardless of the times
of the emissions or what happens following ¥tk emission.

accommodate. Sink] /0
Accepting the rate approximation leads to a dramatic re- o . A
duction in the computational resources needed for a numeri- X dtk<N/2,N/2|D{n’k]D[n,k]|N/2,N/2),
cal simulation of the photon-emission sequences. The algo- k-1
rithm consists of evolving a pure state in time stegs, (14)

where in a given step, the state either develops under
Bo(7) =exp(~iHq 7/#i.) or a jump(photon emissionof one  whereDy, ,y=CB(t—ty—1)---C1B(t1) andS g, ; denotes
type or the other takes place. Since the state under thihe sum over all sequences wfcollective jumps amondk
scheme is preserved as an eigenstaﬂ@l@féo(r) generates jumps. The sum over records following théh emission is
a trivial scaling which is removed on renormalization. In already taken in this expression. We substitBig ) for
effect, there are only the jumps and the evolving rates for th§( ) and explicitly write out the sum over the two possibili-
jumps to account for. The branch to be taken in a given timgjes for thekth jump, to find
step is decided by comparing a random number with the
branching probabilities determined from the record probabil- %
ity (5): the probability for a noncollective emission jump, P®(n)=y(N—k+ 1)3[ Ek: | JO dty- -

el

N
Proncor= (Y00 2, (e(t)|&12.3-|ve(1), (112 X f dtee™n (b (NRNIZD], o
- te—1
for a collective emission jump, X Dpn—17NI2N/2) +T (N—k+1)n
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© . 1 200
X 2 J' dtl"'f dtke_Anfl(tk_tk’l)
Sn-1k-1] Jo ty—1 e\
150} TAUA
X(NI2NI2|D[ 1\ 1D 1x-17IN/2N/2), /
(15) E 100+
where AK"1=(N—k+ D[y+I(n+1)] is twice the eigen- 5ol (i)
value of the HamiltoniarH, following n collective emis-
sions out ofk—1 emissions. Performing thg integral then 0 , ,
yields the difference equation 0.000 0.005 0.010 0.015 0.020
It
4 _ I'n _ T . .
POmM=——0 Pk D)+ ————pk-Dn=1). FIG. 1. Mean intensity of the collective emission pulse for
(M= T+ M+ T (n=1) y o

=1000 atoms and'/y=0.1 (i) and 0.01(ii). The dashed curve is
(16) the result from the single-mode modél/(y— ).

Equation(16) is similar to an equation given by L¢28], . . . . .
who has also made an analysis of superradiance with norfMISsion in reducing the average intensiti(t)/NI

collective emission processes included. Lee’s analysis i§{%c(t)[J+Jd-[#c(t))/N, and increasing the width of the
more ambitious as it deals with spatially distributed atomscollective emission pulse; the peak of the pulse is also
and no Cavity_ We are unab|e, however, to obtain agreemerﬁhifted a little. The dashed curve reproduces the result from
with h|s rates even in a ||m|t|ng case. We return to Lee’sthe Single'mode model. It is calculated in our treatment by
work in the next section. It will be seen that his solution of Sétting y=0. The quantum fluctuations included in the
the rate equation uses an approximation that renders a déingle-mode model already give some reduction in peak in-
tailed comparison moot. tensity compared with the hyperbolic secant pulse obtained
We are able to solve our rate equation iteratively kor in the semiclassical approximatigth4,20]; Bonifacioet al,
= 10P using only moderate computational resources. The forfor example, find a 23% reduction fot=200[9]. As curve

mal solution fork=N is (i) shows in particular, far greater reductions can come from
the noncollective emission.

min(1,1) Going beyond the mean intensity, there are pulse-to-pulse

PN (n)=ntyN"r—— > - intensity fluctuations and correlated fluctuations in the pulse

Y+ ig=malTien-n) delay time and width. We illustrate the correlation in Figs. 2

and 3. In Fig. 2, we plot some examples of conditionally
averaged pulse intensities with the average conditioned on
the total number of collective emissions per pulse; here the
(17) distribution in the number of emissions is relatively broad,
similar to curve(ii) in Fig. 4. Notice the variations in the
where the limits on the sums account for all possible ordertime of the peak intensity and the pulse width. Fluctuations
ings of the emissions. of this sort are completely absent in the single-mode model,
which always has exactI) collective emissions per pulse.

X

min(ky—41+1,n) ( N 1

jUz [y+T(kj+1)]

kny=maxky_q,n—1)

V. RESULTS
16

We have generated photon-emission sequences by Monte
Carlo simulation based on Eqg€l29—(13) and solved Eq.
(16) by explicit numerical iteration. We compute a number of 12
statistical properties of the emitted light. Our results demon-
strate the presence of additional fluctuations over the single-

mode model due to the competition between collective and Z 8
noncollective decay. We find, in particular, that the decay is =~
primarily noncollective (collective when NI'/y is suffi- 4

ciently small(large; there is no sharp transition, however, as

at the threshold of a laser. Fdl/y~10"3, the transiton ~  E—" N\

point (point of maximum fluctuationsoccurs atNI'/ y~ 10, 800 005 010 o015 o020

but there is a transition region extending over more than an

order of magnitude. The transition region broadens signifi- It

cantly asl”y is reduced although the transition point itself £, 2. Mean intensity of some collective emission pulses of

shows only a weak'/y dependence. given integrated photon number: foi=100,T'/y=0.1, and given
First, let us illustrate some of the changes broughtan integrated photon number of=75 (i), 57 (i), and 31(iii). The

to the collective emission pulses within the transition region.dashed curve is the average oveand the most probable photon

Figure 1 illustrates the effect of the noncollective numberisn=57.
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No. of Counts

MNo. of Counts

FIG. 5. The collective emission photon-number distribution as a
function of N for I'/y=10"1. The distribution is discrete and a
continuous line connects the discrete points. The first curve in the
lower plot is forN=25.

1
00 % T
FIG. 3. Correlation between collective pulse delay titpeand
peak intensitylpsl“(zpc(tp)|3+3,|¢c(tp)) for N=1000 andI'/y photons are emitted as noncollective spontaneous emission.
=0.01. For there to be strong collective emissiddl’/y must be
increased. The development of the collective emission
Figure 3 shows the correlation between intensity and dephoton-number distribution with increasifdyy, at fixed N
lay time in more detail, for a larger number of atoms but the=1000, is shown in Fig. 4. We observe a transition from a
same NI'/y. The narrowness of the distribution, shown sharp distribution peaked aroumd=0 through a series of
clearly in the perspective of the lower plot, indicates that theproad distributions peaked at increasing valuesnab a
correlation is a strong one, except when the peak intensity isharp distribution once again peaked at a value dbse to
small. Thus, the fluctuations in delay time that track theN. Previous treatments of quantum fluctuations in superradi-
variation in peak intensity are much larger than the fluctuaance assume the extreme valuesNdf/y that takePN(n)
tions at a fixed intensity. A similar correlation can be dem-towards the delta functiod,y [8—13.
onstrated for the pulse width, with the width and delay time  The transition region is conveniently traced by solving
linearly correlated. Eq. (16) for fixed I'/y. The solutionP®(n) is the final col-
The photon-number fluctuations in the collective pulsejective emission photon-number distribution o= k atoms,
provide a global picture of the transition from noncollective gnd also the distribution reached afkeemissions—of either
to collective emission. In the single-mode model, the collectype—for anyN larger thank. We show one result obtained
tive emission photon-number distribution is &function,  py numerically iterating Eq(16) in Fig. 5. The transition,
PMN(n)=6,y; since there is only one output channel, everyiliustrated in Fig. 4 as a function df/y, at fixedN, appears
excited atom necessarily contributes one photon to the cohere in similar form as a function o at fixed I'/y.
lective pulse. For our two-channel model, this is no longer Erom the PMN)(n) for various valued/y we obtain the
the case. WheNI'/y is too small, most, if not all, of the resylts for the mean photon number and Fano facfor (
=(An?)/{n)) plotted in Fig. 6. Here we see that the collec-

04 0.005 0-15 tive emission “turns on” where the photon-number distribu-
0.004 } tion is most broad, in all cases arouNd’/y=10, although
031 ) (ii) 040l (iv) there is a weak dependence bhy. The peak in the Fano
-~ 0.003| ' factor is, however, extremely broad, and appears to increase
= oer inversely withI'/y.
a 0.002¢ 0.05! We turn finally to a comparison of our results with the one
0.1} 0.001 | (i) previous treatment we have found of noncollective emission
/\ effects in superradiance. We compare with the work of Lee
0.0, o 2o 0000 o 0.00 200 1000 [28,29, which is based on an elaborate calculation of tran-

sition matrix elements between Dicke states for the more

difficult problem of atoms distributed in free spd&?2]. The
FIG. 4. The collective emission photon number distribution for model in this work is also a two-channel model, with the

N=1000 andl'/y=10"2 (i), 10" 2 (ii), 10" * (iii), and 1(iv). transitions characterized as either-conserving or

n
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FIG. 6. Mean photon numbéa) and the Fano factdb) for the
collective emission, as a function of the number of atoms: for FIG. 7. Mean numbers of noncollective) and collective(b)
T/y=1 (i), 101 (i), 1072 (i), and 10°2 (iv). photon emissions as a function of time fdr=100 andl'/y=0.1.

The dashed lines show the linear and exponential growth, respec-
r-nonconserving, wheneis the cooperation number; there is tively, from Ref.[29] and the solid lines are the results from our
a loose identification with our collective and noncollective Model.
transitions. Lee applies his derived matrix elements to an
analysis of the “transition point of superradiande29]. VI. CONCLUSIONS

The transition point considered by Lee is quite different, , i o
however, from that shown in Figs. 5 and 6. In fact, Lee . We h_ave |nve§t|g_ated a model of the initiation of superra-
makes an approximation that amounts to neglecting thdi@nce in a cavity in which we account for the effects of
depletion of the atomic excitation. Its effect within our model "Pncollective spontaneous emission. Formulating the prob-
is to replace (j+m)(j—m+1)=y(N—K)(n+1) by lem within quantum trajectory theory led us to the approxi-

. - - tion of neglecting pseudospin exchange. We thus reduced
JN(n+1) in Eq. (68, and V(j+m)/2j=(N—K)/N by M2 giecting .
unity in Eqg.(6b). This results in an elementary description in the stochastic Scheinger evolution to a two-channel rate

. : o rocess, and efficient Monte Carlo simulations of the result-
which the average number of noncollective emissions growg o !
linearly in time ing photon-emission sequences have been carried out.

Our approach proves the foundation of an approximation

(k—n)=Nnt, (18) that can be traced back to the earliest papers on superradi-
ance. We plan to develop it in future work into a general
while there is an exponential growth, multichannel scheme for treating arbitrary free-space distri-
butions of atoms.
(ny=eN't—1, (19 In the present context, we have computed photon-number

distributions for the collective emission pulses and shown
in the number of collective emissions. Thus, in Lee’s modelygy superradiance turns on as the number of atoms is in-
the collective emission will always dominate for long creased. We found that there is a broad transition region
enough times; his “transition point” refers to the time at throughout which large fluctuations occur. We calculated the
which the collective emission becomes dominant. We, on thgano factor to characterize the fluctuations in photon number
other hand, treat the competition between collective and norgnq also illustrated the correlations that exist between pulse

collective emission without any presumption that the formeryhoton number, or intensity, and pulse delay time and width.
will ultimately dominate.

In Fig. 7, we compare the behavior given by E@) and
(19) with our results folN=100 atoms and’'/y=0.1. There
is good agreement for short times, as one would expect.
Lee’s approximation cannot, however, describe the phenom- This work was supported by the National Science Foun-
enon of a superradiampiulse nor can it describe the fluctua- dation under Grant No. PHY-0099576. The authors wish to
tions in pulse characteristics illustrated in Figs. 1—6. thank Hyunchul Nha for helpful discussions.
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