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Macroscopic quantum fluctuations in noise-sustained optical patterns
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We investigate quantum effects in pattern formation for a degenerate optical parametric oscillator with
walk-off. This device has a convective regime in which macroscopic patterns are both initiated and sustained
by quantum noise. Familiar methods based on linearization about a pseudoclassical field fail in this regime and
new approaches are required. We employ a method in which the pump field is treatechamber variable
but is driven by the-number representation of the quantum subharmonic signal field. This allows us to include
the effects of the fluctuations in the signal on the pump, which in turn act back on the signal. We find that the
nonclassical effects, in the form of squeezing, survive just above the threshold of the convective regime.
Further, above threshold, the macroscopic quantum noise suppresses these effects.
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[. INTRODUCTION steady state can be advected more rapidly than their growth
rate. If the system is deterministic then at any fixed point any

Nonlinear optics has provided an ideal testing ground fornitial localized perturbation decays and the system ap-
ideas in both nonlinear dynamics and quantum optics. It proProaches the undisturbed steady state. In this case macro-
vides fast nonlinearities and a degree of control that allowsCOPIC patterns can arise and be observed only if noise is

fundamental dynamical systems to be realized and nonline&ientinuously applied, the structure now being regenerated at
any time, hence the name noise-sustained patterns. These

phenomena, such as pattern formation to be demonstrategl, .t ,res are the result of noise self-organization, with mag-
[1]. It also provides systems with very low levels of noise S0y ficaiion factors of several orders of magnitude. They are
that fluctuations can be limited by quantum effects. The comg,, s interesting candidates for the study of quantum correla-
bination of these features has led to the study of quantufjgns in spatially structured systems.

phenomena in optical pattern formati¢d,3] and of noisy Any system with an advectiofor drift or walk-off) term
precursors of the patterns, which have been terquehtum  that is aiso not translationally invariant will, in general, be
images[4-6]. The accurate modeling of such quantum non-convectively unstable when operating sufficiently close to
linear systems presents a significant challenge. Pattern foand above the onset of the instability of the steady state.
mation and dynamics are usually associated with excitatioMence, this type of instability has been predicted in a number
of a large number of transverse modes and a fully quanturof optical systems including Kerr media with a tilted pump
description of each of these is required in order to properlyf9,12] and optical parametric oscillatof®PO with walk-off
treat the quantum fluctuations. The Heisenberg picture prd-12—14.

duces a hierarchy of coupled nonlinear operator equations Modeling quantum effects in the regime of convective
that usually defies analysis. The preferred method to date hagstability for a nonlinear optical device presents a double
been to linearize the quantum fluctuations about a classic&hallenge. First, the system has a broad spectrum both in the
field amplitude that usually takes a constant value belowfrequency(at a fixed pointand in wave vectorsfar field at

threshold[6,7], but may be associated with a stable patterr@ fixed time, thus it cannot be studied within a few-mode
above thresholdig]. approximation. Second, we should be able to follow the evo-

A more difficult situation arises if the system displays lution of the fluctuations from the microscopic level through

macroscopic features driven by noise. In such cases we caﬂ}fa amp!ification int.o the macrosco_pic pattern. In order to do
not expect linearization of the quantum fluctuations to give IS we mtrodupe, in Sec. IV, a swtaptmnlmgar approxi-
reliable results and a new approach is needed. A simple gdpation W.'th which to treat th_e convective regime of a degen-
vice demonstrating macroscopic, noise-driven patterns is thgrate optical parametric Qscnl_ator. In ord_er to fix the terms of
degenerate optical parametric oscillator in the presence ]efgrenc? ft%r this a.prl)rox!m?t}on twe begflnt,hm ?ec_. I, W":jh.?
walk-off. The semiclassical analysis of this device reveals geview t9 e tsebrqlltc agrsk:g:a_ e]:a h’res do . eS ewﬁle En s
region of convective instability, above the threshold for os_conwtac |v§ |nslat.| Ity. fthlsdls o ovove N hec. . ,t 3(; a q
cillation, in which noise sustained structures are seen in th uantum description of the device. Unce we have introduce

transverse field distributiof®,10]. The aim of this paper is to our method we discuss quantum features of the device in its

develop a suitable approximation scheme with which to/arious regimes of operatiosec. ), paying particular at-

model quantum effects in the parametric oscillator in thistention to the demanding convective regiggec. V).

regime of operation. o . Il. SEMICLASSICAL DESCRIPTION
The convectively unstable regime is characterized by an AND CONVECTIVE REGIME
amplification and flow of fluctuationgll]. In systems in
which the spatial reflection invariance is broken by the pres- We consider a degenerate optical parametric oscillator
ence of a group-velocity term, local perturbations of the(DOPO), a device consisting of a cavity filled with @)
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nonlinear medium, which converts a pump at frequeney 2 g 9 g

into a subharmonic signal at frequeney The possibility of Al==A;, E(’)z—2 Eo, e{zwei ,
phase matching the down-conversion process depends on the Y Y y'a
birefringence of the crystal that provides a difference of the ) ) )
refractive index for differently polarized fields. We can ex- Where we have restricted the cavity decay rates and diffrac-
ploit this difference in order to avoid the effects of dispersiontion coefficients such thag= y,=y, anda=a,=a,/2. Our
by selecting the same index of the refraction for the pumequatlo_ns are valid either f(-)r. one or Mo transverse .spat|al
and signain,,=n,, . In this paper we consider type-l phase dimensions D =1,2). On omitting the primes, our amplitude
matching for which ordinary polarized pump photons areEds-(1) and(2) become

down-converted to produce pairs of extraordinary polarized

oy . R 2 ci\_ 1a2/G N
photons that are degenerate both in the frequency and in?tAo(X.1)= [1+TA0=1V]Ag(X,1) = 2AL(X,1) + Eo(X)

polarization. + eoéo(K,1), (5)
In anisotropic media rays do not necessarily travel in a

direction perpendicular to their wavefrorjts]. As a conse- FALZ ) =—[1+iA;—2iV2—0d AL (X,t)

guence the extraordinarily polarized signal generated in our

DOPO will walk off, that is it will propagate in the trans- +Ao(X,t) AT (X,1) + €1€,(X ). (6)

verse direction relative to the ordinarily polarized pump.

This transverse walk-off effect is described in the dynamicaFor a uniform driving fieldEy, Egs.(5) and (6) admit the
equations by a term that accounts for a velocity relative td1omogeneous stationary solution

the frame of reference fixed by a pump of finite transverse
width.

The quantum effects we wish to study are associated with
the convective regime and it is important to define this care-
fully. The different regimes of operation of a DOPO can beThe threshold for parametric oscillation can be determined
understood within a semiclassical theory and this sectio®y a linear stability analysis of this solution. The linearized
provides a brief(semiclassical analysis of the convective equations for the signal and pump fluctuatioda,(X,t)
and other regimes. A more complete discussion can be foung A;(X,t) —A¥(i=0,1) are decoupled, and the fluctuations of
in Ref.[13]. The intracavity field is described by two slowly the pump are always damped. For the signal, we consider
varying complex field amplitudedo(X,t) and A,(X,t) for  perturbations of the form eff X+ (K)t] and find the disper-
the pump and the signal, respectively. These depend on thgon relation
transverse spatial coordinates=(x,y) and the timet.

Within the paraxial approximatiotfor propagation in the A (K)=— 1+ivk,* \/FZ—(A1+ 2|k|»)?, (8)
direction, the mean-field limit and for single longitudinal- B
mode operation the dynamical equations becoh®16,17 where we have introduced a scaled pump

Eo
O 14+iAy" 1 0 @

. . . . 9 5.
atAO(x,t)=—y0[1+|AO—|aOV2]A0(x,t)—EAf(x,t) Fo Eo . ©
\/1+AO2
+E0()_())+ EO&O()_()!I)v (1) . . ) .
We find that there is an instability @ =1. For F<1,
atAl(i,t):—y1[1+iAl—iale—vﬁy]Al(i,t) Re(\)<0 and the solution(7) is absolutely stable. FoF
I . >1, there is a positive growth rate of fluctuatioriRe(\ )
TIARDAL (XD + er&1(X1). 2 >0] that takes a maximum value fok =~ A,/2 if the

Here ¢ (i=0,1) are additive Gaussian white sources ofSignal detuning is negativeAq<0), and fork=0 if A,
noise, with nonvanishing correlations of the form >0. In this paper we are interested in the case of pattern
formation and we restrict our analysis to the cAsec0. The

(GRDE X U))=8;6(X=X")8(t—t"). (3) instability at F=1 whenv=0 is a Turing instability, in
which a stationary pattern appedrs6]. If v#0 then the

The level of noise introduced is fixed by the parametgys eigenvalue becomes complex and we find a Hopf bifurcation
ande;. Our fully quantum analysis will produce equations in which a traveling pattern emerggk3|.
of similar form in which these parameters are fixgg.is the The direction of instability is determined by the eigen-
amplitude of the driving field, which we take to be real. Thefynctions V. (k,—K) of the linear problema,V. (K, —K)
remaining parameters in these equations are the cavity decay, ¢ C_ ; S a
rates y;, the cavity detunings\;, the diffractiona;, the =M=V (k,—k). Solving this gives
walk-off v, and the nonlinear coefficiemnt It is convenient

) =i P " x/_ L
to introduce scaled variables Va(k,—k) =€ 5 (k) * 0AT (—K),

iAy+2i[K|2F V|AZ2— (A, +2]K[)?
+ AS .
0

v

t'=4t, X'=

!

(4) ei(bt(ﬁ):

X v
_ — 10
\/5’ v \/a, ( )
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1.10 ' ' ' not be studied within a few-mode approximation, because
many modes contribute significantly to the spectral proper-
ties. The presence of macroscopic fluctuations also invali-
dates approximations based on linearization schemes. These
facts make a quantum formulation of the convective regime
especially difficult. We face a situation in which nonlineari-
ties determine the dynamics of fluctuations around the refer-
ence state, with fundamental quantum noise being amplified
1.00 i . . by several orders of magnitude to produce a macroscopic
-1.00 -0.75 —-0.50 -0.25 0.0 pattern in the signal.

A,

k. 1.05

FIG. 1. Stability diagram as a function of the signal detuning lil. QUANTUM FORMULATION

A;. The different lines correspond to the threshold of absolute in- |y the quantum formulation of the DOPO the intracavity

stability F. for different values of the walk-off parametar=0.2 . ] . Ao
(dotted ling, v=0.42 (continuous ling andv =0.6 (dashed ling pump and signal fields are given by operatégix,t) and

When F<1 the solution(7) is absolutely stable, while for <F Al(i't) that satisfy standard equal-time commutation rela-
<F, the solution is convectively unstable. tions[6]

The solutionV, (k,—K) gives the direction of amplification [A(X,0),Al(X",1)]=8; 8(X—X"), (11)

of fluctuations, while fluctuations are damped ML(IZ, S . .

—K). In particular, for the critical wave vectdk| and fora  Where the indices j stand for 0, 1. Following the techniques

real pump E, and A,=0, we obtain V (IZ —IZ) descrlbed |r[6],. we can introduce a model Hamlltoman for
S 0 N o . . F\ter e the device. This will include the effects of diffraction to-

= 0A1(Ko) * 6AT (—Ke). Therefore, in this case, the differ- gether with the driving by a real, classical external field,

ence of real parts and the sum of imaginary parts of the fielghonlinear interaction between the fields and cavity damping.

in k. and — k. will show damped fluctuations at the thresh- Our model, however, also requires that we take account of

old. We also note that the instability direction is independenthe effects of the walk-off. The resulting Hamiltonian gives,

of the walk-off term. on making the usual Markov approximation, the coupled

Above the instability thresholdq= 1) the steady stat@) Heisenberg equations

is convectively unstable: any perturbation grows while trav-

eling in the direction fixed by the Wa!k—oﬁ term _and eventu- &tAo(i,t)Z —[y0(1+iAo)—iaoVZ]Ao(i,t)

ally leaves the systelfl3]. In this regime a continuous per-

turbation, such as a source of noise, gives rise to a noise-

sustained pattern consisting in disordered traveling stripes in

the signal. On increasing the pump a second threshold is

reached aF=F_.. Beyond this threshold the pattern is sus-

tained by the nonlinear dynamics, being also present in the

absence of perturbations, once it is formed. The dfatés

absolutely unstable in this regini23]. In Fig. 1 we plot the

result of the calculation of the absolute instability threshold o ) )
as a function of the signal detunin, , for different values Note that these are very similar in form to the semiclassical

of the walk-off parameter. Egs. (5) and (6). The Langevin operators; describe the
Walk-off has three main effects in this process of patternquantum noise added as a consequence of the interaction

formation[12,13. The first is the existence of the convective With the bath of external modes. These have the nonvanish-

regime in which patterns are sustained by the noise. Secoriflg second moments

is that it breaks the rotational symmetry, favoring the forma-

tion of stripes orthogonal to the walk-off direction and trav- <|'31(>Z,t)|3;r(>2’,t’)>=2yi Sj0(X—x")8(t—t"). (14

eling in this direction. Third, the selected wave vector, that is

the most intense modky, of the pattern, depends on the A direct solution of these nonlinear Langevin equations of
walk-off parameter. An approximate expression kg can  operators is impractical, requiring the solution of an infinite
be obtained in the context of front propagation into an un-hierarchy of equations for the evolution of all the products of
stable stat¢10,1§. operators that are coupled by the dynamics. A standard alter-
There are two important characteristics of the noise susnative approach to this Heisenberg picture is to consider the
tained patterns that exist in the convective regime. The firsevolution equation of the reduced density opergtaf the
is a broad spectrum, both in the frequency and in wave vecsystem in the Schobnger picture and to use quasiprobability
tors [19]. Second is the presence wfacroscopicamplified  functionals. In this approach to the quantum dynamics of
signal fluctuations around the unstable reference gfgte open problems, the intracavity dynamics is described by a
These characteristics imply that the convective regime cammaster equatiofi20]

—%Af(i,t)JrEo()?)an:O, (12)

ALK, 0) = —[y1(1+iA;) —ia, V2= va,]Ay (K1)

+gAX DAL, +F;. (13)
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gp 1 . . are amplified. The alternative of tiepositive representation

E=R[H.p]+/\p, (15  [24] is not suitable for the same reason and the unstable
reference state results in diverging trajectories.

These problems of the convective regime can be illus-

whereH is the Hamiltonian trated by a comparison with the situation of a DOPO below

- - At pr the threshold of signal generation. In this case the stable

Hzﬁf d?x >, [yiA (X)(A;—a;V)A;(X)] solution is a homogeneous pump with an amplitude that de-
j=0,1 . . . . .

pends on the coherent driving field. The signal field is zero

+ivAI(>?)ayA1(>?)+iEo(i)(Ag(i)—Ao(i)) on average, but its fluctuations show a level of self-

organization that increases near the threshold. This is the
B I regime ofquantum imagep4—6|, noisy precursors generated
+i5 (Ad(RAL(X)—H.c). by quantum noise. These images reflect the presence of
eigenmodes of the linearized equations, whose eigenvalues
The Liouvillian A accounts for dissipation through the par- are such that their negative real part approaches zero at

tially reflecting mirrors of the cavity and is given §§] threshold. The fluctuations of these eigenmodes are the least
damped ones and dominate the dynamics of the signal. The
Ap= d2%y ATA(R), AT () T+ [A(R) 5. AT ()T important point is that the intensity of such quantum images
P j:EO,l VLA R)LBA COTH A (). A ()]} of the signal is of the order of the quantum noise, while the

) . pump has a macroscopic mean value. It is then possible to

The master equatiofi5) can be mapped onto an equation of heglect the fluctuations in the pump, approximating it by a
motion for one of a number of quaS|pr0bab|I|ty_dls_,trlb_utlons classical coherent field22]. In this approximation the
in the phase space of the systg20-22. These distributions  Hamiitonian is a quadratic function of the quantum opera-
are functionals of the-number fieldsa;(X) associated with  tors_ The consequence is that a well-defined Fokker-Planck
the operatorg\;(X). This evolution equation is obtained by equation for the Wigner distribution is obtained. Such
substituting products of field operators and the density opFokker-Planck equations can be represented in terms of sto-
erator, depending on the ordering, by suitable operations oghastic Langevin equations for tisenumber fielda,(X) [6].
the distribution functional§6,8]. The same type of approximation, linearizing around a pattern

The evolution equations obtained in this way for the dis-solution[8], is generally possible in the absolutely unstable
tributions are functional partial-differential equations. Theseregime above the threshold. A common feature of these two
are not in general of the Fokker-Planck type and do not leagegimes(absolutely stable and unstaple that the quantum
to well-behaved stochastic representations in terms of Langewise does not change drastically the solution with respect to
vin equations driven by Gaussian white noise. In particulathe stable deterministic solution. This means that in the sto-
the Hamiltonian term describing the? interaction gives a chastic representation, fluctuations only induce the trajectory

contribution to visit a small region in the phase space in the neighborhood
. . of the deterministic solution. In the convective regime the
[Ao(R)AT?(X)—H.c.,p] classical deterministic solution is unstable andcroscopi-
£ 1-g2 8 cally differen; from the stochastip solutiqn. In this regime the
o sag— + S quantum noise in the DOPO is amplified, destroying the
5“% 4 56@5&3 zero-valued homogeneous deterministic solution for the

down-converted field and driving the system into noise-
S sustained states having a macroscopic number of photons.
+ —ai—Zaoa’l’—,+C.C. W,
dag day IV. TIME-DEPENDENT PARAMETRIC APPROXIMATION

where the parametes depends on the ordering. This term  In this section we propose an approximate description of
does not fulfill the requirements that guarantee a positivehe quantum dynamics of the DOPO in the convective re-
definite solution forWs: in the Wigner representations( gime, based on the main physical features of this regime.
=0) we find third-order derivatives, while it is knowW23]  Our aim is to be able to treat the macroscopic quantum fluc-
that positiveness requires a Fokker-Planck form of the masteuations associated with the signal field in the convective
equation(only first- and second-order derivatiyesr to in-  regime.

clude derivatives to all orders. For tigs=1) andQ(s= In the convective regime there are large signal fluctua-
—1) representation third-order derivatives disappear, but théons around the unstable solutida= 0. The coupling of the
diffusion matrix is not positive definite so that positive solu- signal and the pump gives the nonlinear saturation for these
tions are again not guaranteed, although Gheetains posi- amplified fluctuations. On the other hand, the pump field is
tivity through having a minimum allowed widtf21]. Gen-  always macroscopic and stable, with small damped fluctua-
erally these problems have been avoided by usingions. This suggests the approximation of neglecting the
linearization scheme$22]. Such linearization approxima- quantum noise in the pump and approximating it by a clas-
tions, however, are valid only for small damped fluctuations sical field Ay(X,t). In this way we obtain a Hamiltonian that
They cannot be used in a convective regime as the referenég quadratic in the operators describing the quantum dynam-
state is unstable and the fluctuations, far from being smalics of the signal field. For such quadratic Hamiltonians, the
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Wigner quasiprobability functional of the complex function A justification for this equation is that its mean value coin-

ay(X,t) obeys the following Fokker-Planck equation in cides with the expectation value féy, obtained from the
which the classical pump fieldlo(X,t) appears parametri- operator equatioil2). This procedure is reminiscent of the

cally time-dependent refinement of the parametric approximation
described in some detail by Kumar and Mehg6]. This

IW(ay;Ap) approach allows for the quantum evolution of the weak fields

ot to feed back and affect the classical strong field. In the ap-

proach of Kumar and Mehta, this feedback is via quantum
expectation values of operators for the weak fields. Here,
however, we are required to take explicit account of the
noisy properties of the quantum subharmonic field. We do
this by using thec-number representation of the quantum
field, associated with our stochastic simulation of it, as a
term in Eq.(17).

The associated Langevin equation that represents the sto- [N Summary, our time-dependent parametric approxima-

5
:{_ (571 yil(1+iAy) —ia;Vi=vd,Jay(X 1)

2

+ ng(i,t)a’{ (X,t)+c.c.| + ’ylm

W(C(l;Ao).

chastic dynamics of the signal fiete, (X,t) is tion is defined by stochastic classical equations in the Wigner
representation for the field4, and«,, which, with the scal-
gy (X0 =~y (1+iA) —i @, V2= v, Jay(X,t) ing (4), are
+gAo(X et (XD +yi&a(R D), (10 dd(Xt)=—[(1+i4g) =1V’ As(X,t) — 3a%(X,t) + Eo(X),
(18

where &;(X,t) is a complex Gaussian white noifeee Eq.

(3)]. This noise term accurately represents the effects of dray(X,0)=—[(1+iAy) = 2iV2=vd,]ay(X,1)

vacuum fluctuations associated with cavity losses on the sig- 1 g

nal field. We note that treating the pump field classically in + Ag(K ) ¥ (X, )+ =57 — &E1(X1). (19)

this way is a natural extension of the parametric approxima- a vy

tion to three-mode interactions, which treats a strong mode

classically and has been widely used in quantum optics foptochastic averages of tlenumber variablea;(X,t) will

many yearg25]. provide symmetrically ordered averages of the quantum fluc-
It is important to note thatd,(X,t) cannot be replaced tuations in the signal field as driven by the “classical” pump

with an expectation value Qﬁo) as would be possible in the field. The classical pump field i_s driven by the macroscopic
regime of absolute stabilitygguantum imagées Such an an- quantum fluctuatlons. n tt'e 5|gn_al as represented by the
satz decorrelates the pump modes from the subharmon&'m”.nber reprfaser_wtatloanl(x,t). This tme-depe_nden.t para-
ones and eliminates the saturation effect of the pump. In facfl"elric approximation appears usefql in situations in which
with such an ansatz E16) becomes linear, giving a Gauss- there are large flu'ctua_tlons of the S|gpal that pannot be de-
ian probability distribution for the signal modes. This distri- SC1iPed by approximations based on linearization.

bution would always be centered on zero, but with statistical

moments that diverge above the threshold because the signal V. STOCHASTIC TRAJECTORIES AND WIGNER

modes are undamped in the convective regime. Therefore, DISTRIBUTION FUNCTION

the stochastic differential equation must be solved self-

: . ; - : Numerical simulation of the stochastic trajectories associ-
consistently with an equation defining the dynamics of the . : - .
classical fieldA4,. The equation we propose fofy is sug- ated with the Langevin equatiof$8) and(19) gives a good

) : A intuitive understanding of the dynamical properties of the
gested by the Heisenberg equatit®), with Ao replaced (ogime below the threshold, the convective regime and the
with a classical field4,. We first neglect the noise source in

absolutely unstable regime. In this section we present such

Eq. (12) since quantum fluctuations entering the cavity are, merical simulations working with a single transverse di-

unimportant, as compared with the macroscopic fluctuationg,ansion D=1) [27].

of the signal termAZ. Second, we replace the operatdrby Figure 2 is a space-time plot of the near field for the
the c-number functionz? associated with our stochastic rep- signal in the below-threshold, convective and absolutely un-
resentation of the signal. This replacement is independent aftable regimes. Figure 3 gives the far fields associated with
operator ordering and hence will be the same should we ushe same simulations. In the following we discuss the differ-
a different quasiprobability. This procedure gives a partial-ent properties of these trajectories and how they are reflected
differential equation for the “classical” pump field driven by in the associated Wigner distribution. In particular, we con-

the c-number representation of tlgpiantumsignal field sider the phase-space dynamics of the most intense modes of
the signal pattern. The Wigner probability distribution asso-
FAo(X,t)=— o[ (1+iAg) —iagV2]Ag(X,1) ciated with these modes displays distinctly non-Gaussian

features in the convective regime. These are a result of the
interplay of nonlinear and walk-off effects. It is clear that

Y 5 S
@1(X,0 +Eo(X). (17 they cannot be described within a linearization scheme that

2
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FIG. 2. Evolution of the near field of the real part of the signal&Bé&t)] for (a) F=0.999,(b)F =1.025, andc) F=1.1, in 2500 time
units. Parameters atg,=0, A;=—0.25,0=0.42, system size1.7678< 512 pixels=900 space units. Only the regions in which the signal
is excited are shown, that is, the region of the plateau of the super-Gaussiar{ 28imp

does not take account of this interplay between the signal The selection of a preferred wave number in the stochas-
and pump fields. tic pattern of Fig. 2a) becomes more evident in the far field
shown in Fig. 8a). It is clear that there are preferred values
of the wave number but that a broad distribution of weakly
damped modes around these prefelkgénd —k, modes is
Below but close to the threshold we find weakly dampedapparent.
fluctuations that are a precursor to the traveling pattern that Ap interesting characterization of the stochastic dynamics
appears at the thr'esr_\old.' The fluctuqtions_impo_se a degree gf the far field, Fig. 8a), is obtained by looking at the time
ﬁspgﬂf?:c?:rlwft-lorgtarlgfattlggrlirr: trlcr’lseeorg%'ogis'g ':,(\)ITP::Q trreesphuorﬂj%volution of the stochastic amplitudes for the most intense
In Fig. 2a) ?/lve pIo§[J the refgl part of the stochastic variablemOdeS- an(ke, D). We first recall that the linear stability
analysis of Sec. Il identifies the existence of a nonvanishing

aq(X,t) .for a single traject_ory. This is a reali_zation of thesefrequency[w(k)zvk] at the threshold caused by the walk-
fluctuations for a pump with a super-Gaussian prdf]. off. This implies that a traveling pattern will emerge above

Noisy patterns of this form have been predicted for the . . .
below-threshold OPO without the walk-off and have beenN€ threshold and that the corresponding Fourier modes will

termed quantum imagdg—6]. Not too close to threshold, oscillate at this_ fre_quency. We can remove this time depe_n-
the damped fluctuations can be analyzed with linearizatiof€"C€ by working in a frame rotating at thk'st frequency. This
procedures6] in the limit of small fluctuations. Our nonlin- corresponds to factoring out a time factst ™" to obtain the
ear quantum equations enable us to study also the reginfdowly varying amplitudes a;(k,t)=a;(k,t)e "M A
closer to the threshold, where large critical fluctuations arehase-space trajectory for the slowly varying amplitude of
expected to occur. Note, in particular, that the results in Figthe dominating Fourier componert;(k.,t) is shown in
2(a) were obtained foF =0.999. Fig. 4a).

A. Below threshold

FIG. 3. Evolution of the far fielda,(k,t)| for (a) F=0.999, (b) F=1.025,(c) F=1.1. Same parameters as in Fig. 2.
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FIG. 4. (a) Trajectory of the slowly varying amplituder;
(+k¢) during 20000 time units(b) Trajectory of[ a;(+k¢)+ a;
(—k¢)] during 20 000 time unitd= =0.999, other parameters are as
in Fig. 2, except fordx=51I\./512=1.7702, where\ .=27/k,,
512 is the number of grid points. FIG. 5. Wigner distribution for the superposition of modes

a(+Kke)+a(—k). Parameters of Fig. 4. Total time 2000 000

. - . . - units. Note the factor of 10 difference in the scale of the two axes.
The linear stability analysis of Sec. Il also identified the

direction of instabilityV ., . In particular, in the case of a real B. Convective regime

pump, and for the critical mode;, this direction is given by Differences between the regime below the threshold and
[a1(+ke)+af(—ke)]. As a consequence the superpositionthe convective regime are clearly seen both in the near and
of modes| a;(+k¢) + a;1(—K¢)] can be decomposed in two far signal fields. We observe a macroscopic traveling pattern
quadratures, one corresponding to the direction of instabilityn the near field Fig. 2(b)]. This is clearly associated with
that becomes undamped at the thresh@d o (+k.)+a;  wave numbers distributed around the value of the selected
(—ko)]), and the orthogonal quadratur@m[a;(+k)+a;  one Ky) in the far field[Fig. 3(b)]. The spectrum of excited

(—ko)]) that remains damped. We observe that the superpovave numbers is clearly narrower in the convective regime
sition of slowly varying modesy}(*k.,t) can be decom- than below the threshold. This is reflected in the more regu-

posed into damped and undamped quadrature in the sanfy pattern appearing in the near field. Our simulations dis-
way. In fact due to the symmetmy(k) = — w(—k) we have play the typical features associated with the convective re-

. . L= , - ime[13].

Vi(lf'_k):el .(k)t[e@i5A1(k)i5Al*(_k)_]' so that .the ’ (1) The noise-sustained pattern does not fill the whole
relative phase'®: between the slowly varying modes is the region in which the pump has a value above the threshold.
same as that in the E(LO). Hence, we can also identify the This is because the pattern grows while traveling in the
real and imaginary quadratures of the superposition of modegalk-off direction. Note that the space point at which the
[a1(+ke)+ai(—k:)] as damped and undamped at thresh-pattern reaches a macroscopic observable value changes ran-
old. The corresponding time trajectory of this superpositiondomly from time to time. This reflects the origin of the pat-
of modes displays very clearly the expected reduction ofern in(quantum noise.
fluctuations in the damped imaginary quadratymee (2) The far field shows the predominance of different
Fig. 4(b)]. wave numbers at different times resulting in a spatial spec-

From the stochastic trajectories that randomly visit thetrum that is broader than that found in the absence of the
different points of phase space it is easy to construct a relavalk-off or in the absolutely unstable regime. There is com-
tive histogram giving a probability density in this phase petition between the modes within this broad spectrum and
space. This density is identified with the Wigner distribution.hence it is not possible to define, in this regimesiagle
As with all Wigner functions, the marginal distributions, ob- wave numbeik,, corresponding to the most excited modes.
tained for one field quadrature by integrating over the or-Modes with different wave numbers compete to form the
thogonal quadrature, are true probability distributions for thepattern, switching on and off as the pattern evolves.
remaining quadrature. At a finite distance from threshold the Phase-space trajectories for this regime are shown in Fig.
Wigner distributionW(a4(k)) for the fielda4(k) obtained in 6. We find that there are random changes in the phase and
this way has a Gaussian shape consistent with a linearizemplitude of the slowly varying signat;(+k.) around a
analysis of fluctuations. Such a Gaussian Wigner distributiorzero mean valug¢Fig. 6(@)]. This is similar to the behavior
is a solution of the Fokker-Planck equation for the Wignerdepicted in Fig. 4a) below the threshold. The difference is
representation ofinear signal fluctuations. If we consider that in the convective regime macroscopic intensities are
the Wigner distribution for the superposition of modes dis-reached, with the signal amplitude taking values comparable
cussed aboveN(«a(+k)+ai(—kc)), then we obtain a to those reached in the absolutely unstable redicoenpare
Gaussian centered on the origin but with a variance that descales of Figs. @), 6(a), and 9. The continuous changes in
pends on the orientation in the phase sg@&$3. There is an  intensity from zero to macroscopic values originate in the
axis with a reduced variandsqueezepdand the orthogonal fact that, in the convective regime, a given mode is not con-
one with a larger varianc@ntisqueezed(see Fig.  These stantly switched orisee Fig. 8)]. The pattern is sustained
features reflect the asymmetry or phase sensitivity of théy the noise and is subject to a continuous renovation: dif-
fluctuations already visualized in the stochastic trajectory. ferent stripe patterngwith different wave numbersgrow,
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FIG. 6. (@ Trajectory of slowly varying amplitude ofx;
(+ke) during 100000 time units(b) Trajectory of [a;(+kc)
+a1(—k.)]. Parameter§=1.025,A,=0, A;=-0.25,v=0.42, Im[ay(k)]
anddx=1.7702.

FIG. 8. Section of the Wigner distribution along the imaginary

: . . . - axis W(0,Im[ ay(K)]) for three excited modek. (dashed ling k’
travel in the system starting from the noise and die out. Thlsi 1.04. (dashed dot line andk”— 1.0, (continuous ling Same

has an important consequence in the time scales of the farammneterS as Fig. 6

field dynamics: below the threshold these scales are detel: o

mined by noise, while in the convective regime they are ginajly, we note that the modes that become excited and

determined by the time needed for a perturbation to travegontribute to the dynamics seem to reach a common maxi-

through the system. Another indication of the nonlinear dy-mum amplitude. This is probably fixed by the maximum

namics of fluctuations that occur in this regime is that theyajue of the energy exchanged with the pump mode in the

quadrature displaying reduced fluctuations is no longer th@onlinear interaction. This is shown in Fig. 8 where the pos-

one determined by the linear analysis. This is seen in Figsiple values of different modes are seen to be cut off at

6(b) where the ellipse of fluctuations is tilted with respect to essentially the same amplitude. The non-Gaussian form of

the corresponding one below threshold Fig)4 these distributions is also clear and this again demonstrates
The probability distributions obtained from the trajecto- that we are dealing with nonlinear effects associated with the

ries of Fig. 6 also reflect the nonlinear nature of the fluctuaguantum fluctuations.

tions in this regime. In Fig. 7 we show tiv¥ distribution for

the superposition of moddsy;(+Kk) + a,(—k)] for one of C. Absolutely unstable regime

the most excited wave numbers, namkby 1.04&.. A most _

noticeable feature is the non-Gaussian shape of the distribu- !N the absolutely unstable regime we observe from the

tion for large values of the amplitude in the direction of Near field plot, Fig. &), that a macroscopic and stable trav-

undamped fluctuations. The wings of the distribution origi-e“ng pattern fills the whole of the above-threshold region.

nate in the macroscopic fluctuations of the mode under conlhis behavior is reflected in the far field, FigicB which
sideration when it switches on. Its most probable value i$hows a well-defined and fixed dominant wave number and a

still zero, reflecting the fact that most of the time the modeh@rrow spatial spectrum. We should note that the dominant
remains switched off. We can view these non-Gaussian feg¥ave numberky, does not coincide with the most unstable
tures in the wings of our Wigner functions as precursors ofvave number at the threshold . This is a consequence of
the pair of peaks appearing in the absolutely unstable regiméh€ interplay between nonlinearities and the walk-off. Phase-

absolutely unstable regime. shown in Fig. 9. Even after elimination of the rapid fre-

quency there remains a phase-diffusion process, but macro-
scopic values of the intensity are maintained. Although there
is essentially only the phase diffusion f&g,, the critical
mode, with wave numbek., displays a second frequency
superimposed on the phase-diffusion process.

50 ' 100 (%)
> 3
T o T o
£ £
-50 . -100 ‘
-50 0 50 -100 0 100

Re[ay(k,)] Re[a\(k,)]

FIG. 7. W(ai(+k)+a;(—k)), for an excited modek
=1.04&,, obtained from a trajectory during 10 000 000 time units. ~ FIG. 9. Trajectories of(a) a;(k;) and (b) «;(ky) during
Other parameters as in Fig. 6. 100 000 time unitsF = 1.05, other parameters as in Fig. 6.
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FIG. 10. Trajectory of a;(+ky)+ a1(—ky)] over 10 000 000
time units. Other parameters as in Fig. 9.

The phase-space trajectory for the superposition of modes i ()
[} (Ky ,t)+ a;(—Ky,t)] is shown in Fig. 10. We observe [
that fluctuations are not uniformly distributed around a zero
value as they were in the below thresh@kig. 4) and con-
vective (Fig. 6) regimes. Instead, they describe a closed
curve around the origin. The associadtdistributions dis- 0 200 600 900
play peaks at two values. These correspond to the two points z
of the maximum curvature of the elliptical ring. ) )

The main characteristics of the trajectories in the phase FIG.12. Snapshots of the real part signa&éx)] for different
space are reflected in the associated Wigner distributions. F&H™MP values{a) F=1.001,(b) F=1.01, and(c) F=1.025. Other
the less-intense modes contributing to the dynamics we cafframeters arelx=1.7678, 512 grid pointsgo=1, Ao=0, A,
approximate the associated Wigner functiba,(k)) by a ]:—0.25, andv=0.42. Note the different vertical scales in the
Gaussian, displaced from and orbiting about the origin in the 94'es:
phase space. In Fig. (& we show a cut along the real
direction of the Wigner distribution for the critical mode
(W(R€ a4(ky)],0)). By contrast, the most-intense mogeth
wave numberky,) displays some interesting new features.
Figure 11b) shows an asymmetry in the distribution of fluc-

ask, therefore, if any of the low-noise quantum features
found below the threshold can survive in this noisy environ-
ment. Quantum effects in the OPO have been observed as
subshot noise fluctuations both in the field quadratures and
intensity differences associated with the down-converted

tuations around the mean amplitude in each of the peaks, . . .
with a sharp decay of the dis?ribution at some maxi?num'ght [30]. Examples of the noisy features associated with the
real part of the signal field in this regime are plotted in Fig.

amplitude. These facts indicate the existence of nonlinea . o i s
b 2 for three different values of the driving field, all within

properties associated with the quantum fluctuations in th i i Note the diff i | th
absolutely unstable regime. These features would necessari]) € convective regime. Note the difierent scales on the ver-

be absent in any analysis based on a linearization about ?,: .""Xﬁsl'? tlh_esle flg_ure?. lassical effects. to k .
deterministic macroscopic state. is helpful, in looking for nonclassical effects, to keep in

mind the manner in which such effects appear below the

threshold. We will also restrict ourselves to the study of

Vlll'\lﬁ%ﬁ%@iigg‘;igg;gﬁ;gs quantum correlations in the far field. Conditions for squeez-
ing and associated nonclassical effects are usually expressed

The convective regime is characterized by amplified flucin terms of normally ordered moments of operatéirgli-

tuations and macroscopic noisy patterns. It is interesting téated by . These can be obtained from the symmetrically
. ordered momentsndicated byS() ], that are associated with

(a) (b) the Wigner function, by use of the commutation relations
Zoom (11

CAKDAK 1)) =(SAKHAK' 1)),

GAKGHATK 1)) =(SAkHAT(K 1)) — F8(k—k').

80 85 J The § function appearing in the second of these equations is
0.0 122 25 0 5‘0 o0 a signature of the shot or vacuum noise. Our approximation
: : : scheme is based in the Wigner representation and gives re-
Refoy(k,)] Refocy (k)] gne’ b g

sults for correlations of symmetrically ordered operators for
FIG. 11. W(Rd a,(K)],0), for positive values of Rey(K)], for the intracavity fields. In order to obtain results for the corre-

(@ k=k., (b) k=k, , obtained from a trajectory during 10 000000 sponding normally ordered products and to test for the pres-
time units. Other parameters as in Fig. 9. These figures are symmegnce of nonclassical effects, we need to establish a reference
ric around zero. shot noise level. This level can be obtained for each quadra-
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10000

159 .
-0.005 0 0.005

FIG. 14. VafX_(#6)] at F=1.025 for the critical wave number
k=K. The minimum occurs fog<O0.

e

-0.0 0 0.01 serve, in Fig. 1) that the signal field has grown by two
Re[o‘1(kc)_0‘1(_kc)] order_s_ of magnitude._ FIucFuati_ons are s_tiII extremely phase
sensitive and, as depicted in Figapthere is a strong reduc-
FIG. 13. W( Rd ay(k. t) — ay(—k.,1)],0). Continuous line is ob- tion in the fluctuations for some quadratures. This reduction
tained forF=1.001, and dotted line foF=1.01. The dashed line is insufficient, however, to reach below the shot noise level
represents the distribution for the vacuum state, corresponding tand there is no squeezing. In fact, we find residual fluctua-
the shot noise level. The distributions are relative to trajectories ofions +27% abovethe shot noise level. This is comparable
2000 000 time units. Other parameters as in Fig. 12. with the value associated with the coherent states. These en-
hanced fluctuations are associated with a much broader
ture correlation from the variance of tHmear stochastic ~ Wigner distribution as shown in Fig. 13. It is remarkable,
process associated with the empty cavity however, that this enhanced but still small level of fluctua-
tion can coexist with the macroscopic fluctuations in or-
. . 1g thogonal quadrature. If we move still further above the
aS(x,t)=—[(1+iAy)—2iVZ]s(x,t) + m;fl(x,t). threshold then we find, fof = 1.025[Fig. 12c)], a variance
which is 159 times the shot noise level and both quadratures

Here we have omitted the walk-off term as it does not affecldiSplay fluctuations that are well above the level usually as-

the shot noise level. Squeezing in our simulations will besociated with quantum effects. We note that for the parameter

associated with a quadrature probability distribution that isvalues used here, the threshold of absolute instability for an

narrower than the Gaussian associated with this linear prdnflnlte system occurs a-‘:~l.035._
cess. In general, we can consider a different quadrature for A further indication of the nonlinear nature of the fluctua-
each wave numbd{. It is useful to define a pair ofsuper- tions in the convective regime is given by the fact that the

position modg quadratures for eack parametrized by the ang!e 0, for which thgre is the greatest reduction in the fluc—_
angle 6. For the critical wave number these take the form tuations, changes with the strength of the pump value. This
has already been discussed in connection with Fig). &n
X, (0)=1[A (ke 1) = A (—ke,t)]el?+H.c. (200 particular, for the critical wave nu_mb@?(,_(e)_ shows stron-
gest squeezing fomw=0 in the linear regime below the
We expect, in general, that the most strongly squeezetireshold. In the convective regime, however, the greatest
quadrature should depend on the valued¢]. reduction in the quadrature fluctuations occurs for a value of
We begin our investigation of the convective regime at a<<0. This is shown in Fig. 14 in which we plot the variance
point that is just above the threshold with=1.001[Fig. @ Var{X_(6)] in normal ordering and normalized to the shot
12(a)]. Fluctuations associated with the pattern are in thisnoise level, forF =1.025.
case still relatively small and we find that the Wigner distri- The OPO can also exhibit strong correlations between
bution has a Gaussian shape as shown in Fig. 13. We fintthe far field intensities associated with opposite wave num-
that there is quadrature squeezing, with the squeezed quadizers. We have calculated the fluctuations in the intensity
ture X_(0) exhibiting the same level of squeezing as isdifference for opposite wave numbers associated with the

found just below the threshold. In particular, f6r=F,, normally ordered moment(:[Al(k)A;(k)—Al(-k)A;
+0.001 we find that the intracavity field is squeezed by 50%( —k)]2:). A negative value for this quantity indicates a non-
below the shot noise limit for a flat pump and by 37% for aclassical effect, sometimes referred to as twin beams or in-
super-Gaussian punifl]. This indicates a smooth variation tensity difference squeezin@2]. As in our discussion of
across the threshold for the squeezed quadrature variancguadrature squeezing, we find that this quantity is only nega-
For excited modes, other than the critical one, we also findive very near to the threshold=&1.001). Further into the
squeezing below the shot noise level for the appropriateonvective regime we find that the macroscopic noise asso-
quadrature. ciated with the formation of a pattern increases the noise in

Increasing the value of the pump, so as to move furthethe intensity difference. Fo-=1.01 we find that the
into the convective regime, leads to a rapid increase in théntensity-difference squeezing has been replaced with fluc-
magnitude of the signal field. Indeed, fdF€£1.01) we ob- tuations in excess of the shot noise level.
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In summary, we have shown that quantum effects carmution where the probability is still centered at the origin but
survive above the threshold in the convective regime buthe nonlinear effects lead to the appearance of the wings in
only very near to the threshold. On increasing the pump anthe distribution that is no longer a Gaussian. These wings
entering further into the convective regime, we find that non-are, in fact, precursors of the pair of peaks appearing in the
linear effects associated with the fluctuations tend to distribabsolutely convective regime. We show that squeezing in the
ute part of the macroscopic fluctuations into the observableappropriate observables can be also obtained in this regime
that are squeezed nearer to the threshold. This identifies thmit only just above the threshold. The walk-off and the non-
walk-off as an effective mechanism of quantum decoherencinearities act as quantum decoherence mechanism, distribut-
in which the macroscopic nonlinear fluctuations present iring part of the macroscopic fluctuations into the observables
the convective regime overwhelm quantum effects associatethat were squeezed below the threshold. Another nonlinear

with noise reduction. effect appears in the selection of the quadrature displaying
reduced fluctuations, that is no longer the one determined
VIl. CONCLUSION linearly.

_ ) ) In the absolutely unstable regime there are also clear in-

We have introduced a suitable method to describe th@jications of nonlinear properties associated with guantum
quantum properties of macroscopic patterns sustained by,ctuations. The interplay between the walk-off and nonlin-
quantum fluctuations in a degenerate optical parametric OSsarity results in a complex dynamics in which the frequen-
cillator with walk-off. These patterns appear in the convec-cjes of far field modes are not constant, giving a complicated
tive regime and are characterized by a broad far field spegariation of the phases. Also, the most-intense mode is not
trum with continuous competition between several wavée critical mode. We find that while the Wigner distribution
numbers(thus, few-mode approximations are not adequatefqy the less-intense modes can be approximated by a Gauss-
and by being the result of amplified quantum fluctuationsjgp, (displaced from the origin and orbiting about this is
around an unstable reference state. Traditional linearizatioqot the case for the most-intense modes for which the distri-
techniques cannot be applied in these situations. Instead Wytion of fluctuations is asymmetric around the mean ampli-
use a time-dependent parametric approximation in which thg,qe with a sharp decay at some maximum amplitude.
pump field is treated as@number variable but driven by the Finally, our method can be used in other situations and
c-number representation of the quantum subharmonic signalstems in which there are large fluctuations of the signal
field. The key point is that this includes the effects of thethat cannot be described by approximations based on linear-
fluctuations in the signal on the pump, which in turn act backization. This includes situations in which the critical fluctua-
on the signal. _ tions appear at the threshold for pattern generation.

Using this method we have described the quantum fluc-
tuations in type-I OPO with walk-off in three regimes: below ACKNOWLEDGMENTS
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