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Optical bistability in lasers induced by active molecules with a large permanent dipole moment
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We study a single-mode laser system, whose active medium consists of molecules with a large difference
between excited and ground electrical permanent-dipole moments. In this case, the Maxwell-Bloch equations
are further coupled by nonlinear terms involving the ratio between this difference between the dipoles and the
transition dipole moment. It is found that these new terms lead to multiple stationary solutions. From the linear
stability analysis, we demonstrate the bistable~or multistable! character of the lasing solutions.
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I. INTRODUCTION

In the theoretical description of the interaction of an ele
tromagnetic field with a multilevel molecular system, it
common practice to ignore the presence of elec
permanent-dipole moments. However, there are many
tems where the permanent dipoles must be considered.
strongly excited two-level molecular system, the nonz
difference between the electric permanent dipoles lead
appealing phenomena: sharp features appearance in
resonant one-photon or two-photon nonlinear absorption
dispersion @1–4#; Raman scattering@5#; high-reflectivity
two-photon phase conjugation@6,7#; emergence of additiona
resonances on nondegenerate four-wave mixing@8#; direct
two-photon transitions in a two-level instead of a multilev
system@1,9#; microwave amplification through laser radi
tion @10#; high-molecular transparency to optical waves
certain frequencies@11#; and high-harmonic generatio
@12,13#.

Kothari and Kobayashi@1# and Kobayashi, Kothari, and
Uchiki @14# found that two-photon optical bistability can re
sult in small cavities if the nonlinear medium is composed
molecules with a large difference between the excited
ground electric permanent-dipole moments. Optical bista
ity has received considerable attention from both theoret
and experimental points of view because of its potential
plications in signal processing. Many different optical sy
tems, such as lasers without inversion@15# and Raman laser
@16#, can exhibit bistable behavior under certain excitat
conditions. In previous works@17,18#, it was shown that the
electronic-vibrational coupling in molecules can produce
tical bistability in lasers.

We study a single-mode laser system whose active m
ecules present a large difference between excited and gr
electrical permanent-dipole moments. We follow a semicl
sical treatment by means of the Maxwell-Bloch equatio
The rotating wave and the slowly varying amplitude appro
mations are assumed. It is found that the new terms app
ing in the Maxwell-Bloch equations can lead to multiple s
tionary solutions. The linear stability analysis is carried o
and shows that positive-slope regions of the transmiss
curves~in our case, pump versus laser intensity! are stable.
Permanent-dipole moments can then induce multistability
lasers.
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In Sec. II, we describe the procedure to obtain the evo
tion equations of the density matrix and the radiation fie
i.e., the Maxwell-Bloch equations for our system. In Sec.
we analyze the dynamics of our system and present a
merical example. Finally, we briefly conclude in Sec. IV.

II. THE MODEL

We consider the active medium of the laser composed
N identical noncentrosymmetric molecules per unit volum
in a cavity. The length of the cavityL is tuned to a single
longitudinal mode of frequencyv. As usual in laser theory
the active medium is considered as a two-level system w
population inversion. This population inversion is created
incoherent pumping~electrical or flashlamp, rf discharge
collisions, etc.! and is introduced phenomenologically in th
matter laser equations. For each molecule, we consider
ground-stateu1& with energyE1 and the excited-stateu2& with
energyE2 . The levels have unequal electric-dipole mome
and are connected by one-photon transitions, so that\v
'E22E1 .

The Hamiltonian in the electric-dipole approximation is

H5H01He2r , ~1!

whereH0 is the free electronic Hamiltonian, whose eige
states areu1& and u2&. The electron-radiation interactio
Hamiltonian He2r52mW •EW , wheremW is the electric-dipole
moment. We consider that the active molecules are orien
in the same direction. It occurs, for example, in some m
lecular crystals or when the molecules are inserted in a s
matrix that is transparent to the radiation. For the sake
simplicity, the transition dipole moment and the differen
between the permanent-dipole moments are assumed t
parallel to the radiation fieldEW . As stated in Ref.@2#, in the
case of freely rotating molecules, averaged physical qua
ties should be taken into account. Even in that case,
effects of permanent dipoles do not vanish but they are
duced to some extent. The problem of the freely rotat
molecules is very complicated and we limit the discussion
this paper to the case of rigid molecular system.

The electronic state of the molecular system can be
pressed as
©2002 The American Physical Society11-1
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uc~ t !&5C1~ t !e2 iE1t/\u1&1C2~ t !e2 iE2t/\u2&. ~2!

Let us write the total Hamiltonian in matrix form, with th
choice (0

1) for the excited-stateu2&, and (1
0) for the ground-

stateu1&,

H5S E22m22E 2m21E

2m12E E12m11E
D , ~3!

where m i j [^ i umu j &. We can always choosem12 real, such
thatm215m12. Note that the permanent dipolesm22 andm11
are in the diagonal terms. The expression ofH written in
terms of the Pauli matrices reads

H5 1
2 @E21E12~m221m11!E#s01 1

2 ~\v212mpE!s3

2m12E~s11s2!, ~4!

wheremp[m222m11, v21[(E22E1)/\, s0 is the unit ma-
trix, and the Pauli matrices verify the commutation relatio
@s6 , s3#572s6 and @s1 , s2#5s3 .

The aim of our development is to solve the evoluti
equation for the density matrix, i\]r/]t5@H,r#
1 i\(]r/]t)rel . The last term, introduced phenomenolog
cally, takes into account the coherence and population re
ation rates. Now we follow the same procedure as in@9,13#,
which consists of applying a series of unitary transform
tions in order to solve the evolution equation involving t
permanent dipoles, in a simple way. IfU is a unitary trans-
formation andr (T)5UrU21, then

i\
]r~T!

]t
5@H ~T!, r~T!#1 i\S ]r~T!

]t D
rel

, ~5!

where

H ~T![UHU211 i\
]U

]t
U21. ~6!

The termi\(]r (T)/]t)rel accounts for the transformed cohe
ence and population relaxation rates and is added phen
enologically. Three of these unitary transformations are
plied in the following succession. The first one,U0 , is used
to eliminate the term withs0 in the Hamiltonian of Eq.~4!.
It reads

U05exp~hs0!, ~7!

with

h[
i

2\ F ~E21E1!t2~m221m11!E
0

t

E~z, t8!dt8G , ~8!

where the integration timet is assumed to be much small
than the coherence and population decay times. Applying
transformationU0 to the Hamiltonian of Eq.~4!, we obtain
from Eq. ~6!,

H ~0!5 1
2 ~\v212mpE!s32m12E~s11s2!. ~9!
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With a second unitary transformation, the explicit tempo
dependence introduced by the fieldE in the diagonal ele-
ments can be eliminated. This transformation is defined

U15exp~js3!, ~10!

with

j[
i

2\ F\v21t2mpE
0

t

E~z, t8!dt8G . ~11!

In a similar way to the preceding case, we apply the tra
formation U1 to the Hamiltonian of Eq.~9!, and using
U1s6U1

215e62js6 , we obtain

H ~1!52m12E~s1e2j1s2e22j!52m12ES 0 e2j

e22j 0 D .

~12!

Before applying the third transformation, let us first evalua
these off-diagonal elements. The radiation field inside
medium can be expressed as

E~z, t !5E0
1~z, t !e2 i ~vt2kz!1c.c., E0

~1 !5 1
2 E0eiw,

~13!

where c.c. denotes complex conjugation,E0 is the field am-
plitude, andw its phase. Inserting the above expression of
field in Eq.~11! and carrying out the integral, we obtain from
Eq. ~12!,

H12
~1!52m12Ee22j52m12E expS 2 iv21t1 i

mpE0

\v

3sin~vt2kz2w!1 i
mpE0

\v
sin~kz1w! D . ~14!

Making use of exp(iq sina)5(t52`
` Jl(q)exp(ila), where

Jl(q) is the l-order Bessel function, Eq.~14! becomes

H12
~1!52

m12

2
E0 exp~ iq sin~kz1w!!F (

l 52`

`

Jl~q!exp@ i ~ l 11!

3~vt2kz2w!2 iv2t#1 (
l 52`

`

Jl~q!exp@ i ~ l 21!

3~vt2kz2w!2 iv21t#G , ~15!

where the argumentq[mpE0 /(\v). At this point, we apply
the rotating-wave approximation. Assuming the one-pho
resonance conditionv.v21, we only retain the terms with
l 50 in the first series and the terms withl 52 in the second
series. Equation~15! can then be written as

H12
~1!52meff~E0

~1 !!* eiF, ~16!

where

F[q sin~kz1w!2kz2~v212v!t, ~17!
1-2
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and

meff[m12@J0~q!1J2~q!#5m12

2J1~q!

q
~18!

is the effective transition dipole moment for the two-lev
transformed system. It is field dependent and involves
difference between the permanent-dipolesmp . Note that for
values ofq, makingJ1 zero, the transition is inhibited while
it is enhanced for values ofq making J1 maximum. In the
case of equal permanent-dipole moments,mp50, the effec-
tive dipole reduces to the usual transition dipole mom
m12, as expected.

In order to eliminate the explicit temporal dependence
the elements ofH (1), we consider the third unitary transfo
mation

U25expS i
F

2
s3D , ~19!

whereF is given by Eq.~17!. Following a procedure analo
gous to that followed for the other transformations, t
HamiltonianH (1) becomes

H ~2!5S \

2
~v212v! 2veffE0

~1 !

2meff~E0
~1 !!* 2

\

2
~v212v!

D . ~20!

The transformed density matrix then satisfiesi\]r (2)/]t
5@H (2),r (2)#1 i\(]r (2)/]t)rel , and the evolution equation
of the molecular system read

]r21
~2!

]t
52g'r21

~2!2 i ~v212v!r21
~2!2 i

meff

\
E0

~1 !rD
~2! ,

~21!

]rD
~2!

]t
52g iF ~rD

~2!2rD0!1 i
2meff

\
@E0

~1 !r12
~2!

2~E0
~1 !!* r21

~2!#G , ~22!

whererD
(2)[r22

(2)2r11
(2) is the population inversion. The sta

tionary value ofrD in absence of radiation isrD5rD0 ,
whererD0 is the population inversion induced by the pum
ing. Note that the diagonal terms of the density matrix
main invariant under the applied transformations (rD

5rD
(2)). The quantitiesg i

21 andg'
21 are the population~di-

agonal! and coherent~off-diagonal! relaxation times, respec
tively. They are introduced phenomenologically.

The response of the medium to an electromagnetic fiel
characterized by the induced polarizationP(z, t), which acts
as a source term in the Maxwell wave equation. The po
ization is given by

P~z, t !5N Tr~mr!5N@m22r221m11r111m12~r211r12!#.
~23!
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The matrix elements ofr can be expressed in terms of tho
of r (2) by applying the inverse transformations,r
5U0

21U1
21U2

21r (2)U2U1U0 . Disregarding the static polar
ization, we obtain for the oscillating contribution,

P~z,t ![N@m12~r211r12!#

5Nm12r21
~2! exp~22j2 iF!1c.c.

5Nm12r21
~2!H (

l 52`

`

Jl~q!exp@ i ~ l 21!~vt2kz!#

3exp~2 iw l !J 1c.c. ~24!

The polarization of a molecular system with permane
dipole moments can then oscillate at frequenciesv, 2v, 3v,
etc., provided that a radiation field of frequencyv interacts
with it. Here, we are interested in the polarization oscillati
at frequency v. This polarization can be written a
P(1)(z,t)5P0

1(z,t)exp$2i(vt2kz)%1c.c., whereP0
1(z,t) is

the slowly varying amplitude of the polarization. This amp
tude can be obtained from Eq.~24! by retaining the terms
with l 50 and 2, that is,

P0
~1 !~z, t !5Nm12@r21

~2!J0~q!1r12
~2!J2~q!exp~2iw!#.

~25!

The behavior of the radiation inside the medium is describ
by the Maxwell wave equation which, under the slowly var
ing amplitude approximation and leaving out the transver
character of the radiation field, can be written as

]E0
1

]t
52kE0

~1 !1
iv

2e0
P0

~1 ! , ~26!

where P0
1(z,t) is given by Eq.~25! and k stands for the

effective cavity losses. To obtain dimensionless and sim
fied equations, we define the dimensionless detuningD
[(v212v)/g' , the normalized pumpr[Nvm12

2 rD0 /
(2\e0g'k), and the following variable changes:

E0
~1 !5

\Ag ig'

2m12
Es ,

r21
~2!52

i

2
Ag i

g'

rD0

r
Ps , ~27!

rD
~2!5

rD0

r
Ds ,

whereEs , Ps , andDs are the dimensionless magnitudes.
terms of these variables, Eqs.~21!, ~22!, and~26! finally can
be written as

]Es

]t
52k@Es2J0~q!Ps1J2~q!Ps* e2iw#, ~28!
1-3
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]Ps

]t
52g'@~11 iD!Ps2@J0~q!1J2~q!#DsEs#, ~29!

]Ds

]t
52g iFDs2r 1

@J0~q!1J2~q!#

2
~Es* Ps1EsPs* !G ,

~30!

where q5mpE0 /(\v)5buEsu, with b[(mp /
m12)(Ag'g i/v). These equations are similar to the compl
Lorenz equations except for the nonlinear field depende
due to the Bessel functions.

III. DYNAMICS OF THE SYSTEM

In order to simplify the analysis of the system, we assu
perfect resonance (D50), and that the decay timesg'

21 and
g i

21 are shorter than the decay time of the electric-fieldk21.
We can then apply the adiabatic approximation to the ma
Eqs. ~29! and ~30!. That is, we make] tPs5] tDs50, and
insert the result in the field equation~28! to obtain, after a
straightforward calculation, the evolution equation of the
ser intensityI[uEsu2,

dI

dt
5F211

r @J0~q!22J2~q!2#

11@J0~q!1J2~q!#2I G I , ~31!

wheret[2kt is the dimensionless time andq5bAI .

A. Analysis of the stationary solutions

Equation~31! has the trivial stationary solutionI 50, ~no
laser emission!. If we analyze the stability of this trivial so
lution, we find that it becomes unstable atr .1. The usual
laser thresholdr 51 is then not modified by the presence
the permanent-dipole moments. Above this threshold va
the laser emission takes place and the stationary solutioI 0
verifies

r 5
11@J0~q0!1J2~q0!#2I 0

J0~q0!22J2~q0!2 , ~32!

with q05bAI 0. The gain curve given by Eq.~32!, i.e., pump
versus stationary laser intensity, is shown in Fig. 1. We be
to see multiple stationary laser solutions appear in gre
numbers as the pumpr becomes larger and larger. The mu
tiplicity in the solutions is induced by the behavior of th
Bessel functions, whose presence is due to the differe
between the excited and ground permanent-dipole mome
In fact, the different solution branches are separated by
zeros of the termJ0(q0)22J2(q0)2, as indicated in Eq.~32!.
In order to obtain a three-valued solution, for example,
value ofq0 must be greater than approximately four, so th
the term J0(q0)22J2(q0)2 surpasses the first two zero
Such a value ofq0 implies, in general, a large differenc
between the permanent-dipole momentsmp .

Let us now analyze the stability of the lasing solutionsI 0 .
Using standard linear-stability methods, we introduce a sm
perturbation in the solution given by Eq.~32!, so thatI 5I 0
1dI . The linearized equation obtained for the perturbation
02381
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d dI

dt
52

I 0

r F11
2r @J1~q0!22J2~q0!2#

I 0@J0~q0!22J2~q0!2# GdI . ~33!

Since the term between the large square brackets in Eq.~33!
is the derivative of Eq.~32!, that is,

dr

dI0
511

2r @J1~q0!22J2~q0!2#

I 0@J0~q0!22J2~q0!2#
, ~34!

we can rewrite Eq.~33! as

d dI

dt
52

I 0

r S dr

dI0
D dI . ~35!

Therefore, the stability of the different lasing solutionsI 0
depends on the sign of the slopedr/dI0 . When the slope is
positive, the perturbationdI in Eq. ~35! decays to zero and
therefore the corresponding solution is stable. On the o
hand, when the slope is negative, the perturbation grows
ponentially and the solution is then unstable. This is the w
known criterion in most cases of optical bistability. It is the
shown that the presence of permanent dipoles can ind
one-photon bistability~or multistability! in lasers.

B. Numerical example

We now consider:v2151014s21, g i
21510210s, a shorter

value, as usual, for the decoherence timeg'
21510212s, and

mp /m125100 ~e.g., mp550 D, m1250.5 D!. For these val-
ues, b[(mp /m12)(Ag'g i/v).0.1. We recall that q0

5bAI 0. The gain curve, i.e., pump versus stationary la
solution, is shown in Fig. 2, where we can see the first th
stationary solution branches, only two of them being stab
Therefore, bistability is taking place. For these parame
values, andq0 of the order of four~as stated above!, the
intensity valuesI 0 are of the order of GW/cm2.

The active molecules suitable to show this behavior, m
have a large difference between their permanent-dipole
ments. These types of molecules are, in general, org
compounds with high polarizabilities, presenting significa

FIG. 1. General shape of the dimensionless pumpingr versus
stationary dimensionless intensityI 0 , for b50.1. Multiple station-
ary solutions are shown.
1-4
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nonlinear optical properties@12,19# and large optical damag
thresholds@20#.

To observe the bistable behavior of our system, the
~31! is solved numerically with the above-mentioned valu
and r 5150. The corresponding three stationary solutio
I 0

(I ) , I 0
(II ) , I 0

(III ) , are plotted in a graph~see Fig. 2!. The
temporal variation of the laser intensity, for different initi
conditions, is shown in Fig. 3. The intensity reaches
stable solutionI 0

(I ) or I 0
(II ) depending on the initial condition

considered. This result demonstrates the bistable behavi
this system.

Each of the stable solutions~point attractors! is encom-
passed by a region called a basin of attraction. All the ini
conditions I (t50) in the basin, converge on the enclos
point attractor. From the study of basins of attraction in o
bistable system, we found that the stationary solution bra
with negative slope is the separatrix, delimiting the two b
sins of attraction.

IV. CONCLUSIONS

We have studied a single-mode laser system where
two-level active molecules have unequal permanent-dip
moments. As in@3,9#, this type of system can be describe
by means of an effective transition dipole moment depend
on theJ1(q) Bessel function. The transition is then inhibite
at the zeros ofJ1 and enhanced at the maxima ofJ1 .

In our case, the argument of the Bessel function is giv
by q5mpE0 /(\v)5(mp /m12)(Ag'g i/v)uEsu. It depends
on the field amplitudeE0 ~or the normalized amplitudeuEsu!,

FIG. 2. Dimensionless pumpingr versus stationary dimension
less intensityI 0 for the parameterb50.1. For r 5150, the three
stationary solutionsI 0

(I ) , I 0
(II ) , andI 0

(III ) are shown.
n
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and the difference of the permanent-dipolesmp . It is found
that the Maxwell-Bloch equations are further coupled
nonlinear terms involving Bessel functions of argumentq.
The well-known laser threshold~normalized pumpingr 51!
is not modified. However, for higher values ofr, the new
terms can lead to multiple stationary lasing solutions. T
multiplicity of the solutions as well as their intensities in
crease with the pumping.

The linear analysis of the stability shows that the positiv
slope regions of the transmitted curves~in our case, pumping
versus laser intensity! are stable. It is then shown that th
difference between the excited and ground elec
permanent-dipole moments can induce multistability in
sers. Organic compounds with large dipole moments
high damage thresholds are suitable for this type of lase

For the pumping valuer 5150, three stationary lasing so
lutions, two of them stable, are found. The ratio between
difference of the dipoles and the transition dipole momen
considered to be 100. The lasing intensity is then of the or
of GW/cm2. The temporal variation of the intensity, to reac
the stable states, is shown numerically for different init
conditions. It is found that the branch of the unstable stati
ary solution separates the two basins of attraction.
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FIG. 3. Dimensionless laser intensityI versus dimensionless
time, t[2kt, for different initial conditions. The values of th
parameters areb50.1 andr 5150. The two stable solutionsI 0

(I ) and
I 0

(III ) , and the unstable oneI 0
(II ) , are also shown~dotted lines!.
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