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Optical bistability in lasers induced by active molecules with a large permanent dipole moment
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We study a single-mode laser system, whose active medium consists of molecules with a large difference
between excited and ground electrical permanent-dipole moments. In this case, the Maxwell-Bloch equations
are further coupled by nonlinear terms involving the ratio between this difference between the dipoles and the
transition dipole moment. It is found that these new terms lead to multiple stationary solutions. From the linear
stability analysis, we demonstrate the bistalde multistable character of the lasing solutions.
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I. INTRODUCTION In Sec. Il, we describe the procedure to obtain the evolu-
tion equations of the density matrix and the radiation field,
In the theoretical description of the interaction of an elec-i.e., the Maxwell-Bloch equations for our system. In Sec. llI,
tromagnetic field with a multilevel molecular system, it is we analyze the dynamics of our system and present a nu-
common practice to ignore the presence of electrignerical example. Finally, we briefly conclude in Sec. IV.
permanent-dipole moments. However, there are many sys-
tems where the permanent dipoles must be considered. In a Il. THE MODEL
strongly excited two-level molecular system, the nonzero
difference between the electric permanent dipoles leads to We consider the active medium of the laser composed of
appealing phenomena: sharp features appearance in oN-identical noncentrosymmetric molecules per unit volume
resonant one-photon or two-photon nonlinear absorption anih a cavity. The length of the cavity is tuned to a single
dispersion[1-4]; Raman scattering5]; high-reflectivity  longitudinal mode of frequency. As usual in laser theory,
two-photon phase conjugatig6,7]; emergence of additional the active medium is considered as a two-level system with
resonances on nondegenerate four-wave miBig direct  population inversion. This population inversion is created by
two-photon transitions in a two-level instead of a multilevelincoherent pumpingelectrical or flashlamp, rf discharge,
system[1,9]; microwave amplification through laser radia- collisions, etc). and is introduced phenomenologically in the
tion [10]; high-molecular transparency to optical waves ofmatter laser equations. For each molecule, we consider the
certain frequencies/11]; and high-harmonic generation ground-statgl) with energyE; and the excited-sta{) with
[12,13. energyE,. The levels have unequal electric-dipole moments
Kothari and Kobayashil] and Kobayashi, Kothari, and and are connected by one-photon transitions, so #hat
Uchiki [14] found that two-photon optical bistability can re- ~E,—E;.
sult in small cavities if the nonlinear medium is composed of The Hamiltonian in the electric-dipole approximation is
molecules with a large difference between the excited and
ground electric permanent-dipole moments. Optical bistabil- H=HOo+He T (1)
ity has received considerable attention from both theoretical
and experimental points of view because of its potential ap- . . I .
plicatioﬁs in signali) processing. Many different F(;ptical sysrfv"here'_|O is the free electronic Ham|lton_|ar_1, whose eigen-
tems, such as lasers without invers[d®] and Raman lasers state_s; are|1> and [2). Téhe electron_-rad|at|on Interaction
[16], can exhibit bistable behavior under certain excitationHamiltonianH®™"=—/-E, where /i is the electric-dipole
conditions. In previous workgl 7,18, it was shown that the moment. We consider that the active molecules are oriented

electronic-vibrational coupling in molecules can produce opdn the same direction. It occurs, for example, in some mo-
tical bistability in lasers. lecular crystals or when the molecules are inserted in a solid

We study a single-mode laser system whose active mol®atrix that is transparent to the radiation. For the sake of
ecules present a large difference between excited and grougimplicity, the transition dipole moment and the difference
electrical permanent-dipole moments. We follow a semiclasPétween the permanent-dipole moments are assumed to be
sical treatment by means of the Maxwell-Bloch equationsparallel to the radiation fiel&. As stated in Ref[2], in the
The rotating wave and the slowly varying amplitude approxi-case of freely rotating molecules, averaged physical quanti-
mations are assumed. It is found that the new terms appedies should be taken into account. Even in that case, the
ing in the Maxwell-Bloch equations can lead to multiple sta-effects of permanent dipoles do not vanish but they are re-
tionary solutions. The linear stability analysis is carried out,duced to some extent. The problem of the freely rotating
and shows that positive-slope regions of the transmissiomolecules is very complicated and we limit the discussion in
curves(in our case, pump versus laser intensiye stable. this paper to the case of rigid molecular system.
Permanent-dipole moments can then induce multistability in The electronic state of the molecular system can be ex-
lasers. pressed as
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lp(t))=Cy(t)e E1""1)+ Cy(t)e E2"H2).  (2)

Let us write the total Hamiltonian in matrix form, with the
choice §) for the excited-staté2), and ) for the ground-
state|1),

=
Ei—uqE ’

_ Eo— uak

= 3
—p1E ®

where w;;=(i|u|j). We can always choosg,, real, such
that u,1= w1,. Note that the permanent dipolgs, and w44
are in the diagonal terms. The expressiontbfwritten in
terms of the Pauli matrices reads

H=32[Ex+E;—(ugt pi)Elog+ %(ﬁwzl_MpE)O's
—p1E(o+oo), (4)

whereu,= uzo— w11, ©1=(E;—E;)/%, oy is the unit ma-
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With a second unitary transformation, the explicit temporal

dependence introduced by the fididin the diagonal ele-

ments can be eliminated. This transformation is defined as
U1=eX[I(§a'3), (10)

with

. (11

t
finlt—,upfo E(Z, t,)dt,

i
2
In a similar way to the preceding case, we apply the trans-

formation U; to the Hamiltonian of Eq.(9), and using
U,o.U;'=e*%0. , we obtain
e2§>
0/

(12

0
—2¢

HW=—uE(o, e+ o e ?)=—u,E

e

trix, and the Pauli matrices verify the commutation relationsBefore applying the third transformation, let us first evaluate

[0.,03]=F20. and[o,,0_]=03.

these off-diagonal elements. The radiation field inside the

The aim of our development is to solve the evolutionMedium can be expressed as

equation for the density matrix, ifidp/dt=[H,p]

+if(dpldt)e. The last term, introduced phenomenologi-
cally, takes into account the coherence and population relax-

ation rates. Now we follow the same procedure ag9ii 3],

which consists of applying a series of unitary transforma-,

E(z, t)=Eg(z, tye "“"Kicc., ES'=1Eq€',
(13

where c.c. denotes complex conjugatiéy, is the field am-
plitude, andyp its phase. Inserting the above expression of the

tions in order to solve the evolution equation involving the 5.4 in Eq.(11) and carrying out the integral, we obtain from

permanent dipoles, in a simple way.Ufis a unitary trans-
formation andp("=UpU 1, then

o"p(T) 07p(T)
i =THM (M7
i ot [H'Y, p'V]+i% p , (5)
rel
where
Ju
H(T)EUHU‘1+iﬁWU‘1. (6)

The termi(9p(M/dt),e accounts for the transformed coher-

ence and population relaxation rates and is added phenom-12

Eq. (12),

- , - MpE
HY=—uiEe 2§=—M12Eexy{—|w21t+| ;wo

/-LpE

0 .
o sin(kz+ ¢)

Xsin(wt—kz—¢)+i

. (19

Making use of exg@sina)=3"__J(q)explla), where
Ji(q) is thel-order Bessel function, Eq14) becomes

(1_ _ M2

5 l;m Ji(qyexdi(l+1)

Eqexp(iq sin(kz+ ¢))

enologically. Three of these unitary transformations are ap-

plied in the following succession. The first ongy, is used
to eliminate the term witlrg in the Hamiltonian of Eq(4).
It reads

UOZ exq ’)70'0), (7)

with

, (8

i t
=S5 (E2+E1)t_(,U~22+,U~11)J E(z, t")dt’
0

where the integration timeis assumed to be much smaller

than the coherence and population decay times. Applying the

transformationU, to the Hamiltonian of Eq(4), we obtain
from Eq. (6),

HO= 3 (w1~ upE) 03— piE(o, + o). 9

X(wt—kz— ¢)—iw2t]+|2_ Ji(q)yexdi(l—1)

X (wt—kz— @) —iwt]|, (15

where the argument= u,Eq /(% w). At this point, we apply
the rotating-wave approximation. Assuming the one-photon
resonance conditiomn=w,;, we only retain the terms with

I =0 in the first series and the terms witk 2 in the second
series. Equationil5) can then be written as

HY = (F)*gi®

— ter(E (16)

where

P=qsinkz+ ¢)—kz—(wy— w)t, (17)
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and The matrix elements g5 can be expressed in terms of those
23:(q) of p® by applying the inverse transformationsy
1(q =Ugytuitu;, p®Uu,U,U,. Disregarding the static polar-
= + = =Uo Uy U pUsU U, LISTEQ g the p
Pt = t1d Jo( Q)+ J2(Q)]= 1122 q (18) ization, we obtain for the oscillating contribution,

is the effective transition dipole moment for the two-level P(z,t)=N[ 1o p21t p12)]
transformed system. It is field dependent and involves the

difference between the permanent-dipoles. Note that for =Nu1p5; expl —2£—id)+c.c.

values ofg, makingJ, zero, the transition is inhibited while -

it is enhanced for values af makingJ; maximum. In the =N (2 Jimexdi(l—1)(wt—kz
case of equal permanent-dipole momenis=0, the effec- Habat |:z—oc (a)exdi( e )]

tive dipole reduces to the usual transition dipole moment
, as expected. .
Ml?n orderpto eliminate the explicit temporal dependence in xexp—iel)
the elements oH*), we consider the third unitary transfor-
mation The polarization of a molecular system with permanent-
dipole moments can then oscillate at frequencgielw, 3w,
U =exp(i 20 ) (19) etc., _provided that a_radiation ﬁeld of frquer@yintera_cts_
2 273 with it. Here, we are interested in the polarization oscillating
at frequency w. This polarization can be written as
where® is given by Eq.(17). Following a procedure analo- p(1)(z t)= Py (z.t)exp{—i(wt—k2)}+c.c., whereP] (z,t) is
gous to that followed for the other transformations, theine slowly varying amplitude of the polarization. This ampli-
HamiltonianH becomes tude can be obtained from E¢R4) by retaining the terms
with =0 and 2, that is,

+c.c. (24

h
S(wp—0)  —ouES” _
o_| 2 ) PSY(z, 1)=Nuid p236(q) + p2Ix(q)exp2i o).
H(? = . (20 25
_Meﬁ( EE)+))* - —(wzl_ w)
2

The behavior of the radiation inside the medium is described
by the Maxwell wave equation which, under the slowly vary-
ing amplitude approximation and leaving out the transversal
character of the radiation field, can be written as

The transformed density matrix then satisfigsip(®)/at
=[H® p@]+in(ap@Iat),, and the evolution equations
of the molecular system read

2 JEq

07[)21 2 2 Meff _ 1y (2 — KE(+)+ I_w P(*) (26)
a ‘yip(Zl)_I(le_ w)P(21)_| TEB )P|(3), ot 0 2¢p 0

2Y) where P (z,t) is given by Eq.(25) and « stands for the

(2) effective cavity losses. To obtain dimensionless and simpli-

J . . . . .
ﬂz_w (p(DZ)—PDo)+i z'ue“[Egﬂp(fz) fied equations, we define the dimensionless detuning
at h =(wpn— o)y, , the normalized pumpr=Nwui,ppg/
(2heqy, k), and the following variable changes:
—(E(Hy* (2) 22
(Eo N*pz1]|, (22
E(+)_ﬁ NYIYL E
@)= () _ () ion i - i o2 s’
wherepy’=p3y5’ —pi7 is the population inversion. The sta Hi2

tionary value ofpp in absence of radiation ipp=ppg,

wherepp is the population inversion induced by the pump- 2)_ i [ poo

ing. Note that the diagonal terms of the density matrix re- pa1 =75 Z TPS’ (27)

main invariant under the applied transformationgp (

=p?). The quantitiesy, * and y| * are the populatiordi- Do

agonal and coherentoff-diagona) relaxation times, respec- pd)=—n

tively. They are introduced phenomenologically. '
The response of the medium to an electromagnetic field is . . .

characterized by the induced polarizat®(e, t), which acts whereks, Ps, and.DS are the dimensionless mqgnltudes. In

as a source term in the Maxwell wave equation. The polar’Eerms of these variables, Eq21), (22), and(26) finally can

ization is given by be written as

Sy

— — JE :
P(z, )=NTr(up)=N[p22p20F p11p11+ p1ap2rt plz()Z]é) &_ts — — k[ Es—Jo(q) Ps+ Jo(q) PE €?'¢], (28)

023811-3



OSCAR G. CALDER,CN, SONIA MELLE, AND ISABEL GONZALO PHYSICAL REVIEW A65 023811

P, 1000
—r = nl(1+18)Ps=[Jo(q) +J2(a) IDE], (29)

D [Jo(q) +J2(q)]
=W Do T (EEPHEGPY) |, r

(30

500

where  q=uyEq/(hw)=p|E, with B=(up/

rn12) (Vv v/ w). These equations are similar to the complex

Lorenz equations except for the nonlinear field dependence

due to the Bessel functions. 0

T T T
0 5 10 15 20x10°

Ill. DYNAMICS OF THE SYSTEM Iy

In order to simplify the analysis of the system, we assume FIG. 1. General shape of the dimensionless pumpingrsus
perfect resonance\(=0), and that the decay timeg_l and stationary dimensionless intensity, for 8=0.1. Multiple station-
y; ! are shorter than the decay time of the electric-field. &1 solutions are shown.

We can then apply the adiabatic approximation to the matter

Egs. (29) and (30). That is, we make?,Ps=4,Ds=0, and dal 1o 14 2r[31(0o)*—J2(do)?] 5. (33
insert the result in the field equatid@8) to obtain, after a dr r lo[Jo(do)2—Ja(q0)?] |
straightforward calculation, the evolution equation of the la-
ser intensityl =|E4|?, Since the term between the large square brackets iri33y.
5 5 is the derivative of Eq(32), that is,
di [, D@37 ] -
dr 1+[Jo(q) + () 121 dr 2r[J1(do)*—J2(do)?]
i 1 + 2 ER (34)
B . . . . dlo lo[Jo( o) —J2(do)“]
wherer=2«t is the dimensionless time armp= 81/1.
we can rewrite EQq(33) as
A. Analysis of the stationary solutions
Equation(31) has the trivial stationary solution= 0, (no d 4l __ '_O(ﬂ) Sl (35)
laser emission If we analyze the stability of this trivial so- dr r\dlg)

lution, we find that it becomes unstablerat 1. The usual

laser threshold =1 is then not modified by the presence of Therefore, the stability of the different lasing solutiohs
the permanent-dipole moments. Above this threshold valuedepends on the sign of the sloge/dl,. When the slope is
the laser emission takes place and the stationary soligion positive, the perturbatiodl in Eqg. (35) decays to zero and

verifies therefore the corresponding solution is stable. On the other

) hand, when the slope is negative, the perturbation grows ex-

_ 1+[J0(90) +32(A0) I"lo (32  ponentially and the solution is then unstable. This is the well-
Jo(00)°—Jx(qe)® known criterion in most cases of optical bistability. It is then

shown that the presence of permanent dipoles can induce

with go=B+1o. The gain curve given by Eq32), i.e., pump  one-photon bistabilitfor multistability) in lasers.
versus stationary laser intensity, is shown in Fig. 1. We begin
to see multiple stationary laser solutions appear in greater
numbers as the pumpbecomes larger and larger. The mul-
tiplicity in the solutions is induced by the behavior of the ~ We now considerw,,=10Ms™?, ; '=10"s, a shorter
Bessel functions, whose presence is due to the differencealue, as usual, for the decoherence tiie'=10"1?s, and
between the excited and ground permanent-dipole momentg.,/w1,=100 (e.g., u,=50D, u1,=0.5D). For these val-
In fact, the different solution branches are separated by thees, B=(up/wm12)(Vy, v/0)=0.1. We recall thatqg
zeros of the terndy(do)?— J,(dg)?, as indicated in Eq32). = B./l,. The gain curve, i.e., pump versus stationary laser
In order to obtain a three-valued solution, for example, thesolution, is shown in Fig. 2, where we can see the first three
value ofqy must be greater than approximately four, so thatstationary solution branches, only two of them being stable.
the term Jo(qo)?—Jo(qo)? surpasses the first two zeros. Therefore, bistability is taking place. For these parameter
Such a value ofgy implies, in general, a large difference values, andq, of the order of four(as stated aboyethe
between the permanent-dipole moments. intensity valued , are of the order of GW/cfn

Let us now analyze the stability of the lasing solutibgs The active molecules suitable to show this behavior, must
Using standard linear-stability methods, we introduce a smalhave a large difference between their permanent-dipole mo-
perturbation in the solution given by E@2), so thatl =1, ments. These types of molecules are, in general, organic
+ 81. The linearized equation obtained for the perturbation icompounds with high polarizabilities, presenting significant

B. Numerical example
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FIG. 2. Dimensionless pumpingversus stationary dimension-
less intensityl, for the parametep3=0.1. Forr=150, the three
stationary solutions{’, 13", andI{") are shown.

FIG. 3. Dimensionless laser intensityversus dimensionless
time, r=2«t, for different initial conditions. The values of the
parameters arg= 0.1 andr = 150. The two stable solution§’ and
nonlinear optical propertigd.2,19 and large optical damage !§"’. and the unstable orig"), are also showridotted lines.
thresholdq 20].

To observe the bistable behavior of our system, the Egand the difference of the permanent-dipojgs. It is found
(31) is solved numerically with the above-mentioned valuesthat the Maxwell-Bloch equations are further coupled by
and r=150. The corresponding three stationary solutionsponlinear terms involving Bessel functions of argumegnt
197, 189, 10", are plotted in a graplisee Fig. 2 The  The well-known laser thresholghormalized pumping =1)
temporal variation of the laser intensity, for different initial is not modified. However, for higher values of the new
conditions, is shown in Fig. 3. The intensity reaches theerms can lead to multiple stationary lasing solutions. The
stable solutiong) or |(()“) depending on the initial condition multiplicit_y of the soIL_ltions as well as their intensities in-
considered. This result demonstrates the bistable behavior §f€@se with the pumping. 3 -
this system. The Ilngar analysis of the_ stability _shows that the positive-

Each of the stable solution@oint attractorsis encom-  Slope regions of the transmitted cur@sour case, pumping
passed by a region called a basin of attraction. All the initialVersus laser intensityare stable. It is then shown that the
conditions| (7=0) in the basin, converge on the encloseddifference Dbetween the excited and ground  electric
point attractor. From the study of basins of attraction in ouP€rmanent-dipole moments can induce multistability in la-
bistable system, we found that the stationary solution brancR€rs. Organic compounds with large dipole moments and

sins of attraction. For the pumping value= 150, three stationary lasing so-

lutions, two of them stable, are found. The ratio between the
IV CONCLUSIONS differ_ence of the dipoles and t.he Fransit_ion_ dipole moment is
considered to be 100. The lasing intensity is then of the order
We have studied a single-mode laser system where thef GW/cn?. The temporal variation of the intensity, to reach
two-level active molecules have unequal permanent-dipol¢he stable states, is shown numerically for different initial
moments. As in3,9], this type of system can be described conditions. It is found that the branch of the unstable station-
by means of an effective transition dipole moment dependin@ry solution separates the two basins of attraction.
on theJ;(q) Bessel function. The transition is then inhibited
at the zeros o8, and enhanced at the maxima &f.
In our case, the argument of the Bessel function is given
by q=pupEo/(hw)=(mp/p12) (Ny. v/ w)|Eg. It depends This work was supported by Project No. BFM2000-0796
on the field amplitud&, (or the normalized amplitudé&y|),  (Spain.
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