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Unexpected role of excess noise in spontaneous emission
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A single inverted two-level atom is used as a theoretical model for a quantum noise detector to investigate
fundamental properties of excess noise in an unstable optical resonator. For a symmetric unstable spherical
mirror cavity, we develop an analytic quantum description of the field in terms of a complete set of normal-
izable biorthogonal quasimodes and adjoint modes. Including the interaction with a single two-level atom leads
to a description analogous to the Jaynes-Cummings model with modified coupling constants. One finds a
strong position and geometry-dependent atomic decay probability proportional to the square rootAK of the
excess noise factorK at the cavity center. Introducing an additional homogeneous gain one recovers theK-fold
emission enhancement that has been predicted before for the linewidth of an unstable cavity laser. We find that
excess noise may be viewed as a spatial redistribution of the field quantum noise inside the resonator. Taking
a position average of the atomic decay rate over the cavity volume leads to a cancellation of the excess noise
enhancement.
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I. INTRODUCTION

The phenomenon of excess noise inside unstable res
tors was first predicted by Petermann@1# and soon after,
experimentally observed by measuring the enhancemen
the laser linewidth@2#. The Petermann excess noise factor~K
factor! was introduced to quantify the discrepancy betwe
the expected linewidth using the Schawlow-Townes form
@3,4# and the experimentally measured linewidth. Especia
in high-gain unstable lasers or in semiconductor lasersK
reaches considerable values@5,6#. A general formula con-
necting theK factor with the nonorthogonality of the effec
tive oscillating laser modes was given by Siegman@7# 12
years ago. The interpretation and derivation of this form
has led to substantial controversies@8#, as a simple and con
vincing physical picture and a clear mathematical justifi
tion of Siegman’s rule was missing.

Experimentally, the validity of this rule has recently be
extensively tested in a series of beautiful experiments
Woerdman and other groups@9,10#. Particularly highK fac-
tors, strongly dependent on mirror size and shape, were
dicted and experimentally found for transversely unsta
resonators. These findings triggered renewed theoretica
terest. In a recent paper, Poizat and co-workers@11# pointed
out that some of the properties of excess noise in a lin
amplifier may be mimicked in a simple three-mode quant
input-output model. Later, they generalized this to a lar
but finite set of coupled modes@12#. In an alternative ap-
proach based on a formal field mode expansion~modes of
the universe approach!, Bardroff and Stenholm found a clos
connection between the amount of excess noise and the
ference between the spatial distributions of the gain and
@13#. Up to some small corrections, they could also rep
duce Siegman’s predictions and extend their model to a n
linear gain medium@14#. For a Fabry-Perot resonator, th
longitudinal dynamics have been studied in great detail@15#.
All of these approaches are, however, impractical to appl
the transverse dynamics of a geometrically unstable ca
where particularly highK factors are found. The microscop
1050-2947/2002/65~2!/023803~12!/$20.00 65 0238
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physical origin of the large linewidth of an unstable cav
laser thus remained unclear.

Following the standard phase diffusion model to der
the laser linewidth, the origin of the enhanced linewidth
attributed to increased spontaneous emission@1,7# of the ac-
tive atoms. Alternatively amplified spontaneous emission
the gain medium@8# can explain the origin of this extra
noise. In order to trace the origin of excess noise to its ro
we have reduced the system to a single, inverted two-le
atom as a quantum noise detector in an unstable reson
and calculated the spontaneous emission rate@16# to lowest-
order perturbation theory. In an analogy to standard ca
QED models, we derived a series expression in terms
cavity quasimodes. Taking only a single mode into accou
one indeed finds aK-fold enhancement of the spontaneo
emission rate into this mode. However, a subsequent
more extensive analysis of our quantum model shows
invalidity of this truncation for most physically relevan
cases.

In this paper, we investigate the dynamics of a sin
atom in an unstable cavity in much more detail and derive
expression of wider validity for the atomic decay rate, whi
in many cases yields different predictions. Besides tes
the limits of our and other previous treatments, the pres
approach also allows for a continuous transition from
stable to an unstable cavity configuration. We may also
dependently vary the aperture of the system, which ena
us to study the origins and magnitude of quantum noise
the system in more detail. We may also directly connect
results to well-proven standard cavity QED treatments.
order to simplify the expressions and concentrate on
main effect, we make the further approximation of taki
only resonator modes into account in our model. In a reali
setup, they are only responsible for a part of the spontane
decay rate, which depends on the chosen geometry~i.e., the
resonator volume and the solid angle covered by the ca
field as compared to 4p!. While in macroscopic cavities this
angle is normally rather small, it can be large or dominan
microscopic structures. In addition to compare the two c
©2002 The American Physical Society03-1
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tributions, besides the cavity geometry, the finesse of
resonator also turns out to be important@17#. Nevertheless,
the omitted term is purely geometric and will be appro
mately constant, only weakly depending on parameters s
as mirror curvature and mirror reflectivity. Hence, for t
basic understanding of excess noise, this simplification
be unimportant, although it could possibly mask the exc
noise effect in a practical experimental setup.

In lasers, excess noise is usually an unwanted feature
increases the laser linewidth. However, our goal here is
to find the best situations to avoid or enhance it, but to st
its basic properties and trace its origin. Nevertheless,
could envisage some applications. For example, the effec
an enhanced atomic decay rate could prove very usefu
situations where a fast and efficient spontaneous decay in
certain direction is desirable, as in, e.g., increasing the e
ciency of light-emitting diode~LED’s! or other luminescen
devices. Another possibility is that enhancing the efficien
of fluorescence single-atom detection could be of pract
importance. Note again, however, that the main goal of
paper is theoretical investigation and we have chosen a
figuration that does not show the most spectacular value
excess noise, but that allows an analytical treatment t
large extent. In addition, our investigations may be used
starting point to examine the role of excess noise in ot
quantum noise-driven processes as in, e.g., parametric d
conversion.

In principle, the method used to calculate the spontane
emission rate is straightforward. One merely has to quan
the field with the proper boundary conditions and apply p
turbation theory in analogy to the derivation of Ferm
golden rule to obtain the transition probability. In practic
however, the central mathematical problem is to find
proper and useful quantum description of the electrom
netic field in a finite-sized unstable cavity, as there exists
orthonormal set of eigenmodes with the necessary boun
conditions. This is related to the fact that a geometrical
tics description of such systems involves light rays escap
to infinity after only a finite number of reflections.

As mentioned above, one way to avoid this problem is
put the whole system in a huge box and expand all field
terms of the box eigenmodes@13#, often called modes of the
universe@18#. It is, however, practically almost impossible
actually solve the resulting coupled equations with pro
boundary conditions in a sufficiently large volume. In ad
tion, the physical interpretation of the results obtained in t
way is not transparent. For a stable 1D resonator, a stro
position-dependent spontaneous emission rate was found
merically by Bužek and co-workers@19#. Here, we choose an
alternative approach in terms of effective quasimodes,
field configurations that are self reproducing~up to a global
factor! after one cavity round trip. Unfortunately, as me
tioned above, these quasimodes are complete but no
thogonal, which raises many questions in the developmen
a corresponding quantum model as the associated oper
will not commute in a canonical way. What is the meaning
‘‘photons/vacuum fluctuations’’ in such modes and what
their intensity? Is it possible to reduce the system to a sin
effective quasimode? How is the excess noise connecte
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the spontaneous emission rate?
In Sec. II, we review the empty cavity field dynamic

within the paraxial approximation@20,21# for a symmetric,
unstable two-mirror cavity in one transverse dimension~cy-
lindrical mirrors!. Effective apertures are modeled by intr
ducing mirrors with a Gaussian transverse reflectivity profi
Fortunately, in this case, it is possible to analytically calc
late thenormalizablequasimode functions with well-define
frequencies and loss rates. In Sec. III, we turn to a quan
description in terms of these modes. As we are dealing w
a lossy~open! system, a proper quantum description requi
the inclusion of an external reservoir. A modified version
the Jaynes-Cummings Hamiltonian, where the intracav
field is coupled to a two-level atom@22#, is derived in Sec.
IV, and the consequences of the PetermannK factor appear-
ing in this Hamiltonian are demonstrated using the exam
of the atomic decay probability. Finally, we try to conne
our results to known cases such as a stable cavity or a l
@1,7#.

II. MODES OF SYMMETRIC CAVITIES

In order to develop a consistent physical theory for u
stable optical resonators interacting with atoms we will
strict ourselves to the simplest system that demonstrates
essential properties. With regard to analytical solvability,
consider first a 1D resonator with lengthL and two symmet-
ric mirrors of focal lengthf, as depicted in Fig. 1. Surpris
ingly, as we will show below, one still finds normalizab
finite-sized modes for unstable systems if the mirrors
assumed to have a Gaussian reflectivity profile with wid
LG . The slowly varying amplitude of the field modes@34#
calculated in the paraxial approximation reads@21#

un~x,z!5cnAw~0!

w~z! S w~2z!

w~z! D n/2

3expH i Fn11

2
C~z!2

n

2
C~2z!

2
1

2
C~0!G J Hn@ f ~z!x#

3expH 2
ik

2R~z!
x22

x2

w~z!2J ~2.1!

with the generalizedz-dependent waist functionw, radius of
curvatureR, a transverse scalingp, and Guoy phaseC

FIG. 1. Scheme of the cavity setup.
3-2
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w~z!25
2z0

kn
F11

~r 01z!2

z0
2 G , ~2.2!

R~z!5~r 01z!F11
z0

2

~r 01z!2G , ~2.3!

p~z!5A ikn /q

12z2/q0
2, ~2.4!

C~z!5arctan
r 01z

z0
. ~2.5!

The only remaining free parameter is now the comp
source pointq05r 01 iz0 , which is directly linked to the
cavity parameters. Note that the caser 050 ~minimal beam
width within the symmetry planez50! corresponds to an
ideal stable mirror configuration (L/ f e@0,4#,LG→`) and the
modes Eq.~2.1! are merely the well-known Hermite Gaus
ian beams.

These quasimodes fulfill a self-reproducing condition
one full-cavity round trip, i.e.,un(x,2L)5gnun(x,0). Since
thez propagation of a field is governed by the correspond
Huygens’ integral operator@23#, these modes are solutions
the eigenvalue problem

E dx8A i

lB
expH 2

ik

2B
~Ax8222x8x1Dx2!J , ~2.6!

where the coefficientsA, B, andD are determined by the ra
matrix for this cavity configuration

S A B

C DD 5S 122l 1 l 2/2 L~22 l !~12 l /4!

2~22 l !l /L 122l 1 l 2/2 D . ~2.7!

Here, we have introducedl 5L/ f 1 i /N and the Fresnel num
ber N5pLG

2 /lL in correspondence to a hard-edged sph
cal mirror. In the limiting case of the aperture going to infi
ity (N→`), these modes are no longer normalizable
unstable cavities.~In fact, they correspond to unphysic
eigenfunctions of an inverse oscillator potential@24# and a
different set of modes has to be used!. For any finite Gauss-
ian transverse reflectivity profile of the mirrors~finite N!, and
in the case of a symmetric ray matrix, the eigenvalue pr
lem can be explicitly solved in this way and yields Eq.~2.1!
as eigenfunctions with eigenvalues

gn5~A1AA221!2~n11/2!5S q02L/2

q01L/2D 2n11

. ~2.8!

The lowest-order eigenvalues for large transverse mirror
tensions (N→`) are shown in Fig. 2. Within the stable pa
rameter range (L/ f e@0,4#), the eigenvaluesgn are on the
complex unit circle, and hence, the field only acquires
phase factor after each round trip. Outside the stable reg
the magnitude ofgn decreases very rapidly. The eigenvalu
may now be used to determine the allowed wave number
the field an5e2 iknzun must be multiplied with a real and
positive factor for each round trip to ensure the corr
02380
x

r

g

i-

r

-

x-

a
n,

s
as

t

boundary conditions at the mirrors. This is equivalent to
condition that the phase difference of the spatial mode
tween the left and right mirror must be a multiple ofp, as in
standard cavity calculations. For the allowed wave numb
we find

knm5
1

L Fmp1S n1
1

2Dargg0G . ~2.9!

Furthermore, one finds that one complex source poin
associated with any set of Hermite-Gaussian modes

q05
B

AA221
5

L

2
AS 12

4

l D . ~2.10!

If we split this parameter into a real and imaginary p
(q05r 01 iz0), and making use of the normally large valu
of N, this result reads up to first order in 1/N

r 05
L

2
AS 12

4 f

L D , ~2.11!

z05
f 2

2Nr0
, ~2.12!

within the unstable region. Otherwiser 0 and z0 become
imaginary and thus change their roles for stable cavity c
figurations. The radius of curvaturer 0 indicates the localiza-
tion of the beam waist~for a negative focal length alway
outside the cavity!, and the Rayleigh lengthz0 is related to
the spot size that obviously becomes infinite for unsta
resonators@z0→0⇒w(z)→`#. One may easily verify that
the caser 050 is realized in the whole stable regime wi
ideal mirrors (N→`).

Furthermore, the modesun(x,z) are complete and bior
thogonal to their adjoint modes

FIG. 2. The first four eigenvalues of Huygens’ integral opera
for different symmetric cavities, i.e., different values ofL/ f , and
perfectly reflecting mirrors (N→`).
3-3
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C. LAMPRECHT AND H. RITSCH PHYSICAL REVIEW A65 023803
vn~x,z!5 c̃nA w~0!

w~2z! S w~z!

w~2z! D
n/2

3expH 2 i Fn11

2
C~z!2

n

2
C~2z!2

1

2
C~0!G J

3expH ikn

2R~2z!
x22

x2

w~2z!2J . ~2.13!

The normalization factorscn and c̃n are chosen such that

E dxun* ~x,z!un~x,z!51, ~2,14!

E dxvn* ~x,z!um~x,z!5dnm . ~2.15!

We thus have found a countable and normalizable basis
for our cavity field at the expense of introducing addition
losses through finite mirrors. This will of course lead to su
stantial changes in the quantum model.

We remark here that the PetermannK factor as defined by
Siegman@7# is simply given by the norm of the adjoin
modes

Kn5E dxvn* ~x,z!vn~x,z!, ~2.16!

which is fixed by Eqs.~2.14!, ~2.15!. For symmetric cavities
one may show that the modes are just proportional to
complex conjugate of their adjoint modes, at least atz50:
vn(x)5eiwnAKnun* (x), with a given phasewn that may be
chosen to be zero. This property plays a key role leading
an enhanced atomic spontaneous emission rate in the c
sponding quantum model.

Let us now look at some special properties of these mo
and compare the decay rate

kn52
c

2L
logugnu5

c

L
log

w~L/2!

w~2L/2! S n1
1

2D ~2.17!

with the transverse mode spacing

Dc'52
c

L
argg05

c

L
@C~L/2!2C~2L/2!# ~2.18!

as is illustrated in Fig. 3. Within the stable regimek0 be-
comes arbitrarily small for large Fresnel numbers wher
Dv' is localized somewhere between zero~planar mirrors,
L/ f 50! andp ~concentric mirrorsL/ f 54!. In the unstable
regime, the losses become more and more dominant. Fur
more, the edges at the two critical points are washed ou
a smaller aperture size but the general dependence is
weakly influenced by the Fresnel number. Note that for
unstable cavity setup, the decay rates for all modes are m
larger than their energy separation so that we may cons
them degenerate.

For unstable resonators, the mode spacing is appr
mately zero or equal to the longitudinal mode spacing~p!.
On the other hand, the loss rate rapidly increases within
02380
et
l
-

e

to
re-

es

s

er-
or
nly
n
ch
er

i-

e

unstable region. Thus, a single-mode approximation is r
sonable for stable cavities not too close to the planar or c
centric case. Near these two degeneracy points~also for un-
stable cavities! the effective mode spacing is about twice
large as the lowest-loss rate. Except for the lowest long
dinal mode withk5(p1@C(L/2)2C(2L/2)#/2)/L in the
right unstable regime (L/ f .4) is really isolated for moder-
ate loss rates since there exists no lower transverse s
modes that could give an additional contribution. Hence,
general, a single-mode treatment for unstable resonato
doubtful due to the strong overlap of the spectral lines.
oms inside the cavity interact not only with one single-mod
adjoint-mode pair, but are substantially coupled to a wh
set of modes. In particular, to calculate a spontaneous e
sion rate, a large set of modes will turn out to be importa
As we will see later, a gain medium as in a laser or amplifi
may actively select a single mode, so that a singleK may
play a dominant role in the dynamics.

III. QUANTUM DYNAMICS IN TERMS OF QUASIMODES

Having, at least in principle, solved the classical proble
for unstable optical resonators, we now try to develop
approximate quantum description based on a non-Hermi
cavity QED model. First, let us look for an appropria
Hamiltonian describing the dynamics and derive a cor
sponding generalized photon concept. We will apply t
model to study the interaction of a single atom with t
cavity field.

For the free electromagnetic field confined to a volum
with partly absorbing boundaries, it is possible to find a co
plete set of quasimodes$un(x)%, as, e.g., outlined in the
previous section for symmetric unstable resonators wit
Gaussian reflectivity profile. These modes are not necess
orthogonal, but are biorthogonal to a second set of adjo
modes $vn(x)%, such that *dx vn* (x)um(x)5dnm and
^vn ,vn&5Kn , with Kn being the Petermann excess noi
factor @cf. Eqs.~2.14!–~2.16!#. In the case of symmetric mir

FIG. 3. The loss ratek0 ~dashed line! and the transverse mod
spacingDv' ~solid line! for different transverse extensions. Th
Fresnel number is chosen as~a! N55, ~b! N550.
3-4
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UNEXPECTED ROLE OF EXCESS NOISE IN . . . PHYSICAL REVIEW A65 023803
ror configuration ~with respect to forward and backwar
propagation!, the adjoint modes are proportional to the co
plex conjugates of the cavity modes and may be written

vn~x!5AKnun* ~x!. ~3.1!

This defines the phase of modes and adjoint modes. Note
for stable cavities, one hasvn(x)5un(x) and Kn51. Since
these mode pairs fulfill a completeness relation

(
n

vn* ~x!un~x8!5d~x2x8!, ~3.2!

in principle, every field distribution may be expande
uniquely either in the modes or in the adjoint modes. For
purpose, we expand the field operators in the following w

A~x,t !5(
n
A \

2e0vn
@an~ t !un~x!1bn

†~ t !vn* ~x!#,

~3.3!

E~x,t !5 i(
n
A\vn

2e0
@an~ t !un~x!2bn

†~ t !vn* ~x!#,

~3.4!

where

an~ t !52 iA e0

2\vn
E dxvn* ~x!@E~x,t !1 ivnA~x,t !#,

~3.5!

bn
†~ t !5 iA e0

2\vn
E dxun~x!@E~x,t !2 ivnA~x,t !#

~3.6!

are generalized creation or annihilation operators for the
responding mode/adjoint mode pairs. This becomes obv
if we rewrite the canonical commutation relations@25# for
the field in the form

@an ,bm
† #5

vn1vm

2Avnvm
E dx vn* ~x!um~x!5dnm , ~3.7!

@an ,am
† #5

vn1vm

2Avnvm
E dx vn* ~x!vm~x!'Bnm , ~3.8!

@bn ,bm
† #5

vn1vm

2Avnvm
E dx un* ~x!um~x!;Anm , ~3.9!

whereAnm andBnm are the overlap matrices between each
the cavity modes, respectively, the adjoint modes. Note
the commutation relation for a single-mode pair rea
@bn ,bn

†#51 and @an ,an
†#5Kn . We could stop at this poin

and calculate the noise of a single-mode field distribut
X5anun(x)1an

†un* (x), as is also shown in@13#, and imme-
diately find an excess noise enhancement:^DX&
5^@an ,an

†#& uunu25Knuunu2. But as we will see, a gain me
dium, which allows us to consider a single mode separat
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is a necessary condition for this result. Interestingly, one m
not directly conclude from the excess noise enhanced-l
linewidth an enhancement of the spontaneous emission
of the individual atoms. Usually various quasimodes m
interfere and the effect of theK factor on the spontaneou
emission rate is more subtle than is usually assumed.

We should mention here that this field expansion is o
exact for frequency degeneracyvn5vm ~also mentioned in
@13#!, because otherwise the biorthogonality and comple
ness relations between the cavity modes and adjoint mo
are no longer true. These relations are generally given for
eigenfunctions of Huygens’ integral operator atone distinct
frequency. In fact, we are dealing with many operato
~many frequencies! where, respectively, only one~no degen-
eracy! mode pair survives due to the boundary conditio
But for a huge range of physically relevant resonators~e.g.,
in the infrared or optical domain! the frequency differences
are negligibly small compared to their absolute value. In
dition, in the limit of a large transverse extension of t
mirrors of an unstable resonator, this frequency degene
is exactly fulfilled.

Using this field expansion and assuming that the mo
functions identically fulfill the Helmholtz equation~paraxial
approximation!, one may write the free-field Hamiltonian i
a very canonical form@35#

HF5
1

2 E dx:S e0E2~x,t !1
1

m0
B2~x,t ! D : ~3.10!

5(
n

\vnbn
†an . ~3.11!

For unstable systems wherevnÞun and hence,anÞbn the
individual contributions to this Hamiltonian are obviously n
longer explicitly Hermitian, but with these definitions th
non-Hermitian parts cancel approximately within the su
since the overlap matrices in Eqs.~3.8!, ~3.9! are inverses as
a consequence of the completeness relation, i.e.,SkAnkBkm
5SkBnkAkm5dnm . This formally Hermitian nature gives
rise to a degeneracy between the left and right eigenstat

un1 ,n2 ,...&,5
b1

†n1

An1!

b2
†n2

An2!
...u0&, ~3.12!

^n1 ,n2̃u,5^0u...
a2

n2

An2!

a1
n1

An1!
, ~3.13!

which are biorthogonal to each other, in the sense that

^ñum&5dnm , ~3.14!

where n, m is shorthand for $n1 ,n2 ,...,%,$m1 ,m2 ,...,%.
These eigenstates are the non-Hermitian analogous to
n-photon Fock states containing the energy quantaEn
5\(v1n11v2n21•••). These eigenstates are not mutua
orthogonal for the standard scalar product~SP! ^•u•&. We
would like to mention that it is possible to find a differe
3-5
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C. LAMPRECHT AND H. RITSCH PHYSICAL REVIEW A65 023803
SP (•u•) such that the eigenstates are mutually orthogo
and the corresponding adjoint operation; has the property
that

ãn5bn
† , ~3.15!

which means that (•uan•)5(bn
†
•u•). But one has to be care

ful, since this SP operates also in position space. This me
that a Hermitian operator@with respect to~•u•!!# may yield
complex eigenvalues. Only by integration over positi
space does one get real eigenvalues. Explicitly, the adj
relation; mapsan→bn

† and simultaneouslyun→vn* . A fur-
ther convenient consequence of the SP is that the left ei
states become identical to the adjoint right eigenstates, i

^n1 ,n2̃, ...,u5~n1 ,n2 ,...,u. ~3.16!

The Hamiltonian could also be rewritten in a formally mo
symmetric form. Nevertheless, we will retain the stand
notation with the asymmetric SP to maintain visible the i
portant differences between the stable and unsta
geometry.

The free dynamics governed by the above Hamilton
with its eigenstates and energies may now be formally w
ten down in the usual manner. However, as we are dea
with a lossy system, the mode amplitude decays expon
tially with a mean ratekn @Eq. ~2.17!#. Physically, a fraction
of the energy is scattered into the continuum modes out
the cavity, which in a proper quantum treatment, has to
included by an input-output coupling@13,26#. However, the
procedure in this case is rather involved, since the diffract
losses are indistinguishable in this picture from the los
due to mirror transmission.~Even for perfect mirrors the los
rate is still finite.! Although an exact derivation is, to ou
knowledge, not yet known@15#, the free-field dynamics may
be consistently described by the following master equati

ṙ5
2 i

\
~Heffr2rHeff

† !1 i(
nm

Anm~ṽm2ṽn* !amran
† ,

~3.17!

where we have introduced complex frequenciesṽn5vn
2 ikn and an effective Hamiltonian@27# including the damp-
ing

Heff5\(
n

ṽnbn
†an . ~3.18!

To guarantee self-consistency the obtained master equati
of the Lindblad form, preserves the trace of the density
erator, preserves the commutation relations for all mode
erators~as for an , bn

†!, and guarantees the damped oscil
tion of an andan known from the classical model, i.e.,

^ȧn&52~kn1 ivn!^an&, ~3.19!

^ȧn
†&52~kn2 ivn!^an

†&. ~3.20!
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IV. ATOMIC DYNAMICS IN UNSTABLE CAVITIES

A. Generalized Jaynes-Cummings model

Finally, let us now introduce an atom interacting with th
intracavity electromagnetic field. This is described in a c
nonical way by a minimal coupling Hamiltonian

H5(
n

\vbn
†an1

1

1m
@P2qA~X!#21V~X!, ~4.1!

wherem,q are the atomic mass and charge andV(X) gives
rise to the internal atomic structure. For quantum optical
plications, this expression may be substantially simplified
making various approximations. Usually they are known
the ‘‘dipole approximation,’’ the ‘‘rotating wave approxima
tion’’ and the ‘‘two-level approximation.’’ This procedure ha
been extensively discussed in literature~see, e.g., Ref.@28#!.
Hence, we will reduce the following summary to the phy
cal motivations of these approximations and investigate th
with respect to the applicability to a nonorthogonal qua
mode description. The dipole approximation makes use
the different length scales of an optical wavelength~typical
100 nm! and the atomic size~typical 1 Å!. This argument is
of course completely unaffected by the changed mode p
erties. Hence, the field may be treated as approximately c
stant when evaluated at the position of the atom. Taking i
account that the atomic momentum may be transformed
terms of the position operator, i.e.,

P

m
5

i

\
@HA ,X#, ~4.2!

it is easy to see that essentially only the atomic dipole m
mentd5qX survives within this approximation, i.e.,

Hd;2d•E~X!. ~4.3!

The rotating-wave approximation reduces the tractable p
cesses close to resonance. Here, the field frequenciesvn are
of the same order as the atomic transition frequenciesvA .
Within the interaction picture terms containing both atom
and field excitations~or de-excitations, respectively! are os-
cillating ase6 i (vn1vA). Compared to the time-average effe
of processes where energy quanta are transfered from
atom to the field~or vice versa!, oscillating ase6 i (vn2vA),
these processes may be neglected. Once again, this app
mation does not make use of the orthogonality of the fi
modes and is hence applicable for our purposes. At last
ducing the atom to two significant levels,g ande, separated
by vA , this extended formalism gives rise to a Hamiltoni
very similar to a multimode Jaynes-Cummings-model

HAF5(
n

\vnbn
†an1

vA

2
sz2 i\(

n
~gns1an2g̃nbn

†s2!.

~4.4!

Formally, everything looks completely familiar except th
for the coupling, we findg̃nÞgn* , or explicitly,
3-6
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UNEXPECTED ROLE OF EXCESS NOISE IN . . . PHYSICAL REVIEW A65 023803
gn5A vn

2\e0
un•deg ; g̃n5A vn

2\e0
vn* •deg , ~4.5!

with deq being the atomic dipole matrix element. Again,
the special case of stable cavities, we havevn5un and g̃n

5gn* . For symmetric unstable cavities, we havevn

5AKnun* andg̃n5AKngn , which invokes theK factors. We
should remark here that this Hamiltonian, although not
pearing to be formally Hermitian, again is in practice, sin
Sng̃nbn

†[Sngn* an
† . We prefer the given form because

clearly shows the asymmetry between photon creation
annihilation in the case of nonorthogonal modes.

B. Spontaneous emission: perturbative approach

Let us now explore the dynamics of the modified ato
field coupling. We will use an initially excited atom as
quantum noise detector@29# and calculate the spontaneo
emission rate. As the field is composed of a large se
nonorthogonal modes, the significance of a single-pho
state is not completely obvious. Hence, we will use an
erational definition of the spontaneous emission rate. We
sume a single-excited atom and set the cavity field to
~unique! vacuum state as a well-defined initial conditio
Starting from this state, we then calculate the probabi
p(t) for the atom to be in the ground state, which is equiv
lent to having emitted a photon into the field as we have
nonradiative decay in our model. The derivative of this pro
ability may then be used to define a decay rate. This way
have a clear definition of a spontaneous emission rate
spective of the momentary state and the dynamics of
field. Of course, in general, we will not simply find a line
time dependence ofp(t) ~indeed it may even be nonmono
tonic!, as is well known from the standard Jaynes Cummin
model. This problem may, however, be neglected for sh
enough times, where we may use perturbation theory
evaluate the transition rate. As mentioned above, we are
considering the emission rate into the cavity modes and
glect other transverse modes, so that we miss an app
mately constant background contribution to the transit
rate that may even dominate the effect. Nevertheless, for
purposes of discussing the effect of excess noise on the
cay rate, these modes are not relevant.

To carry out the calculations, we define a time-depend
interaction Hamiltonian@27# including the dissipative part o
the time evolution

HInt~ t !52 i\(
n

~gns1ane2~kn1 iDn!t

2g̃ns2bn
†e2~kn2 iDn!t!, ~4.6!

where Dn5vn2vA denotes the detuning of thenth mode
from the atomic frequency.

Using first-order time-dependent perturbation theory~e.g.,
@30#! the initial stateu0,e&, with the atom being excited an
the field in the vacuum state, evolves as follows:
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uC~ t !&5
2 i

\ E
0

t

dt8HInt~ t8!u0,e& ~4.7!

5(
n

g̃ndn~ t !u1n ,g&, ~4.8!

with

dn~ t !5
e2~kn2 iDn!t21

kn2 iDn
. ~4.9!

It is easy to see that the amplitude of each contribution
enhanced by the excess noise factor sinceg̃n5AKngn . The
probabilityp(t), for the excited atom to make a transition
the ground state at a timet, is given by the expectation valu
of the projectorPg5ug&^gu, yielding

p~ t !5(
nm

g̃ndn~ t !Amng̃m* dm* ~ t ! ~4.10!

5(
nm

gndn~ t !Bnmgm* dm* ~ t !. ~4.11!

The spontaneous emission rate in this operational defini
is then

2g5 ṗ~ t→0!. ~4.12!

Considering the field dynamics, the corresponding o
photon projector would beP15Snu1n&^1n̂u, rather thanW1

5Snu1n&^1nu or W̃15Snu1n̂&^1n̂u. For our system where
only one excitation is present, both approaches are equ
lent, i.e.,^P1&5^Pg&, and represent an independent test
self consistency. Note that we haveP1

25P1 and @HF ,P1#
50, so thatP1 has to be identified with the proper project
to the one-photon subspace. Of course, to get the probab
for a photon in a particular field mode, one has to calcul
u^1nuC(t)&u2 ~compareW1!, as in the case of orthogona
modes. However, due to nonorthogonality, this state also
plies finite amplitudes for the photon being in differe
quasimodes as well.

Obviously each term of Eq.~4.11! is enhanced by exces
noise (Bnm5AKnAmnAKm). However, in general, the vari
ous amplitudes interfere and the result is different to
naive expression used in@16#, where we summed indepen
dently over all possible one-photon states. An alternative
pression for this probability was implicitly derived earlier b
Siegman@36#.

Evaluating this double sum, we may now calculate t
atomic decay probability and its derivative, the spontane
emission rate. Unfortunately, for significantly unstable geo
etries ~large K!, this sum is very hard to evaluate nume
cally, since the individual terms first grow exponentially wi
the mode index~n,m! and have a rapidly changing phas
~similar to the series expansion ofe2x for x@1!. Although
one may show that the sum converges in principle, in pr
tice, this requires summing very large complex numbers w
strongly varying phase. For largeK@1, this requires very
3-7
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C. LAMPRECHT AND H. RITSCH PHYSICAL REVIEW A65 023803
high-numerical accuracy and a very large number of te
for convergence, but it may be done for small values ofK.
Fortunately, it turns out that for a given finite number
modes using the numerically inverted matrixA21 is more
adequate than the direct analytical calculation ofB. Never-
theless, the need to invert the overlap matrixA correctly
strongly limits the tractable region of parameters. Simi
behavior was found quite generally by Siegman@31# for ex-
panding a given field distribution in a biorthogonal set
modes@cf. Eqs. ~3.3!, ~3.4!#. Using the matrixA21 rather
thanB gives the field expansion with minimal error. For th
explicit practical calculations, we will thus use a differe
and more reliable method to findp(t), as presented in the
next section.

C. Spontaneous emission: adiabatic approach

In order to avoid the numerical problems mention
above, we will make use of the fact that the cavity decay r
is the fastest time scale in the problem. Hence, we may
adiabatically eliminate the field dynamics, such that we
only left with the time evolution of the atomic operator
This approach assumes sufficiently large-field decay r
compared to the coherent atom-field coupling.

Let us again consider an excited atom coupled to the
racavity field. The time evolution of the probability of th
atom being in the excited state isp(t)5^Pe& with Pe
5ue&^eu. Using the Hamiltonian@Eq. ~4.4!# and including
the effective field losses in the way discussed above@Eq.
~3.17!# the Heisenberg equations of motion for the slow
varying operators take the form@15#

Ṗe52(
n

~gns1an1g̃nbn
†s2!, ~4.13!

ȧn52~kn1 iDn!an1g̃ns21jn , ~4.14!

wherejn are noise operators~compare@26#! describing the
influence of the reservoir. Usually the field dynamics a
much faster than the atomic dynamics, and we assume
the field reaches a steady state, adiabatically following
atomic operators

an5
1

kn1 iDn
~ g̃ns21jn!. ~4.15!

This approximation is especially well justified in unstab
resonators, where the typical loss rates are reasonably
and the field relaxes very quickly. If we substitutean with
the adiabatic expressions of Eq.~4.13!, we find an exponen-
tial decay for the atomic excitation probabilityṗ(t)5
22gp(t) with

g5ReH(
n

gng̃n*

kn1 iDn
J . ~4.16!

Here, we have taken into account the fact that the exp
tation value of the noise operators are zero. Please note
this expression strongly depends on the atomic position
the excess noise factors, since the coupling constants inc
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the matched and adjoint quasimodes@cf. Eq. ~4.5!#. This for-
mula may now be evaluated for the specific model of a
symmetric resonator with Gaussian apertures, as outli
above. In fact, this sum converges rather rapidly without a
further approximations. The price one has to pay is that
have no good quantitative estimate for the error introdu
by the nonadiabaticity. Nevertheless, for smallK where both
methods may be applied, we find that the two agree v
well. Far off the optical axis, where higher-orderK factors
dominate, it may again become necessary to use the app
mationB→A21 for faster convergence.

Let us now turn to the results. In Fig. 4, we show t
spontaneous emission rate into the cavity modes at the ca
centerg(x50) ~depicted as* ! as a function of the exces
noise factorK, relative to the result for a stable single-mod
cavity

gs5
ug0u2

k0
. ~4.17!

We find that, for small excess noise factors, the enhancem
factor is linear inK0 , while for increasing excess noise, th
sum is dominated by the first contribution of Eq.~4.16!,
yielding an enhancement byAK0. Taking into account the
fact that, for symmetric resonators we haveg̃n5AKnun , an
enhancement factor ofAK0 becomes quite obvious from th
form of the sum in Eq.~4.16!, which starts as

g'ReHAK0g0
2

k0
J 1•••. ~4.18!

To obtain Fig. 4, we have set the Fresnel number asN
520, the detuning asD050, and changed the mirror curva
ture from the stable to the unstable regime, i.e.,20.5<L/ f
<0.5. The horizontal axis was than rescaled to linearly
pend onK0 .

FIG. 4. The enhancement factor of the spontaneous emis
rate at the cavity center (x50); g/gs(* ) clearly deviates from the
predictionK ~dashed line! in @1,7# for strong excess noise. We fin
an enhancement approximately given byAK ~solid line!.
3-8
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UNEXPECTED ROLE OF EXCESS NOISE IN . . . PHYSICAL REVIEW A65 023803
In contrast to this behavior, it has been experimenta
confirmed that for unstable resonator lasers the linewid
which is attributed to the spontaneous emission rate of
radiating atoms, is enhanced by the excess noise factoK.
From this, one could draw the conclusion that spontane
emission in general should be linearly enhanced by the
cess quantum noise. From a different point of view, o
might just as well conclude that a very unstable cavity w
largeK is almost the same as no cavity, so that there sho
be almost no effect on spontaneous emission at all@32#. In
our calculation, we find that the enhancement factor is m
or less in between these suggestions, i.e.,g}AK as shown in
Fig. 4. Hence, both of the preceding arguments are o
partly correct for our case. To some extent, this can be
derstood from the specific model we have chosen. First
we have neglected transverse noncavity modes, we will m
a significant fraction of the decay rate. In a physical se
with a macroscopic cavity, these transverse modes will do
nate the decay and mask the excess noise effect on the
decay rate. At the same time, one could observe only
light emitted into the cavity modes~a given solid angle! to
directly observe the calculated enhancement.

Second, the Gaussian reflectivity profile of our mirro
implies a very high reflectivity near the mirror centers allo
ing for multiple reflections of the emitted light. This give
strong feedback and may imply significant modification
the fluorescence, as one may find for, e.g., an atom close
curved surface such as a microsphere@33#. This makes our
significant enhancement factor plausible even for rather
stable geometries~largeK!.

The considerations above suggest that the effect shoul
concentrated close to the cavity axis and be more related
redistribution and not simply a global enhancement of sp
taneous emission~quantum noise! in the resonator. Hence, i
the following, we consider spontaneous emission as a fu
tion of the distance from the optical axis. As a first step,
analytically calculate the transverse average of the decay
g and find that the excess noise factors in this limit can
exactly, i.e., we have

ḡ}E dx g~x!}(
n

kn

kn
21Dn

2 . ~4.19!

This is a direct consequence of the biorthogonality of
matched and adjoint coupling. Hence, it is clear that quan
noise enhancement near the axis has to be accompanie
an off-axis reduction.

As the next step, we will now look at the transverse d
pendence in more detail. As mentioned before, to num
cally calculate the transverse dependence ofg(x), it is nec-
essary to truncate the mode expansion at some point
substituteB with A21. We obtain good convergence for e
cess noise factors up toK0'3. Of course, theK factors of
higher-order modes are much larger~up to ;105! represent-
ing the origin of the numerical difficulties. We found that
good indication of the numerical inaccuracy is the deviat
of the excess noise factor of the ground mode, calcula
from the truncatedA matrix K̃5A00

21, compared to its known
analytical valueK5B00.
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The transverse dependence of the spontaneous emi
rate is depicted in Fig. 5, where we have chosenL/ f 5
2100, andN515, giving rise to an excess noise factor
K'1.5 and summed over 30 modes. Compared with the
ive expression for an orthogonal mode expansion~Fermi’s
golden rule!, i.e.,

gN5(
n

ugnu2kn

kn
21Dn

2 , ~4.20!

we clearly find a significant enhancement of spontane
emission near the axis and a suppression further off axis
suggested by our previous calculations. We would like
point out here that for moderate values ofK, the perturbative
calculation@Eq. ~4.12!# gives the same results. For increasi
excess noise~as considered, e.g., in Fig. 5! the agreement
between the methods lessens. While theAK enhancement for
the atom on the optical axis is more or less reproduced
both models, the physically well-motivated result that av
aging over the atomic position cancels the enhancemen
only approximately fulfilled within the perturbative metho
This, and the analytical comparability along the axis, giv
us strong confidence in the numerical results of the adiab
calculations.

As we have seen, the excess noise factor enters app
mately asAK into the expression of the spontaneous em
sion rate as compared to a naive application of Ferm
golden rule. In this sense, one could call the result an
hancement as compared to a calculation in a geometry
orthogonal modes. However, this is only part of the story
somewhat different answer is found by looking at the tran
tion from a stable to an unstable cavity configuration
shown in Fig. 6, where we smoothly change the mirror c
vature of our resonator from the stable to the unstable reg
Note that along the cavity axis, the effective spontane

FIG. 5. Comparing the spontaneous emission rateg(x) ~solid
line! with a naive expression assuming orthogonal modesgN(x)
~dashed line! and the stable cavity resultgs(x) ~dotted line! we find
a clear enhancement especially at the optical axis. Here, we
chosenL/ f 52100, N515, which gives rise to an excess nois
factor of K'1.5.
3-9
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C. LAMPRECHT AND H. RITSCH PHYSICAL REVIEW A65 023803
emission rate decreases going from the stable to the uns
side, although the excess noise factorK is strongly increas-
ing. This sounds somewhat contradictory, but it may
traced back to the fact that the mode amplitude at the
decreases as a function of the mirror curvature due to
broadened beam width. This overcompensates for the
crease of the excess noise factor. Looking at the spatial
pendence of the spontaneous emission rateg(x) for such a
varying cavity geometry, as in Fig. 6, we find a widenin
transverse plateau for increasing instability. Furthermore,
decay rate well off axis is almost independent of the mir
curvature. Note that the contour lines are approximately
For this graph, the excess noise factors are all belowK0
<2 and we have chosenN515.

It seems that the instability flattens the dependence of
decay rate close to the optical axis. This means that,
small displacements, the atomic decay probability is nea
independent of the atomic position. To some extent, this m
be understood in terms of geometrical optics. If the atom
localized atx50, only the axial ray is reflected onto the ato
itself. If the atom sits off the axis, no closed optical pa
exists. On the other hand, there are a large number of
that return to the atomic position after several reflectio
before leaving the resonator. Of course, the finite transv
size of the mirror restricts the number of possible reflectio
serving to limit the size of this axial plateau.

D. Siegman’s law

As we have seen, the total atomic spontaneous emis
rate into all cavity modes is enhanced by approximatelyAK.
On the other hand, from previous calculations for the la
linewidth, one expects aK-fold enhancement@1,7#. In the
following we will mimic a single-mode situation and con
sider the case of one mode being actively selected, e.g
some extra gain mechanism. In this case, we cannot use
batic elimination of the selected mode and we have to use
perturbative formula@Eq. ~4.12!#. In this limit, the mode se-

FIG. 6. The spatial distribution of the spontaneous emission
g(x) is plotted at the transition from a stable to an unstable ca
configuration by changing the curvature of the mirrorsL/ f . The
transverse extension of the mirrorsLG is fixed with the Fresnel
numberN515.
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lective gain simply shifts the individual loss rates of the s
lected modes by an overall valueG. For only one mode
above threshold, the factor

d0~ t !5
e~G2k01 iD0!t21

k02 iD0
, ~4.21!

is now growing exponentially in time, whereas the oth
mode contributions stay negligibly small. Hence, after a s
ficiently large time, Eq.~4.11! reduces to one single term
which is indeed proportional to the excess noise factor of
particular amplified moden50, i.e., B005K0 . This is also
depicted in Fig. 7, where we have chosen an additional g
of G52k0 , shifting the ground mode towards threshold a
leading to aK dependence for the spontaneous emission r
In this way, our calculations also reconcile some of the p
vious controversies on this subject@1,8#. The enhancemen
from AK to K via the introduced gain mechanism may
viewed as active noise amplification or amplified sponta
ous emission. Hence, the total excess noise in lasers ca
traced back to two origins, a spatial enhancement of
quantum noise as well as amplified spontaneous emission
the gain. Note that this result has to be treated with cau
as we have not included any gain saturation.

V. CONCLUSIONS

Using our quasimode description, we have demonstra
that the concept of excess quantum noise in an unstable
tical cavity also emerges in the context of spontaneous em
sion of a single two-level atom. Quantitatively, our result
different from previous suggestions in the context of las
@1,7#, where the spontaneous emission rate was predicte
be proportional toK instead ofAK. As a limiting case, Sieg-
man’s law reappears when through some external mecha
~tailored loss or gain medium!, a single quasimode is ac
tively selected. If, e.g., in a laser, only one quasimode os
lates above threshold, spontaneous emission noise into
mode is enhanced by the excess noise factorK. In this sense,
our results agree with the claim of previous authors@8,12,13#

te
y

FIG. 7. The induced atomic transition rateg/gs(o) shows the
expectedK-fold enhancement~solid line! for an overall gain ofG
52k0 .
3-10
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UNEXPECTED ROLE OF EXCESS NOISE IN . . . PHYSICAL REVIEW A65 023803
that gain is a necessary condition to obtain thefull excess
noise factor.

However, our calculations show that one has to be car
with the term enhancement as the effective spontane
emission rate at the center of a stable cavity configura
with the same aperture and mirror reflectivity is even larg
although we clearly have no excess noise enhancement~i.e.,
K'1!. This is compensated by larger-field mode amplitud
and a modified mode density. Note that the enhancem
only refers to contributions to the emission rate within t
solid angle covered by the resonator, which in many ca
may be small compared to the total decay rate into all mod
The effect becomes more significant the smaller the reso
tor volume and the better the reflectivity of the mirrors
Hence, it should be important in microoptic setups.

Instability seems to play an important role in obtaini
very highK factors, but only in connection with finite geom
etries. Interestingly, excess noise is enhanced by soft a
tures. In fact, for an unstable cavity with a very large ha
aperture, one finds relatively small excess noise in the ce
while on the other hand, even a geometrically stable ca
configuration with Gaussian apertures may imply a sign
cant K factor. Considering an unstable cavity with a lar
hard aperture going to infinity, one may find a different co
tinuous set of orthogonal modes with rather peculiar prop
tt

J.

e

P.

ys

.
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ties @24#, from which a spontaneous decay rate could,
principle, be deduced. This does not involve any exc
noise arguments, but one finds an unexpected result for
mode density, which enters in the spontaneous emission
It is interesting to note here that these mode functions do
coincide with our solutions in the limit of infinitely large so
apertures due to the differently prescribed asymptotics. N
ertheless, the mode functions behave similarly near the c
ity axis.

Let us finally point out here that further interesting resu
could be expected from a discussion of other quantum no
driven systems placed in unstable resonators such as,
the optical parametric oscillator. Especially below thresh
we would expect to see quantum and excess noise effec

Note added.Recently the authors became aware of so
related work by Dalton and co-workers@37# underlining the
keypoints of the proposed field quantization.
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