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Unexpected role of excess noise in spontaneous emission
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A single inverted two-level atom is used as a theoretical model for a quantum noise detector to investigate
fundamental properties of excess noise in an unstable optical resonator. For a symmetric unstable spherical
mirror cavity, we develop an analytic quantum description of the field in terms of a complete set of normal-
izable biorthogonal quasimodes and adjoint modes. Including the interaction with a single two-level atom leads
to a description analogous to the Jaynes-Cummings model with modified coupling constants. One finds a
strong position and geometry-dependent atomic decay probability proportional to the squay robthe
excess noise factdf at the cavity center. Introducing an additional homogeneous gain one recové&rsdiie
emission enhancement that has been predicted before for the linewidth of an unstable cavity laser. We find that
excess noise may be viewed as a spatial redistribution of the field quantum noise inside the resonator. Taking
a position average of the atomic decay rate over the cavity volume leads to a cancellation of the excess noise

enhancement.
DOI: 10.1103/PhysRevA.65.023803 PACS nuntber42.50—p, 32.80-t, 42.60.Da
I. INTRODUCTION physical origin of the large linewidth of an unstable cavity

laser thus remained unclear.

The phenomenon of excess noise inside unstable resona- Following the standard phase diffusion model to derive
tors was first predicted by Petermahh] and soon after, the laser linewidth, the origin of the enhanced linewidth is
experimentally observed by measuring the enhancement aittributed to increased spontaneous emisgion| of the ac-
the laser linewidthi2]. The Petermann excess noise fa¢tor tive atoms. Alternatively amplified spontaneous emission by
facton was introduced to quantify the discrepancy betweerthe gain medium8] can explain the origin of this extra
the expected linewidth using the Schawlow-Townes formulanoise. In order to trace the origin of excess noise to its roots,
[3,4] and the experimentally measured linewidth. Especiallywe have reduced the system to a single, inverted two-level
in high-gain unstable lasers or in semiconductor laskrs, atom as a quantum noise detector in an unstable resonator
reaches considerable valugs6]. A general formula con- and calculated the spontaneous emission [tH¢to lowest-
necting theK factor with the nonorthogonality of the effec- order perturbation theory. In an analogy to standard cavity
tive oscillating laser modes was given by Siegmi@h 12 QED models, we derived a series expression in terms of
years ago. The interpretation and derivation of this formulacavity quasimodes. Taking only a single mode into account,
has led to substantial controvers|[&3, as a simple and con- one indeed finds &-fold enhancement of the spontaneous
vincing physical picture and a clear mathematical justifica-emission rate into this mode. However, a subsequent and
tion of Siegman’s rule was missing. more extensive analysis of our quantum model shows the

Experimentally, the validity of this rule has recently beeninvalidity of this truncation for most physically relevant
extensively tested in a series of beautiful experiments byases.

Woerdman and other group8,10]. Particularly highK fac- In this paper, we investigate the dynamics of a single
tors, strongly dependent on mirror size and shape, were pr@&tom in an unstable cavity in much more detail and derive an
dicted and experimentally found for transversely unstableexpression of wider validity for the atomic decay rate, which
resonators. These findings triggered renewed theoretical inn many cases yields different predictions. Besides testing
terest. In a recent paper, Poizat and co-work#&t$ pointed  the limits of our and other previous treatments, the present
out that some of the properties of excess noise in a lineaapproach also allows for a continuous transition from a
amplifier may be mimicked in a simple three-mode quantunstable to an unstable cavity configuration. We may also in-
input-output model. Later, they generalized this to a largedependently vary the aperture of the system, which enables
but finite set of coupled modg42]. In an alternative ap- us to study the origins and magnitude of quantum noise in
proach based on a formal field mode expandimodes of the system in more detail. We may also directly connect the
the universe approagBardroff and Stenholm found a close results to well-proven standard cavity QED treatments. In
connection between the amount of excess noise and the dibrder to simplify the expressions and concentrate on the
ference between the spatial distributions of the gain and losain effect, we make the further approximation of taking
[13]. Up to some small corrections, they could also repro-only resonator modes into account in our model. In a realistic
duce Siegman’s predictions and extend their model to a norsetup, they are only responsible for a part of the spontaneous
linear gain mediun{14]. For a Fabry-Perot resonator, the decay rate, which depends on the chosen geontietry the
longitudinal dynamics have been studied in great dét&l].  resonator volume and the solid angle covered by the cavity
All of these approaches are, however, impractical to apply tdield as compared to#). While in macroscopic cavities this
the transverse dynamics of a geometrically unstable cavityangle is normally rather small, it can be large or dominant in
where particularly high factors are found. The microscopic microscopic structures. In addition to compare the two con-
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tributions, besides the cavity geometry, the finesse of the s
resonator also turns out to be importdh¥]. Nevertheless,

the omitted term is purely geometric and will be approxi-

mately constant, only weakly depending on parameters such

as mirror curvature and mirror reflectivity. Hence, for the f
basic understanding of excess noise, this simplification will
be unimportant, although it could possibly mask the excess
noise effect in a practical experimental setup.

In lasers, excess noise is usually an unwanted feature that
increases the laser linewidth. However, our goal here is not
to find the best situations to avoid or enhance it, but to study FIG. 1. Scheme of the cavity setup.
its basic properties and trace its origin. Nevertheless, one .
could envisage some applications. For example, the effect Ji€ SPontaneous emission rate? o ,
an enhanced atomic decay rate could prove very useful in " S€c. Il, we review the empty cavity field dynamics

situations where a fast and efficient spontaneous decay into"4thin the paraxial approximatiof20,21 for a symmetric,
certain direction is desirable, as in, e.g., increasing the effilnstable two-mirror cavity in one transverse dimensioy

ciency of light-emitting diodéLED's) or other luminescent lindrical mirrors. Effective apertures are modeled by intro-
devices. Another possibility is that enhancing the efficiencydUcing mirrors with a Gaussian transverse reflectivity profile.
of fluorescence single-atom detection could be of practical 0rtunately, in this case, it is possible to analytically calcu-
importance. Note again, however, that the main goal of thidate thenprmallzablequasmode functions with well-defined
paper is theoretical investigation and we have chosen a coffeduencies and loss rates. In Sec. lil, we turn to a quantum
figuration that does not show the most spectacular values G€scription in terms of these modes. As we are dealing with
excess noise, but that allows an analytical treatment to & !0SSY(0pen system, & proper quantum description requires

large extent. In addition, our investigations may be used as the inclusion of an external reservoir. A modified version of
starting point to examine the role of excess noise in othef€ Jaynes-Cummings Hamiltonian, where the intracavity

quantum noise-driven processes as in, e.g., parametric dovij§!d iS coupled to a two-level atofi22], is derived in Sec.
conversion. IV, and the consequences of the PetermKrfiactor appear-

In principle, the method used to calculate the spontaneod8d i this Hamiltonian are demonstrated using the example
emission rate is straightforward. One merely has to quantiz8f the atomic decay probability. Finally, we try to connect
the field with the proper boundary conditions and apply peroUr results to known cases such as a stable cavity or a laser
turbation theory in analogy to the derivation of Fermi's [1,7)
golden rule to obtain the transition probability. In practice,
however, the central mathematical problem is to find a Il. MODES OF SYMMETRIC CAVITIES
proper and useful quantum description of the electromag- |, order to develop a consistent physical theory for un-
netic field in a finite-sized unstable cavity, as there exists NQap|e optical resonators interacting with atoms we will re-
orthonormal set of eigenmodes with the necessary boundagyyic; oyrselves to the simplest system that demonstrates the
qondmons_. Th's Is related to the_fact that a geometrical OPessential properties. With regard to analytical solvability, we
tics description of such systems involves light rays escapingnsider first a 1D resonator with lengttand two symmet-
to infinity after only a finite number of reflections. __ric mirrors of focal lengthf, as depicted in Fig. 1. Surpris-

As mentioned above, one way to avoid this problem is t.qngly, as we will show below, one still finds normalizable

put the whole system in a huge box and expand all fields ifnite sized modes for unstable systems if the mirrors are
terms of the box eigenmodgs3], often called modes of the 5 med to have a Gaussian reflectivity profile with width

universg18]. It is, howevgr, practically almost |mpo_SS|bIe to L. The slowly varying amplitude of the field modga4]

actually solve the resulting coupled equations with Propersiculated in the paraxial approximation re48s]

boundary conditions in a sufficiently large volume. In addi-

tion, the physical interpretation of the results obtained in this w(0) [ w(—2)

way is not transparent. For a stable 1D resonator, a strongly Un(X,2z)=c, W(W

position-dependent spontaneous emission rate was found nu-

merically by Buzk and co-workergl19]. Here, we choose an p{ .
Xexp i

n/2

n+1 n
alternative approach in terms of effective quasimodes, i.e., — V(@)- 3¥(=2)

field configurations that are self reproducifup to a global

facton after one cavity round trip. Unfortunately, as men-

tioned above, these quasimodes are complete but not or- —E‘I’(O)HHn[f(Z)X]

thogonal, which raises many questions in the development of

a corresponding quantum model as the associated operators ik, x2

will not commute in a canonical way. What is the meaning of X ex T2R2)"  w(2)? 2.7

“photons/vacuum fluctuations” in such modes and what is
their intensity? Is it possible to reduce the system to a singlewith the generalized-dependent waist functiow, radius of
effective quasimode? How is the excess noise connected taurvatureR, a transverse scaling and Guoy phas&
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ro+2)?2 1.4
w(z)2="" —2—( ot 27 2.2
Ky Z 1.2
5
- 1y
R(Z)—(ro+2) 1+m y (23)
_0.8f
ikn/q S
p(2)=1/ -2 (2.9 0.6
gtz | =
¥ (z)=arctan——. (2.5
20 0.2
n=1
The only remaining free parameter is now the complex . J ‘
source pointqg=ro+izg, which is directly linked to the 4 2 0 2
cavity parameters. Note that the cage=0 (minimal beam L/f

width within the symmetry planeg=0) corresponds to an
ideal stable mirror configuratiorL(f e[ 0,4],L;—<°) and the
modes Eq(2.1) are merely the well-known Hermite Gauss-
ian beams.

These quasimodes fulfill a self-reproducing condition fory,, ;,qary conditions at the mirrors. This is equivalent to the

one full-cavity round trip, i.€.Hn(X,2L) = ynUn(x,0). SinCe  cqnition that the phase difference of the spatial mode be-
the z propagation of a field is governed by the correspondlnngeen the left and right mirror must be a multiplesfas in

Huygens'integral operat¢@3], these modes are solutions of ganqard cavity calculations. For the allowed wave numbers,
the eigenvalue problem we find

fd'\/i K ax2-2x+Dxd)|, (26 1 1
X'\ 35 &P —5g(AX?=2x'x+Dx%) [, (2.6 knm=[{mw+(n+—

2

FIG. 2. The first four eigenvalues of Huygens’ integral operator
for different symmetric cavities, i.e., different values loff, and
perfectly reflecting mirrorsN— ).

arg yo} . (2.9

where the coefficientd, B, andD are determined by the ray

matrix for this cavity configuration Furthermore, one finds that one complex source point is
associated with any set of Hermite-Gaussian modes

(A B) (1—2|+|2/2 L(2—I)(1—I/4))

C D/ |—(-hiL 1-21+1%2

4
1——/.

i (2.10

L
Qo= )
Here, we have introducdd=L/f+i/N and the Fresnel num-
berN:TrLé/)\L in correspondence to a hard-edged spheri- o ) ) )
cal mirror. In the limiting case of the aperture going to infin- [T We split this parameter into a real and imaginary part
ity (N—), these modes are no longer normalizable for{do=ro*iZo), and making use of the normally large values
unstable cavities(In fact, they correspond to unphysical ©f N this result reads up to first order inNL/
eigenfunctions of an inverse oscillator potenfia#f] and a

different set of modes has to be ugeor any finite Gauss- L 4f

ian transverse reflectivity profile of the mirrgifinite N), and fo=3 1= ) (219

in the case of a symmetric ray matrix, the eigenvalue prob-

lem can be explicitly solved in this way and yields Ef.1) £2

as eigenfunctions with eigenvalues Z0= 5N (2.12
0

o= (A RZ=T) (12—

Qo+L/2

qO_ L/2 2n+1

) (2.8 \ithin the unstable region. Otherwisg, and z, become
imaginary and thus change their roles for stable cavity con-
The lowest-order eigenvalues for large transverse mirror exfigurations. The radius of curvaturg indicates the localiza-
tensions N—o) are shown in Fig. 2. Within the stable pa- tion of the beam waistfor a negative focal length always
rameter range l(/fe[0,4]), the eigenvalueg, are on the outside the cavity and the Rayleigh length, is related to
complex unit circle, and hence, the field only acquires ahe spot size that obviously becomes infinite for unstable
phase factor after each round trip. Outside the stable regiomgsonatorg z,— 0=w(z)—o]. One may easily verify that
the magnitude ofy,, decreases very rapidly. The eigenvaluesthe caser,=0 is realized in the whole stable regime with
may now be used to determine the allowed wave numbers adeal mirrors (N— ).
the field a,=e 'r?u, must be multiplied with a real and Furthermore, the modes,(x,z) are complete and bior-
positive factor for each round trip to ensure the correcthogonal to their adjoint modes
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w(z)

n/2
w(—2) )

w(0) (

vh(X,2) =T, wi—2)

in+1 n 1
Xexp —i T‘I’(Z)—E‘I’(—Z)—E\I’(O)

ikn x2
X ex 2R(—z)x _w(—z)z . (2.13

The normalization factors, andT, are chosen such that

f dxu? (x,2)un(x,2) =1, (2,14

f dxv} (X,2)Um(X,2) = 8- (2.19
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35

®

We thus have found a countable and normalizable basis set FIG. 3. The loss rate, (dashed lingand the transverse mode
for our cavity field at the expense of introducing additionalspacingAw, (solid line) for different transverse extensions. The
losses through finite mirrors. This will of course lead to sub-Fresnel number is chosen @ N=5, (b) N=50.

stantial changes in the quantum model.

~We remark here that the Petermaifiactor as defined by  unstable region. Thus, a single-mode approximation is rea-
Siegman([7] is simply given by the norm of the adjoint sonable for stable cavities not too close to the planar or con-

modes

Kn:f dxv} (X,2)vn(X,2), (2.1

which is fixed by Eqs(2.14), (2.15. For symmetric cavities,

one may show that the modes are just proportional to the

complex conjugate of their adjoint modes, at leastz-a0:
va(x)=€"’nyK,u? (x), with a given phasep,, that may be

chosen to be zero. This property plays a key role leading t

centric case. Near these two degeneracy pdalso for un-
stable cavitiesthe effective mode spacing is about twice as
large as the lowest-loss rate. Except for the lowest longitu-
dinal mode withk=(7+[W¥(L/2)— V¥ (—L/2)]/2)/L in the

right unstable regimel(/f>4) is really isolated for moder-

ate loss rates since there exists no lower transverse set of
modes that could give an additional contribution. Hence, in
general, a single-mode treatment for unstable resonators is
doubtful due to the strong overlap of the spectral lines. At-
Bms inside the cavity interact not only with one single-mode/

an enhanced atomic spontaneous emission rate In the corrgdjoim_mode pair, but are substantially Coupled to a whole

sponding quantum model.

Let us now look at some special properties of these mod

and compare the decay rate

C w(L/2)

c 1
Kn=— Z|09| Yol= [|09m

J’__
"3

(2.17

with the transverse mode spacing
c c
Ay =— Eargy():E[\If(L/Z)—\If(— L/2)] (2.18

as is illustrated in Fig. 3. Within the stable reginkg be-

set of modes. In particular, to calculate a spontaneous emis-
€Sion rate, a large set of modes will turn out to be important.

As we will see later, a gain medium as in a laser or amplifier

may actively select a single mode, so that a siriglenay

play a dominant role in the dynamics.

. QUANTUM DYNAMICS IN TERMS OF QUASIMODES

Having, at least in principle, solved the classical problem
for unstable optical resonators, we now try to develop an
approximate quantum description based on a non-Hermitian
cavity QED model. First, let us look for an appropriate

comes arbitrarily small for large Fresnel numbers whereaslamiltonian describing the dynamics and derive a corre-

Aw, is localized somewhere between zépbanar mirrors,
L/f=0) and 7 (concentric mirrord./f=4). In the unstable

sponding generalized photon concept. We will apply this
model to study the interaction of a single atom with the

regime, the losses become more and more dominant. Furthetavity field.

more, the edges at the two critical points are washed out for For the free electromagnetic field confined to a volume
a smaller aperture size but the general dependence is onWith partly absorbing boundaries, it is possible to find a com-
weakly influenced by the Fresnel number. Note that for arplete set of quasimodefu,(x)}, as, e.g., outlined in the
unstable cavity setup, the decay rates for all modes are muddevious section for symmetric unstable resonators with a
larger than their energy separation so that we may considdpaussian reflectivity profile. These modes are not necessarily

them degenerate.

orthogonal, but are biorthogonal to a second set of adjoint

For unstable resonators, the mode spacing is approxmodes {vy(x)}, such that fdx vy (X)Uyn(X)=,n and

mately zero or equal to the longitudinal mode spading

(vn,vn)=K,, with K, being the Petermann excess noise

On the other hand, the loss rate rapidly increases within théactor[cf. Eqs.(2.14—(2.16)]. In the case of symmetric mir-
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ror configuration (with respect to forward and backward is a necessary condition for this result. Interestingly, one may
propagatiol, the adjoint modes are proportional to the com-not directly conclude from the excess noise enhanced-laser
plex conjugates of the cavity modes and may be written aslinewidth an enhancement of the spontaneous emission rate
of the individual atoms. Usually various quasimodes may
vn(X) = VKU (x). (3.)  interfere and the effect of thi factor on the spontaneous

. i . emission rate is more subtle than is usually assumed.
This defines the phase of modes and adjoint modes. Note that \\s should mention here that this field expansion is only

for stable cavities, one has,(x) =u,(x) andK,=1. Since

. . | exact for frequency degeneragy,= w,, (also mentioned in
these mode pairs fulfill a completeness relation d y 09 &= om (

[13]), because otherwise the biorthogonality and complete-
ness relations between the cavity modes and adjoint modes
> vE(X)UK(X) = 8(x—X"), (3.2  areno longer true. These relations are generally given for the
n eigenfunctions of Huygens'’ integral operatoraate distinct
in principle, every field distribution may be expanded frequency. In f‘.%t’ we are dea!lng with many operators
uniquely either in the modes or in the adjoint modes. For ow(many frequenc!e)swhe_re, respectively, only on@o dege_:r_l-

. eracy mode pair survives due to the boundary conditions.

purpose, we expand the field operators in the following WaYg it for a huge range of physically relevant resonaters.

7 in the infrared or optical domajrthe frequency differences
A(x,t)=>, \lz—[an(t)un(x)+bﬁ(t)v;‘(x)], are negligibly small compared to their absolute value. In ad-
n €0®n dition, in the limit of a large transverse extension of the
3.3 mirrors of an unstable resonator, this frequency degeneracy
P is exactly fulfilled.
—i N dadl] _hTy,,* Using this field expansion and assuming that the mode
E(xt) Izn: 2¢g [an(t)Un(x) =br(t)vn ()], functions identically fulfill the Helmholtz equatiofparaxial
(3.4  approximation, one may write the free-field Hamiltonian in

a very canonical formpi35
where Y n35)

1 1
an(t)z—i\/—zf:z) fdxv:(x)[E(x,t)—i—iwnA(x,t)], HF:EJdx:(foEZ(X't)’LM_OBZ(X’” (310

(3.9
t . €0 .
bp(t)=i \/%f dXU(X)[E(X,t) —iwpA(X,1)]
" (3.6)  For unstable systems whevg# u, and hencea,#b, the

_ _ o individual contributions to this Hamiltonian are obviously no
are generalized creation or annihilation operators for the coftonger explicitly Hermitian, but with these definitions the
responding mode/adjoint mode pairs. This becomes obviouson-Hermitian parts cancel approximately within the sum,
if we rewrite the canonical commutation relatiof5] for since the overlap matrices in Eq8.98), (3.9) are inverses as

= hogbla,. (3.1
n

the field in the form a consequence of the completeness relation, X.0,Bum
=3BniAxm= 6nm- This formally Hermitian nature gives
wpto rise to a degeneracy between the left and right eigenstates
[an,bfn]zz\/”—_mj AX0* (X)U(X) = 8nmy (3.7) g 4 ght €ig
WnWy anl b‘rnz
1 2
|n1,n2,...>,: |0>, (312
wpt+ oy Jn4! +/ns!
[an.an]=—— | dxv} (vn(X)=Bym, (3.8 N2
2+
WnWm 0y oy
~ 2 1
w-+ (n1,ny|,=(0|... —= —, (3.13
[bn,bL]zz\r/‘—_mf dx U (X)Um(X)~Anm, (3.9 Vna! yny!
WnWm

) which are biorthogonal to each other, in the sense that
whereA,,, andB,,,, are the overlap matrices between each of

the cavity modes, respectively, the adjoint modes. Note that (fi|my= S, (3.14

the commutation relation for a single-mode pair reads

[b,.bl1=1 and[a,,al]=K,. We could stop at this point where n.m is shorthand for{ny,n,,....}.{m;,m,,....}.

and calculate the noise of a single-mode field diStl’ibUtiOﬂThese eigensta’[es are the non-Hermitian ana|ogou5 to the
X=a,un(x)+alu*(x), as is also shown ifil3], and imme-  n-photon Fock states containing the energy quaRia
diately find an excess noise enhancemenrtAX)  =#(w.ni+ w,n,+---). These eigenstates are not mutually
=([ay,al]) |un|>=K,|u,|2 But as we will see, a gain me- orthogonal for the standard scalar prod¢s® (-|-). We
dium, which allows us to consider a single mode separatelywould like to mention that it is possible to find a different
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SP (-|-) such that the eigenstates are mutually orthogonal [V. ATOMIC DYNAMICS IN UNSTABLE CAVITIES
;na(i the corresponding adjoint operatisnhas the property A. Generalized Jaynes-Cummings model
Finally, let us now introduce an atom interacting with the
3. =pf 3 intracavity electromagnetic field. This is described in a ca-

a,=by, (3.15

nonical way by a minimal coupling Hamiltonian

which means that-(a,-)=(b!-|-). But one has to be care- 1

ful, since this SP operates also in position space. This means H =E hwbxan+ —[P—qAX)]?+V(X), (4.1

that a Hermitian operatdwith respect to(-|-)!] may yield n im

complex eigenvalues. Only by integration over position ] )

space does one get real eigenvalues. Explicitly, the adjoi¥herem, are the atomic mass and charge afX) gives
relation~ mapsa,— b and simultaneously,—v* . Afur- s to the internal atomic structure. For quantum optical ap-
ther convenient consequence of the SP is that the left eigefications, this expression may be substantially simplified by

states become identical to the adjoint right eigenstates, i.e.Making various approximations. Usually they are known as
the “dipole approximation,” the “rotating wave approxima-

~ _ tion” and the “two-level approximation.” This procedure has
Ny,No,.en[=(Ng Ny 3.1 . ; S
(N3N, | =(ny,m, | (3.19 been extensively discussed in literatdsee, e.g., Ref.28)).

The Hamiltonian could also be rewritten in a formally more Hence,_we_ will reduce the foIIo_vvmg_ summary to the physi-
symmetric form. Nevertheless, we will retain the standaro‘:?‘I motivations of these Qpprp_xmatlons and investigate the_m
notation with the asymmetric SP to maintain visible the im-Wlth respect 1o the applicability to a nonorthoganal quasi-

portant differences between the stable and unstabl ode_ description. The dipole apprqximation makes: use of
geometry e different length scales of an optical wavelengtpical

The free dynamics governed by the above Hamiltonian100 nm and the atomic sizéypical 1 A). This argument is
of course completely unaffected by the changed mode prop-

with its eigenstates and energies may now be formally writ- rties. Hence. the field may be treated as approximately con-
ten down in the usual manner. However, as we are dealinr§ IES. ’ : y PProxi y

Wi lssy system, e mod amptuce cecays exponerfat 1T Svluated s e poston of e tom, Taking o
tially with a mean ratec,, [Eq. (2.17)]. Physically, a fraction y

of the energy is scattered into the continuum modes outsid&eerms of the position operator, i.e.,

the cavity, which in a proper quantum treatment, has to be .

included by an input-output coupling 3,26. However, the E: I—[H X] (4.2)
procedure in this case is rather involved, since the diffraction m A AT '
losses are indistinguishable in this picture from the losses

due to mirror transmissioriEven for perfect mirrors the loss it is easy to see that essentially only the atomic dipole mo-
rate is still finite) Although an exact derivation is, to our mentd=qX survives within this approximation, i.e.,
knowledge, not yet knowfl5], the free-field dynamics may

be consistently described by the following master equation Hq~—d-E(X). 4.3

. Fo e + The rotating-wave approximation reduces the tractable pro-
p= T(Heﬁp_pHeﬁH'% Anm(@m= @ )ampan, cesses close to resonance. Here, the field frequenciese
(3.17  of the same order as the atomic transition frequencigs
Within the interaction picture terms containing both atomic

where we have introduced complex frequenciégs=w, and field excitationsor de-excitations, respectivelare os-
— ik, and an effective Hamiltoniaf27] including the damp- ~ cillating ase™'(“n*“»). Compared to the time-average effect
ing of processes where energy quanta are transfered from the
atom to the field(or vice versy oscillating ase™'(“n~©A),
these processes may be neglected. Once again, this approxi-
HeﬁzﬁE Z)nbf,an. (3.18 mation does not make use of the orthogonality of the field
. modes and is hence applicable for our purposes. At last, re-

) ) _ducing the atom to two significant levelgande, separated
To guarantee self-consistency the obtained master equationjy , . this extended formalism gives rise to a Hamiltonian

of the Lindblad form, preserves the trace of the density opyery similar to a multimode Jaynes-Cummings-model
erator, preserves the commutation relations for all mode op-

erators(as fora,, bl), and guarantees the damped oscilla-

. . . _ + (OFN . ~ t
tion of a,, anda, known from the classical model, i.e., HAF—E hw,bja,+ 702—|h2 (gno+an—0pbpo-).
n n
- : 4.4
(8=~ (ko 0n)(ar), (3.19 .49
-t _ : Formally, everything looks completely familiar except that
(ap)= = (rky—iwp)(ay). (320 for the coupling, we findi,# g} , or explicitly,
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wp - (O _ —i [t ' '
On= \/%Un'deg; On= \;mv:-deg, (45) |\P(t)>_7j0dt Hlnt(t )|O1e> (47)

; Tnon(D)]1,,0), (4.9

with dq being the atomic dipole matrix element. Again, in

the special case of stable cavities, we haye-u, andg,

=gy . For symmetric unstable cavities, we haug, with
= JK,u* andg,= K,g,, which invokes the factors. We
should remark here that this Hamiltonian, although not ap- e (=18t _q
pearing to be formally Hermitian, again is in practice, since On(t)=
3. G.bi=3.g%al. We prefer the given form because it

clearly shows the asymmetry between photon creation antl is easy to see that the amplitude of each contribution is
annihilation in the case of nonorthogonal modes. enhanced by the excess noise factor si¢e \VK,g,,. The
probability p(t), for the excited atom to make a transition to
the ground state at a tintgis given by the expectation value
of the projectorP,=|g)(g|, yielding

4.9

Kn—1A,

B. Spontaneous emission: perturbative approach

Let us now explore the dynamics of the modified atom-
field coupling. We will use an initially excited atom as a _N = =k ok
guantum noise detect¢29] and calculate the spontaneous p(t)—% G On(1) AmrlmOm( ) (4.10
emission rate. As the field is composed of a large set of
nonorthogonal modes, the significance of a single-photon
state is not completely obvious. Hence, we will use an op- = GnSn(D)BrnGhdh(b). (4.1
erational definition of the spontaneous emission rate. We as- nm
sume a single-excited atom and set the cavity field t0 thgpe gpontaneous emission rate in this operational definition
(unique vacuum state as a well-defined initial condition. ;5 then
Starting from this state, we then calculate the probability
p(t) for the atom to be in the ground state, which is equiva- 2y=p(t—0). (4.12
lent to having emitted a photon into the field as we have no
nonradiative decay in our model. The derivative of this prob-Considering the field dynamics, the corresponding one-

ability may then be used to define a decay rate. This way W@hoton projector would b@l:2n|ln><1;|v rather thari,
have a clear definition of a spontaneous emission rate |rre;2n|1n><1n| or w1:2n|1n><1n|- For our system where

spective of the momentary state and the dynamics of thg

field. Of course, in general, we will not simply find a linear I : _ :
) . ; ent, i.e.,(P1)=(Pgy), and represent an independent test of
time dependence gi(t) (indeed it may even be nonmono- self consistency. Note that we haﬂ%=P1 and[Hg P, ]

tonic), as is well known from the standard Jaynes Cummings . o ) .
model. This problem may, however, be neglected for shorg 0, so thatP, has to be identified with the proper projector

nly one excitation is present, both approaches are equiva-

enough times, where we may use perturbation theory t o the one-photon subspace. Of course, to get the probability

evaluate the transition rate. As mentioned above, we are onl ra phot02n in a particular f'eld. mode, one has to calculate
{1,/ ¥ (t))|* (compareW;), as in the case of orthogonal

considering the emission rate into the cavity modes and n odes. However. due to nonorthoaonality. this state also im-
glect other transverse modes, so that we miss an approxi- ¥ : 9 Y,

mately constant background contribution to the transitiorpIIes finite amplitudes for the photon being in different

rate that may even dominate the effect. Nevertheless, for Olﬂu%stl)r\r/}odef as v¥1eltl. rm of Eq4.11) is enhanced by ex
purposes of discussing the effect of excess noise on the de- . ously each term o .10 1S enhanced by excess

cay rate, these modes are not relevant. noise B“fr‘: KAmanm)' However, in ggner_al, the vari-
To carry out the calculations, we define atime—dependen‘?us amplitudes interfere and the result is different to the

interaction Hamiltonia27] including the dissipative part of naive expression u_sed [16], where we summed mdepen—
the time evolution dently over all possible one-photon states. An alternative ex-

pression for this probability was implicitly derived earlier by

, Siegman 36].
Hin(t)= =172, (gho,ase” (kntisnt Evaluating this double sum, we may now calculate the
" atomic decay probability and its derivative, the spontaneous
—'Qno-_bge_("n_mn)t)’ (4.6) emission rate. Unfortunately, for significantly unstable geom-

etries (large K), this sum is very hard to evaluate numeri-
cally, since the individual terms first grow exponentially with
where A,,= w,— w, denotes the detuning of th&th mode the mode index(n,m and have a rapidly changing phase
from the atomic frequency. (similar to the series expansion ef * for x>1). Although
Using first-order time-dependent perturbation the@rg., one may show that the sum converges in principle, in prac-
[30]) the initial state|0,e), with the atom being excited and tice, this requires summing very large complex numbers with
the field in the vacuum state, evolves as follows: strongly varying phase. For large>1, this requires very
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high-numerical accuracy and a very large number of terms 5 ————
for convergence, but it may be done for small valuekKof

Fortunately, it turns out that for a given finite number of 4.51
modes using the numerically inverted matAx * is more 4l
adequate than the direct analytical calculatiorBofNever-

theless, the need to invert the overlap mathixcorrectly 3.5l
strongly limits the tractable region of parameters. Similar .
behavior was found quite generally by Siegnjat] for ex- <30
panding a given field distribution in a biorthogonal set of Ca
modes[cf. Egs. (3.3), (3.4)]. Using the matrixA~ ! rather 2.5
thanB gives the field expansion with minimal error. For the 2l
explicit practical calculations, we will thus use a different

and more reliable method to fing(t), as presented in the 1.5¢
next section.

1 2 4 6 8 10 12 14 16 18 20 22

C. Spontaneous emission: adiabatic approach K

In order to avoid the numerical problems mentioned FIG. 4. The enhancement factor of the spontaneous emission
above, we will make use of the fact that the cavity decay rateate at the cavity centex&0); y/y(*) clearly deviates from the
is the fastest time scale in the problem. Hence, we may firgbredictionK (dashed lingin [1,7] for strong excess noise. We find
adiabatically eliminate the field dynamics, such that we aren enhancement approximately given @ (solid line).
only left with the time evolution of the atomic operators.
This approach assumes sufficiently large-field decay rateshe matched and adjoint quasimodet Eq. (4.5]. This for-
compared to the coherent atom-field coupling. mula may now be evaluated for the specific model of a 1D

Let us again consider an excited atom coupled to the intsymmetric resonator with Gaussian apertures, as outlined
racavity field. The time evolution of the probability of the above. In fact, this sum converges rather rapidly without any
atom being in the excited state is(t)=(P.) with P,  further approximations. The price one has to pay is that we
=|e)(e|. Using the Hamiltoniar{Eq. (4.4)] and including have no good quantitative estimate for the error introduced
the effective field losses in the way discussed abfd#g. by the nonadiabaticity. Nevertheless, for smlivhere both
(8.17)] the Heisenberg equations of motion for the slowly methods may be applied, we find that the two agree very

varying operators take the forpi5] well. Far off the optical axis, where higher-ordérfactors
dominate, it may again become necessary to use the approxi-
_2 (gn0+an+§anU ) (4.13 mationB— A~ for faster convergence.

Let us now turn to the results. In Fig. 4, we show the
spontaneous emission rate into the cavity modes at the cavity
a,=—(k,FiAya,+9n0_+ &, (4.149  centery(x=0) (depicted asr) as a function of the excess

) . noise factorK, relative to the result for a stable single-mode
where £, are noise operator&ompare[26]) describing the cavity

influence of the reservoir. Usually the field dynamics are

much faster than the atomic dynamics, and we assume that

the field reaches a steady state, adiabatically following the Y=
atomic operators

|90l?

KO.

(4.17

B ~ We find that, for small excess noise factors, the enhancement
&= A, (Gno—+&n). (419 factor is linear inKo, while for increasing excess noise, the
sum is dominated by the first contribution of E@L.16),
This approximation is especially well justified in unstable yielding an enhancement byK,. Taking into account the
resonators, where the typical loss rates are reasonably larggct that, for symmetric resonators we h&ye= VK u,, an
and the field relaxes very quickly. If we substitug with  enhancement factor afK, becomes quite obvious from the

the adiabatic expressions of E¢.13, we find an exponen-  form of the sum in Eq(4.16), which starts as
tial decay for the atomic excitation probabilitp(t)=

-2 ith
yp(t) wit f_KOgg]
y=R +
Ko

- Re{}‘, gngn ] 416
To obtain Fig. 4, we have set the Fresnel numberNas
Here, we have taken into account the fact that the expec= 20, the detuning ad,=0, and changed the mirror curva-
tation value of the noise operators are zero. Please note thiatre from the stable to the unstable regime, i-eQ.5<L/f
this expression strongly depends on the atomic position ane-0.5. The horizontal axis was than rescaled to linearly de-
the excess noise factors, since the coupling constants inclugeend onkg.

(4.18
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In contrast to this behavior, it has been experimentally 7 : : : : : . :
confirmed that for unstable resonator lasers the linewidth,
which is attributed to the spontaneous emission rate of the 6
radiating atoms, is enhanced by the excess noise féctor
From this, one could draw the conclusion that spontaneous 5
emission in general should be linearly enhanced by the ex-
cess quantum noise. From a different point of view, one _ 4
might just as well conclude that a very unstable cavity with
largeK is almost the same as no cavity, so that there should 3
be almost no effect on spontaneous emission at32]. In
our calculation, we find that the enhancement factor is more 5|
or less in between these suggestions, ie.,/K as shown in
Fig. 4. Hence, both of the preceding arguments are only
partly correct for our case. To some extent, this can be un-
derstood from the specific model we have chosen. First, as . it
we have neglected transverse noncavity modes, we will miss -2 -5 -1 05 0 05 1 L5 2
a significant fraction of the decay rate. In a physical setup G
with a macroscopic cavity, these transverse modes will domi- 5 5 Comparing the spontaneous emission rgte) (solid
nate the decay and mask t_he excess noise effect on the tomle) with a naive expression assuming orthogonal mogigé)
decay rate. At the same time, one could observe only thgjashed lingand the stable cavity resuj(x) (dotted ling we find
light emitted into the cavity mode& given solid angleto 5 clear enhancement especially at the optical axis. Here, we have

directly observe the calculated enhancement. ~ chosenL/f=—100, N=15, which gives rise to an excess noise
Second, the Gaussian reflectivity profile of our mirrorsfactor of K~1.5.

implies a very high reflectivity near the mirror centers allow-
ing for multiple reflections of the emitted light. This gives  The transverse dependence of the spontaneous emission
strong feedback and may imply significant modification ofrate is depicted in Fig. 5, where we have chodeifi=
the fluorescence, as one may find for, e.g., an atom close t0-a100, andN=15, giving rise to an excess noise factor of
curved surface such as a microsphgd8]. This makes our K=~1.5 and summed over 30 modes. Compared with the na-
significant enhancement factor plausible even for rather unive expression for an orthogonal mode expangiBarmi'’s
stable geometriefargeK). golden rule, i.e.,

The considerations above suggest that the effect should be
concentrated close to the cavity axis and be more related to a |gnl %k
redistribution and not simply a global enhancement of spon- INT ; K2+ A2 (4.20
taneous emissiofguantum noisgin the resonator. Hence, in o
the following, we consider spontaneous emission as a fungve clearly find a significant enhancement of spontaneous
tion of the distance from the optical axis. As a first step, weemission near the axis and a suppression further off axis, as
analytically calculate the transverse average of the decay ratgiggested by our previous calculations. We would like to
v and find that the excess noise factors in this limit cancepoint out here that for moderate valueskgfthe perturbative

exactly, i.e., we have calculation[Eq. (4.12] gives the same results. For increasing
excess noisgas considered, e.g., in Fig) $he agreement
K .
7°CJ dx (xS, (419  between the methods lessens. While {ieenhancement for -
n kntA7 the atom on the optical axis is more or less reproduced in

o . ) . both models, the physically well-motivated result that aver-
This is a direct consequence of the biorthogonality of theaging over the atomic position cancels the enhancement, is
matched and adjoint coupling. Hence, it is clear that quantunnly approximately fulfilled within the perturbative method.
noise enhancement near the axis has to be accompanied s, and the analytical comparability along the axis, gives
an off-axis reduction. us strong confidence in the numerical results of the adiabatic

As the next step, we will now look at the transverse de-c;|cylations.
pendence in more detail. As mentioned befor(?, _tO numeri- As we have seen, the excess noise factor enters approxi_
cally calculate the transverse dependence (09, it is nec-  mately as|K into the expression of the spontaneous emis-
essary to truncate the mode expansion at some point angon rate as compared to a naive application of Fermi's
substituteB with A™*. We obtain good convergence for ex- golden rule. In this sense, one could call the result an en-
cess noise factors up #9,~3. Of course, theK factors of  hancement as compared to a calculation in a geometry with
higher-order modes are much lardap to ~10°) represent-  orthogonal modes. However, this is only part of the story. A
ing the Origin of the numerical difficulties. We found that a somewhat different answer is found by |ooking at the transi-
good indication of the numerical inaccuracy is the deviationjon from a stable to an unstable cavity configuration as
of the excess noise factor of the ground mode, calculatedhown in Fig. 6, where we smoothly change the mirror cur-
from the truncated matrix K= Ay, compared to its known  vature of our resonator from the stable to the unstable region.
analytical valueK =B. Note that along the cavity axis, the effective spontaneous
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FI.G' 6| t-trhg S{)?k?altdlstr!?utlc;n of thets%cl)nt?neous e?wgslsmn rz.atte FIG. 7. The induced atomic transition rajéys(0) shows the
y(x)_ IS plotled at Ihe transition from a stablé to an unstable cavi yexpected(-fold enhancementsolid line) for an overall gain ofl”
configuration by changing the curvature of the mirrard. The _
transverse extension of the mirroks; is fixed with the Fresnel

=Z4ZKg-
numberN=15. lective gain simply shifts the individual loss rates of the se-

o ) lected modes by an overall valde For only one mode
emission rate decreases going from the stable to the unstablg,ye threshold, the factor

side, although the excess noise fadtois strongly increas-
ing. This sounds somewhat contradictory, but it may be el ~xotidot_7q
traced back to the fact that the mode amplitude at the axis do(t)=
decreases as a function of the mirror curvature due to the
broadened beam width. This overcompensates for the irns now growing exponentially in time, whereas the other
crease of the excess noise factor. Looking at the spatial denode contributions stay negligibly small. Hence, after a suf-
pendence of the spontaneous emission sgte) for such a ficiently large time, Eq.4.11) reduces to one single term,
varying cavity geometry, as in Fig. 6, we find a widening which is indeed proportional to the excess noise factor of this
transverse plateau for increasing instability. Furthermore, thgarticular amplified mod@&=0, i.e., Boy=K,. This is also
decay rate well off axis is almost independent of the mirrordepicted in Fig. 7, where we have chosen an additional gain
curvature. Note that the contour lines are approximately flatof I' =2, shifting the ground mode towards threshold and
For this graph, the excess noise factors are all befgyv  leading to &K dependence for the spontaneous emission rate.
<2 and we have chosexd=15. In this way, our calculations also reconcile some of the pre-
It seems that the instability flattens the dependence of theious controversies on this subjgdt,8]. The enhancement
decay rate close to the optical axis. This means that, fofrom /K to K via the introduced gain mechanism may be
small displacements, the atomic decay probability is nearlyjiewed as active noise amplification or amplified spontane-
independent of the atomic position. To some extent, this mayus emission. Hence, the total excess noise in lasers can be
be understood in terms of geometrical optics. If the atom israced back to two origins, a spatial enhancement of the
localized atx=0, only the axial ray is reflected onto the atom quantum noise as well as amplified spontaneous emission via
itself. If the atom sits off the axis, no closed optical paththe gain. Note that this result has to be treated with caution
exists. On the other hand, there are a large number of rayg we have not included any gain saturation.
that return to the atomic position after several reflections,
before leaving the resonator. Of course, the finite transverse
size of the mirror restricts the number of possible reflections,
serving to limit the size of this axial plateau. Using our quasimode description, we have demonstrated
that the concept of excess quantum noise in an unstable op-
tical cavity also emerges in the context of spontaneous emis-
sion of a single two-level atom. Quantitatively, our result is
As we have seen, the total atomic spontaneous emissiatifferent from previous suggestions in the context of lasers
rate into all cavity modes is enhanced by approximatdy  [1,7], where the spontaneous emission rate was predicted to
On the other hand, from previous calculations for the lasebe proportional t& instead of\K. As a limiting case, Sieg-
linewidth, one expects &-fold enhancemenfl,7]. In the  man’s law reappears when through some external mechanism
following we will mimic a single-mode situation and con- (tailored loss or gain mediuma single quasimode is ac-
sider the case of one mode being actively selected, e.g., lvely selected. If, e.g., in a laser, only one quasimode oscil-
some extra gain mechanism. In this case, we cannot use adiates above threshold, spontaneous emission noise into that
batic elimination of the selected mode and we have to use themode is enhanced by the excess noise faftdn this sense,
perturbative formuldEq. (4.12]. In this limit, the mode se- our results agree with the claim of previous auti@&42,13

, (4.21

KO_iAO

V. CONCLUSIONS

D. Siegman’s law
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that gain is a necessary condition to obtain thi excess ties [24], from which a spontaneous decay rate could, in
noise factor. principle, be deduced. This does not involve any excess
However, our calculations show that one has to be carefutoise arguments, but one finds an unexpected result for the
with the term enhancement as the effective spontaneoumode density, which enters in the spontaneous emission rate.
emission rate at the center of a stable cavity configuratiot is interesting to note here that these mode functions do not
with the same aperture and mirror reflectivity is even largercoincide with our solutions in the limit of infinitely large soft
although we clearly have no excess noise enhancethent apertures due to the differently prescribed asymptotics. Nev-
K=1). This is compensated by larger-field mode amplitudesrtheless, the mode functions behave similarly near the cav-
and a modified mode density. Note that the enhancemerity axis.
only refers to contributions to the emission rate within the Let us finally point out here that further interesting results
solid angle covered by the resonator, which in many casesould be expected from a discussion of other quantum noise-
may be small compared to the total decay rate into all modeglriven systems placed in unstable resonators such as, e.g.,
The effect becomes more significant the smaller the resondhe optical parametric oscillator. Especially below threshold
tor volume and the better the reflectivity of the mirrors is.we would expect to see quantum and excess noise effects.
Hence, it should be important in microoptic setups. Note addedRecently the authors became aware of some
Instability seems to play an important role in obtaining related work by Dalton and co-workef87] underlining the
very highK factors, but only in connection with finite geom- keypoints of the proposed field quantization.
etries. Interestingly, excess noise is enhanced by soft aper-
tures. In fact, f_or an un§table cavity with a very large hard ACKNOWLEDGMENTS
aperture, one finds relatively small excess noise in the center,
while on the other hand, even a geometrically stable cavity This work was supported by the Austrian FWF under
configuration with Gaussian apertures may imply a signifi-Grant No. S13435. The authors wish to thank S. Stenholm, P.
cantK factor. Considering an unstable cavity with a largeBardroff, A. E. Siegman, and T. Ralph for helpful comments
hard aperture going to infinity, one may find a different con-and B. Dalton for stimulating discussions and for sending us
tinuous set of orthogonal modes with rather peculiar propersome of their work prior to publication.
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