
PHYSICAL REVIEW A, VOLUME 65, 023604
Measurement theory and interference of spinor Bose-Einstein condensates

S. Ashhab and A. J. Leggett
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801

~Received 21 March 2001; published 17 January 2002!

We study two aspects of measurement theory in spinor Bose-Einstein condensates ofF51 atoms: the
probability of obtaining a certain outcome of the measurement and the evolution of the state of the condensate
due to the measurement. We also study the interference patterns arising from the spatial overlap of two spinor
condensates. We show that neither a measurement on a small number of escaping atoms nor an interference
experiment can distinguish between an antiferromagnetic coherent state condensate, i.e., a condensate in which
all the atoms haveSz50 along ana priori unknown direction, and a spin-singlet condensate, i.e., a condensate
with Stotal50. We also show that a singlet-state condensate evolves into a coherent state as a result of the
measurement.
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I. INTRODUCTION

In the past few years there have been several experime
and theoretical studies of the structure of a spinor Bo
Einstein condensate~BEC! for atoms of total spinF51
@1–6#. Ho @2# and Ohmi and Machida@3# independently
treated the problem of spinor BEC in the Gross-Pitaev
~GP! approximation. In the case of antiferromagnetic int
actions they found that the ground state is given by

uC&5
1

AN!
~a0

†!Nu0&, ~1!

where a0
† creates a particle in the lowest spatial sing

particle state~which can be calculated from the GP equatio!
with Sz50 along some arbitrary direction~we use the letter
S to denote the total atomic spin!. uC& stands for~antiferro-
magnetic! ‘‘coherent state’’ andu0& is the true vacuum stat
containing no particles. The stateuC& is a singly-condensed
state, i.e., all the particles occupy the same single-par
state.~Notice that this definition of coherence differs fro
the one normally used in quantum optics.!

Noticing that the state~1! breaks the SO~3! rotational
symmetry of the Hamiltonian in spin space, Law, Pu, a
Bigelow @4# carried out a calculation where they assum
that all atoms in the condensate occupy the same sp
wave function, but they did not impose any constraint on
spin state of the atoms. They found that in the absenc
external magnetic fields, the ground state of the system is
a singly-condensed state, but rather a spin-singlet state, i
state with total spin of the condensateStotal50,

uS&5const3~a0
†a0

†22a1
†a21

† !N/2u0&, ~2!

where, as in the rest of this paper,N is assumed to be eve
for simplicity. The minus sign in Eq.~2! is in accordance
with the phase convention of Refs.@4–6#, which we shall
follow in this paper.

In the absence of spin-dependent external fields the e
gies per particle of the states~1! and~2! are very close, with
a difference of;N21/2. Depending on the magnitude of th
external fields, either one of them can be the true gro
1050-2947/2002/65~2!/023604~10!/$20.00 65 0236
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state @6–8#. We address the question of how to devise
experiment that will be able to distinguish between the t
states@6,8,9#.

By examining the two expressions~1! and ~2! it is obvi-
ous that there are physical differences between them.
example, the singlet state has^Stotal

2 &50, while ^Stotal
2 &52N

for the coherent state (\51). Also, if one could measure th
occupation numbers of the three hyperfine statesn1 , n0 , and
n21 , a clear difference would be that in the singlet state o
always getsn15n21 , even though that value may vary from
shot to shot. However, in the above examples the entire c
densate has to be probed, and measurements of atom
bers have to be accurate at least to relative orderN21/2 in
order to distinguish between the two states. To avoid t
difficulty, we shall examine measurements in which a sm
number of atoms is probed.

One important aspect of measurement theory is the e
lution of the quantum state as a result of the measurem
An example, which is related to the present problem, is t
of measuring the relative phase between two condens
@10–12#. Castin and Dalibard demonstrated how an expe
ment measuring the relative phase between two condens
‘‘builds up’’ the phase between them@11#. A detection mea-
surement that does not give information about which c
densate the atom came from creates an uncertainty in
relative number between the two condensates. Using ap
priate definitions, it can be shown that the relative pha
quantum operator and the relative number quantum oper
are, to a good approximation, canonically conjugate ope
tors @13,14#. Therefore, an increase in the uncertainty in t
relative number allows for a reduction in the uncertainty
the relative phase, which is the case in the Castin-Dalib
scheme. In the context of spinor BEC, the coherent states
analogous to the phase states, and the singlet state is a
gous to the unbroken-symmetry number state. Therefore
shall examine whether a similar phenomenon exists in
measurement of a spinor BEC.

In the present paper, we shall show that a measurem
based on the detection of a small number of atoms from
condensate and measuring their spin structure cannot di
guish between a coherent state and a singlet state. We
show that a spinor BEC in a singlet state evolves into
coherent state after the measurement. These results wi
©2002 The American Physical Society04-1
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obtained using the same method as described in Ref.@11#.
Moving in a different direction, because in interference e
periments the entire condensates can overlap, one migh
pect such experiments to distinguish between the two sta
We shall study the interference patterns arising from the s
tial overlap of two spinor condensates and show that
expected patterns are the same whether one starts with
herent or singlet states.

The paper is organized as follows. In Sec. II we study
outcome probabilities and the evolution of the state of
condensate following a sequence of single-particle detec
measurements. In Sec. III we study two-particle detect
measurements and show that the effect of the measure
process is qualitatively similar to that of a single-partic
measurement. In Sec. IV we discuss some properties
implications of particle detection measurements. We also
cuss the quantum-mechanical description of absorption
phase-contrast imaging. In Sec. V we outline a method
predict the emergence of an interference pattern from
overlapping scalar~i.e., spineless! condensates. In Sec. V
we generalize the method to study the interference patt
produced by the overlap of two spinor condensates and s
that both coherent and singlet states give the same inte
ence patterns, since the results for coherent states have
averaged over all directions.

II. SINGLE-PARTICLE MEASUREMENTS

In this section we study the outcome of a sequence
single-particle measurements. We use a model where in
step of the measurement one atom leaves the trap andz
component of the spin of that atom is measured@9#. In order
to neglect the spin dynamics of the condensate during
measurement, we shall assume that the time over which
measurement process is completed is much smaller than
inverse of the energy difference between the two initial sta
in question@15#. We also assume that the spin-spin intera
tion energy is small enough that the escape rate of atom
independent of their spin state. Note that in contrast to R
@6,9#, we do not assume anya priori knowledge about the
direction of the broken-symmetry state@Eq. ~1!#. We denote
the initial state of the system byuC&0 , and the state of the
system aftern measurements byuC&n . Each measuremen
gives Sz511, 0, or 21. The probability of obtaining the
valueSz5m in the nth measurement is given by

Pn~m!5
n21^Cuam

† amuC&n21

(
l

n21^Cual
†al uC&n21

, ~3!

where the operatorsam , am
† are the annihilation and creatio

operators of a particle withSz5m. If the outcome of thenth
measurement isSz5m, the state of the system is projected
follows:

uC&n5
amuC&n21

A n21^Cuam
† amuC&n21

. ~4!
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Using Eqs.~3! and ~4! we now analyze the measureme
process for the coherent and singlet states. Our treatmen
be straightforwardly generalized to the more general clas
states withStotal!N.

A. Coherent state

Let us assume that the initial state of the system is gi
by Eq.~1!. We rewrite it in a form that contains the preferre
direction, defined by the angles~u,f!, explicitly,

uC&05
1

AN!
@d1,0

1 ~u!e2 ifa1
†1d0,0

1 ~u!a0
†

1d21,0
1 ~u!eifa21

† #Nu0&[uN,u,f&, ~5!

where dm,0
1 (u) are the single-particle rotation matrix ele

ments

dm,0
1 ~u!5^mue2 iuŜyu0&55

2
1

&
sinu if m51,

cosu if m50,

1

&
sinu if m521.

~6!

Equation~5! is the state that containsN atoms, all of which
occupy the same single-particle state withSz50 along the
direction~u,f!. Substituting Eq.~5! into Eqs.~3! and~4! one
easily finds that

Pn~m!5~dm,0
1 !2~u! ~7!

and

uC&n5uN2n,u,f& ~8!

up to an overall phase factor. This means that the proba
ties in thenth measurement are independent of the previ
measurements, and that after each measurement only
number of particles in the condensate changes, whileu andf
are not affected. As one would expect from rotational sy
metry about thez axis, the measurement is insensitive to t
anglef. The probabilityP(m1 ,...,mnuu) of finding a certain
sequence of values (m1 ,...,mn) for a given value ofu is just
the product of the single-measurement probabilities,

P~m1 ,...,mnuu!5)
n

Pn~m!5
~sinu!2~k11k21!

2k11k21
~cosu!2k0

'expFsin2 u0 lnS sin2 u0

2 D
1n cos2 u0 ln~cos2 u0!22n~u2u0!2G ,

n@1, ~9!

where
4-2
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MEASUREMENT THEORY AND INTERFERENCE OF . . . PHYSICAL REVIEW A 65 023604
tan2 u05
k11k21

k0
~10!

andkm is the number of times the valueSz5m appears in the
sequence (m1 ,...,mn).

Since the probability in Eq.~9! is peaked at the valueu0
5u, the experimental procedure described above can be
sidered a measurement ofu. However, it does not give an
information about the polar anglef. A straightforward
method to measure bothu and f is to make measuremen
along three~or more! different axes, not necessarily perpe
dicular to one another. Assume that one makesn1(@1) mea-
surements alongz1 . This will determine that the direction
~u,f! lies in a ring defined by a certain value ofu relative to
z1 . Making n2(@1) measurements alongz2 will determine
that ~u,f! lies in a ring defined by a certain value ofu rela-
tive to z2 . Combining the two measurements, the direct
~u,f! will be specified by the two points where the two rin
intersect.~It is highly unlikely that the rings will not inter-
sect, and therefore we do not examine that possibility.! If
~u,f! is determined to be one of two directions, one can th
maken3(@1) measurements alongz3 , and the outcome dis
tribution will pick one of the two directions. This phenom
enon is reminiscent of the uncertainty betweenf and2f in
measuring the relative phase between two condensates@11#.
This uncertainty can be removed by making additional m
surements with a phase shiftg given to the atoms leaving
one of the two condensates. Even ifg is different for each
escaping atom, the system is driven closer and closer
coherent~i.e., phase! state.

Since we are assuming that we do not have anya priori
knowledge about the direction~u,f! of the coherent state, th
probability of a certain outcome is given by the average
Eq. ~9! over all possible directions,

P~m1 ,...,mn!5E dV

2p

~sinu!2~k11k21!

2k11k21
~cosu!2k0

5
G~k11k12111!G~k011/2!

2k11k2111G~n13/2!
, ~11!
and

02360
n-

n
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where dV5sinududf, and the integral covers the uppe
hemisphere (u<p/2), as we explain in the Appendix.

B. Singlet state

Now we analyze the same measurement process as in
II A starting with the initial stateuStotal50& @Eq. ~2!#. The
singlet state can be rewritten as~see the Appendix for deri-
vation!

uS&5
AN

2p E dVuN,u,f&. ~12!

This form allows us to straightforwardly evaluate the pro
abilities and projected state due to the measurement. If
definecn(u,f) by

uC&n[E dVcn~u,f!uN2n,u,f&, ~13!

we can make use of the quasiorthogonality of coherent st
~see the Appendix! and find that

Pn~m!'
E dV~dm,0

1 !2~u!ucn21~u,f!u2

E dVucn21~u,f!u2
, ~14!

uC&n'

E dV dm,0
1 ~u!e2 imfcn21~u,f!uN2n,u,f&

A2p/NE dV~dm,0
1 !2~u!ucn21~u,f!u2

.

~15!

This finally leads to
P~m1 ,...,mn!5
n21^Cuamn

† amn
uC&n21

(
l n

n21^Cual n
† al n

uC&n21

n22^Cuamn21

† amn21
uC&n22

(
l n21

n22^Cual n21

† al n21
uC&n22

¯

0^Cuam1

† am1
uC&0

(
l 1

0^Cual 1
† al 1

uC&0

5
~N2n!!

N!

0^Cuam1

†
¯amn

† amn
¯am1

uC&0

0^CuC&0

'

E dV
~sinu!2~k11k21!

2k11k21
~cosu!2k0uc0~u,f!u2

E dVuc0~u,f!u2

~16!
4-3
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cn~u,f!}~sinu!k11k21~cosu!k0ei ~k212k1!fc0~u,f!.
~17!

Notice that Eqs.~14!–~17! are valid for a general state a
long as Stotal!N. For the singlet statec0(u,f)5AN/2p,
which gives

P~m1 ,...,mn!'E dV

2p

~sinu!2~k11k21!

2k11k21
~cosu!2k0

~18!

cn~u,f!'S NAn

23/2p5/2sinu0
D 1/2

e2n~u2u0!2
ei ~k212k1!f,

~19!

whereu0 is given by Eq.~10!. Corrections to Eq.~18! are of
the orderO(n/N)1O„(k12k21)2/N… relative to the value of
P. The expression for the probability is~almost! exactly the
same as that for a uniform statistical distribution of coher
states@Eq. ~11!#.

We notice that although the coefficientcn(u,f) becomes
peaked around a certain value ofu with increasingn, the f
dependence is only affected through a phase factor. As
discussed in the case of a coherent state, making mea
ments along three different axes determines bothu and f,
and, therefore, in each single run it projects the singlet s
into a coherent state along a well-defined direction. It
tempting to think that changing the axis of measurement
each atom would have the effect of washing out the local
tion of cn in the coordinatesu and f. By multiplying two
factors, each of which has the form~19! in a different system
of coordinates, one can see that this washing-out effect d
not occur. Moreover, changing the axis of measurement
us of having to worry about conservation ofSz of the whole
condensate. In other words, if all the measurements are m
along the same axis, the totalSz of the escaping atoms an
the remaining condensate is equal to zero for the sin
state. This constraint is lifted if we use several different a
for different atoms. Then, the condensate is projected clo
to a coherent state in bothu andf directions.

In conclusion, a measurement performed on a few sin
atoms leaving the condensate cannot determine whethe
condensate was in a coherent or singlet state before the
surement. In each single run the condensate behaves
coherent-state condensate, even if it were in a singlet s
before the measurement. This phenomenon follows imm
ately from realizing that the model used in this section
scribes a measurement of the direction of a coherent sta
collection of such measurements gives the probabilities
the system to be in each state of the basis~of coherent
states!. In a single realization of the measurement the sys
behaves as if it were in one of the basis states, regardle
its initial state.

III. TWO-PARTICLE MEASUREMENTS

Let us look at the expression for the singlet state~2!. This
state is formed by creatingN/2 pairs of atoms, each in a tota
spin singlet state (S50). A naive argument might say that
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one takes a pair of atoms out of the condensate and mea
their total spin, one would always get the valueS50. How-
ever, the pairs of atoms are not bound molecules, and the
atoms that left the condensate could have come from
different pairs. Thus, both values~S50 andS52! are pos-
sible.

We shall now carry out a calculation to show the abo
result in more detail. The annihilation operators of a pair
atoms are given by

A0,05
1

A6
~a0a022a1a21!,

A2,05
1

)
~a0a01a1a21!,

A2,615a0a61,

A2,625
1

&
a62a62 , ~20!

where the indices refer to the total spin and thez component
of the total spin of the pair. As in Sec. II, we can now ca
culate the probabilities and projected state.

A. Coherent state

The probability of finding a total spinS andz component
m for the nth pair is given by

Pn~S,m!5
n21^CuAS,m

† AS,muC&n21

(
L,l

n21^CuAL,l
† AL,l uC&n21

5r n
2~u!, ~21!

where

r ~u!5^S,mue2 iuṠyum150,m250&

55
1

)
if S5m50,

A 2
3 ~ 3

2 cos2 u2 1
2 ! if S52,m50,

1
2 sin 2u if S52,m561,

1
2 sin2 u if S52,m562.

~22!

It follows that the probability of finding a certain sequen
(S1 ,m1 ,...,Sn ,mn) is simply

P~S1 ,m1 ,...,Sn ,mnuu!5)
l

r l
2~u!. ~23!

As with single-particle measurements, the condensate
mains in a coherent state regardless of the outcome of
measurement

uC&n5uN22n,u,f& ~24!
4-4



u
ng

n
le
n

l

te
ta
ed

rm
tin
ve
d

in
nt
et
Is

one
ion-
-

t
own

itten

ns-
not
ne
re-
n-
nge.
be
In a

e is
ea-

st of
eter-
the
m is

-
en-
den-
the
uld

grees
nt
do

cify
the

-

n-
ec.
t’’

on-
ply
ed
one
ure

tally.
ment
the
in-

n-
ea-
the
en-
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up to an overall phase factor. Since we are assuming a
form distribution of coherent states, the probability of findi
a certain sequence is given by

P(S1 ,m1 ,...,Sn ,mn)5E dV

2p )
l

r l
2~u!. ~25!

B. Singlet state

Applying Eq. ~21! to the singlet state gives

Pn~S,m!'
E dV r n

2~u!ucn21~u,f!u2

E dVucn21~u,f!u2

P~S1 ,m1 ,...,Sn ,mn!'
E dV) l r l

2~u!uc0~u,f!u2

E dVuc0~u,f!u2

5E dV

2p )
l

r l
2~u!. ~26!

And using the notationuC&n[*dVcn(u,f)uN22n,u,f&,

cn~u,f!}~ 3
2 cosu2 1

2 !k2,0~sin 2u!k2,11k2,21~sinu!2~k2,21k2,22!

3exp@~2k2,221k2,212k2,122k2,2!f#, ~27!

wherekS,m is the number of times the value~S,m! appears in
the measurement sequence. Obviously,cn(u,f)Þc0(u,f)
unless all measurements give the valueS50, which has a
vanishingly small probability forn@1. In general, the func-
tion cn(u,f) is peaked around two values ofu, one of them
between 0 and cos21 (1/))'0.3p and the other betwee
cos21(1/)) andp/2. @The physical significance of the ang
cos21 (1/)) is that a pair of atoms, each with spin projectio
0 along a direction making this angle with thez axis, cannot
be in a S52, Sz50 state.# However, apart from a smal
region in the parameter spacekS,m that corresponds to a
small probability, one of these maxima will be much grea
than the other, and we find that, as in Sec. II, the singlet s
evolves into a coherent state as the measurement proce

IV. DISCUSSION OF THE RESULTS AND POSSIBLE
EXPERIMENTAL REALIZATIONS

We have shown in Sec. III that measuringS and Sz of
pairs of atoms gives the same results for both a unifo
distribution of coherent states and the singlet state. Star
from the singlet state we found that the system will evol
because of the measurement, into a coherent state. We foun
that if in a single measurement the valueS50 is obtained,
the spin state of the system is not affected, apart from tak
two atoms out of the condensate. It was the measureme
S52, m50, 61, 62 that caused the evolution from a singl
to a coherent state. One may then ask the question:
possible to measure onlyS ~without measuringm! and leave
02360
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the singlet state unchanged? This would be achieved if
could perform a measurement that is described by a rotat
ally invariant projection operator. A rotationally invariant op
erator cannot changec(u,f). It would not change a single
state into a coherent state. However, it can be easily sh
that such an operator does not exist forSÞ0. Any operator
that removes two atoms from the condensate can be wr
as a linear superposition of the annihilation operatorsAS,m
defined in Eq.~20!. The operatorsAS,m transform under the
same rotation group as the spherical harmonicsY0,0,Y2,m .
The operatorA0,0 possesses the desired property of tra
forming into itself under any rotation and, therefore, does
affect c(u,f). Among the other five operators there is no
that transforms into itself under an arbitrary rotation. The
fore, when a pair withS52 is detected, the angular depe
dence of the state of the condensate will, in general, cha

The impossibility of preserving the singlet state can
understood from the nature of the measurement process.
measurement based on the detection of a particle~or group of
particles!, one assumes that at the moment that the particl
detected, it ceases to be part of the system. Before the m
surement, the spin states of the escaping atom and the re
the condensate are entangled, i.e., neither of them is d
mined independently of the other. For example, when
first atom leaves from a singlet state, the composite syste
described by theStotal50 state

uC&5
1

A6
~ u11&au1,21&C1u21&au1,11&C22u0&au1,0&C),

~28!

where the subscriptsa andC refer to the atom and the con
densate, respectively. If the atom hits a detector, the
tanglement has to remain between the atom and the con
sate, or it is transmitted to other degrees of freedom in
environment such that the total spin is conserved. This wo
result in an entangled state of the condensate and the de
of freedom of the environment, provided the environme
started in a state of well-defined total spin. As long as we
not allow for such entanglement, it is necessary to spe
the exact state of the atom at detection, i.e., to project out
appropriate component of Eq.~28!. As a result, the conden
sate is left withS51 and a definitem value ~along some
direction!. In the case of a pair of atoms leaving the conde
sate simultaneously, arguments similar to those given in S
III lead to the same conclusion. If one does not ‘‘read ou
all the information obtained by the measurement, the c
densate will be described by a mixed state, which sim
reflects the ignorance of the experimenter of the well-defin
outcome of the measurement. We stress, though, that
cannot speak of the difference between a mixed and a p
state unless this difference can be measured experimen

We note that since the environment acts as a measure
device, our arguments apply to the interaction between
condensate and its environment even without any human
tervention. An escaping atom will interact with the enviro
ment and its spin component along some axis will be m
sured. The important point here is that regardless of
direction of the measurement axis, the state of the cond
4-5



if
in
e
u

ta
he
ta
u
u
th
b
t
te

ch

rg
t

P
c
t
,
te

e
m
th
I

ic
e

ee

l
up

to

r
itl
ri
en

s
g
ot
e

riz
fin
l

ca
g
t

t-
n

t
th

re
ith
ms

pa-
ale.
ree

ugh,
ish
asure

tion
ment
con-

me
we
ce
en-
. We
a-
ce

rlap.
al

en-
.
n-

rs of
t the
c-

re-

it-
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sate will be projected closer to a coherent state, even
different direction of this axis is chosen for each escap
atom@16#. Another point worth mentioning is that even if th
atoms remain entangled with the condensate until a meas
ment is performed on the condensate, tracing over the s
of the escaping atoms gives the same results as above. T
fore, just by losing atoms from the condensate a singlet s
will evolve into a coherent state. This looks like spontaneo
symmetry breaking, except that it is not caused by resid
external fields, but rather by continuous measurement of
system. The chosen direction is determined entirely
chance, just as the outcome of any measurement in quan
mechanics. In the absence of any symmetry-breaking ex
nal fields, the competition between this measurement me
nism and stochastization due to interatomic interactions@17#
will determine the state of the system. Typically, the ene
difference between the coherent and singlet state is of
order 100 s21, while atom loss rates are of the order 104 s21.
This suggests a highly coherent state. Zurek, Habib, and
found a similar result for a harmonic oscillator in conta
with its environment@18#. One should keep in mind tha
although the above argument is conceptually convenient
ensemble describing a uniform distribution of coherent sta
is equivalent to an ensemble of definiteStotal states with the
correct weights.

Now we turn to the question of how realistic is our mod
for describing the measurement process. We have assu
that the condensate is not tightly bound inside the trap so
occasionally an atom will escape and will be detected.
practice, however, condensates are probed using opt
imaging techniques. In order to be able to give the corr
description of the measurement, one has to understand
quantum-mechanical description of the interaction betw
the condensate and the imaging laser beam@19,20#. Near-
resonance absorption imaging is the closest to our mode
the sense that an atom is removed from the condensate
detection. When imaging a scalar~i.e., spinless! condensate a
scattered photon projects the state of the condensateuC& into
âuC&, and a nonscattered photon projects it in
A12gN̂eid(N̂)uC&, whereg is the absorption probability pe
photon per atom and normalization constants are implic
understood. This expression can be obtained by conside
the probability for a photon not to be scattered by a cond
sate withN atoms~probability512gN in the dilute limit!
and the phase shiftd(N) given to such a photon, which i
proportional toN in the dilute limit. Here we are assumin
that an excited atom leaves the trap before the next ph
arrives at the condensate. When imaging a spinor cond
sate, using appropriate probe beam frequency and pola
tion one could choose to image each of the three hyper
states separately. The initial absorption rate is proportiona
the number of atoms in the imaged hyperfine state and
not be used to distinguish between a coherent and a sin
state, in agreement with our result. One has to measure
population of the11 and21 states to relative accuracy be
ter thanN21/2 in order to distinguish between the cohere
and singlet states, since in the singlet staten15n21 . How-
ever, that measurement requires counting essentially all
atoms in the different hyperfine states, which is exactly
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difficulty we are trying to avoid.
Phase-contrast imaging differs from our model in a mo

fundamental way: the projection operator associated w
this type of measurement, which does not remove ato
from the condensate, isam

† am rather thanam . Another less
fundamental difference occurs if the linewidths are com
rable to or greater than the hyperfine splitting energy sc
In that case it is not possible to image each one of the th
states separately. Assuming the linewidths are small eno
we find that, as in absorption imaging, in order to distingu
between the coherent and singlet states, one has to me
the differentn’s to relative accuracy better thanN21/2 @21#.
The difference between the two methods is that in absorp
imaging the condensate is destroyed after the measure
due to heating, whereas in phase-contrast imaging the
densate ends up in a state of definiten1 , n0 , andn21 with-
out losing atoms from the condensate~neglecting heating
effects!.

V. INTERFERENCE BETWEEN TWO SCALAR
CONDENSATES

Having failed to find a few-particle measurement sche
to distinguish between the coherent and singlet states,
now take a different direction. It appears as if interferen
experiments involve all the atoms of the overlapping cond
sates and could, therefore, serve the desired purpose
now examine this possibility. We begin by outlining an an
lytical method to predict the emergence of an interferen
pattern when two scalar condensates are made to ove
The results of this section are well known from analytic
@22,12#, experimental@23#, and numerical@10# studies. It
mainly serves as an introduction to Sec. VI, where we g
eralize the calculation to the case of spinor condensates

For simplicity we shall treat the problem in one dime
sion. We shall neglect interatomic interactions@24#. We shall
also assume that the two condensates have equal numbe
atoms and are pushed towards each other such that a
time of imaging they occupy the single-particle wave fun
tions u(1/21x)u(1/22x)e6 ipx, respectively, whereu(x) is
the Heaviside step function andp is a small multiple ofp, so
that at most a few interference fringes are formed. The c
ation operators for the two condensates area†(6p)
5*21/2

1/2 dx e6 ipxc†(x). The state of the system can be wr
ten in the form@10#

uC&05
1

~N/2!!
@a†~p!#N/2@a†~2p!#N/2u0&

5S pN

2 D 1/4E
2p

p dx

2pAN!
S eix/2

&
a†~p!

1
e2 ix/2

&
a†~2p!D N

u0&

5S pN

2 D 1/4E
2p

p dx

2pAN!
S&E

21/2

1/2

dx

3cos~px1x/2!c†~x! D N

u0&, ~29!
4-6
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which means that a product of two Fock states, which hav
well-defined number of atoms in each condensate, is a lin
superposition of all possible phase states between2p andp,
each of which would produce interference fringes. The i
aging device is modeled by a large number of adjacent a
detectors covering the entire spatial extent of the cond
sates. In each detection event an atom is removed from
condensate at the position of the respective detector.
interference pattern is then obtained by plotting a histogr
of the number of detected atoms as a function of the posit
In a real experiment it is the time of shining the imagi
laser beam that is controlled and not the number of dete
atoms. However, our method demonstrates the emergen
the interference pattern without going through the details
how the image is produced.

The probability density of finding thenth detected atom a
positionx is given by

rn~x!5
n21^Cuc†~x!c~x!uC&n21

n21^CuN2n11uC&n21

'

2E dx cos2~px1x/2!ucn21~x!u2

E dxucn21~x!u2

, ~30!

where cn(x) is defined implicitly by uC&n[*dxcn(x)
@*dx& cos(px1x/2)c†(x)#N2nu0&, and we have used th
quasiorthogonality of phase states@11#. The state of the sys
tem aftern measurements is

uC&n5
c~xn!uC&n21

A n21^Cuc†~xn!c~xn!uC&n21

}E dx cos~pxn1x/2!cn21~x!

3F E dx& cos~px1x/2!c†~x!GN2n

u0&. ~31!

Thus, the probability density of finding the firstn detected
atoms atx1 ,...,xn is

r~x1 ,...,xn!'E dx

2p
2n)

l
cos2~pxl1x/2!. ~32!

This expression is what one would expect to find for a u
form distribution of initial states with well-defined relativ
phases. Thus, Eq.~32! is sufficient to show that the interfer
ence pattern that arises from the spatial overlap of two c
densates is the same whether the initial state is a produ
two independent Fock states or a uniform statistical distri
tion of phase states. However, we shall go on and find
plicit expressions for the probability of finding a certain de
sity distribution.

A given density distribution is defined by the occupati
of K cells of width 1/K and centred atXl5 l /K ~correspond-
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ing to the detectors!. Some manipulation of Eq.~32! gives
the probability of finding the distribution$kl% of atoms in the
cells labeled byl,

P~k2K/2, . . . ,kK/2!'E dx

2p
F~k2K/2, . . . ,kK/2ux!,

~33!

where

F~k2K/2, . . . ,kK/2ux!5
n!

Kn )
l

R~pXl1x/2!kl

kl !
, ~34!

R~pXl1x/2!52 cos2~pXl1x/2!1OS p

K D 2

. ~35!

The function R(pXl1x/2) is the interference pattern on
finds for a well-defined value of the relative phasex. For
largeK the second term in Eq.~35! can be neglected for mos
values ofXl , but we keep it in mind to avoid divergence
that would arise in our approximate expressions ifR(pXl
1x/2)50. A straightforward variational calculation show
that for a given value ofx, the functionF takes its maximum
value when

kl5
n

K
R~pXl1x/2!. ~36!

We also find that at the point of maximum value

F'S n

~2p!K21) lkl
D 1/2

,

d2 ln F

dkldkm
'2

K

nR~pXl1x/2!
d l ,m . ~37!

It should be noted that these expressions are good app
mations only when all thekl ’s are large. We shall make tha
assumption, since it does not affect the essential physic
the interference process. Thus,F(k2K/2,...,kK/2ux) can be ap-
proximated by

F~k2K/2, . . . ,kK/2ux!'S n

~2p!K21) lkl
D 1/2

e2nG, ~38!

where

G5
K

n2 (
l

1

R~pXl1x/2! S kl2
n

K
R~pXl1x/2! D 2

'E dx
@ f ~x!2R~px1x/2!#2

R~px1x/2!
~39!

and f (x) is a smooth function defined betweenx52 1
2 and

x5 1
2 such thatf (Xl)5Kkl /n.

The probability of finding a certain~normalized! density
distribution f (x) takes the maximum value iff (x)5R(px
1x/2) for some value ofx, and drops to negligibly smal
values whenG*K/n for all values ofx. Thus, in any single
interference experiment one expects to find
4-7
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f ~x!5R~px1x/2!1A~K/n!e~x!, ~40!

wheree(x) is a random function withue(x)u&1. The func-
tion R(px1x/2) describes a smooth sinusoidal density d
tribution, wherease(x) describes shot-to-shot fluctuation
around that distribution.~Notice that these fluctuations exi
even if the initial state is a phase state.! The visibility of the
function R(px1x/2) is

V[
Rmax2Rmin

Rmax1Rmin 512OS p

K D 2

. ~41!

In any single run, an interference pattern with almost 10
visibility is observed~corresponding to a randomly chose
value of the relative phase!.

VI. INTERFERENCE BETWEEN TWO SPINOR
CONDENSATES

We now generalize the method of the preceding sectio
the case of spinor condensates. In spinor condensates, a
belonging to different hyperfine states do not interfe
Therefore, the appearance or absence of interference fri
depends on the spin structure of the condensates. Her
shall study the interference patterns that would arise from
spatial overlap of two spinor condensates, and show
such an experiment gives the same results whether we
with coherent or singlet states.

At the time of imaging we assume that the state can
approximated using the following states.

~1! Coherent states:

uC&05
1

~N/2!!
@a†~p,u1 ,f1!#N/2@a†~2p,u2 ,f2!#N/2u0&

5S pN

2 D 1/4E dx

2pAN!
S eix/2

&
a†~p,u1 ,f1!

1
e2 ix/2

&
a†~2p,u2 ,f2!D N

u0&. ~42!

~2! Singlet states. From Eq.~12! we can see that

uC&0}E dV1dV2@a†~p,u1 ,f1!#N/2@a†~2p,u2 ,f2!#N/2u0&

}E dV1dV2dxS eix/2

&
a†~p,u1 ,f1!

1
e2 ix/2

&
a†~2p,u2 ,f2!D N

u0&, ~43!

where
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a†~6p,u,f!52
sinue2 if

&
a1

†~6p!1cosua0
†~6p!

1
sinueif

&
a21

† ~6p! ~44!

and the creation operatorsam
† (6p) are the~obvious! gener-

alization of thea†(6p)’s used in Sec. V@25#.
Assuming that the detectors measure the spin of the a

as well as its position, we find that the probability density f
finding n atoms atx1 ,...,xn with Sz valuesm1 ,...,mn is as
follows.

~1! Coherent states:

r~x1 ,m1 ,...,xn ,mn!'E dx

2p )
l

Rml

3~pxl1x/2,u1 ,u2 ,f12f2!.

~45!

~2! Singlet states:

r~x1 ,m1 ,...,xn ,mn!'E dxV1dV2

~2p!3 )
l

Rml
~pxl

1x/2,u1 ,u2 ,f12f2!, ~46!

where, to zeroth order inp/K,

Rm~pxl1x/2,u1 ,u2 ,f12f2!

5
~dm,0

1 !2~u1!1~dm,0
1 !2~u2!

2
1dm,0

1 ~u1!dm,0
1 ~u2!

3cos@2pxl1x1m~f22f1!#. ~47!

By averaging Eq.~45! over all directions for both conden
sates, the indistinguishability between the coherent and
singlet states becomes obvious. What that means is that
single run of the experiment, the interfering condensates
have as if they were in coherent states. If the initial state
product of two singlet states, a~coherent-state! direction is
chosen randomly for each condensate, and from the a
ments of Sec. V a relative phase between the condensat
also chosen randomly.

Now we calculate the probability of finding a certain de
sity distribution~which is now a three-component quantity!.
The results apply for both a uniform distribution of cohere
states and a product of two singlet states. The calcula
parallels that of Sec. V. Therefore, we shall skip some of
intermediate steps. The probability of finding the density d
tribution $kl ,m% ~where l and m are spatial and hyperfine
indices, respectively! is given by

P~$kl ,m%!5E dxdV1dV2

~2p!3 F~$kl ,m%ux,u1 ,u2 ,f1 ,f2!.

~48!
4-8
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where

F~$kl ,m%ux,u1 ,u2 ,f1 ,f2!

'S n

~2p!3K21) l ,mkl ,m
D 1/2

expF2n(
m

GmG ,
~49!

Gm5
K

n2 (
l

Fkl2
n

K
Rm~pXl1x/2,u1 ,u2 ,f12f2!G2

Rm~pXl1x/2,u1 ,u2 ,f12f2!

'E dx
@ f m~x!2Rm~px1x/2,u1 ,u2 ,f12f2!#2

Rm~px1x/2,u1 ,u2 ,f12f2!
,

~50!

and f m(x) is a smooth function defined betweenx52 1
2 and

x5 1
2 such thatf m(Xl)5Kkl ,m /n. The probability is maxi-

mized whenG15G05G2150, i.e., when f m(x)5Rm(px
1x/2,u1 ,u2 ,f12f2) for somex, u1 , u2 , f1 andf2 @26#.

Unlike scalar condensates where interference fringes
obtained in every run of the experiment, the appearanc
absence of interference fringes has a probabilistic natur
the case of spinor condensates. From Eq.~47! we can see
that unlessu15u2 , the visibility of the interference fringes
will be less than 100%. The visibility of them component of
the interference pattern is given by

Vm[
Rm

max2Rm
min

Rm
max1Rm

min 5
2dm,0

1 ~u1!dm,0
1 ~u2!

~dm,0
1 !2~u1!1~dm,0

1 !2~u2!
. ~51!

In particular, ifu150, u25p/2 ~or vice versa!, the visibility
is zero and there are no interference fringes. Notice, h
ever, that if thez axis of the detectors is rotated to a directi
perpendicular to both (u1 ,f1) and (u2 ,f2), one sees inter-
ference fringes with 100% visibility. Thus, the interferen
pattern depends not only on the relative angle betw
(u1 ,f1) and (u2 ,f2), but also on the quantization axis o
the detectors. This is a well-known phenomenon in neut
interference experiments@27#.

The total densityr(x)5(n/K)SmRm(px1x/2,u1 ,u2 ,f1
2f2), however, must be rotationally invariant~under rota-
tions in spin space!,

Vr[
rmax2rmin

rmax1rmin 5ucosuu, ~52!

where u is the angle between (u1 ,f1) and (u2 ,f2). If u
50, the total density shows interference fringes with vani
ing minima ~100% visibility!, whereas ifu5p/2, the total
density is constant in space~0% visibility!. In an ensemble of
measurements, one finds a uniform distribution of all valu
between 0% and 100%.

VII. CONCLUSIONS

We have shown that a measurement based on the d
tion of a small number of atoms leaving a Bose-Einst
condensate cannot be used to distinguish between an an
02360
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romagnetic coherent state and a spin-singlet state. A sin
state will be projected,because of the measurement, closer
and closer to a coherent state. Atom loss from the conden
has the same effect as a detection measurement, and t
fore it provides a mechanism for spontaneous symme
breaking. We have neglected the effect of spin-depend
interatomic interactions on the dynamics of the condens
Those effects can be significant if the relevant energies
large compared to the inverse of the measurement ti
However, they do not affect our result that one needs
measure occupation numbers to a relative accuracy b
thanN21/2 in order to distinguish between a coherent and
singlet state.

We have also shown that interference experiments can
be used to distinguish between the two states in question
have studied the possible interference patterns produce
two overlapping spinor condensates and shown that the
pearance or absence of interference fringes has a proba
tic nature. One amusing result is that the interference pat
depends not only on the relative orientation of the spin sta
of the overlapping condenstes, but also on the quantiza
axis of the atom detectors.
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APPENDIX: OVERCOMPLETENESS AND
QUASIORTHOGONALITY OF COHERENT STATES

In this appendix we demonstrate two useful properties
coherent states of spinor condensates, namely, overcomp
ness and quasiorthogonality. The former means that any s
of the condensate containingN particles can be expressed

uC&5E dVc~u,f!uN,u,f&, ~A1!

wherec(u,f) is some function ofu andf. For example, the
complete basis defined by the total spin and thez component
of the total spin of the condensate@28# can be written as

uN,S,Sz&5const3E dV YS,Sz
~u,f!uN,u,f&. ~A2!

The states~A2! transform in a manner similar to the sphe
cal harmonicsYS,Sz

under an arbitrary rotation, and they po
ses a nonzero norm. Thus, completeness~or overcomplete-
ness! is proved. Quasiorthogonality follows from

^N,u1 ,f1uN,u2 ,f2&5~cosu!N, ~A3!

whereu is the angle between two vectors defined by (u1 ,f1)
and (u2 ,f2). For largeN the inner product is nonvanishin
4-9
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at two points: when the two directions are parallel or an
parallel. It can be approximated by

^N,u1 ,f1uN,u2 ,f2&'
2p

N sinu1
@d~u12u2 ,f12f2!1d~u1

1u22p,f12f26p!#. ~A4!

The plus sign in front of the secondd function in Eq.~A4!
would be replaced by a minus sign ifN were odd. The state
obtained by rotating~u,f! to its antiparallel direction is the
same state~except for a possible change of sign!. Therefore
we shall, with no loss of generality, restrict the basis sta
. P

is
se

ig

ev

t i
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and the integrals to the upper hemisphere, i.e.,u1 , u2 range
from 0 to p/2. One has to be careful that Eq.~A4! applies
only when the coefficientc(u,f) varies slowly inu andf. It
cannot be applied to states with largeStotal ~e.g., the ferro-
magnetic ground state!, since the functionYS,Sz

in Eq. ~A2!

changes more and more rapidly with increasingS. On the
other hand,S25Sz50 for the singlet state and the coefficie
c(u,f) in Eq. ~A1! is independent ofu andf

c~u,f!5
AN

2p
. ~A5!
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