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Optimization of population transfer by adiabatic passage
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We examine the adiabatic limit of population transfer in two-level models driven by a chirped laser field. We
show that the nonadiabatic correction is minimized when the adiabatic eigenenergies associated to the dynam-
ics are parallel. In the diagram of the difference of the eigenenergy surfaces as a function of the parameters,
this corresponds to an adiabatic passage along a level line. The analytical arguments are based on the Dykhne-
Davis-Pechukas treatment. We illustrate this behavior with various examples.
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[. INTRODUCTION lines The goal of this paper is to show for a class of models
thatthe passage along these level lines in the adiabatic re-
It is well known, since the prototype model of Landau andgime minimizes the nonadiabatic correction and that it cor-
Zener[1,2], that two energy levels coupled by an appropriateresponds to the minimum pulse area that minimizes them
time-dependent interaction can exchange population whehhe adiabatic criterion is thus reduced to the choice of a
they are brought through resonance adiabatically. The instafevel line, corresponding to the choice of a chirp width.
taneous eigenenergies as a function of time yield generally In the next section, we establish the model and recall
an avoided crossing that allows to describe the dynamics igome well-known results. The third section is devoted to the
the adiabatic regimgl—11]. In the context of the atom-laser proof of our statement with arguments based on the Dykhne-
interaction, this model describes a two-level atom driven byDavis-Pechukas formula. In Sec. IV and V we apply it to
a pulsed laser field chirped around the one-photon resonancggveral examples. In Sec. VI, we discuss the incidence of
in the rotating wave approximatioi2,13. Superadiabatic ~counterrotating terms of a more realistic laser interaction on
schemes introduced by Berf$,14—1§ have allowed us to the obtained results and their domain of validity.
study in detail the effect of the nonadiabatic correcti(see
also, e.g., Ref417,18). On the other hand, independently of Il. THE MODEL
any adiabatic condition, exact analytic solutions have been }
derived for specific classes of mod¢lk9—31. The success We consider the scaled Schiinger equation(setting
of adiabatic passage to achieve population transfer betwedh=1)
guantum states lies on the fact that a unique statevector is

followed during the dynamics, which is continuously con- 4 $u(D)|
nected to the initial and final atomic eigenstates. Adiabatic 122 A(D=TH(N$(7), S(7)= bo(7) et @
passage has the advantage of robustness with respect to fluc-

tuatiqns and uncertai_nty of t.he parameters. A very importan\tNith the scaled time-=t/T and the model

practical advantage is the insensitivity with respect to the

pulse area. This is not so for the usual resonamtpulse” A7) Q(7)
interaction(corresponding to half a Rabi cy¢lavith a con- H(7)= . AQ€eR. 2)
stant resonant frequency, which requires a specific pulse area Q(7) A7)

to reach the complete population transfer. In this case the

dynamics can be analyzed as an initial projection on the twdn the context of the one-photon atom-laser field interaction,

dressed eigenstates, followed by an adiabatic passage aloifgthe rotating wave approximatiofRWA), the off-diagonal

these two branches of eigenstates, which interfere at the eruplingQ) characterizes half the one-photon Rabi frequency

of the pulse. The population transfer depends on a relativéproportional to the field amplitudeand the diagonal ele-

phase and is not robust with respect to the pulse area. mentA, the detuning from the one-photon resonafid. At
Geometrical tools have been developed to study the adigach time, the unitary transformation

batic passage: they allow to itemize qualitatively the possible

connections between the quantum states of a given model cog 0(7)/2] —sin 6(7)/2] @
[32,33. We extend these geometrical tools to show that they Uin=| . : 3
also allow to design theptimal time-dependent parameters siio(n)/2] - cog 6(7)/2]
leading to robust population transfer. ith
We consider the eigenenergy surfaces as a function of the!
time-dependent parameters of the coupling. A contour plot of ()
. ) o r
the difference of the eigenenergy surfaces exhilbiteel tan6(r)= — NEL 0=<6(7)<m, 4)
*Email address: sguerin@u-bourgogne.fr diagonalizes the HamiltoniaH( ),
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‘ _5(7') 0 _
UH(DU(=| o7 g, |=D(. ®
with
E(T)= VA% (1) + Q7). (6)

The Schrdinger equation can be rewritten as

N2 0
i~ ¢(7)=| TD(7)=iU"(7)-U(7) | 7),
Té(r)  iy(7)

in terms of the adiabatic statefg 7)=U"(7) ¢(7), with the
off-diagonal nonadiabatic coupling

A ¢ FIG. 1. Contour plot of the difference of the eigenenergies as a
y(7)= E dé(r) = E Q(DA(r) = Q(n)A(7) . (8) function of TQ) andTA (dimensionless Three different paths with
2 dr 2 A%(7)+Q2%(7) TA,=1 are shown(0) is a level linej(—) and(+) are, respectively,

paths below and above the level li(@®.

In the adiabatic limit, defined a$—«, the nonadiabatic
coupling y can be neglected and the dynamics follows therange of values yields in practice approximately complete
adiabatic states. transition. For example, for the Landau-Zener model, we

We assume that the interaction starts and ends at the reave a constant coupling)(7)=Q, and a linear chirp
spective scaled times;— —« and 7i—~, i.e., Q(7— 7)) A(7)=B?t. The probability of no transition i§1,2] P,( ;)
=Q(7—7;)=0. In order that the resonance is crossed, we=exp(—wa), where a=Q§/ B? is the adiabatic parameter.
also assume\ (7;)<0 andA(r)>0 implying 6(7;)—0", Significant deviations have been shown to exist for modifi-
i.e., the incoming adiabatic states are equal to the baresations of this mode(see, e.g., Refl9] and more recently
states: y(7)=¢(7), and 6(r)— 7, i.e., the outgoing Ref.[35]).
adiabatic states are equal to the bare ones up to an irrelevant In this paper, we look for a strategy to obtain thatimal

geometrical phasg84] with interchanged labels population transfer with respect to the pulse area and to the
chirp width, that takes into account the robustness of the
[1(70), (7)) 1= [ — dal7), (7). (9 process. We consider a process robust if significant local

states. The geometrical Berry phase is herer 0 when the  gjyey from nonadiabatic processes. For a given pulse shape,

adiabatic following is, respectively, along the componentsyeai amplitude and chirp form, these corrections can be
¢1(7) or Yp(7). The fact that only these two possible geo- e arbitrarily small by taking long-enough pulses. We

Show that this optimal strategy consists in following a level
line of the contour plot of the difference of the eigenenergy
surfaces shown in Fig. 1.

parameters are independently varigg#f]. We assume the
initial condition [ ¢1(7)=1,,(7;)=0]. We study the final
probability of no transition between bare statPs(7¢)
=|¢1(75)|2, which corresponds to the probability of transi-
tion between the adiabatic states. We refePi@r;) as the
final nonadiabatic correction. We haw,(7;)—0 in the A. The dynamics in the parameter space

adiabatic limit. , We analyze the final population transfer for different tra-
We remark that, if\(7) =0 for all time (exact resonange  joctories in the parameter space in the adiabatic limit. The
we havey(7)=0 and independently of any adiabatic condi-{5iectories are bounded: they start and end with finite values
tion the exact solution reads of the detunindA (7)| =|A ()| = A,. Figure 1 shows a con-
. tour plot of the difference of the eigenenergy surfaces as a
|¢2(Tf)|2:SinZ{TJ dTQ(T)}_ (10 function of the two scaled parameter§) and TA. Accord-
7 ing to the eigenenergie®), the contour plot displays level

IIl. OPTIMAL ADIABATIC PASSAGE

. ) ) lines as half circles given by
Thus in exact resonance there is a direct dependence of the

population transfer on the pulse area. Q2+ A2=AZ, (11
For a given model, we can define an adiabatic parameter
that measures the degree of adiabaticity and for which aith radius A, and centerQQ=0, A=0. We are going to
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FIG. 2. Schematic eigenenergies as a function of time for the

three typical path$-), (0), and(+) of Fig. 1.

compare the transfer following the level lines given by
circles with one-parameter families of other trajectories, tha
we choose to be ellipses. Three examples of trajectories are
drawn in Fig. 1. The trajector{0) is a level line. The trajec-
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Py(74)~ |eTPl7)]2 (163
W672Tlm D(TC), (16b)
where
D(Tc)zzf ‘dr&(7) (17)
0

is the integration of the analytic continuation of the differ-
ence of the eigenvalues up 19, one of the complexross-
{ng pointsof the eigenvalues defined by

&(1)=0, (18

tories (+) and(—) correspond to half ellipses of minor and lying in the uppercomplex r plane.

major axis of respective lengthA2 and )., centered in

2

The criterion to choose the crossing poiathich is not
necessarily unigue nor the closest one to the real axis, see
below) has been established in R¢¥] and for the cases

n where many crossing points are required, the forniligg

1 =0,A=0, and of respective equation
(12 . A o
has been generalized in RE8]. The analysis is based on the

Q A 2_1
a. =1
Stokes lineglefined as the set of pointsin the complex

Ao
with 1 _ <A<, . To parametrize these trajectories as aplane such that
function of time, we assume a given smooth pulse shape 0
<A(7)<1, maximum fort=0, related to the coupling by

Im D(7)=Im D(7,)=const. (29

Q(7)=QoA(7). An algorithm to construct numerically the Stokes line is de-
scribed in the Appendix. The crossing points, denoted
7" ,n=1N, that one has to take into account are the ones

connected by the Stokes line closest to the real axis. If there

The detuning is then given by

A(7)=A40f(7), (13 are several crossing points on this Stokes line, it has been

h shown[8] that one has to replace the teg?("® of formula
wit (1638 by a coherent sum of exponentials, one for each cross-

E ing point connected by the lowest Stokes line,
f(T)=7\/1—A2(7'). (14) N 5
Py(71) | D &P (20)
This parametrization implies n=1
&r)= \/A§+(Q(2)—A§)A2(r). (15) The required hypothes|g,8] for the validity of this formula

are(i) £&(7) does not vanish for reat (e.g, no crossing at
infinity) and (i) £&(7)is analytic and single-valued through-
out the region from the real axis to the relevant Stokes. line
We remark that for complex Hermitian Hamiltonians, with
three time-dependent parameters, this formula has to be com-

For the trajectorie$0), (—), and(+), we have thus, respec-
tively, Qp=A47,Q0=Q_<Aq, andQy=Q_,>A,.

It is important to note that, since we assume thét) has
a maximum fort=0, the difference £(0) of the eigenener- _
gies att=0 has aminimum for the trajectories below the Plétéd by geometrical prefactofs, 7]. _
level line corresponding to aavoided crossingegime|[tra- In the cases we studgharacterized by the quantity5)],
jectory ()] and amaximum for the trajectories above the Ed- (18) gives
level ling corresponding to a two half-avoided-crossing re-
gime [trajectory(+)] (see Fig. 2

. . ) A7) =xi——= for Qy>A,, (219
Although the choice of a one-parameter family of ellipses Qg— Ag
for comparison with the circular level lines is certainly not
the most general one, it gives a simple and convenient way Ao
of illustrating the difference in transfer efficiency. A(7e)= iw for Qg<A,. (21b
0 *%0

B. Optimization by the Dykhne-Davis-Pechukas formula When the eigenenergies are paralle., follow a level line

The Dykhne-Davis-Pechuka®DP) formula [3-5] al-  Qy=A;), we can calculate the limits of the transition points
lows to calculate in the adiabatic asymptotic limit>c the  from above and from below a level line.
probability of the nonadiabatic transitions as an exponential The DDP formula(20) indicates that the dominant nona-
decay. It reads in the simplest case diabatic correction can be made to vanish
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P1(7¢)~~0, (22
in two different ways{i) if each of the exponents in E(RO)
tends to infinity, i.e.,

Im 'D[Tgn)]—>+oo,

for all n, (23

or (i) by destructive interference of the sum of nonzero ex

ponents in Ref(20).

We consider a particular type of pulse shapes given b

entire analytic functiong\ (7) that satisfy the condition

A(1)— o Im7—oo, (24

if and only if

PHYSICAL REVIEW A65 023409

This claim will be shown in some examples; it can be also
intuitively seen as follows: Below the level lind3,<Ag,
where the eigenenergies exhibit an avoided crossing, the rel-
evant crossing point will be generically unique. The adia-
batic regime will be better for higher pulse amplituflg
below the level lines. Above the level lin€s,> A, where
the eigenenergies exhibit a maximum, the relevant crossing

points will be generically multiple and will lead to interfer-
nces. We can intuitively understand this fact, considering
hat the eigenenergies start and end in the middle of an
avoided crossingsee Fig. 2 Thus in the adiabatic regime,
the level linesQ y=A, can be seen as a boundary between
decreasing and oscillating regimes for the nonadiabatic cor-

An example of this class of functions is the Gaussian pulserection. The minimum pulse area corresponding to the zero

A(r)=e"" (253

— e—(ReT)Ze(Im T)Ze—zi RerIm T (25b)

For this class of functions we can conclude using &4)
that

|Qo—Ag|—0 if and only if Im7,—% (26)

and further from Eqs(17) and (15)

lim  ImD(7)=2 Imf drAZ=. (27)
[29—A0|—0 0
Therefore, from Eq(20), we conclude that
lim  Py(7)=0, (28
[29—A0|—0

i.e., for the class of pulse shapes satisfying Ez2q) the

of the dominant nonadiabatic correction will be given for the
adiabatic passage along a level line.

If £&(7) has one finite singularitfor more, which we
denoter, the circular level linegQy—Aq—0 can imply
that 7.— 75, from Egs.(21). In this case, Proposition A does
not hold. We will however see in Sec. 1V, through examples,
that the level lines will still characterize a boundary between
decreasing and oscillating regimes for the nonadiabatic cor-
rection, and more importantly th#ttey still converge in the
adiabatic limit to the first minimum of the nonadiabatic cor-
rection

The level lines can thus be seen athieeshold character-
izing a minimum pulse area beyond which we obtain efficient
robust adiabatic passage

C. Estimation on the adiabatic regime: Choice of a level line

The nonadiabatic correction given by the DDP formula
are valid in the adiabatic regimg&—«. In this section we

dominant nonadiabatic correction given by the DDP formuladiscuss a rough determination of this adiabatic regime in

(20) vanishes for the level lines.

This argument implies thdt) is achieved by the circular

level lines:

Proposition A.Under the hypothesis tha(7) is entire
and that forx real, there exist finite complex numbers and
z_ independent of such that, for all reay,

lim A(x+iy)=z., (29

X— F oo
then

|Qo—Ag|—0 ifand onlyif ImD(7.)— +o. (30)

terms of the parametef3,A of the model. We formulate a
criterion that allows to determine the approximate extent of
the adiabatic regime.

The analysis in terms of the DDP formula leads to the
conclusion that at any level line the nonadiabatic transitions
vanish. In this context all the level lines seem equivalent.
There is, however, a clear difference among the level lines
observed in the numerical simulations: level lines with small
values ofAgT=Q,T produce larger transition rates than the
ones with largeA,T=QT (see next sectionsThe differ-
ence can be attributed to the fact tha\gT= Q4T is small,
then the system is far from the adiabatic regime, and the
DDP formula does not give an accurate estimate of the cor-

We conclude that under the condition of Proposition A rections. The nonadiabatiexponential correction given by
the level lines are optimal for adiabatic passage in the sens¢he DDP formula at the end of the pulse is beyond any power
that they are the adiabatic path for which the nonadiabaticof 1/T. We can, however, estimate the validity of the adia-

correction of the DDP formula vanish.

batic regime that coincides with the validity of the DDP for-

We have already noticed that destructive interferences imula by making the first-order correction of the perturbation
Ref. (20) can also lead to vanishing dominant nonadiabaticheory small.

correction. We will, however, see the following restitie

First-order perturbation theory on the time-dependent

level lines correspond to the smallest pulse areas that mak8chralinger equatior{7) with respect to the small parameter
the dominant nonadiabatic correction vanish according to1l/T gives approximately the correction, after integrating

Eq. (30)

once by parts,
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\

Y(S)  irrsaau |
me 7i . (31)

Ti

Notice that if we consider the result at the end of the pulse,

we are left with a correction including the initial and final %
first derivatives of the pulse. Higher-order terms involve suc- >
cessive derivatives oy. Thus if the parameter@(7) and g
A(r) are not smooth at the early and final times, this gives D
the main contribution to the nonadiabatic correction g
[36-38. -
Considering the intermediate times and the first-order per- [
turbation theory(31), we thus take (@) o
T
C
| ¥( 7')| 0
2Te(r) (32

as a characterization of the adiabatic regime.
On a level line, we have&(r)=Aq,Q(71)Q(7)

+A(7)A(r)=0, which gives forA#0, @
o
Q| A 5
The condition(32) becomes -
Tags 2O (34)
O 4J1-A2(r)’ 0 . . . . .
-3 -2 -1 0 1 2 3
Thus the adiabatic criteriofand the choice of a level lindgs Real axis
given by the condition34). FIG. 3. Stokes lines in the complex plane ©ofdimensionless
for the Gaussian pulse shap@) for Qq/Ay=1/2<1 and(b) for
IV. EXAMPLE WITH GAUSSIAN PULSES QOy/Ay=2>1. The first crossing points are marked by circles.

We analyze in this section the Gaussian pulse

1 2 QZ_AZ
, Vo= \/52+ 2n——> 72, s=In—"2. (39
Ay(1)=e""", (35 2 Ao

which is entire and satisfies the conditions of Proposition Al N€ Stokes lines are displayed in Fig. 3. Rog<A,, the
[for this pulse shape, the square root of Etf) does not Stokes line closest to the real axis crosses the unique cross-

) X . . 0 . .
produce any branch poihtFor comparison with the results N9 point 78 )_— i/B. ForQo>A,, the Stokes “ne.CkiSSSt to
of the next section, in the figures we use the normalizedhe real axis connects the two crossing poinfs ¥=

pulse ared)o TS 2drA () 7= QyT/ /7. +yo+ 6+iVy,— 6. We can see that, denoting the rel-
For Q,<A,, the crossing points are given by evant crossing poifg) on the Stokes line closest to the real
axis, we have liqy _a |.olm 7=+, which is in agree-
V2715 =+ o — B+iVa,+ B, (36)  ment with proposition A. We also have lig)_ .o Rer

=0. (These two last results are also true for all the other
crossing points (™" )
A Figure 4 shows the\/@ntour plot of Idg ()] as a func-
_ @222 _ 0 tion of TAy and TQ /7. We can observe foA;=0 (no
ap=VpTEnTr, - B=In JAZ=q?’ S chirp and Zero dettfnir)goscillations of the popl(J)Iation be-
tween O and 1, which correspond to the well-known Rabi
for n zero or a positive integer, and, f6r,> A, by oscillations. In this mod€(l2), the complete population trans-

fer occurs exactly whef, satisfies
V2745 M=+ [y + 8+iVya— o, (39)

with

+ o 1
TQOJ A(n)dr= k+§)7r, kinteger, (40

—oo

with
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8 —2TIm D[rg*)]leiT ReD[7{")] | oiT ReDI7{ 112

(42

Pi(71)~e

We also remark that, since we havéReD[7{"]|
#|ReD[ 7{ ]|, the maximum of the oscillations depends on
Q,, as seen on the contour plot in Fig. 4.

For Qg<A, the single transition point implies the prob-
ability with the exponential decay rate:

Pl(Tf)WeizT Im D(TC)_ (43)

For this pulse shape, the adiabatic criteri@4) on the
level linesQy=Ag is

1
TA> ~0.35. 44

0.5 1 15 2 25 3 35 4 45

TQ/n'"? We remark that the numerical results are in good agreement
_ with the adiabatic estimates for quite small valuesT af,.

FIG. 4. For the Gaussian pulse shape, contour map of natural Tg jllustrate this criterion, we compare the robustness for
logarithm of the nonadiabatic corrections at the end of the pulsghe |evel line TA,=TQ,=1.75=5x%0.35 [which satisfies
log[Py()] as a function of the normalized pulse a®@,/\m and  guite well the adiabatic criteriod4)] with the result for
the chirp widthsTA, (dlmen3|oplesb Darker points correspond .to Ao=0 (without chirp for which the complete transfer occurs
smaller P,(«). The dashed line corresponds to the level ImesfOr TQ,~0.886[Eq. (40)]. Along the level line, we obtain
Bo=0- P1(+%>)~0.0015. If we now add an error of 15% on the

] ) . _ pulse-peak amplitude, it leads fary=0 to a lossP;(+x)
according tq Eq(10). However, this population transfer is g 54 [using Eq.(10)]. If we follow the level line TA,
not robust with respect to the pulse area as can be seen by tl;e]—QO: 1.75) with the same error on the pulse-peak ampli-
strong gradients of the population along=0 for the(darkl  y,qe it leads to the losB, (+)~0.01. Thus with an error

values of(), satisfying Eq.(40). _ _of 15% on the pulse-peak amplitude, the loss is five times
We remark that the contour lines emerging almost verti-gmaiier on the level line than fok,=0 for an amplitude
cally from A;=0 can be interpreted as follows: for a given only twice bigger.

pulse area, the robustness is quite good with respeai,fo
close toAy=0, in this model.
The Rabi oscillations extend continuously fog# 0 with

a larger width for largefA,. For largerTA,, these oscilla- We analyze in this section different pulse shapes that do
tions become closer to zero in a large region: this correnet satisfy the conditions of Proposition A because they have

sponds to the robust almost complete population transfer ofingularities:(i) secant hyperbolic(ii) Lorentzian, andiii)
the adiabatic regime. As expected from Proposition A, thesine squared,

line of minimumP,(7¢) converges very fast in the adiabatic

limit T— +< to the level lines)y=A,. We remark that the (i) A(7)=seclir), (4539
minimum pulse area leading to taonrobusk transfer is

obtained forAy=0 with k=0 in Eqg. (40).

V. EXAMPLES WITH COMPLEX SINGULARITIES

It is important to note thathe level lines appear as a (i) Ag(r)= 1 (45h)
boundary between decreasing and oscillatory regimes for the 1+72
nonadiabatic correction R(7¢), as shown by Fig. 4. This
can be explained precisely by the two relevant crossing (i) Ag(7)=sir(mr) for 0<r<1, (450
points occurring forQ)>A, as follows. Using the fact that
&(7) is even with respect to the imaginary partmfwe can —0 elsewhere (450)

calculate that

The first two have singularities in the complex plane and
ImD[ {7 =ImD[7{ ], (41a  thus proposition A is not applicable. The last one is not real
analytic so that the DDP formula does not apply. In order to
compare the effect of these different pulses, the figures are

(+) ()
ReD[r."’]#ReD[7¢ *]#0, (41D piotted with the normalized pulse ar€kT[*ZdrA (7)/ .
[We have [Zdrsech¢)=m, [fidr/(1+7%)=m, and

implying an oscillatory behavior fof)y> A, fédrsinz(arr)=1/2.]
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A. Secant hyperbolic pulse shape N ﬁe/,
(+1)
T

The secant hyperbolic coupling shape(r)=sech) c
[which leads tof(7)=tanh{)] does not satisfy the condi- M
tions of Proposition A since it contains singularities located X
at -% ot ) 1
C
) 1 > ———
1o =l n+§ , (46) o
% fa,t::,O)
for n zero or a positive integer. FdRy<A,, the crossing E,f .
points are all along the imaginary axis, ><T‘s°)
o | (1), 3 @
Te V=il n+§ iarcsmA—, (47
0 0 s . : .

and forQy>A, they appear as pairs perpendicularly to the
real axis,

. _ NQG—AG 1
Tg—vn):iarsmhA—-H?T n+§ . (48)
0

The crossing points and the Stokes lines are displayed in Fig.
5. ForQy>A,, the closest Stokes line to the real axis con-
nects the two crossing point§™? . ForQo<A,, the closest
Stokes line to the real axis connects the two crossing points
779 and 7" however through the singularityr®). Be-
cause of this singularity, only the crossing poiit % below

it is taken into account. We can calculate the result of the
DDP formula(20) in the adiabatic limifT — + o, 0

-3 -2 -1 0 1 2 3
Pi(7)~exd —27T(Ag— VAZ—032)] for Qu<Ao, Real axis
(493

Imaginary axis

FIG. 5. The first Stokes lines in the complex planerdbr the
secant hyperbolic pulse shafde) for Qy/Ay=1/2<1 and(b) for

Q0y/Ay=2>1. The first singularities and crossing points are, re-
[02_ A2\a—27TA 0770
Py(71)~4 cod(mT\Q5—Ag)e 720 for Qp>A,. spectively, shown with crosses and circles.

4sh between the two crossing pointd™® and "9 can be
These results are compatible with the known exact resultfined as if the singularity was ignored.
(for any regime, adiabatic or nof20,25 The results are collected in the contour plot of{IBgd7)]
as a function ofTA, and TQq in Fig. 6. The qualitative
P.(71)=cost(7T\A5— Q) seck(7A,T). (500  aspects of this contour plot are very similar to the one ob-
tained for the Gaussian pulse. From the preceding formulas

For the level line€)y= Ay, all the crossing points tend to the of P1(7;), we can clearly recover the two regimes already

singularities by pairs noticed for the exponential pulse: a nonoscillatory regime for
0y<Ay, followed by an oscillatory regime fdy> A, with
lim A== (51)  the boundary given by the level linés,=A,. The optimal
12 —40/—0 transition occurs fof),>A,, when the cosine of Eq49b)

) ) ) ) _becomes zero, more precisely when
The result of the nonadiabatic correction can be found in this

case by the formul&9b) in the limit Qy— A, 1/1 2
Q3=A3+ ?(§+n , ninteger, (53
Pi(7¢)~4e 2m80T, (52

We remark that the formul&49g in the limit y— A, does which in the adiabatic limifr —: becomes

not give the correct limit. It is, however, correct if, instead of Qp=Ao. (54)
taking the closest crossing point to the real axis, below the

singularity, the(two) closest onegonnected with the same The optimal transition occurs thus again along a level line in
Stokes linesare taken into account in the DDP formul20) the adiabatic limit. The criteriof34) for a level line to be
[9]. We have indeed noticed numerically that the Stokes linesptimal becomes here
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AL
c

KT

Imaginary axis

FIG. 6. For the secant hyperbolic pulse shape, contour map of
log[P4()].

TAy>1/4. (55)

Imaginary axis

Figure 6 shows that the lines & (7) converge less fast
to the level lined),= A, than for the exponential shape. We (b)
remark that Eq(53) shows that for a given finitd' A, the
level lines always underestimate the optimal valud 6.

We can also see that for a given pulse area 0 - . . . .
QonfzdrAj(r), the transfer is more efficient for the se- = 2 - o 7 2 *
cant hyperbolic pulse than for the Gaussian pulse in the Real axis
sense that the same transfer is obtained for a lawerOn FIG. 7. The Stokes lines in the complex plane ofor the
the other hand, for a given chirp widtty, the transfer is less Lorentzian pulse shapefa) for Q,/A,=1/2<1 and (b) for
efficient than for the Gaussian pulse in the sense that th@,/A,=2>1. In each case, the singularity and the crossing points
same transfer is obtained for a larger pulse area. These twave, respectively, shown with a cross and circles.
preceding remarks can be easily explained by the facts that
the pulse area is smaller for the Gaussian pulse and that the We see that, like for the secant hyperbolic shape, for the
level linesA,=(1, depend on pulse peak amplitudes and notlevel lines|Q,—Ay|—0, the crossing points go to the sin-
on pulse areas. gularity of A,(7). We do not have known solutions for this

case. We obtain along a level line

B. Lorentzian shape
lim  ImD(7)=2A,, (58

The Lorentzian coupling shap&;(7)=1/(1+ 72) con- 0|0

tains one singularity in the upper compleylane, located at

which, taking into account the two crossing points™
joined by the Stokes line through the singularity as for the

The crossing points are double firy<A,, secant hyperbolic pulse, leads to

Ts=I.

02 Py(7()~de™ 44T, (59)
=il 1x\/1-— |, (56)
0 We note thatP(7;) is less favorable than for the secant
hyperbolic shapgto be compared with the formui®2)].
and for(}o> Ao, As with the two preceding cases, we have the oscillatory
and nonoscillatory regimes separated by the level lflgs
\/Ergi)= + /%_1“ /%+1. (57) =Ay ir_1 Fig. 8 of the contour plot oP( 7). The first mini-
Ag Ay mum line of P,(7) converges to the level lineshe level
lines give again here the optimal transfer in the adiabatic
The Stokes lines are displayed in Fig. 7. limit.
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35

14

-16

-18

o 05 1 15 2
FIG. 8. For the Lorentzian pulse shape, contour map of TQ /2n

log[Py(><)].

25 3 35

) _ o o FIG. 9. For the sine-squared pulse shape, contour map of
For this shape, the adiabaticity criteri¢@4) on the level  |og[P,()].

lines is
1 = \*
Pi(7)~ 5| =a=| SIP(QT), (61)
1 4\TQ,
TAy> —=~0.35, (60)
22 o L .
which fits quite accurately the nonadiabatic corrections along
which is more restricitive than for the secant hyperbolicthe level lines for large)oT.
pulse.
VI. EFFECT OF THE COUNTERROTATING TERM OF A
C. Sine-squared shape LASER-TWO-LEVEL-ATOM INTERACTION
The sine-squared coupling shapg(r) =sir(w7) is not In this section we study a two-level atom interacting with

real analytic and the DDP analysis does not apply. Figure @ pulsed and chirped laser field, taking into account the coun-
shows the contour plot d?,(7;) as a function ofTAy and  terrotating term. The Hamiltonian, associated with the $chro
TQy/(27). The minimum of probabilityP,(7;) does not dinger equatior(1), is in this case

converge to the level lineQ = A, which thus have no par-

ticular sense in this case. In fact, the nonadiabatic correction,

as explained in Sec. Ill C is given by the nonsmoothness of H(7) = “o
the pulse ends, which, in this example, is characterized by 2
discontinuous second derivatives. Thus, the nonadiabatic
correctionP,(7;) is of order 1T% in the adiabatic limitT  with the atomic Bohr frequency,, the dipole momenj,

— o0, We can estimate it more precisely along the level lineghe electric-field envelop&(7) and its phasep(r). After a
Q=4 using the first-order perturbation theory as describedime-independent unitary transformation that does not
in Sec. Il C. We obtain approximately after integrating twice change the probabilities, it can be rewritten as a sum of the
by parts RWA Hamiltonian(2) and a “counterrotating” Hamiltonian

-1 0
0 1

T 0 1
+%()cos¢(r) , (62

10

wOT—ZJTdSA(S)

|
| :

0 exp[ —2iT
—A(7) Q(7)

= Q
" am am]TR0 exp[ZiT

(63

on—Zf dsA(s)
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Toyn'?

FIG. 10. Level lines(full lines) associated to the eigenvalues
(66), for wT=50, compared with the circldas dashed lines, level

lines of the RWA Hamiltoniar(2)] . 0 65 1 %5 2 f,g 4 835 @ S
TQo/n

with the effective detunin
g FIG. 11. For the Gaussian pulse shape, contour map of

2A = wo— ¢ (64) log[ P4(**)] with the counterrotating term, fab,T="50. To be com-
' pared with Fig. 4.

and the Rabi frequency (2(7)=uE(7)/h. The dressed i i i ) .
eigenelements in strong fields can be obtained from the Flg>aussian pulseslescribed in Sec. Ivand with the “ellipse
quet Hamiltoniar(see, for example, Refi39,40). The DDP dynamlcs des_crlb_ed in Sec. lll A. We can see that for the
formula does not apply but we claim that the level lines stay€Vel lines satisfyingTQo>1/(212)~0.35 [see, Eq.(44)]
relevant to optimize the adiabatic passage. If the counterSay TQo/\m=5x0.35A/m~1) can be still considered
rotating term is sufficiently strongfor example, such that as optimal if Eq.(67) is also satisfied(say TQq/ /7
dynamical resonances appeft0]), the level lines are =\2Twy/5/\7~2.5).
strongly modified and are not circles anymore. In this sec-

tion, we restrict the analysis of the effect of this counter- VII. DISCUSSIONS AND CONCLUSIONS
rotating term on the optimality of the level line as circles, in ) )
the standard RWA limit We have demonstrated that for models with an entire ana-
lytic pulse shape, the first minimum of the nonadiabatic cor-
0, A<wy, (65) rectionP,(7:)— 0 is obtained in the adiabatic limit when the

dynamics follows a level lineQ)g=A, in the parameter
and show that in this RWA limit the level line as circles are space. We have shown with the example of an exponential
still a good strategy for the control of population transfer. pulse that this first minimum converges very fast to the level
In the limit (65), we can calculate the dressed eigenvaluegine.

by perturbation theory39]: For a given pulse shape, the choice of the level line, cor-
responding to the choice of the chirp widti\g, has been

_Q%(7) E3(1)—2A(T)wy estimated with perturbative arguments. For pulses having

Ae(n)=2&8(7)+ 402 &(r) - (69 complex singularities, the demonstration is not valid. We

have, however, shown analytically with the examples of se-

The level lines associated to these eigenvalues, i.e., the tr§&nt hyperbolic and numerically with the Lorentzian pulses
jectories in the space paramete () such that\ . —\ _ that the Ievel_llneﬂ_o=A0 st|II_ converge to the_ first minimum
—const. are displayed in Fig. 10. From these eigenvaluegf the nonadiabatic correction, however, W|th_ a slower con-
(66), we can deduce the condition to recover level lines a¥€rgence than for the exponential pulse. This result can be
circles interpreted with the Dykhne-Davis-Pechukas formula. We
have indeed shown that this formula implies for these ex-
(TQ)?<2Tw,. (67) amples that the level lines are the boundary between regions
of a monotonic decreasing and of oscillations Bf(7y).
Thus we anticipate that the DDP analysis of the previousThus for a given width of chirping, the level line gives the
sections is still valid, i.e., that the level lines as circles opti-minimal pulse amplitude to be used to have complete trans-
mize the population transfer by adiabatic passage, when ther by adiabatic passage: Larger pulse amplitudes do not im-
condition (67) is satisfied. This is checked numerically in prove significantly the robust transfer. We also have charac-
Fig. 11 where contour plots of the nonadiabatic correctiorterized the regime of validity of our analysis for a more
with the counterrotating termT(wy=50) are drawn for the realistic laser interaction including a counterrotating term.
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In conclusion, we have shown that for two-level models : _

g Im[ t))y(t)]=0. A4
the optimal adiabatic passage occurs along a level line in the Np(r ()] A4
diagram of the difference of the eigenenergies as a functioDenoting y(t) = y,(t) +iy;(t), Eq. (A4) becomes
of the parameters. For problem witlilevel systems, this

result could be applied locally to design optimal time- Y (DR Vp(y() ]+ %(D)IM[Vp(¥(1))]=0.  (A5)
;jr(;[r)lg?gent parameters to achieve selective robust adiabatic We can obtain solutions of EGAS) by considering the
' following system of equations:
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whereo= *1. In the following, we choosg,= 7. since the

APPENDIX: ALGORITHM FOR THE STOKES LINES crossing point belongs to the Stokes line. We start at the
crossing point and we want to move along a Stokes line.
In this appendix, we present the method used to determindowever, the crossing point is an equilibrium point of Eq.
the Stokes lines. Stokes lines are defined as the set (AB). The Stokes lines are the associated stable or unstable
manifolds(depending on the choice ef=+1 oro=—1).

z=x+iy|Im ZJZ fo(s)ds|=Im ZJT‘(;‘) lo(s)ds|, In order to determine the stable and unstable directions, we
2 20 consider the Taylor expansion pfwritten as
dp ’
n=1,...N¢, (A1) p(2)= E(zo)(z—zo)JrO(z—zo) . (A7)

where 7", n=1N represent the crossing points and We diefine the real numbers and « such thatdp/dz(z)
Jp(s)=&(s) where &(s) is defined in Eq.6). In order to ~ =To€'“. By integrating we obtain

construct Stokes lines, we choose a parametrizagidh as Z ) |
s (A2) [ e e S SR
’ 0

with the condition y(to) =z,. We remark that the Stokes  Equation(A3) implies Infe'“?(z—z,)*?]=0. In terms of
lines are independent of the chosen parametrization. In thgolar coordinates Z—z,)=re'?, we deduce that there are
following, we take one crossing point and we make cal- exactly three Stokes lines of directiofisgiven by

culation with only one crossing point. The formulas we de-

termine later are valid foeach crossing point. From Eq. :E @ _
(A1) and Eq.(A2), we obtain the following equation: 0 3 ke 3’ k=0,1,2. (A9)
t . ¢ If we want to follow a Stokes line in a directiofy we have
Im tho Ve(y(1) y(Ddt|=Im ZLO Vp(s)ds|=const, to useoneof the two choices of sigr= =+ 1 in Eq.(A6), the

(A3) one which makes that direction unstable. In the implementa-
) tion of the algorithm, we solve EqA6) with an initial con-
where y(t) =dy/dt. Derivation of Eq.(A3) with respect to dition located at a small distance zf in the directions given

time implies that the functiony(t) satisfies by Eq.(A9).
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