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Optimization of population transfer by adiabatic passage
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We examine the adiabatic limit of population transfer in two-level models driven by a chirped laser field. We
show that the nonadiabatic correction is minimized when the adiabatic eigenenergies associated to the dynam-
ics are parallel. In the diagram of the difference of the eigenenergy surfaces as a function of the parameters,
this corresponds to an adiabatic passage along a level line. The analytical arguments are based on the Dykhne-
Davis-Pechukas treatment. We illustrate this behavior with various examples.
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I. INTRODUCTION

It is well known, since the prototype model of Landau a
Zener@1,2#, that two energy levels coupled by an appropria
time-dependent interaction can exchange population w
they are brought through resonance adiabatically. The ins
taneous eigenenergies as a function of time yield gener
an avoided crossing that allows to describe the dynamic
the adiabatic regime@1–11#. In the context of the atom-lase
interaction, this model describes a two-level atom driven
a pulsed laser field chirped around the one-photon resona
in the rotating wave approximation@12,13#. Superadiabatic
schemes introduced by Berry@6,14–16# have allowed us to
study in detail the effect of the nonadiabatic corrections~see
also, e.g., Refs.@17,18#!. On the other hand, independently
any adiabatic condition, exact analytic solutions have b
derived for specific classes of models@19–31#. The success
of adiabatic passage to achieve population transfer betw
quantum states lies on the fact that a unique statevecto
followed during the dynamics, which is continuously co
nected to the initial and final atomic eigenstates. Adiaba
passage has the advantage of robustness with respect to
tuations and uncertainty of the parameters. A very import
practical advantage is the insensitivity with respect to
pulse area. This is not so for the usual resonant ‘‘p-pulse’’
interaction~corresponding to half a Rabi cycle! with a con-
stant resonant frequency, which requires a specific pulse
to reach the complete population transfer. In this case
dynamics can be analyzed as an initial projection on the
dressed eigenstates, followed by an adiabatic passage a
these two branches of eigenstates, which interfere at the
of the pulse. The population transfer depends on a rela
phase and is not robust with respect to the pulse area.

Geometrical tools have been developed to study the a
batic passage: they allow to itemize qualitatively the poss
connections between the quantum states of a given m
@32,33#. We extend these geometrical tools to show that th
also allow to design theoptimal time-dependent paramete
leading to robust population transfer.

We consider the eigenenergy surfaces as a function o
time-dependent parameters of the coupling. A contour plo
the difference of the eigenenergy surfaces exhibitslevel

*Email address: sguerin@u-bourgogne.fr
1050-2947/2002/65~2!/023409~12!/$20.00 65 0234
e
n
n-
lly
in

y
ce,

n

en
is

ic
uc-
nt
e

ea
e
o
ng

nd
e

a-
le
el
y

he
f

lines. The goal of this paper is to show for a class of mod
that the passage along these level lines in the adiabatic
gime minimizes the nonadiabatic correction and that it co
responds to the minimum pulse area that minimizes th.
The adiabatic criterion is thus reduced to the choice o
level line, corresponding to the choice of a chirp width.

In the next section, we establish the model and rec
some well-known results. The third section is devoted to
proof of our statement with arguments based on the Dykh
Davis-Pechukas formula. In Sec. IV and V we apply it
several examples. In Sec. VI, we discuss the incidence
counterrotating terms of a more realistic laser interaction
the obtained results and their domain of validity.

II. THE MODEL

We consider the scaled Schro¨dinger equation~setting
\51)

i
]

]t
f~t!5TH~t!f~t!, f~t!5Ff1~t!

f2~t!
GPC2, ~1!

with the scaled timet5t/T and the model

H~t!5F2D~t! V~t!

V~t! D~t!
G , D,VPR. ~2!

In the context of the one-photon atom-laser field interacti
in the rotating wave approximation~RWA!, the off-diagonal
couplingV characterizes half the one-photon Rabi frequen
~proportional to the field amplitude! and the diagonal ele
mentD, the detuning from the one-photon resonance@12#. At
each time, the unitary transformation

U~t!5Fcos@u~t!/2# 2sin@u~t!/2#

sin@u~t!/2# cos@u~t!/2#
G , ~3!

with

tanu~t!52
V~t!

D~t!
, 0<u~t!,p, ~4!

diagonalizes the HamiltonianH(t),
©2002 The American Physical Society09-1
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U†~t!H~t!U~t!5FE~t! 0

0 2E~t!
G[D~t!, ~5!

with

E~t!5AD2~t!1V2~t!. ~6!

The Schro¨dinger equation can be rewritten as

i
]

]t
c~t!5FTD~t!2 iU†~t!

]

]t
U~t!Gc~t!,

5F TE~t! ig~t!

2 ig~t! 2TE~t!
Gc~t!, ~7!

in terms of the adiabatic statesc(t)5U†(t)f(t), with the
off-diagonal nonadiabatic coupling

g~t![
1

2

du~t!

dt
5

1

2

V~t!Ḋ~t!2V̇~t!D~t!

D2~t!1V2~t!
. ~8!

In the adiabatic limit, defined asT→`, the nonadiabatic
coupling g can be neglected and the dynamics follows
adiabatic states.

We assume that the interaction starts and ends at the
spective scaled timest i→2` and t f→`, i.e., V(t→t i)
5V(t→t f)50. In order that the resonance is crossed,
also assumeD(t i),0 andD(t f).0 implying u(t i)→01,
i.e., the incoming adiabatic states are equal to the b
states: c(t i)5f(t i), and u(t f)→p2, i.e., the outgoing
adiabatic states are equal to the bare ones up to an irrele
geometrical phase@34# with interchanged labels

@c1~t f !,c2~t f !#5@2f2~t f !,f1~t f !#. ~9!

Thus the adiabatic passage along an adiabatic state c
sponds to a complete transition in terms of the bare ato
states. The geometrical Berry phase is herep or 0 when the
adiabatic following is, respectively, along the compone
c1(t) or c2(t). The fact that only these two possible ge
metrical phases appear comes from the fact that only
parameters are independently varied@34#. We assume the
initial condition @f1(t i)51,f2(t i)50#. We study the final
probability of no transition between bare statesP1(t f)
[uf1(t f)u2, which corresponds to the probability of trans
tion between the adiabatic states. We refer toP1(t f) as the
final nonadiabatic correction. We haveP1(t f)→0 in the
adiabatic limit.

We remark that, ifD(t)50 for all time~exact resonance!,
we haveg(t)50 and independently of any adiabatic cond
tion the exact solution reads

uf2~t f !u25sin2FTE
t i

t f
dt V~t!G . ~10!

Thus in exact resonance there is a direct dependence o
population transfer on the pulse area.

For a given model, we can define an adiabatic param
that measures the degree of adiabaticity and for whic
02340
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range of values yields in practice approximately compl
transition. For example, for the Landau-Zener model,
have a constant couplingV(t)5V0 and a linear chirp
D(t)5b2t. The probability of no transition is@1,2# P1(t f)
5exp(2pa), where a5V0

2/b2 is the adiabatic paramete
Significant deviations have been shown to exist for mod
cations of this model~see, e.g., Ref.@9# and more recently
Ref. @35#!.

In this paper, we look for a strategy to obtain theoptimal
population transfer with respect to the pulse area and to
chirp width, that takes into account the robustness of
process. We consider a process robust if significant lo
changes in the amplitude and form of the pulse and of
chirp do not change significantly the final transfer probab
ity. In the strategies we choose the corrections come ex
sively from nonadiabatic processes. For a given pulse sh
peak amplitude and chirp form, these corrections can
made arbitrarily small by taking long-enough pulses. W
show that this optimal strategy consists in following a lev
line of the contour plot of the difference of the eigenener
surfaces shown in Fig. 1.

III. OPTIMAL ADIABATIC PASSAGE

A. The dynamics in the parameter space

We analyze the final population transfer for different tr
jectories in the parameter space in the adiabatic limit. T
trajectories are bounded: they start and end with finite val
of the detuninguD(t i)u5uD(t f)u5D0. Figure 1 shows a con
tour plot of the difference of the eigenenergy surfaces a
function of the two scaled parametersTV andTD. Accord-
ing to the eigenenergies~6!, the contour plot displays leve
lines as half circles given by

V21D25D0
2 , ~11!

with radius D0 and centerV50, D50. We are going to

FIG. 1. Contour plot of the difference of the eigenenergies a
function ofTV andTD ~dimensionless!. Three different paths with
TD051 are shown:~0! is a level line;~–! and~1! are, respectively,
paths below and above the level line~0!.
9-2
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OPTIMIZATION OF POPULATION TRANSFER BY . . . PHYSICAL REVIEW A65 023409
compare the transfer following the level lines given
circles with one-parameter families of other trajectories, t
we choose to be ellipses. Three examples of trajectories
drawn in Fig. 1. The trajectory~0! is a level line. The trajec-
tories ~1! and ~–! correspond to half ellipses of minor an
major axis of respective length 2D0 and 2V6 , centered in
V50, D50, and of respective equation

S V

V6
D 2

1S D

D0
D 2

51, ~12!

with V2,D0,V1 . To parametrize these trajectories as
function of time, we assume a given smooth pulse shap
<L(t)<1, maximum fort50, related to the coupling by

V~t!5V0L~t!.

The detuning is then given by

D~t!5D0f ~t!, ~13!

with

f ~t!5
utu
t

A12L2~t!. ~14!

This parametrization implies

E~t!5AD0
21~V0

22D0
2!L2~t!. ~15!

For the trajectories~0!, ~2!, and~1!, we have thus, respec
tively, V05D0 ,V05V2,D0, andV05V1.D0.

It is important to note that, since we assume thatL(t) has
a maximum fort50, the difference 2E(0) of the eigenener-
gies at t50 has aminimum for the trajectories below th
level line, corresponding to anavoided crossingregime@tra-
jectory ~–!# and amaximum for the trajectories above th
level line, corresponding to a two half-avoided-crossing
gime @trajectory~1!# ~see Fig. 2!.

Although the choice of a one-parameter family of ellips
for comparison with the circular level lines is certainly n
the most general one, it gives a simple and convenient
of illustrating the difference in transfer efficiency.

B. Optimization by the Dykhne-Davis-Pechukas formula

The Dykhne-Davis-Pechukas~DDP! formula @3–5# al-
lows to calculate in the adiabatic asymptotic limitT→` the
probability of the nonadiabatic transitions as an exponen
decay. It reads in the simplest case

FIG. 2. Schematic eigenenergies as a function of time for
three typical paths~–!, ~0!, and~1! of Fig. 1.
02340
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P1~t f ! ueiTD(tc)u2 ~16a!

 e22T Im D(tc), ~16b!

where

D~tc!52E
0

tc
dt E~t! ~17!

is the integration of the analytic continuation of the diffe
ence of the eigenvalues up totc , one of the complexcross-
ing pointsof the eigenvalues defined by

E~tc!50, ~18!

lying in the uppercomplext plane.
The criterion to choose the crossing point~which is not

necessarily unique nor the closest one to the real axis,
below! has been established in Ref.@7# and for the cases
where many crossing points are required, the formula~16a!
has been generalized in Ref.@8#. The analysis is based on th
Stokes linesdefined as the set of pointst in the complex
plane such that

Im D~t!5Im D~tc!5const. ~19!

An algorithm to construct numerically the Stokes line is d
scribed in the Appendix. The crossing points, deno
tc

(n) ,n51,N, that one has to take into account are the on
connected by the Stokes line closest to the real axis. If th
are several crossing points on this Stokes line, it has b
shown@8# that one has to replace the termeiTD(tc) of formula
~16a! by a coherent sum of exponentials, one for each cro
ing point connected by the lowest Stokes line,

P1~t f ! U(
n51

N

eiTD[ tc
(n)]U2

. ~20!

The required hypothesis@7,8# for the validity of this formula
are ~i! E(t) does not vanish for realt ~e.g., no crossing at
infinity) and ~ii ! E(t) is analytic and single-valued through
out the region from the real axis to the relevant Stokes li.
We remark that for complex Hermitian Hamiltonians, wi
three time-dependent parameters, this formula has to be c
pleted by geometrical prefactors@6,7#.

In the cases we study@characterized by the quantity~15!#,
Eq. ~18! gives

L~tc!56 i
D0

AV0
22D0

2
for V0.D0 , ~21a!

L~tc!56
D0

AD0
22V0

2
for V0,D0 . ~21b!

When the eigenenergies are parallel~i.e., follow a level line
V05D0), we can calculate the limits of the transition poin
from above and from below a level line.

The DDP formula~20! indicates that the dominant nona
diabatic correction can be made to vanish

e

9-3
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S. GUÉRIN, S. THOMAS, AND H. R. JAUSLIN PHYSICAL REVIEW A65 023409
P1~t f ! 0, ~22!

in two different ways:~i! if each of the exponents in Eq.~20!
tends to infinity, i.e.,

Im D@tc
(n)#→1`, for all n, ~23!

or ~ii ! by destructive interference of the sum of nonzero
ponents in Ref.~20!.

We consider a particular type of pulse shapes given
entire analytic functionsL(t) that satisfy the condition

L~t!→` if and only if Imt→`. ~24!

An example of this class of functions is the Gaussian pu

L~t!5e2t2
~25a!

5e2(Ret)2
e(Im t)2

e22i Ret Im t. ~25b!

For this class of functions we can conclude using Eq.~21!
that

uV02D0u→0 if and only if Imtc→` ~26!

and further from Eqs.~17! and ~15!

lim
uV02D0u→0

Im D~tc!52 ImE
0

`

dtD0
25`. ~27!

Therefore, from Eq.~20!, we conclude that

lim
uV02D0u→0

P1~t f !50, ~28!

i.e., for the class of pulse shapes satisfying Eq.~24! the
dominant nonadiabatic correction given by the DDP form
~20! vanishes for the level lines.

This argument implies that~i! is achieved by the circula
level lines:

Proposition A.Under the hypothesis thatE(t) is entire
and that forx real, there exist finite complex numbersz1 and
z2 independent ofy such that, for all realy,

lim
x→6`

L~x1 iy !5z6 , ~29!

then

uV02D0u→0 if and only if ImD~tc!→1`. ~30!

We conclude that under the condition of Proposition,
the level lines are optimal for adiabatic passage in the se
that they are the adiabatic path for which the nonadiaba
correction of the DDP formula vanish.

We have already noticed that destructive interference
Ref. ~20! can also lead to vanishing dominant nonadiaba
correction. We will, however, see the following result:the
level lines correspond to the smallest pulse areas that m
the dominant nonadiabatic correction vanish according
Eq. (30).
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This claim will be shown in some examples; it can be a
intuitively seen as follows: Below the level linesV0,D0,
where the eigenenergies exhibit an avoided crossing, the
evant crossing point will be generically unique. The ad
batic regime will be better for higher pulse amplitudeV0

below the level lines. Above the level linesV0.D0, where
the eigenenergies exhibit a maximum, the relevant cross
points will be generically multiple and will lead to interfer
ences. We can intuitively understand this fact, consider
that the eigenenergies start and end in the middle of
avoided crossing~see Fig. 2!. Thus in the adiabatic regime
the level linesV05D0 can be seen as a boundary betwe
decreasing and oscillating regimes for the nonadiabatic
rection. The minimum pulse area corresponding to the z
of the dominant nonadiabatic correction will be given for t
adiabatic passage along a level line.

If E(t) has one finite singularity~or more!, which we
denotets , the circular level linesuV02D0u→0 can imply
thattc→ts , from Eqs.~21!. In this case, Proposition A doe
not hold. We will however see in Sec. IV, through exampl
that the level lines will still characterize a boundary betwe
decreasing and oscillating regimes for the nonadiabatic
rection, and more importantly thatthey still converge in the
adiabatic limit to the first minimum of the nonadiabatic co
rection.

The level lines can thus be seen as athreshold character-
izing a minimum pulse area beyond which we obtain effici
robust adiabatic passage.

C. Estimation on the adiabatic regime: Choice of a level line

The nonadiabatic correction given by the DDP formu
are valid in the adiabatic regimeT→`. In this section we
discuss a rough determination of this adiabatic regime
terms of the parametersV,D of the model. We formulate a
criterion that allows to determine the approximate extent
the adiabatic regime.

The analysis in terms of the DDP formula leads to t
conclusion that at any level line the nonadiabatic transitio
vanish. In this context all the level lines seem equivale
There is, however, a clear difference among the level li
observed in the numerical simulations: level lines with sm
values ofD0T5V0T produce larger transition rates than th
ones with largeD0T5V0T ~see next sections!. The differ-
ence can be attributed to the fact that ifD0T5V0T is small,
then the system is far from the adiabatic regime, and
DDP formula does not give an accurate estimate of the c
rections. The nonadiabatic~exponential! correction given by
the DDP formula at the end of the pulse is beyond any po
of 1/T. We can, however, estimate the validity of the ad
batic regime that coincides with the validity of the DDP fo
mula by making the first-order correction of the perturbati
theory small.

First-order perturbation theory on the time-depend
Schrödinger equation~7! with respect to the small paramete
1/T gives approximately the correction, after integrati
once by parts,
9-4
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F g~s!

2TE~s!
e2 iT*t i

s 2 du E(u)G
t i

t

. ~31!

Notice that if we consider the result at the end of the pu
we are left with a correction including the initial and fin
first derivatives of the pulse. Higher-order terms involve s
cessive derivatives ofg. Thus if the parametersV(t) and
D(t) are not smooth at the early and final times, this giv
the main contribution to the nonadiabatic correcti
@36–38#.

Considering the intermediate times and the first-order p
turbation theory~31!, we thus take

ug~t!u
2TE~t!

!1 ~32!

as a characterization of the adiabatic regime.

On a level line, we have E(t)5D0 ,V(t)V̇(t)

1D(t)Ḋ(t)50, which gives forDÞ0,

ug~t!u5U V̇~t!

2D~t!
U5

uL̇~t!u

2A12L2~t!
. ~33!

The condition~32! becomes

TD0@
uL̇~t!u

4A12L2~t!
. ~34!

Thus the adiabatic criterion~and the choice of a level line! is
given by the condition~34!.

IV. EXAMPLE WITH GAUSSIAN PULSES

We analyze in this section the Gaussian pulse

L1~t!5e2t 2
, ~35!

which is entire and satisfies the conditions of Proposition
@for this pulse shape, the square root of Eq.~15! does not
produce any branch point#. For comparison with the result
of the next section, in the figures we use the normaliz
pulse areaV0T*2`

1`dtL1(t)/p5V0T/Ap.
For V0,D0, the crossing points are given by

A2tc
(6,n)56Aan2b1 iAan1b, ~36!

with

an5Ab21n2p2, b5 ln
D0

AD0
22V0

2
, ~37!

for n zero or a positive integer, and, forV0.D0, by

A2tc
(6,n)56Agn1d1 iAgn2d, ~38!

with
02340
,

-

s

r-
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gn5Ad21S 2n2
1

2D 2

p2, d5 ln
AV0

22D0
2

D0
. ~39!

The Stokes lines are displayed in Fig. 3. ForV0,D0, the
Stokes line closest to the real axis crosses the unique cr
ing point tc

(0)5 iAb. For V0.D0, the Stokes line closest to
the real axis connects the two crossing pointstc

(6,0)5

6Ag01d1 iAg02d. We can see that, denotingtc the rel-
evant crossing point~s! on the Stokes line closest to the re
axis, we have limuV02D0u→0 Im tc51`, which is in agree-

ment with proposition A. We also have limuV02D0u→0 Retc

50. ~These two last results are also true for all the oth
crossing pointstc

(6,n) .!
Figure 4 shows the contour plot of log@P1(tf)# as a func-

tion of TD0 and TV0 /Ap. We can observe forD050 ~no
chirp and zero detuning! oscillations of the population be
tween 0 and 1, which correspond to the well-known Ra
oscillations. In this model~2!, the complete population trans
fer occurs exactly whenV0 satisfies

TV0E
2`

1`

L~t!dt5S k1
1

2Dp, k integer, ~40!

FIG. 3. Stokes lines in the complex plane oft ~dimensionless!
for the Gaussian pulse shape:~a! for V0 /D051/2,1 and ~b! for
V0 /D052.1. The first crossing points are marked by circles.
9-5
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S. GUÉRIN, S. THOMAS, AND H. R. JAUSLIN PHYSICAL REVIEW A65 023409
according to Eq.~10!. However, this population transfer i
not robust with respect to the pulse area as can be seen b
strong gradients of the population alongD050 for the~dark!
values ofV0 satisfying Eq.~40!.

We remark that the contour lines emerging almost ve
cally from D050 can be interpreted as follows: for a give
pulse area, the robustness is quite good with respect toD0,
close toD050, in this model.

The Rabi oscillations extend continuously forD0Þ0 with
a larger width for largerTD0. For largerTD0, these oscilla-
tions become closer to zero in a large region: this co
sponds to the robust almost complete population transfe
the adiabatic regime. As expected from Proposition A,
line of minimumP1(t f) converges very fast in the adiabat
limit T→1` to the level linesV05D0. We remark that the
minimum pulse area leading to the~nonrobust! transfer is
obtained forD050 with k50 in Eq. ~40!.

It is important to note thatthe level lines appear as a
boundary between decreasing and oscillatory regimes for
nonadiabatic correction P1(t f), as shown by Fig. 4. This
can be explained precisely by the two relevant cross
points occurring forV0.D0 as follows. Using the fact tha
E(t) is even with respect to the imaginary part oft, we can
calculate that

Im D@tc
(1)#5Im D@tc

(2)#, ~41a!

ReD@tc
(1)#ÞReD@tc

(2)#Þ0, ~41b!

implying an oscillatory behavior forV0.D0,

FIG. 4. For the Gaussian pulse shape, contour map of na
logarithm of the nonadiabatic corrections at the end of the pu
log@P1(`)# as a function of the normalized pulse areaTV0 /Ap and
the chirp widthsTD0 ~dimensionless!. Darker points correspond to
smaller P1(`). The dashed line corresponds to the level lin
D05V0.
02340
the
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P1~t f ! e22T Im D[ tc
(1)] ueiT ReD[ tc

(1)]1eiT ReD[ tc
(2)] u2.

~42!

We also remark that, since we haveuReD@tc
(1)#u

ÞuReD@tc
(2)#u, the maximum of the oscillations depends o

V0, as seen on the contour plot in Fig. 4.
For V0,D0 the single transition point implies the prob

ability with the exponential decay rate:

P1~t f ! e22T Im D(tc). ~43!

For this pulse shape, the adiabatic criterion~34! on the
level linesV05D0 is

TD0@
1

2A2
'0.35. ~44!

We remark that the numerical results are in good agreem
with the adiabatic estimates for quite small values ofTD0.

To illustrate this criterion, we compare the robustness
the level line TD05TV051.755530.35 @which satisfies
quite well the adiabatic criterion~44!# with the result for
D050 ~without chirp! for which the complete transfer occur
for TV0'0.886 @Eq. ~40!#. Along the level line, we obtain
P1(1`)'0.0015. If we now add an error of 15% on th
pulse-peak amplitude, it leads forD050 to a lossP1(1`)
'0.054 @using Eq.~10!#. If we follow the level line (TD0
5TV051.75) with the same error on the pulse-peak amp
tude, it leads to the lossP1(1`)'0.01. Thus with an error
of 15% on the pulse-peak amplitude, the loss is five tim
smaller on the level line than forD050 for an amplitude
only twice bigger.

V. EXAMPLES WITH COMPLEX SINGULARITIES

We analyze in this section different pulse shapes that
not satisfy the conditions of Proposition A because they h
singularities:~i! secant hyperbolic,~ii ! Lorentzian, and~iii !
sine squared,

~ i! L2~t!5sech~t!, ~45a!

~ ii ! L3~t!5
1

11t 2
, ~45b!

~ iii ! L4~t!5sin2~pt! for 0<t<1, ~45c!

50 elsewhere. ~45d!

The first two have singularities in the complex plane a
thus proposition A is not applicable. The last one is not r
analytic so that the DDP formula does not apply. In order
compare the effect of these different pulses, the figures
plotted with the normalized pulse areaV0T*2`

1`dtL j (t)/p.
@We have *2`

1`dt sech(t)5p, *2`
1`dt/(11t2)5p, and

*0
1dt sin2(pt)51/2.#

al
e
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A. Secant hyperbolic pulse shape

The secant hyperbolic coupling shapeL2(t)5sech(t)
@which leads tof (t)5tanh(t)# does not satisfy the condi
tions of Proposition A since it contains singularities locat
at

ts
(n)5 ipS n1

1

2D , ~46!

for n zero or a positive integer. ForV0,D0, the crossing
points are all along the imaginary axis,

tc
(6,n)5 i FpS n1

1

2D6arcsin
AD0

22V0
2

D0
G , ~47!

and forV0.D0 they appear as pairs perpendicularly to t
real axis,

tc
(6,n)56arsinh

AV0
22D0

2

D0
1 ipS n1

1

2D . ~48!

The crossing points and the Stokes lines are displayed in
5. For V0.D0, the closest Stokes line to the real axis co
nects the two crossing pointstc

(6,0) . ForV0,D0, the closest
Stokes line to the real axis connects the two crossing po
tc

(2,0) andtc
(1,0) , however,through the singularityts

(0) . Be-
cause of this singularity, only the crossing pointtc

(2,0) below
it is taken into account. We can calculate the result of
DDP formula~20! in the adiabatic limitT→1`,

P1~t f ! exp@22pT~D02AD0
22V0

2!# for V0,D0 ,

~49a!

P1~t f ! 4 cos2~pTAV0
22D0

2!e22pTD0 for V0.D0 .

~49b!

These results are compatible with the known exact res
~for any regime, adiabatic or not! @20,25#

P1~t f !5cosh2~pTAD0
22V0

2! sech2~pD0T!. ~50!

For the level linesV05D0, all the crossing points tend to th
singularities by pairs

lim
uV02D0u→0

tc
(6,n)5ts

(n) . ~51!

The result of the nonadiabatic correction can be found in
case by the formula~49b! in the limit V0→D0,

P1~t f ! 4e22pD0T. ~52!

We remark that the formula~49a! in the limit V0→D0 does
not give the correct limit. It is, however, correct if, instead
taking the closest crossing point to the real axis, below
singularity, the~two! closest onesconnected with the sam
Stokes linesare taken into account in the DDP formula~20!
@9#. We have indeed noticed numerically that the Stokes li
02340
ig.
-

ts

e

ts

is

e

s

between the two crossing pointstc
(2,0) and tc

(1,0) can be
joined as if the singularity was ignored.

The results are collected in the contour plot of log@P1(tf)#
as a function ofTD0 and TV0 in Fig. 6. The qualitative
aspects of this contour plot are very similar to the one
tained for the Gaussian pulse. From the preceding formu
of P1(t f), we can clearly recover the two regimes alrea
noticed for the exponential pulse: a nonoscillatory regime
V0,D0, followed by an oscillatory regime forV0.D0, with
the boundary given by the level linesV05D0. The optimal
transition occurs forV0.D0, when the cosine of Eq.~49b!
becomes zero, more precisely when

V0
25D0

21
1

T S 1

2
1nD 2

, n integer, ~53!

which in the adiabatic limitT→` becomes

V05D0 . ~54!

The optimal transition occurs thus again along a level line
the adiabatic limit. The criterion~34! for a level line to be
optimal becomes here

FIG. 5. The first Stokes lines in the complex plane oft for the
secant hyperbolic pulse shape:~a! for V0 /D051/2,1 and~b! for
V0 /D052.1. The first singularities and crossing points are,
spectively, shown with crosses and circles.
9-7



t
e

re
-
th

th
t
th
t t
no

the
-
s

he

nt

ory

tic

p

ints
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TD0@1/4. ~55!

Figure 6 shows that the lines ofP1(t f) converge less fas
to the level linesV05D0 than for the exponential shape. W
remark that Eq.~53! shows that for a given finiteTD0 the
level lines always underestimate the optimal value ofTV0.

We can also see that for a given pulse a
V0T*2`

1`dtL j (t), the transfer is more efficient for the se
cant hyperbolic pulse than for the Gaussian pulse in
sense that the same transfer is obtained for a lowerD0. On
the other hand, for a given chirp widthD0, the transfer is less
efficient than for the Gaussian pulse in the sense that
same transfer is obtained for a larger pulse area. These
preceding remarks can be easily explained by the facts
the pulse area is smaller for the Gaussian pulse and tha
level linesD05V0 depend on pulse peak amplitudes and
on pulse areas.

B. Lorentzian shape

The Lorentzian coupling shapeL3(t)51/(11t 2) con-
tains one singularity in the upper complext plane, located at

ts5 i .

The crossing points are double forV0,D0,

tc
(6)5 i S 16A12

V0
2

D0
2 D , ~56!

and forV0.D0,

A2tc
(6)56AV0

D0
211 iAV0

D0
11. ~57!

The Stokes lines are displayed in Fig. 7.

FIG. 6. For the secant hyperbolic pulse shape, contour ma
log@P1(`)#.
02340
a

e

e
wo
at
he
t

We see that, like for the secant hyperbolic shape, for
level lines uV02D0u→0, the crossing points go to the sin
gularity of L2(t). We do not have known solutions for thi
case. We obtain along a level line

lim
uV02D0u→0

Im D~tc!52D0 , ~58!

which, taking into account the two crossing pointstc
(6)

joined by the Stokes line through the singularity as for t
secant hyperbolic pulse, leads to

P1~t f ! 4e24D0T. ~59!

We note thatP1(t f) is less favorable than for the seca
hyperbolic shape@to be compared with the formula~52!#.

As with the two preceding cases, we have the oscillat
and nonoscillatory regimes separated by the level linesV0
5D0 in Fig. 8 of the contour plot ofP1(t f). The first mini-
mum line of P1(t f) converges to the level lines:the level
lines give again here the optimal transfer in the adiaba
limit.

of

FIG. 7. The Stokes lines in the complex plane oft for the
Lorentzian pulse shape:~a! for V0 /D051/2,1 and ~b! for
V0 /D052.1. In each case, the singularity and the crossing po
are, respectively, shown with a cross and circles.
9-8
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For this shape, the adiabaticity criterion~34! on the level
lines is

TD0@
1

2A2
'0.35, ~60!

which is more restricitive than for the secant hyperbo
pulse.

C. Sine-squared shape

The sine-squared coupling shapeL4(t)5sin2(pt) is not
real analytic and the DDP analysis does not apply. Figur
shows the contour plot ofP1(t f) as a function ofTD0 and
TV0 /(2p). The minimum of probabilityP1(t f) does not
converge to the level linesV05D0, which thus have no par
ticular sense in this case. In fact, the nonadiabatic correct
as explained in Sec. III C is given by the nonsmoothness
the pulse ends, which, in this example, is characterized
discontinuous second derivatives. Thus, the nonadiab
correctionP1(t f) is of order 1/T4 in the adiabatic limitT
→`. We can estimate it more precisely along the level lin
V05D0 using the first-order perturbation theory as describ
in Sec. III C. We obtain approximately after integrating twi
by parts

FIG. 8. For the Lorentzian pulse shape, contour map
log@P1(`)#.
02340
9

n,
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P1~t f ! 
1

4 S p

TV0
D 4

sin2~V0T!, ~61!

which fits quite accurately the nonadiabatic corrections alo
the level lines for largeV0T.

VI. EFFECT OF THE COUNTERROTATING TERM OF A
LASER–TWO-LEVEL-ATOM INTERACTION

In this section we study a two-level atom interacting w
a pulsed and chirped laser field, taking into account the co
terrotating term. The Hamiltonian, associated with the Sch¨-
dinger equation~1!, is in this case

H~t!5
v0

2 F21 0

0 1G1
mE~t!

\
cosf~t!F0 1

1 0G , ~62!

with the atomic Bohr frequencyv0, the dipole momentm,
the electric-field envelopeE(t) and its phasef(t). After a
time-independent unitary transformation that does
change the probabilities, it can be rewritten as a sum of
RWA Hamiltonian~2! and a ‘‘counterrotating’’ Hamiltonian

f

FIG. 9. For the sine-squared pulse shape, contour map
log@P1(`)#.
H~t!5F2D~t! V~t!

V~t! D~t!
G1V~t!F 0 expH 22iTFv0t22E

t i

t

dsD~s!G J
expH 2iTFv0t22E

t i

t

dsD~s!G J 0
G , ~63!
9-9
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S. GUÉRIN, S. THOMAS, AND H. R. JAUSLIN PHYSICAL REVIEW A65 023409
with the effective detuning

2D5v02ḟ, ~64!

and the Rabi frequency 2V(t)5mE(t)/\. The dressed
eigenelements in strong fields can be obtained from the
quet Hamiltonian~see, for example, Refs.@39,40#!. The DDP
formula does not apply but we claim that the level lines s
relevant to optimize the adiabatic passage. If the coun
rotating term is sufficiently strong~for example, such tha
dynamical resonances appear@40#!, the level lines are
strongly modified and are not circles anymore. In this s
tion, we restrict the analysis of the effect of this count
rotating term on the optimality of the level line as circles,
the standard RWA limit

V,D!v0 , ~65!

and show that in this RWA limit the level line as circles a
still a good strategy for the control of population transfer

In the limit ~65!, we can calculate the dressed eigenvalu
by perturbation theory@39#:

l6~t!'6E~t!7
V2~t!

4v0
2

E 2~t!22D~t!v0

E~t!
. ~66!

The level lines associated to these eigenvalues, i.e., the
jectories in the space parameter (V,D) such thatl12l2

5const. are displayed in Fig. 10. From these eigenval
~66!, we can deduce the condition to recover level lines
circles

~TV0!2!2Tv0 . ~67!

Thus we anticipate that the DDP analysis of the previo
sections is still valid, i.e., that the level lines as circles op
mize the population transfer by adiabatic passage, when
condition ~67! is satisfied. This is checked numerically
Fig. 11 where contour plots of the nonadiabatic correct
with the counterrotating term (Tv0550) are drawn for the

FIG. 10. Level lines~full lines! associated to the eigenvalue
~66!, for v0T550, compared with the circles@as dashed lines, leve
lines of the RWA Hamiltonian~2!# .
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Gaussian pulses~described in Sec. IV! and with the ‘‘ellipse’’
dynamics described in Sec. III A. We can see that for
level lines satisfyingTV0@1/(2A2)'0.35 @see, Eq.~44!#
~say TV0 /Ap*530.35/Ap'1) can be still considered
as optimal if Eq. ~67! is also satisfied~say TV0 /Ap
&A2Tv0/5/Ap'2.5).

VII. DISCUSSIONS AND CONCLUSIONS

We have demonstrated that for models with an entire a
lytic pulse shape, the first minimum of the nonadiabatic c
rectionP1(t f)→0 is obtained in the adiabatic limit when th
dynamics follows a level lineV05D0 in the parameter
space. We have shown with the example of an exponen
pulse that this first minimum converges very fast to the le
line.

For a given pulse shape, the choice of the level line, c
responding to the choice of the chirp width 2D0, has been
estimated with perturbative arguments. For pulses hav
complex singularities, the demonstration is not valid. W
have, however, shown analytically with the examples of
cant hyperbolic and numerically with the Lorentzian puls
that the level lineV05D0 still converge to the first minimum
of the nonadiabatic correction, however, with a slower co
vergence than for the exponential pulse. This result can
interpreted with the Dykhne-Davis-Pechukas formula. W
have indeed shown that this formula implies for these
amples that the level lines are the boundary between reg
of a monotonic decreasing and of oscillations ofP1(t f).
Thus for a given width of chirping, the level line gives th
minimal pulse amplitude to be used to have complete tra
fer by adiabatic passage: Larger pulse amplitudes do not
prove significantly the robust transfer. We also have char
terized the regime of validity of our analysis for a mo
realistic laser interaction including a counterrotating term

FIG. 11. For the Gaussian pulse shape, contour map
log@P1(`)# with the counterrotating term, forv0T550. To be com-
pared with Fig. 4.
9-10
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In conclusion, we have shown that for two-level mode
the optimal adiabatic passage occurs along a level line in
diagram of the difference of the eigenenergies as a func
of the parameters. For problem withN-level systems, this
result could be applied locally to design optimal tim
dependent parameters to achieve selective robust adia
transfer.
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APPENDIX: ALGORITHM FOR THE STOKES LINES

In this appendix, we present the method used to determ
the Stokes lines. Stokes lines are defined as the set

H z[x1 iyUImF2E
z0

z
Ar~s!dsG5ImF2E

z0

tc
(n)

Ar~s!dsG ,
n51, . . . ,NJ , ~A1!

where tc
(n) , n51,N represent the crossing points an

Ar(s)5E(s) whereE(s) is defined in Eq.~6!. In order to
construct Stokes lines, we choose a parametrizationg(t) as

s5g~ t !, ~A2!

with the conditiong(t0)5z0. We remark that the Stoke
lines are independent of the chosen parametrization. In
following, we take one crossing pointtc and we make cal-
culation with only one crossing point. The formulas we d
termine later are valid foreach crossing point. From Eq
~A1! and Eq.~A2!, we obtain the following equation:

ImF2E
t0

t
Ar„g~ t !… ġ~ t !dtG5ImF2E

z0

tcAr~s!dsG5const,

~A3!

where ġ(t)5dg/dt. Derivation of Eq.~A3! with respect to
time implies that the functiong(t) satisfies
m

02340
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Im@Ar„g~ t !…ġ~ t !#50. ~A4!

Denotingg(t)5g r(t)1 ig i(t), Eq. ~A4! becomes

ġ r~ t !Re@Ar„g~ t !…#1ġ i~ t !Im@Ar„g~ t !…#50. ~A5!

We can obtain solutions of Eq.~A5! by considering the
following system of equations:

ġ r~ t !5s Im@Ar„g~ t !…#,

ġ i~ t !52s Re@Ar„g~ t !…#, ~A6!

wheres561. In the following, we choosez05tc since the
crossing point belongs to the Stokes line. We start at
crossing point and we want to move along a Stokes li
However, the crossing point is an equilibrium point of E
~A6!. The Stokes lines are the associated stable or unst
manifolds~depending on the choice ofs511 or s521).
In order to determine the stable and unstable directions,
consider the Taylor expansion ofr written as

r~z!5
dr

dz
~z0!~z2z0!1O~z2z0!2. ~A7!

We define the real numbersr 0 and a such thatdr/dz(z0)
5r 0eia. By integrating we obtain

E
z0

z
Ar~z!dz5

2

3
Ar 0eia/2~z2z0!3/21O~z2z0!2. ~A8!

Equation~A3! implies Im@eia/2(z2z0)3/2#50. In terms of
polar coordinates (z2z0)5reiu, we deduce that there ar
exactly three Stokes lines of directionsu given by

u5
2

3
kp2

a

3
, k50,1,2 . ~A9!

If we want to follow a Stokes line in a directionu, we have
to useoneof the two choices of signs561 in Eq.~A6!, the
one which makes that direction unstable. In the implemen
tion of the algorithm, we solve Eq.~A6! with an initial con-
dition located at a small distance ofz0 in the directions given
by Eq. ~A9!.
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S. GUÉRIN, S. THOMAS, AND H. R. JAUSLIN PHYSICAL REVIEW A65 023409
@20# Yu.N. Demkov and K. Kunike, Vestn. Leningr. Univ., Ser.
Fiz., Khim. 16, 39 ~1969!.

@21# A. Bambini and P.R. Berman, Phys. Rev. A23, 2496~1981!.
@22# E.J. Robinson and P.R. Berman, Phys. Rev. A27, 1022~1983!.
@23# E.E. Nikitin and S.Ya. Umanskii,Theory of Slow Atomic Col-

lisions ~Springer-Verlag, Berlin, 1984!.
@24# A. Bambini and M. Lindberg, Phys. Rev. A30, 794 ~1984!.
@25# F.T. Hioe, Phys. Rev. A30, 2100~1984!.
@26# F.T. Hioe and C.E. Carroll, Phys. Rev. A32, 1541~1985!.
@27# F.T. Hioe and C.E. Carroll, J. Opt. Soc. Am. B2, 497 ~1985!.
@28# C.E. Carroll and F.T. Hioe, J. Phys. A19, 3579~1986!.
@29# D.S.F. Crothers, J. Phys. B11, 1025~1978!.
@30# B.S. Nesbitt, D.S.F. Crothers, S.F.C. O’Rourke and P.R. B

man, Phys. Rev. A56, 1670~1997!.
@31# P.R. Berman, L. Yan, K.-H. Chiam, and R. Sung, Phys. Rev
02340
r-

57, 79 ~1998!.
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