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Efficient grid treatment of the ionization dynamics of laser-driven H2
¿
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We implement a parallel, time-dependent hybrid finite-difference Lagrange mesh code to model the electron
dynamics of the fixed-nuclei hydrogen molecular ion subjected to intense ultrashort laser pulses. Ionization
rates are calculated and compared with results from a previous finite-difference approach and also with
published Floquet results. The sensitivity of the results to the gauge describing the electron-field interaction is
studied. Visualizations of the evolving wave packets are also presented in which the formation of a stable
bound-state resonance is observed.
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I. INTRODUCTION

The interaction of a diatomic molecule with an intens
ultrashort laser pulse provides an example of a quantum
tem driven far from equilibrium. When this interaction o
curs, several highly nonlinear phenomena are obser
namely, ionization ~multiphoton, tunneling, and abov
threshold!, high-order harmonic generation, dissociation, a
Coulomb explosions@1–4#. Whereas the first three process
relate to the electron dynamics, as evidenced by the fact
they are also observed in atomic systems@5#, the last two
clearly bring the nuclear dynamics into play. Neverthele
the nuclear dynamics involve a critical interplay with th
electron dynamics since the electrons interact directly w
the laser field. Hence an accurate description of all the ab
processes requires a precise description of the electron
namics@6#.

The origin of these nonlinear processes is best studied
considering the simplest diatomic molecules, namely,
one-electron hydrogen molecular ion and the two-elect
hydrogen molecule. While both dimers allow study of t
dissociation processes, the two-electron hydrogen mole
allows electron correlation effects in the electron dynam
to be explored. Most experimental studies to date have
cused on the neutral molecule@1#. This has been due to th
relative ease of preparing neutral beams. Indeed, it has
been in the last few years that experimental techniques h
advanced to the point where ion beams can be utilized@7,8#.

An accurate theoretical description of laser-driven dim
requires the solution of the time-dependent Schro¨dinger
equation~TDSE!,

H~r ,t !C~r ,t !5 i\
]

]t
C~r ,t !, ~1.1!

whereH(r ,t) is the time-dependent Hamiltonian andC(r ,t)
the wave function. Taking only parallel electronic transitio
into account the molecular ion with fixed internuclear sp
ing interacting with a linearly polarized laser pulse deman
the solution of a (211)-dimensional TDSE while the hydro
gen molecule amounts to a (511)-dimensional problem
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These problems are thus comparable with the hydrogen a
and helium atom, respectively, but with the complexity
two centres of nuclear charge. The treatment of multielect
systems in full dimensionality is a formidable task and it
only recently that such calculations for atoms@9–11# have
begun to uncover the subtleties in the dynamics induced
the electron-electron interaction. For molecules this h
meant that, in contrast with experiment, most serious
merical work is still limited to the molecular ion.

Solution of the TDSE has generally followed two a
proaches. For the long pulse, low-intensity regime the tim
independent Floquet method is applicable and has had m
success in treating both the molecular-ion problem throu
use of an electronic basis of Sturmian functions@12–14#, and
the molecular problem using anR-matrix basis@15,16#. In
treating the high-intensity, short-pulse regime used in ma
present day experiments, direct time-dependent grid
proaches are most appropriate@17–23#.

The grids used in such time-dependent calculations m
give an adequate coverage of configuration space while
using too many points in mapping out less important coor
nates. For a linearly polarized laser pulse with the inter
clear axis aligned along the polarization axis, cylindrical p
lar coordinates can be used, the electron position ve
being given by

r5r cos~f!i1r sin~f!j1zk, ~1.2!

where the axial coordinate~z! is along the polarization direc
tion. Thez coordinate is, therefore, predominant since m
electron motion will take place along the axis of polarizatio
The radial coordinate~r!, while less important, is still re-
quired for a proper description of the exchange of angu
momentum between the electrons and the field.

The principal grid technique used has been the fin
difference method. Applying this method in cylindrical coo
dinates leads to problems brought about by enforcing
correct boundary conditions atr50. Scaled coordinates hav
been introduced to alleviate this problem using both a len
gauge description of the laser-electron interactions@18,21#
and, more recently, an acceleration gauge description@23#.
However, the scaled finite-difference matrices in ther direc-
tion are non-hermitian leading to a nonunitary time evo
tion. Whilst unitary is recovered in the limit of decreasin
©2002 The American Physical Society08-1
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DANIEL DUNDAS PHYSICAL REVIEW A 65 023408
grid spacing this nevertheless means that more grid po
are required to cover an adequate range in configura
space. Although this is not an insurmountable problem
the description of the molecular ion, it poses serious pr
lems in the (511)-dimensional treatment of the H2 mol-
ecule.

Methods that work well not only for the one-electron h
drogen molecular ion but also for the two-electron molec
must satisfy the following requirements:~1! allow the correct
application of the boundary conditions atr50; ~2! make
possible a unitary time-evolution operator;~3! require com-
paratively few grid points along ther direction.
In this paper, we introduce a method that satisfies all
above requirements, namely, a Lagrange mesh treatme
ther coordinate together with a finite-difference treatment
the z coordinate. In order to show the power of the meth
we limit ourselves to a description of the one-electron m
lecular ion and make a comparison with other tim
dependent and time-independent approaches. The paper
out as follows. In Sec. II, we establish the Lagrange m
technique and show how it leads to a set of grid equations
Sec. III, we describe how the Lagrange mesh can be c
bined with the finite-difference method in order to descr
the molecular ion. The TDSE for the molecular ion is deriv
and a set of grid equations obtained. Other aspects of
numerical technique are detailed such as time propaga
generation of an initial state; splitting of the wave function
prevent reflections from the edges of the grid; and ga
choice for the electron-laser interaction. Section IV prese
various results. In particular, the method is benchmar
against the Floquet method and a previous method u
scaled finite differences reported in Ref.@21#, hereafter re-
ferred to as (I ). Scientific visualization techniques are the
used to analyze the time evolution of the electron dynam
Finally some conclusions about the strength of the met
are drawn. Atomic units are used throughout.

II. LAGRANGE MESH TECHNIQUE

The Lagrange mesh method is a basis-set method foun
on Lagrange interpolation and Gaussian quadrature. It
special case of the discrete variable representation me
@24# that has been extensively applied to both tim
independent problems@25,26# and time-dependent problem
@27–29#. In this section, we give an outline of the metho
For a fuller description of the method, the reader is refer
to Baye and Heenan@30#.

Consider a set ofN differentiable functionsf i(x) defined
on a domaina<x<b with i 51,2,...,N. These basis func
tions satisfy the Lagrange interpolation condition

f i~xj !5l i
21/2d i j , ~2.1!

and the Gaussian quadrature

^ f i u f j&[E
a

b

f i* ~x! f j~x!dx'l i
1/2f i* ~xj !5l i

1/2f j~xi !5d i j ,

~2.2!
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with mesh pointsxi and weightsl i and lead to a set of grid
equations whose grid points are the quadrature pivots.

A. Construction of the Lagrange functions

In order to construct the basis functions, we first consi
N differentiable basis functionswk(x) defined on the domain
a<x<b with k50,1,...,N21 and which satisfy the ortho
normality conditions

^w i uw j&5d i j . ~2.3!

Then provided

(
k50

N21

wk* ~xi !wk~xj !5l i
21d i j , ~2.4!

we can construct

f i~x!5l i (
k50

N21

wk* ~xi !wk~x! ~2.5!

such that

l i5F (
k50

N21

uwk~xi !u2G21

, ~2.6!

satisfying Eqs.~2.1! and ~2.2!.

B. Obtaining the grid equations

To show how the grid equations are obtained, we ap
the method to a one-dimensional~1D!, time-dependent prob
lem. Starting from the TDSE

H~x,t !C~x,t !5@T1V~x,t !#C~x,t !5 i
]

]t
C~x,t !,

~2.7!

whereT is the kinetic-energy operatorV(x,t) a potential and
C(x,t) the wave function. We expand the wave function
the Lagrange basis

C~x,t !'(
i 51

N

ci~ t ! f i~x!, ~2.8!

whereci(t) are expansion coefficients. Clearly

ci~ t !5E
a

b

f i* ~x!C~x,t !dx'l i
1/2C~xi ,t !. ~2.9!

Substituting Eq.~2.8! into ~2.7!, taking the inner product of
both sides with an arbitrary basis memberf j (x), using Eq.
~2.1! and ~2.2! and introducing the linear scalingyi5hxi
leads to

(
j 51

N F 1

h2 Ti j 1V~yi ,t !d i j 2 i
]

]t
d i j Gl j

1/2C~yj ,t !50,

~2.10!
8-2
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EFFICIENT GRID TREATMENT OF THE IONIZATION . . . PHYSICAL REVIEW A65 023408
whereTi j 5^ f i uTu f j&. We see that this equation represent
set of linear equations, where we need only to evaluate
potential term and the wave function at the mesh points.

C. Application to the range †0, `…

Since we are interested in treating ther coordinate with
the Lagrange mesh, we must construct a basis defined o
interval @0, `!. The generalized Laguerre polynomials,

Ln
~a!~x!5

~a1n!!

a!n! 1F1~2n;a11;x!, ~2.11!

defined over the interval@0, `! and associated with th
weight functionxae2x, fit this criterion perfectly. DefiningN
orthonormal functionswn(x) with n50,1,2,...,N21 as

wn~x!5
G~a1n11!

n!
xa/2e2x/2Ln

~a!~x!, ~2.12!

the corresponding Lagrange functions are given by

f i~x!5l i
21/2S 1

wN8 ~xi !
D wN~x!

x2xi
, ~2.13!

wherexi are the zeros ofLN
(a)(x) and

l i5
1

xiwN8 ~xi !
2 . ~2.14!

The generalized Laguerre polynomials are associated
the kinetic-energy operator

T5
1

2m S 2
]2

]x2 1
a~a22!

4x2 D , ~2.15!

where m is the reduced mass of the electron. Baye a
Heenen@30# showed that the matrix elementsTi j are given
by

Ti j 5
1

2m
35

~a11!2

4xi
2 1Sii , i 5 j

~21! i 2 jF a11

2Axixj
S 1

xi
1

1

xj
D1Si j G , iÞ j ,

~2.16!

where

Si j 5Axixj (
kÞ i , j

1

xk~xk2xi !~xk2xj !
. ~2.17!

III. APPLICATION TO H 2
¿

Turning our attention to the molecular ion, it is no
shown how the Lagrange mesh approach can be comb
with finite differences to solve the TDSE. ForS-symmetry,
the azimuthal~f! dependence does not arise and the Ham
tonian has the form
02340
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H52
1

2m H ]2

]z2 1
1

r

]

]r
r

]

]rJ 1V~r,z,R!1U~z,t !,

~3.1!

whereV(r,z,R) represents the Coulomb interactions

V~r,z,R!52
Z1

@r21~z2 1
2 R!2#1/2

2
Z2

@r21~z1 1
2 R!2#1/2

1
Z1Z2

R
, ~3.2!

R being the internuclear distance andZ1 and Z2 being the
nuclear charges; andU(z,t) represents the interaction be
tween the electron and the laser field. In most of the res
presented in this paper the length gauge description of
electron-field interaction is used, given by

UL~z,t !5zE~ t !, ~3.3!

where E(t) is the electric-field strength in the dipole ap
proximation given by

E~ t !5E0q~ t !cosvt, ~3.4!

for a field with frequencyv and is related to thepeaklaser
intensity I 0 by

E05S 4pI 0

c D 1/2

. ~3.5!

Since the laser field is pulsed we include the pulse envel
q(t), which consists of a smooth ramp on from zero to o
over a durationt1 . The field amplitude is then held consta
from a timet1 to a timet2 after which it is ramped off to zero
at a timet3 , the ramp off time being equal to the ramp o
time (t15t32t2). Thus,

q~ t !55
1
2 F12cosS pt

t1
D G , 0<t<t1

1, t1<t<t2

1
2 F12cosS p~ t2t21t1!

t1
D G , t2<t<t3

0 otherwise.
~3.6!

A velocity gauge description of the electron-field interacti
can also be used in which

UV~z,t !52
i

c
A~ t !

]

]z
, ~3.7!

wherec is the speed of light andA(t) is the vector potential
of the laser field that is related to the electric-field stren
via

E~ t !52
1

c

]A~ t !

]t
, ~3.8!
8-3
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DANIEL DUNDAS PHYSICAL REVIEW A 65 023408
One can remove the first-order derivative in Eq.~3.1! by
the change of dependent variable

C~r,z,t !5r21/2c~r,z,t !, ~3.9!

such that

i
]

]t
c~r,z,t !5F2

1

2m

]2

]z2 1Dr1V~r,z,R!

1U~z,t !Gc~r,z,t !, ~3.10!

where

Dr5
1

2m S 2
]2

]r22
1

4r2D . ~3.11!

In this case wave function normalization requires

E
0

`

drE
2`

1`

dzuc~r,z,t !u251. ~3.12!

We then construct a 2D grid in ther andz coordinates and
discretize the wave function on this grid.

A. Lagrange mesh treatment of ther coordinate

The Lagrange mesh method is now applied to the tre
ment of ther coordinate by expanding the wave function
in Eq. ~2.8!, namely,

c~r,z,t !5(
i 51

N

l i
1/2c~r i ,z,t ! f i~r!. ~3.13!

This allows us to obtain the TDSE

(
j 51

N F2
1

2m

]2

]z2 d i j 1
1

h2 Di j 1V~ r̄ i ,z,R!d i j 1U~z,t !d i j

2 i
]

]t
d i j Gl j

1/2c~r̄ j ,z,t !50, ~3.14!

whereDi j 5^ f i uDru f j& and we employ the linear scalingr̄ i
5hr i . Furthermore, we see that Eq.~3.11! corresponds to
Eq. ~2.15! whena51 and soDi j is given by Eq.~2.16!.

Convergence studies have shown that for all the res
presented in this paperN530 basis functions are sufficien
It was also found that while ionization rates are not sensi
to the scaling parameterh, converged harmonic generatio
spectra were only obtained whenever the scaling param
was reduced toh50.4. This results in a mesh having a
extent 0<r̄<42.

B. Finite difference treatment of z

As in ~I ! the z coordinate is treated using finite diffe
ences. The kinetic-energy term is approximated by the fi
point central difference formula
02340
t-

ts

e

ter

-

f 9~z!5
1

~dz!2 @2 1
12 f ~z22dz!1 16

12 f ~z2dz!2 30
12 f ~z!

1 16
12 f ~z1dz!2 1

12 f ~z12dz!#, ~3.15!

and the first derivative required for the calculation
UV(z,t) is approximated by

f 8~z!5
1

~dz!
@ 1

12 f ~z22dz!2 8
12 f ~z2dz!1 8

12 f ~z1dz!

2 1
12 f ~z12dz!#. ~3.16!

The finite-difference approach allows us to parallelize o
computer code efficiently. Thez coordinate grid is distrib-
uted across processors while ther mesh is handled entirely
on each processor. In order to handle the electron qu
motion in intense fields a large number ofz grid points must
be used. Distributing thez coordinate across processors a
lows us to scale the size of the problem easily to desc
intense fields. The sparse nature of the finite-difference
trices compared to the Lagrange mesh method means
communications between processors is kept to a minim
Indeed each processor must communicate with a maxim
of four neighboring processors, depending on how manz
points are stored per processor. We have already dealt
convergence studies againstdz in ~I ! and so will not detail
this again. Briefly, we find that converged results are o
tained for a grid spacing ofdz50.2.

C. Arnoldi time propagator

Given a wave functionc(t) at a timet the wave function
at a later timet1dt is obtained by applying the unitary time
evolution operatorU(t1dt,t), namely,

c~ t1dt !5U~ t1dt,t !c~ t !'e2 iH ~ t !dtc~ t !. ~3.17!

In ~I ! ther coordinate was treated using finite differences
scaled coordinates. The finite-difference matrices were n
Hermitian and so the time-evolution operator was nonu
tary. In that caseU(t1dt,t) was approximated by itsnth
order Taylor-series expansion

U~ t1dt,t !5 (
k50

n
~2 idt !k

k!
Hk~ t !. ~3.18!

In the present work the matrix elements ofDr in the
Lagrange basis are hermitian leading to a unitary tim
evolution operator. We, therefore, wish to use an accur
high-order unitary time-evolution operator and hence cho
thenth-order Arnoldi propagator@31#. The Arnoldi propaga-
tor is an explicit propagator that involves successive ope
tions of the Hamiltonian upon the wave function in much t
same way as the Taylor-series propagator. Using the Arn
algorithm @32#, we construct an orthonormal set of vecto
@q0 ,q1 ,q2 ,...,qn#, which span the Krylov subspace
8-4
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EFFICIENT GRID TREATMENT OF THE IONIZATION . . . PHYSICAL REVIEW A65 023408
Kn~H,c![span$c,Hc,H2c,...,Hnc%. ~3.19!

The orthonormal set is formed using Gram-Schmidt ortho
nalization. The process may be represented schematical
follows:

~1! Construct the first orthonormal unit vector as

q05c/ucu1/2.

~2! For j 50,1,2,...,n
Compute the next vector spanning the subspacev

5Hqj .
For i 50,1,2,...,j

Compute the projection ofv onto thoseqi already
calculated, i.e.,hi j 5qi

†v.
Subtract the projection of thoseqi already calculated

so thatv will be orthogonal toqi , i.e., v5v2hi j qi .
Compute hj 11,j5uvu1/2 and the unit vectorqj 11

5v/hj 11,j .
next i

next j
Letting h denote the (n11)3(n11) upper-Hessenber

matrix formed by the coefficientshi j , we obtain the matrix
equation

h5Q†HQ, ~3.20!

where Q is a matrix formed from theN column vectors
@q0 ,q1 ,q2 ,...,qn# and soh is the Krylov subspace Hamil
tonian that is calculated simultaneously withQ. H̃5Q†hQ
can be used as a replacement toH in a wide variety of ap-
plications. In particular, the time-evolution operator can
written as

Ũ~ t1dt,t !5e2 iH̃dt5Qe2 ihdtQ†. ~3.21!

Now h is typically a tridiagonal matrix and soe2 ihdt can be
inexpensively exponentiated through the direct diagonal
tion of h. Ũ(t) may thus be viewed as a unitary propaga
that is correct to ordern in dt. In the present work converge
time propagation is obtained using a sixth-order Arno
propagator using a time step,dt50.01.

D. Obtaining the initial state

In ~I ! it was shown how the ground state of the hydrog
molecular ion could be obtained by propagating the wa
function in imaginary time, i.e., by the replacementt5 i t .
With this replacement the evolution operator, Eq.~3.21!, be-
comesŨ(t)5Qe2hdtQ†. This has the effect of turning th
TDSE from a wave equation into a diffusion equation,
which the eigenvectors decay at rates proportional to t
energies. The effect is that only the lowest eigenvector
vives ~the ground state!. This process of excited state dec
lasts no longer than 50 a.u.

Lanczos showed that the eigendecomposition ofh can be
used as a first step in an iterative scheme to calculate
eigenvalues ofH. This approach proves attractive in obtai
ing the ground state of the molecular ion instead of usin
diffusion equation since the ground state is obtained m
02340
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rapidly. Indeed we find that only one hundred iterations
required to obtain convergence. This corresponds to 100
plications of the propagator upon the wave function co
pared to 5000 applications of the propagator upon the w
function using the diffusion equation with a time spaci
dt50.01.

E. Wave function splitting

Wave packets that reach the edge of the grid can be
flected from the boundary causing spurious effects in b
harmonic spectra and ionization rates. We eliminate th
reflections by a splitting technique akin to an absorb
boundary that partitions the wave function into two par
one near, and the other far from the nuclei where the C
lomb potential is negligible. This technique was introduc
by Heather and Metiu@33# and has been applied to lase
atom interactions@31#, fixed nuclei H2

1 @21#, and vibrating
nuclei H2

1 @34#. Recently the technique has been expand
by Bandrauk and co-workers in its application to a 1D mo
of vibrating nuclei H2

1 by projecting onto asymptotic
Volkov states allowing, amongst other things, complete c
culations of Coulomb explosion spectra for the residual p
tons @35,36#. The splitting is implemented by a mask fun
tion M, which equals unity near the nuclei and go
asymptotically to zero very gradually. Using this mask fun
tion the wave function is split into two parts

c5Mc1~12M !c. ~3.22!

The residual part, (12M )c, can be propagated indepen
dently in the limit in which the Coulomb potential is negl
gible over the region in whichM,1. The design and opti-
mization of the mask function requires considerable ca
and extensive numerical simulations must be performed
characterize the optimal shape@31#.

While the use of such absorbing boundaries is well do
mented in finite difference methods, their use with Lagran
meshes has not been described in great detail. For insta
recently Sakimoto@29# used a Laguerre-Lagrange mesh in
time-dependent treatment of excitation and ionization inp̄
1H collisions. It was noted that because the Laguerre po
nomials spanned the range@0,̀ ! reflections would not occur
and, therefore, no form of absorption was necessary. T
however, will only be the case if an infinite number of me
points are used in the calculation. In all calculations the nu
ber of mesh points is truncated at some finite value yield
a numerical grid with finite extent. Hence reflections w
occur if no form of wave function splitting is used. As in~I !,
the mask function is broken into ar̄-dependent partM r̄( r̄)
and az-dependent partMz(z) given, respectively, by

M r̄~ r̄ !5expF24S r̄2ar̄max

r̄maxs
D 2G

if r̄.ar̄max, ~3.23!

wherer̄max is the maximum value ofr̄ and
8-5
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DANIEL DUNDAS PHYSICAL REVIEW A 65 023408
Mz~z!5expF24S uzu2aZmax

Zmaxs
D 2G

if uzu.aZmax, ~3.24!

whereZmax is the maximum value ofz and M r̄( r̄)5Mz(z)
51 otherwise. The wave function is thus split according

c~r̄,z,t !5MzM r̄c~ r̄,z,t !1~12MzM r̄ !c~ r̄,z,t !,
~3.25!

where cs( r̄,z,t)5Mz(z)M r̄( r̄)c( r̄,z,t) is the split wave
function. The optimal values ofa and s were determined
empirically to bea'0.3 ands'5. We note that the mas
function does not have to equal zero at the boundary.
only requirement is thatc smoothly approaches zero at th
edges of the integration volume.

IV. RESULTS

We now present results using this method making a co
parison with the scaled finite-difference treatment of ther
coordinate and with Floquet results. Scientific visualizat
techniques are then used to analyze the time evolution o
electron dynamics in the presence of a resonance. A
having extent250<z<50 and 0<r̄<42 is used in all
calculations.

A. Calculation of the grid energy spectrum

We have already discussed how the field-free ground e
tronic state of the grid can be obtained by either propaga
of a trial wave function in imaginary time or by a Lanzco
eigendecomposition. However, neither of these methods
us how accurately the excited states of the molecular ion
represented on the grid~the Lanzcos algorithm that is cur
rently implemented in our code only gives information
the lowest eigenvalue!.

In order to calculate the excited-state energies, we can
a time autocorrelation technique@37#. This consists of calcu-
lating the time autocorrelation function

C~ t !5E c t* ~r ,t !c t~r ,0!dr , ~4.1!

where

Helc t~r ,t !5 i
]

]t
c t~r ,t !, ~4.2!

by propagating a trial functionc t(0), in real time in the
absence of the laser field,Hel being the field-free electronic
Hamiltonian. The spectral density of this, obtained by tak
the square of its Fourier transform

uC~v!u25U E
0

`

C~ t !eivtdtU2

, ~4.3!

gives us the energies of states supported by the grid. The
function includes even and odd parities. In this work,
choose
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c t~r ,0!5cg~11z1z2!~11 r̄1 r̄2!e2z2
, ~4.4!

wherecg is the analytic form of theSg1s variational ground
state, namely,@38#

cg5@e2a~r a1r b!#, ~4.5!

with a51.24 and

r a,b5@ r̄21~z6R/2!2#1/2. ~4.6!

Figure 1 presents the electronic energy spectrum of
grid for a fixed nuclei calculation atR52 using both the
Lagrange mesh treatment ofr @Fig. 1~a!# and the finite-
difference treatment@Fig. 1~b!#. A range of states are prese
up to the ionization limit at 0.5. Table I presents a compa
son with results given by Sharp@39#. The two sets of results
are in quite good agreement with the Sharp data altho
there are slight inaccuracies in certain excited-state ener
that is to be expected due to the discretizion and finite ex
of the grids affecting such cases. On the whole the ener
using the Lagrange mesh approach are more accurate
those from the finite-difference method for the paramet
chosen. The results from both methods, however, pre

FIG. 1. Spectral densityuC(v)u2 at R52 using~a! the Lagrange
mesh model and~b! the finite difference model. In both cases
finite difference grid inz is used.
8-6
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convincing evidence that grid methods give an accurate
resentation of the electronic structure.

B. Gauge dependence of ionization rate

In principle, the two approaches outlined for describi
the electron-field interactions are equivalent since the len
gauge description is related to the velocity gauge descrip
through the unitary transformation

CV~r ,t !5expF i

c
rA ~ t !GCL~r ,t !. ~4.7!

In practice the length and velocity descriptions do not n
essarily agree since the wave function is approxima
Gauge effects have already been well documented in ato
systems@40,41#. However, time-dependent molecular a
proaches generally use a length gauge solution while o
approaches such as the time-independent Floquet results
sented in this paper for comparison have used a velo
gauge description. Whilst gauge comparison have been m
using the Floquet results, few time-dependent approac
make such a comparison. For instance, Bandrauk and
workers have recently made a detailed comparison of len
and acceleration gauge descriptions using a scaled fi
difference technique@23#. In the following, we make a com
parison between the length and velocity gauges. Since
purpose of this paper is to present an efficient method

TABLE I. Energies of electronic states using the finite diffe
ence (dz50.2,dr50.15) and Lagrange mesh (dz50.2,N530) cal-
culations of fixed nuclei H2

1 at R52 compared with energies give
by Sharp@39#.

Possible states
Sharp data

Peaks in graph
Finite difference Lagrange mesh

State Energy~a.u.! Energy~a.u.!
Sg1s 20.602 20.599 20.599
Su1s 20.167 20.163 20.161
Sg2s 0.139 0.141 0.141
Su2s 0.245 0.247 0.247
Sg2p 0.264 0.266 0.264
Sg3s 0.315 0.326 0.323
Sg3p 0.366 0.364
Su2p 0.373 0.376 0.372
Sg4s 0.394 0.394

Su4s 0.414 ↑
Su3p 0.416
Sg3d 0.417 0.418
Sg4p 0.417 ↓
Su3d 0.441 0.440
Su4p 0.444 ↑
Sg4d 0.444
Su4d 0.459 0.449
Sg4 f 0.459 ↓
Su4 f 0.468
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can be used to treat H2 we will not deal with the acceleration
gauge since it would involve the calculation of large tim
dependent Coulomb potential terms. In Fig. 2 we present
length and velocity gauge comparison of the populat
within the grid for fixed nuclei H2

1 at an internuclear sepa
ration ofR58 for a laser pulse with a wavelength of 248 n
and a peak intensity of 1.031014W cm22. In this case, we
see that the results are gauge independent. Indeed, we
checked that other results presented throughout this pape
also gauge independent.

C. Floquet comparison

In Fig. 3, we compare our time-dependent results for H2
1

at R52 using the Lagrange mesh and the finite-differen
methods with results from the Floquet method of Mads
and Plummer@14#. In our time-dependent calculations,

FIG. 2. Length~----! and velocity~¯¯! gauge comparison o
the population within the grid for fixed nuclei H2

1 at an internu-
clear separation ofR58 for a laser pulse having a wavelength
l5248 nm and a peak intensity ofI 051.031014 W cm22.

FIG. 3. Comparison of Lagrange mesh~m! ionization rates at
R52 for a wavelength ofl5228 nm with full finite difference~s!
results and Floquet~j! calculations@14#.
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pulse that ramps up over 6 optical cycles, remains consta
intensity for a further 8 cycles and then ramps off over
further cycles is used. Results from both approaches s
good agreement with Floquet theory. The general trend
function of intensity is very well reproduced and the absol
ionization rates are in good agreement except at the hig
intensity where the Floquet results show a decrease in
ization rate. This drop in rate is attributed to chann
closing—that is the Stark shifting of the ground state w
respect to the continuum being sufficient at this intens
for seven photons to be required for ionization instead
six. In this regime of frequency and intensity~Keldysh pa-
rameter g'2! the process is dominated by resonant e
hancement. We have investigated the sensitivity of both
finite difference and Lagrange mesh results with grid sp
ings, grid sizes, and pulse characteristics and found tha
results are well converged. Therefore, we attribute the sm
discrepancy to the slight inaccuracy in the excited st
spectrum.

In Fig. 4, we present a comparison of the ionization ra
as a function of internuclear separation for a laser pulse
wavelength 248 nm and peak intensityI 051.0
31014W cm22 with the results of Madsen and Plummer@14#
and with the finite-difference method. The Keldysh para
eter for these conditions varies betweeng'5 for R52 and
g'3 for largeR and this defines the process as multipho
rather than tunneling ionization. Very good agreement
tween both time-dependent methods is observed for all in
nuclear distances. Very good agreement with the Floque
sults is also found at small internuclear distances at wh
the ground electronic state is an isolated resonance of
system requiring six photons to reach the ionization thre
old, and at larger internuclear distances where the pro
requires only four photons to achieve ionization. Poor agr
ment with the Floquet results is observed around interm
ate internuclear distances (6,R,9). The Floquet ionization

FIG. 4. Comparison of the Lagrange mesh results~m! for
the ionization rate as a function of internuclear separation
a laser pulse of wavelengthl5248 nm and peak intensityI 0

51.031014 W cm22 with the results of Madsen and Plummer@14#
~ ! and with the finite difference method@21# ~d!. The 3 at R
512 represents the separated atom ionization rate of 1.4431023.
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rates refer to a particular dressed state formed from theSg
ground state. However, around intermediate values ofR the
ground-state ionization rate is difficult to define. As a res
of crossings with excited states and Rydberg series re
nances the ground state becomes mixed~dressed! with other
states. Both wave packet calculations indicate the nona
batic following that arises during the pulse rise and indica
the difficulty in comparing with Floquet theory for interfer
ing resonance states. Our results asR→` converge to a
separated atom ionization rate of 1.4431023, which is
marked with a cross on the figure atR512. This gives ex-
cellent agreement with the atomic hydrogen ionization r
of 1.3531023 calculated by an independent atomic wa
packet code utilizing a mixed finite-difference basis-s
method@42#.

In obtaining these results we found that the use of a
cycle laser pulse having a 4 cycle ramp on and a 4 cycle
ramp off gave fully converged results except atR58.7 and
R510. From the figure, we see that the Floquet rate
peaked around these values that suggests the presence
intermediate resonance state. We find that using a 60 c
laser pulse having a 10 cycle ramp on and a 10 cycle ra
off reproduces the Floquet rate. The reason for this is ob
ous from Fig. 5. In this figure, we plot the logarithm of th
population within the grid as a function of time at an inte
nuclear separation ofR510. In a nonresonant process, w
would expect that after the ramp on period this would dec
as a straight line of constant slope. However, we see that
separate rates are present. Firstly, there is a large popul
decrease from 10–15 cycles after which the rate changes
lower value with a sinusoidal component superimposed. T
implies that an intermediate bound-state resonance is qui
populated at the start of the pulse after which it begins
decay. The sinusoidal component superimposed is du

r
FIG. 5. Logarithm of the electronic population within the gr

~ ! at R510 for a wavelength ofl5248 nm using and a pea
intensity of I 051.031014 W cm22. Two distinct rates are presen
that are highlighted by the extrapolated lines, namely, initial po
lation of a bound resonant state~—•—! followed by its subsequen
decay~¯¯!.
8-8
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FIG. 6. r̄2z plots of the electron probability
density P( r̄,z,t) at R510 for a 60-cycles laser
pulse having wavelengthl5248 nm that ramps
up over 10 cycles to a peak intensity ofI 051.0
31014 W cm22. The picture at the top shows
profile of the laser pulse with the circles corre
sponding~from left to right! to the location of
frames~a!–~f!. Only 20 cycles of the pulse are
shown here for clarity.
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Rabi oscillations with the ground state. Such an effect
already been observed in atomic helium through a comp
son of theR-matrix Floquet method and the direct solution
the TDSE@43#.

D. Visualization of the electronic wave packet at large
internuclear spacing

Our time-dependent calculations provides us with
complete electronic wave function at each time step in
calculation. Scientific visualization techniques enable us
visualize the electron probability density

P~ r̄,z,t !5uc~r̄,z,t !u2, ~4.8!

and thus obtain spatial information about the electron
namics. In~I ! we presented such a visualization for fixe
nuclei H2

1 at R52 in a l5248-nm laser pulse of pea
intensityI 05631014W cm22 using the full finite-difference
02340
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approach. In that case tunneling ionization was dominant
indeed the effects of electron rescattering from the nu
were observed.

In the ionization results we presented in Fig. 5, we no
a change in ionization rate that was attributed to a bou
state becoming resonantly populated followed by its dec
In Fig. 6, r̄-z plots of the electron probability density for thi
case are presented at various times during the first 20 cy
of the pulse. The plots show the multiphoton nature of
electron response, especially in frames Figs. 6~a!–~c! where
we do not observe any distortion along thez coordinate in
antiphase with the field followed by rescattering that we
sociate with tunnelling ionization@21#. Instead we see tha
the electric field does cause a different type of distortio
namely, an oscillation whereby electron density is expel
from the region between the two nuclei whenever the fi
passes through a maxima. Figures 6~e! and 6~f! present plots
for two instants at which the decay of the resonant bou
8-9
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state is observed. The electron wave packet has a w
defined stable structure consisting of six lobes that oscil
in phase with the field. This is the electron distribution of t
resonant state. An animation of this electronic density
available in MPEG format from www.am.qub.ac.uk/mecp
multi1–results.html.

V. CONCLUSIONS

The problem under consideration is one of fundamen
importance to femtosecond chemistry through acting a
precursor to the description of more complex molecular s
tems. In particular, it acts as a stepping stone towards
hydrogen molecule that is widely studied in experiment a
acts as the simplest molecular system in which the interp
between electron correlation and dissociation dynamics
be studied. The method that has been presented in this p
represents a general approach for the solution of the hy
gen molecular ion that can readily be scaled to treat the m
complex hydrogen molecular problem using present
A
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high-end computational resources. This will be the subjec
further publications@44#. The method has shown itself no
only to be efficient in the treatment of this problem but al
accurate. We note here that the method presents no diffi
ties in reducing the uncertainty of our solutions, which c
be achieved by reducing the grid separations and increa
the grid size.
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