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Efficient grid treatment of the ionization dynamics of laser-driven H,*
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We implement a parallel, time-dependent hybrid finite-difference Lagrange mesh code to model the electron
dynamics of the fixed-nuclei hydrogen molecular ion subjected to intense ultrashort laser pulses. lonization
rates are calculated and compared with results from a previous finite-difference approach and also with
published Floquet results. The sensitivity of the results to the gauge describing the electron-field interaction is
studied. Visualizations of the evolving wave packets are also presented in which the formation of a stable
bound-state resonance is observed.
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[. INTRODUCTION These problems are thus comparable with the hydrogen atom
and helium atom, respectively, but with the complexity of

The interaction of a diatomic molecule with an intense,two centres of nuclear charge. The treatment of multielectron
ultrashort laser pulse provides an example of a quantum sysystems in full dimensionality is a formidable task and it is
tem driven far from equilibrium. When this interaction oc- only recently that such calculations for atofi®s-11] have
curs, several highly nonlinear phenomena are observedhegun to uncover the subtleties in the dynamics induced by
namely, ionization (multiphoton, tunneling, and above the electron-electron interaction. For molecules this has
threshold, high-order harmonic generation, dissociation, andmeant that, in contrast with experiment, most serious nu-
Coulomb explosionfl—4]. Whereas the first three processesmerical work is still limited to the molecular ion.
relate to the electron dynamics, as evidenced by the fact that Solution of the TDSE has generally followed two ap-
they are also observed in atomic systelh§ the last two proaches. For the long pulse, low-intensity regime the time-
clearly bring the nuclear dynamics into play. Neverthelessindependent Floquet method is applicable and has had much
the nuclear dynamics involve a critical interplay with the success in treating both the molecular-ion problem through
electron dynamics since the electrons interact directly withuse of an electronic basis of Sturmian functiph2—14, and
the laser field. Hence an accurate description of all the abovilie molecular problem using a@R-matrix basis[15,16. In
processes requires a precise description of the electron dyteating the high-intensity, short-pulse regime used in many
namics[6]. present day experiments, direct time-dependent grid ap-

The origin of these nonlinear processes is best studied bgroaches are most appropridfer—23.
considering the simplest diatomic molecules, namely, the The grids used in such time-dependent calculations must
one-electron hydrogen molecular ion and the two-electromgive an adequate coverage of configuration space while not
hydrogen molecule. While both dimers allow study of theusing too many points in mapping out less important coordi-
dissociation processes, the two-electron hydrogen moleculeates. For a linearly polarized laser pulse with the internu-
allows electron correlation effects in the electron dynamicslear axis aligned along the polarization axis, cylindrical po-
to be explored. Most experimental studies to date have folar coordinates can be used, the electron position vector
cused on the neutral molecylg]. This has been due to the being given by
relative ease of preparing neutral beams. Indeed, it has only
been in the last few years that experimental techniques have r=pcog¢)i+psin(¢p)j+zk, (1.2
advanced to the point where ion beams can be utilize@l.

An accurate theoretical description of laser-driven dimersvhere the axial coordinai@) is along the polarization direc-
requires the solution of the time-dependent Sdhrger tion. Thez coordinate is, therefore, predominant since most

equation(TDSE), electron motion will take place along the axis of polarization.
The radial coordinatép), while less important, is still re-
P ) -
_ 7 quired for a proper description of the exchange of angular
HO¥(r.y=ia ot (., (.0 momentum between the electrons and the field.

The principal grid technique used has been the finite-
whereH(r,t) is the time-dependent Hamiltonian addr,t) difference method. Applying this method in cylindrical coor-
the wave function. Taking only parallel electronic transitionsdinates leads to problems brought about by enforcing the
into account the molecular ion with fixed internuclear spac-correct boundary conditions at=0. Scaled coordinates have
ing interacting with a linearly polarized laser pulse demandseen introduced to alleviate this problem using both a length
the solution of a (2 1)-dimensional TDSE while the hydro- gauge description of the laser-electron interactipi®,21]
gen molecule amounts to a {5l)-dimensional problem. and, more recently, an acceleration gauge descrig@dh

However, the scaled finite-difference matrices in phdirec-
tion are non-hermitian leading to a nonunitary time evolu-
*Electronic address: d.dundas@qub.ac.uk tion. Whilst unitary is recovered in the limit of decreasing
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grid spacing this nevertheless means that more grid pointwith mesh points¢; and weights\; and lead to a set of grid
are required to cover an adequate range in configuratioaquations whose grid points are the quadrature pivots.
space. Although this is not an insurmountable problem for

the description of the molecular ion, it poses serious prob- A. Construction of the Lagrange functions
lems in the (5+1)-dimensional treatment of the,Hnol- . . . .
ecule. In order to construct the basis functions, we first consider

Methods that work well not only for the one-electron hy- N differentiable basis functiong,(x) defined on the domain

drogen molecular ion but also for the two-electron moleculeasxsp with k.:. 0.1,..N—1 and which satisfy the ortho-
must satisfy the following requirementd) allow the correct  normality conditions

application of the boundary conditions at=0; (2) make (oil@) =5 2.3
possible a unitary time-evolution operat¢8) require com- He T '
paratively few grid points along the direction. Then provided

In this paper, we introduce a method that satisfies all the

above requirements, namely, a Lagrange mesh treatment of N1

the p coordinate together with a finite-difference treatment of 2 QDE(Xi)(pk(xj):Ai’l&ij , (2.9
the z coordinate. In order to show the power of the method, k=0
we limit _ourselves to a description c_Jf the o_ne-electron_ MO~ o can construct
lecular ion and make a comparison with other time-

dependent and time-independent approaches. The paper is set N—1
out as follows. In Sec. Il, we establish the Lagrange mesh f.00=N > of (%) ek(X) (2.5
technique and show how it leads to a set of grid equations. In k=0

Sec. lll, we describe how the Lagrange mesh can be com-

bined with the finite-difference method in order to describeSuch that
the molecular ion. The TDSE for the molecular ion is derived

and a set of grid equations obtained. Other aspects of the
numerical technique are detailed such as time propagation;
generation of an initial state; splitting of the wave function to

prevent reflections from the edges of the grid; and gaugsatisfying Eqs(2.1) and(2.2).

choice for the electron-laser interaction. Section IV presents

various results. In particular, the method is benchmarked B. Obtaining the grid equations
against the Floquet method and a previous method using
scaled finite differences reported in RE21], hereafter re- 4 | )

ferred to as (). Scientific visualization techniques are then Itgrimsett:r?icrj] tof%r?]n?f;(ej|1rp§gs€or(aD), time-dependent prob-
used to analyze the time evolution of the electron dynamics.” 9
Finally some conclusions about the strength of the method J

are drawn. Atomic units are used throughout. HX,DW(X,t)=[T+V(X,t)]¥(x,t)=i E‘P(x,t),

(2.7

whereT is the kinetic-energy operat®M(x,t) a potential and

The Lagrange mesh method is a basis-set method foundeg(y t) the wave function. We expand the wave function in
on Lagrange interpolation and Gaussian quadrature. It is gye Lagrange basis

special case of the discrete variable representation method

[24] that has been extensively applied to both time- N

independent problem£5,26 and time-dependent problems W(x,t)~ >, ci(t)fi(x), (2.9
[27-29. In this section, we give an outline of the method. =1

For a fuller description of the method, the reader is referred . -
to Baye and Heena80]. wherec;(t) are expansion coefficients. Clearly

N-1

E |‘Pk(xi)|2
k=0

-1

)\i: y (26)

To show how the grid equations are obtained, we apply

II. LAGRANGE MESH TECHNIQUE

Consider a set ol differentiable functiond;(x) defined b
on a domaina<x=<b with i=1,2,...N. These basis func- Ci(t):j fi*(X)‘I’(X,t)dX~)\i1/2"l’(Xi ). (2.9
tions satisfy the Lagrange interpolation condition a

Substituting Eq(2.8) into (2.7), taking the inner product of

—y —l2s
fix) =i 750, 21 poth sides with an arbitrary basis memifefx), using Eq.
(2.2) and (2.2 and introducing the linear scaling =hx;
and the Gaussian quadrature leads to

2,

b 1 d
<fi|f,->5fafr(x)fj<x>dx~x%’2fr<xj>=A%’2fj<xi>=5”-, 2 [Tt V08— o 8 NP (y; .0 =0,
(2.2 (2.10
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whereT;; =(f;|T|f;). We see that this equation represents a 1 (62 140 9
set of linear equations, where we need only to evaluate the H=— o 72T >l +V(p,z,R)+U(z1),

potential term and the wave function at the mesh points.

C. Application to the range [0, )
Since we are interested in treating theoordinate with

the Lagrange mesh, we must construct a basis defined on the v(p,z,R)=—

interval [0, «©). The generalized Laguerre polynomials,

(a+n)!

(a) _
Lo 0= =i

1Fi(—=n;a+1;x),

(2.11

(3.1
whereV(p,z,R) represents the Coulomb interactions

2 2
[P+ (2= 2RI [p?+(2+1R)2

212,
R 1

(3.2

defined over the interval0, «) and associated with the R being the internuclear distance ad¢ and Z, being the

weight functionx®e™*, fit this criterion perfectly. DefiningN
orthonormal functionsp,(x) with n=0,1,2,..N—1 as

I'a+n+1)
—X

= a/Ze—X/ZL?la)(X)'

(2.12

en(X)=

the corresponding Lagrange functions are given by

_ 1 en(Xx)
fi(X)=N\; W(,— , 2.1
O Q0 xx (219
wherex; are the zeros of {’(x) and
\i= ! (2.19
b oXien(x)? '

nuclear charges; and(z,t) represents the interaction be-
tween the electron and the laser field. In most of the results
presented in this paper the length gauge description of the
electron-field interaction is used, given by
U (z,t)=zE1), (3.3

where E(t) is the electric-field strength in the dipole ap-
proximation given by
E(t)=Egyq(t)coswt, (3.9

for a field with frequencyw and is related to thpeaklaser
intensityl, by

4rlg| 12

c

The generalized Laguerre polynomials are associated with

the kinetic-energy operator

T 1 32 +a(a—2) 01
ol Tadt T ) (219

Since the laser field is pulsed we include the pulse envelope
q(t), which consists of a smooth ramp on from zero to one
over a duratiort,. The field amplitude is then held constant
from a timet; to a timet, after which it is ramped off to zero

at a timets, the ramp off time being equal to the ramp on

where u is the reduced mass of the electron. Baye andime (t;=t3—t,). Thus,

Heenen[30] showed that the matrix elemerily are given
by

(a+1)? .
|:
1 4Xi2 b J
Ti=o—X
"2, lat+t1l (1 1 o
(=n'! —+—|+S;|, 1#],
2Vxix \Xi X
(2.1
where
1
Sj=Vxix; > (2.17)

KAL) Xi(Xie= %) (Xe= X))

Ill. APPLICATION TO H 2+

( 1 7t
5| 1—cos —| |, o=t=t,

ty
1, i =t=t,

t =
q( ) 1 7T(t_t2+t1)

5/1—co ,  bLststy

ty

0 otherwise.

(3.6

A velocity gauge description of the electron-field interaction
can also be used in which

i 1%
Uv(z)== ZA( 7, (37

wherec is the speed of light and(t) is the vector potential

Turning our attention to the molecular ion, it is now Of the laser field that is related to the electric-field strength
shown how the Lagrange mesh approach can be combinet2

with finite differences to solve the TDSE. FArsymmetry,

the azimuthal ¢) dependence does not arise and the Hamil- E(t)=— E IA(t)

tonian has the form

pm (3.9
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One can remove the first-order derivative in E8.1) by
the change of dependent variable

W(p,z,t)=p Yy(p,z1), (3.9
such that
9 oL D, +V R
Iﬁdl(pvzyt)_ _Zﬁ—’_ p+ (paza )
+U(z,t) |4(p,z,t), (3.10
where
5 1 #? 1 a1
ol ) o
In this case wave function normalization requires
o] “+ oo
[0 adppzop-r @2
0 — o0

We then construct a 2D grid in theandz coordinates and
discretize the wave function on this grid.

A. Lagrange mesh treatment of thep coordinate

PHYSICAL REVIEW A 65 023408

f"(z)= %ﬂ—ﬁf(z—Zéz)Jﬁ—gf(z— 62)—2f(2)

+18%(z+ 62)— Sf(z+262)], (3.15
and the first derivative required for the calculation of
Uy(z,t) is approximated by

f'(z)= %[ﬁf(z—Zéz)—%f(z— 82)+ & f(z+ 62)

—5f(z+262)]. (3.16

The finite-difference approach allows us to parallelize our
computer code efficiently. The coordinate grid is distrib-
uted across processors while thenesh is handled entirely
on each processor. In order to handle the electron quiver
motion in intense fields a large numberzgrid points must

be used. Distributing the coordinate across processors al-
lows us to scale the size of the problem easily to describe
intense fields. The sparse nature of the finite-difference ma-
trices compared to the Lagrange mesh method means that
communications between processors is kept to a minimum.
Indeed each processor must communicate with a maximum
of four neighboring processors, depending on how many
points are stored per processor. We have already dealt with
convergence studies again¥ in (I) and so will not detail

The Lagrange mesh method is now applied to the treatthis again. Briefly, we find that converged results are ob-
ment of thep coordinate by expanding the wave function astained for a grid spacing ofz=0.2.

in Eq. (2.8), namely,

N
w<p,z,t>=§1 N2u(pi 2,0 Fi(p).

(3.13
This allows us to obtain the TDSE
N 1 & 1 -
jzl - ﬂ ﬁéll + WD” +V(p| 721R)5ij +U(th)5lj
H J 12—

whereD;;=(f;|D |f;) and we employ the linear scaling
=hp; . Furthermore, we see that E(.11) corresponds to
Eqg. (2.19 whena=1 and soDj; is given by Eq.(2.16.

Convergence studies have shown that for all the results

C. Arnoldi time propagator

Given a wave function/(t) at a timet the wave function
at a later time + 6t is obtained by applying the unitary time-
evolution operatotJ (t+ 6t,t), namely,

Y(t+ ) =U(t+ ot ) (t)~e HONyt),  (3.17)

In (1) the p coordinate was treated using finite differences in
scaled coordinates. The finite-difference matrices were non-
Hermitian and so the time-evolution operator was nonuni-
tary. In that casdJ(t+ 6t,t) was approximated by itath
order Taylor-series expansion

—ist k
( II(! ) (3.18

U(t+5t,t)=kZO—Hk(t).

presented in this pap@&=30 basis functions are sufficient.
It was also found that while ionization rates are not sensitive ] )
to the scaling parametdr, converged harmonic generation !N the present work the matrix elements BX, in the

spectra were only obtained whenever the scaling parameté@drange basis are hermitian leading to a unitary time-
was reduced tch=0.4. This results in a mesh having an evolution operator. We, therefore, wish to use an accurate,

extent 0<p=42. high-order unitary time-evolution operator and hence choose

the nth-order Arnoldi propagatdi31]. The Arnoldi propaga-

tor is an explicit propagator that involves successive opera-

tions of the Hamiltonian upon the wave function in much the
As in (I) the z coordinate is treated using finite differ- same way as the Taylor-series propagator. Using the Arnoldi

ences. The kinetic-energy term is approximated by the fivealgorithm[32], we construct an orthonormal set of vectors,

point central difference formula [d0.91.92,.--,0,], Which span the Krylov subspace

B. Finite difference treatment of z

023408-4
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Kn(H, ) =spad g, Hy,H?y,... H "y} (3.19 rapidly. Indeed we find that only one hundred iterations are
required to obtain convergence. This corresponds to 100 ap-

The orthonormal set is formed using Gram-Schmidt orthogoplications of the propagator upon the wave function com-
nalization. The process may be represented schematically aared to 5000 applications of the propagator upon the wave

follows: function using the diffusion equation with a time spacing
(1) Construct the first orthonormal unit vector as St=0.01.
— 1/2
do= /| 41" E. Wave function splitting
(2) Forj=0,1,2,...n Wave packets that reach the edge of the grid can be re-
Compute the next vector spanning the subspace, flected from the boundary causing spurious effects in both
=Hg;. harmonic spectra and ionization rates. We eliminate these
Fori=0,1,2,.. reflections by a splitting technique akin to an absorbing
Compute the projection of onto thoseq; already boundary that partitions the wave function into two parts,
calculated, i.e.hj; =qv. one near, and the other far from the nuclei where the Cou-
Subtract the projection of thosg already calculated lomb potential is negligible. This technique was introduced
so thatv will be orthogonal tog; , i.e.,v=v—h;;q;. by Heather and Metiy33] and has been applied to laser-
Compute h;.;;=|v|*? and the unit vectorq;,;  atom interaction§31], fixed nuclei H* [21], and vibrating
=v/hjq;. nuclei H," [34]. Recently the technique has been expanded
nexti by Bandrauk and co-workers in its application to a 1D model
nextj of vibrating nuclei H* by projecting onto asymptotic

Letting h denote the 1§+ 1)< (n+1) upper-Hessenberg \plkov states allowing, amongst other things, complete cal-
matrix formed by the coefficients;;, we obtain the matrix culations of Coulomb explosion spectra for the residual pro-
equation tons[35,36. The splitting is implemented by a mask func-

h=Q'HQ (3.20 tion M, which equals unity near the nuclei and goes
- ' ' asymptotically to zero very gradually. Using this mask func-

where Q is a matrix formed from theN column vectors UON the wave function is split into two parts

[%.,Q1,Q2.--_-,qn] and soh -is the Krylov subspNace Hamil- =M+ (1—M) . (3.22
tonian that is calculated simultaneously with H=Q'hQ
can be used as a replacementtdn a wide variety of ap-
plications. In particular, the time-evolution operator can b
written as

The residual part, (M), can be propagated indepen-
edently in the limit in which the Coulomb potential is negli-
gible over the region in whiciM <1. The design and opti-
mization of the mask function requires considerable care,
and extensive numerical simulations must be performed to

Now h is typically a tridiagonal matrix and se~ 1% can be ~characterize the optimal shafel].

inexpensively exponentiated through the direct diagonaliza- While_ th? use 'f’f such absorbing boundaries ?S well docu-
. ~ : . mented in finite difference methods, their use with Lagrange
tion of h. U(t) may thus be viewed as a unitary propagator

. . meshes has not been described in great detail. For instance,
that Is correct to or(_jem In & In the.present_work converged _recently Sakimotd29] used a Laguerre-Lagrange mesh in a
time propagation Is obtained using a sixth-order ArnOIdItime-dependent treatment of excitation and ionizatiorpin
propagator using a time stept=0.01. +H collisions. It was noted that because the Laguerre poly-
nomials spanned the ranf@) reflections would not occur
D. Obtaining the initial state and, therefore, no form of absorption was necessary. This,

In (1) it was shown how the ground state of the hydrogenhowever, will only be the case if an infinite number of mesh
molecular ion could be obtained by propagating the wave0ints are used in the calculation. In all calculations the num-
function in imaginary time, i.e., by the replacementit. ber of mesh points is truncated at some finite value yielding
With this replacement the evolution operator, Ej21), be- @ numerical grid with finite extent. Hence reflections will
comesU(t)=Qe "97Q". This has the effect of turning the occur if no form of wave funcponiphttmg is used. As(ih,
TDSE from a wave equation into a diffusion equation, inthe mask function is broken into @dependent pa (o)

which the eigenvectors decay at rates proportional to theif"d az-dependent pam,(z) given, respectively, by

energies. The effect is that only the lowest eigenvector sur-

vives (the ground stade This process of excited state decay P— Apmax|

lasts no longer than 50 a.u. Mﬁﬁ)zex;{ _4< o )
Lanczos showed that the eigendecompositioh o&én be

used as a first step in an iterative scheme to calculate the o —

eigenvalues oH. This approach proves attractive in obtain- it p=>apmax, (3.23

ing the ground state of the molecular ion instead of using a

diffusion equation since the ground state is obtained mor&herep,, is the maximum value op and

U(t+ot,t)=e HA=Qe ihoQT, (3.21)
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_ 2| — aZ ax 2 ' ' ' 10'
Mz(z)—exr{ —4(2—) @

max?’

10°

if |z|>aZmax (3.29
whereZ, is the maximum value of and M(p) =M (2)
=1 otherwise. The wave function is thus split according to

lﬂ(zz,t) = MZMW(Eth) + (1_ MZMF) lﬂ(ﬁz,t),
(3.29

where (p,z,t) =M, (2)M,(p) ¥(p,z,1) is the split wave
function. The optimal values o and o were determined
empirically to bea=~0.3 ando~5. We note that the mask
function does not have to equal zero at the boundary. Th
only requirement is thaiy smoothly approaches zero at the
edges of the integration volume.

Spectrafbensity
=

IV. RESULTS

We now present results using this method making a com- 10
parison with the scaled finite-difference treatment of the
coordinate and with Floquet results. Scientific visualization

techniques are then used to analyze the time evolution of the 10
electron dynamics in the presence of a resonance. A gric
having extent—50<z<50 and G<p<42 is used in all 10
calculations.

—6 i | 1
-09 -06 -03 00 03 0.6 09

A. Calculation of the grid energy spectrum 10

We have already discussed how the field-free ground elec
tronic state of the grid can be obtained by either propagation
of a trial wave function in imaginary time or by a Lanzcos FIG. 1. Spectral densityC(w)|? atR=2 using(a) the Lagrange
eigendecomposition. However, neither of these methods tethesh model andb) the finite difference model. In both cases a
us how accurately the excited states of the molecular ion artnite difference grid inzis used.
represented on the gridhe Lanzcos algorithm that is cur-
rently implemented in our code only gives information on wt(r,0)=wg(1+z+zz)(1+ﬁ+ﬁz)e‘22, (4.4)
the lowest eigenvalye

In order to calculate the excited-state energies, we can Usgherey, is the analytic form of th& 41s variational ground
a time autocorrelation techniq(ig7]. This consists of calcu- state, namely;38]
lating the time autocorrelation function

Energy (a.u.)

Pg=[e *a*)], (4.9
C(t)=f i (r,0) g (r,0)dr, 4.7
with a=1.24 and
where
rap=[p%+(zxR/2)%]*2 (4.6)
9
Hea(r, 1) =1 = (1, 1), (4.2) Figure 1 presents the electronic energy spectrum of the

grid for a fixed nuclei calculation a@R=2 using both the
by propagating a trial function;(0), in real time in the Lagrange mesh treatment of [Fig. 1(&@] and the finite-
absence of the laser fieldl being the field-free electronic difference treatmeritig. 1(b)]. A range of states are present
Hamiltonian. The spectral density of this, obtained by takingup to the ionization limit at 0.5. Table | presents a compari-
the square of its Fourier transform son with results given by ShafB9]. The two sets of results
are in quite good agreement with the Sharp data although
there are slight inaccuracies in certain excited-state energies
that is to be expected due to the discretizion and finite extent
of the grids affecting such cases. On the whole the energies
gives us the energies of states supported by the grid. The trialsing the Lagrange mesh approach are more accurate than
function includes even and odd parities. In this work, wethose from the finite-difference method for the parameters
choose chosen. The results from both methods, however, present

2

|C(w)|2=’ f:C(t)ei“’tdt , (4.3
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TABLE |. Energies of electronic states using the finite differ- 1 [ T T T T T T T T

ence z=0.2,6p=0.15) and Lagrange mesiaZ=0.2N=30) cal- | 3 |
culations of fixed nuclei 5" atR=2 compared with energies given ‘\
by Sharp[39]. 0.8 “\ m
Possible states Peaks in graph ‘\
Sharp data Finite difference Lagrange mesh 5 06 \ 7

= \
State Energya.u) Energy(a.u) 20 \ 1
24ls —0.602 —0.599 -0.599 B 04— ‘-\ —
3,1s —0.167 —0.163 -0.161 L \ |
342 0.139 0.141 0.141 ol . i
3.2 0.245 0.247 0.247 ' Y
342p 0.264 0.266 0.264 - N 1
3438 0.315 0.326 0.323 ob—v L1 1 el
3.3p 0.366 0.364 0 10 20 30 40 50 60
S 32 p 0.373 0.376 0.372 Time (Cycles of laser field)
2448 0.394 0394 FIG. 2. Length(----) and velocity(--- - - ) gauge comparison of
S 4s 0.414 T the population within the grid for fixed nuclei,Fi at an internu-
3.3p 0.416 clear separation oR=8 for a laser pulse having a wavelength of
s ,3d 0.417 0.418 =248 nm and a peak intensity b§=1.0x 10 W cm™ 2.
3 44p 0.417 ! , , )

can be used to treat,Hve will not deal with the acceleration
>,3d 0.441 0.440 gauge since it would involve the calculation of large time-
2.4p 0.444 1 dependent Coulomb potential terms. In Fig. 2 we present the
2 44d 0.444 length and velocity gauge comparison of the population
3 4d 0.459 0.449 within the grid for fixed nuclei H™ at an internuclear sepa-
3 jaf 0.459 ! ration ofR=8 for a laser pulse with a wavelength of 248 nm
S, 4f 0.468 and a peak intensity of 1:010*W cm™2. In this case, we

see that the results are gauge independent. Indeed, we have
checked that other results presented throughout this paper are
convincing evidence that grid methods give an accurate reflso gauge independent.

resentation of the electronic structure.

C. Floquet comparison

B. Gauge dependence of ionization rate In Fig. 3, we compare our time-dependent results fgf H

In principle, the two approaches outlined for describing® R=2 using the Lagrange mesh and the finite-difference
the electron-field interactions are equivalent since the lengtf€thods with results from the Floquet method of Madsen
gauge description is related to the velocity gauge descriptiog"d Plummer{14]. In our time-dependent calculations, a

through the unitary transformation ot

W (r,t). 4.7

\Pv(r,t):exp{l—rA(t)
¢ [
]013

In practice the length and velocity descriptions do not nec-%
essarily agree since the wave function is approximated.g
Gauge effects have already been well documented in atomii |
systems[40,41. However, time-dependent molecular ap- -
proaches generally use a length gauge solution while othe g
approaches such as the time-independent Floquet results pr+= .
sented in this paper for comparison have used a velocity 10
gauge description. Whilst gauge comparison have been mad
using the Floquet results, few time-dependent approache
make such a comparison. For instance, Bandrauk and ca 1o L
workers have recently made a detailed comparison of lengtt

and acceleration gauge descriptions using a scaled finite-
difference techniqug23]. In the following, we make a com-  FIG. 3. Comparison of Lagrange megh) ionization rates at
parison between the length and velocity gauges. Since thR=2 for a wavelength ok =228 nm with full finite differencgQ)
purpose of this paper is to present an efficient method thatsults and Floquei) calculationg 14].
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FIG. 4. Comparison of the Lagrange mesh resids for

the ionization rate as a function of internuclear separation for
a laser pulse of wavelength=248 nm and peak intensity,
=1.0x 10"* W cm™2 with the results of Madsen and Plumnjé#]
(—) and with the finite difference methd@1] (®). The X atR
=12 represents the separated atom ionization rate 0f<1144°,

FIG. 5. Logarithm of the electronic population within the grid
(—) at R=10 for a wavelength ok =248 nm using and a peak
intensity ofl,=1.0x 10" W cm 2. Two distinct rates are present
that are highlighted by the extrapolated lines, namely, initial popu-
lation of a bound resonant state--—) followed by its subsequent
pulse that ramps up over 6 optical cycles, remains constant ifcay( -~ )-
intensity for a further 8 cycles and then ramps off over 6
further cycles is used. Results from both approaches shovates refer to a particular dressed state formed fromthe
good agreement with Floquet theory. The general trend as ground state. However, around intermediate valueR tfe
function of intensity is very well reproduced and the absoluteground-state ionization rate is difficult to define. As a result
ionization rates are in good agreement except at the highesf crossings with excited states and Rydberg series reso-
intensity where the Floguet results show a decrease in iormances the ground state becomes mi¢dréssegiwith other
ization rate. This drop in rate is attributed to channelstates. Both wave packet calculations indicate the nonadia-
closing—that is the Stark shifting of the ground state withbatic following that arises during the pulse rise and indicates
respect to the continuum being sufficient at this intensitythe difficulty in comparing with Floquet theory for interfer-
for seven photons to be required for ionization instead ofng resonance states. Our results Ris> converge to a
six. In this regime of frequency and intensitieldysh pa- separated atom ionization rate of 1440 3, which is
rameter y~2) the process is dominated by resonant ensmarked with a cross on the figure Rt=12. This gives ex-
hancement. We have investigated the sensitivity of both theellent agreement with the atomic hydrogen ionization rate
finite difference and Lagrange mesh results with grid spacef 1.35x10 2 calculated by an independent atomic wave
ings, grid sizes, and pulse characteristics and found that thgacket code utilizing a mixed finite-difference basis-set
results are well converged. Therefore, we attribute the smalthethod[42].
discrepancy to the slight inaccuracy in the excited state In obtaining these results we found that the use of a 20-
spectrum. cycle laser pulse havina 4 cycle ramp on aha 4 cycle

In Fig. 4, we present a comparison of the ionization rategsamp off gave fully converged results exceptRst 8.7 and
as a function of internuclear separation for a laser pulse o0R=10. From the figure, we see that the Floquet rate is
wavelength 248 nm and peak intensityy,=1.0 peaked around these values that suggests the presence of an
X 10"W cm™? with the results of Madsen and Plumnjéd]  intermediate resonance state. We find that using a 60 cycle
and with the finite-difference method. The Keldysh paramdaser pulse having a 10 cycle ramp on and a 10 cycle ramp
eter for these conditions varies betweew 5 for R=2 and  off reproduces the Floquet rate. The reason for this is obvi-
v~3 for largeR and this defines the process as multiphotonous from Fig. 5. In this figure, we plot the logarithm of the
rather than tunneling ionization. Very good agreement bepopulation within the grid as a function of time at an inter-
tween both time-dependent methods is observed for all intemuclear separation dR=10. In a nonresonant process, we
nuclear distances. Very good agreement with the Floquet revould expect that after the ramp on period this would decay
sults is also found at small internuclear distances at whiclas a straight line of constant slope. However, we see that two
the ground electronic state is an isolated resonance of thgeparate rates are present. Firstly, there is a large population
system requiring six photons to reach the ionization threshdecrease from 10—-15 cycles after which the rate changes to a
old, and at larger internuclear distances where the procedswer value with a sinusoidal component superimposed. This
requires only four photons to achieve ionization. Poor agreeimplies that an intermediate bound-state resonance is quickly
ment with the Floquet results is observed around intermedipopulated at the start of the pulse after which it begins to
ate internuclear distances{8R<9). The Floquet ionization decay. The sinusoidal component superimposed is due to
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FIG. 6. p—z plots of the electron probability
density P(p,z,t) at R=10 for a 60-cycles laser
pulse having wavelength =248 nm that ramps
up over 10 cycles to a peak intensity lgf=1.0
X 10" W cm™2. The picture at the top shows a
profile of the laser pulse with the circles corre-
sponding(from left to right to the location of
frames(a)—(f). Only 20 cycles of the pulse are
shown here for clarity.

(d) (e) U]

Rabi oscillations with the ground state. Such an effect haapproach. In that case tunneling ionization was dominant and
already been observed in atomic helium through a comparindeed the effects of electron rescattering from the nuclei
son of theR-matrix Floquet method and the direct solution of were observed.

the TDSE[43]. In the ionization results we presented in Fig. 5, we noted

a change in ionization rate that was attributed to a bound

D. Visualization of the electronic wave packet at large state becoming resonantly populated followed by its decay.
internuclear spacing In Fig. 6, p-z plots of the electron probability density for this

Our time-dependent calculations provides us with thec@se are presented at various times during the first 20 cycles
complete electronic wave function at each time step in th®f the pulse. The plots show the multiphoton nature of the
calculation. Scientific visualization techniques enable us t&lectron response, especially in frames Figa)-6c) where

visualize the electron probability density we do not observe any distortion along theoordinate in
o - ) antiphase with the field followed by rescattering that we as-
P(p.z,t)=[¥(p,z,1)|%, (4.8 sociate with tunnelling ionizatiofi21]. Instead we see that

the electric field does cause a different type of distortion,
and thus obtain spatial information about the electron dynamely, an oscillation whereby electron density is expelled
namics. In(l) we presented such a visualization for fixed from the region between the two nuclei whenever the field
nuclei H," at R=2 in a A=248-nm laser pulse of peak passes through a maxima. Figurés)@nd Gf) present plots
intensityl ,=6x 10"W cm™ 2 using the full finite-difference for two instants at which the decay of the resonant bound
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state is observed. The electron wave packet has a welhigh-end computational resources. This will be the subject of

defined stable structure consisting of six lobes that oscillatéurther publicationd44]. The method has shown itself not

in phase with the field. This is the electron distribution of theonly to be efficient in the treatment of this problem but also

resonant state. An animation of this electronic density isaccurate. We note here that the method presents no difficul-

available in MPEG format from www.am.qub.ac.uk/mecpc/ties in reducing the uncertainty of our solutions, which can

multil_results.html. be achieved by reducing the grid separations and increasing
the grid size.

V. CONCLUSIONS

The problem under consideration is one of fundamental
importance to femtosecond chemistry through acting as a
precursor to the description of more complex molecular sys- | would like to thank Ken Taylor, Jim-McCann, and Karen
tems. In particular, it acts as a stepping stone towards th®leharg for helpful discussions during the preparation of this
hydrogen molecule that is widely studied in experiment andpaper. | would also like to thank Jonathan Parker for his help
acts as the simplest molecular system in which the interplajn explaining the intricacies of implementing the Arnoldi
between electron correlation and dissociation dynamics capropagator. The work reported in this paper is supported in
be studied. The method that has been presented in this papgeart by the U.K. Engineering and Physical Sciences Re-
represents a general approach for the solution of the hydrasearch Council by provision of financial support for D.D. as
gen molecular ion that can readily be scaled to treat the morevell as resources used at Computer Services for Academic
complex hydrogen molecular problem using present dayresearch, University of Manchester.
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