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Capture of low-energy electrons by simple closed-shell metal clusters
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The capture by polarization forces of low-energy electrons by closed-shell sodium clusters has been studied
in the framework of the time-dependent local density approximation within the spherical jellium model and the
classical scattering theory of Langevin. Results for Na20,Na40, and Na58 are compared with the predictions of
the classical image charge model and recent experimental results by Kasperovichet al. @Phys. Rev. A60, 3071
~1999!#.
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I. INTRODUCTION

Atomic clusters constitute a bridge between atomic, m
lecular, surface, and condensed matter physics. Among
the types of clusters, metal clusters, and in particular al
metal clusters, have been intensively investigated experim
tally and theoretically in order to have a better compreh
sion of the evolution of electronic size effects@1,2#. At
present, mass selected free metal clusters are experimen
available, which clears the way for a clean and meaning
study of their interactions with all kinds of projectiles inclu
ing light ~e.g., photons@3#, electrons@4#! and heavy particles
~e.g., atoms@5#, molecules, surfaces!. In particular, inelastic
scattering of low-energy electrons on metallic clusters i
process of fundamental interest since it provides a very p
erful way for studying many-electron correlations in qua
tum finite systems@6#.

Since metal clusters are highly polarizable objects, i
well known that, in the case of the scattering of slow ele
trons by neutral metal clusters, the first important force
fecting the incoming electron is the polarization of the clu
ter by the projectile field. At large distances this force
equivalent to the presence of a potential having the us
expression2aL51(v50)/2r 4 where aL51(v50) is the
static electric dipole polarizability of the cluster. This la
quantity has been measured for selected sizes of sod
potassium@7#, and very recently lithium clusters@8#. Gener-
ally, in electron-atom or electron-molecule collisions, pol
ization effects may be properly included by taking into a
count only the dipole term of the full polarization potentia
Until very recently, the same procedure was assumed to
valid in electron–metal-cluster collisions@9#. However, in a
very recent paper devoted to the capture of low-energy e
trons by large (;104 atoms! free sodium clusters@10#, Kas-
perovich et al. have shown that, in order to obtain goo
agreement with their experimental results, it is necessar
go beyond the dipole approximation. The model used in@10#
to mimic the full static polarization potential is the classic
image charge model describing the interaction of a po
charge in front of a macroscopic neutral conducting sph
@11#. This classical approach is certainly valid for large clu
ters. For smaller sizes, one may doubt the validity of suc
macroscopic approach. In the present work, we have ev
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ated static multipolar polarization by using a microscop
theory based on the time-dependent local density approxi
tion ~TDLDA ! and the spherical jellium model. In this wa
one can simulate from a purely microscopic many-bo
theory the static response of the valence electrons within
cluster to the electric field of the impacting electron.

As an application and due to the availability of expe
mental data, we have studied the capture of low-energy e
trons by small closed-shell sodium clusters within the cl
sical scattering theory of Langevin.

Our theoretical approach is outlined in the next secti
Results concerning neutral closed-shell sodium clusters h
ing 20, 40, and 58 valence electrons are given in Sec. III
compared with recent experimental results. Finally, we giv
conclusion and discuss some perspectives of this work
Sec. IV. Atomic units are used unless otherwise specified

II. THEORETICAL METHOD

A. Cluster description

The clusters are described in the spherical backgro
jellium model, which is known to be a very good approx
mation for closed-shell simple metal clusters. This mo
consists in replacing the real ionic core potential by a c
stant positive background corresponding to a uniformly d
tributed charge density. For a metal cluster havingA singly
charged ionic cores, this potential is given by

Vjel~r !5H 2
A

2RC
F32S r

RC
D 2G for r<RC

2
A

r
for r .RC ,

~1!

whereRC5A1/3r s and r s is the Wigner-Seitz radius (r s54
for sodium clusters!. In the Kohn-Sham formulation of den
sity functional theory, the ground-state electronic densityrC

of anN-electron system is written in terms of single-partic
orbitalsf i as
©2002 The American Physical Society02-1



n

r
rm

-

r

h
n
n

le
rit

ce
r

ate
en
on
-
ac-

-

P.-A. HERVIEUX, M.E. MADJET, AND H. BENALI PHYSICAL REVIEW A65 023202
rC~rW !5(
i 51

N

r i~rW !5(
i

uf i~rW !u2. ~2!

These orbitals obey the Schro¨dinger equation

F2
1

2
¹21VKS~rW !Gf i~rW !5e if i~rW !, ~3!

whereVKS(rW) is an effective single-particle potential give
by

VKS~rW !5Vjel~rW !1VH„rC~rW !…1Vxc„rC~rW !…, ~4!

with VH„rC(rW)… the Hartree potential andVxc„rC(rW)… the
exchange-correlation potential. Since the form ofVxc is not
known in general, several approximations have been p
posed in the literature. In this work, we have used the fo
obtained by Gunnarsson and Lundqvist@12# in the frame-
work of the local density approximation:

Vxc„rC~rW !…52S 3rC~rW !

p
D 1/3

20.0333 lnS 11
11.4

r s~rW !
D ~5!

where r s(rW)5@3/4prC(rW)#1/3 is the local Wigner-Seitz ra
dius. The net charge of the cluster isq25A2N.

B. Time-dependent local density approximation

If the system is in a weak external static field, the theo
of the linear response~first order many-body theory! @13,14#
relates the static induced electronic densitydr(rW;@a#) to the
external potentialVext(rW;@a#) by the following relation:

dr~rW;@a# !5E x~rW,rW8!Vext~rW8;@a# !drW8 ~6!

wherex(rW,rW8) is the static response function and@a# repre-
sents a set of parameters. For the process considered
Vext is just the electrostatic interaction between the exter
particle of chargeq1 and theN valence electrons and is give
by

Vext~rW;RW !5(
j 51

N
2q1

uRW 2r j
W u

, ~7!

whereRW andr j
W describe the positions of the external partic

and valence electrons, respectively. For the sake of cla
the set of vectorsrW j will be represented byrW. It is possible to
rewrite the static induced density given in Eq.~6! as

dr~rW;RW !5E x0~rW,rW8!@Vext~rW8;RW !1Vind~rW8;RW !#drW8. ~8!

In the above expression,x0 andVind(rW8;RW ) are, respectively,
the noninteracting static response function and the indu
potential~at positionrW8) due to the polarization of the cluste
02320
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electron cloud by the external particle~situated at positionRW ;
see Fig. 1!. Vind can be written as

Vind~rW;RW !5E dr~rW8;RW !

urW2rW8u
drW81F]Vxc

]r G
r5rC

dr~rW;RW !

5Vind
C ~rW;RW !1Vind

xc ~rW;RW !, ~9!

whererC denotes the electronic density of the ground st
calculated within the local density approximation and giv
in Eq. ~2!. Since we are concerned only with the interacti
potential between the external chargeq1 and the cluster elec
tronic distribution, one also defines the polarization inter
tion energy as

Up~RW !5
q1

2 E dr~rW8;RW !

uRW 2rW8u
drW85

q1

2
Vind

C ~RW ;RW !. ~10!

In the following, we shall useVind
C (RW ) instead ofVind

C (RW ;RW ).
For spherically symmetric systems~closed-shell metal clus
ters! the static response functionx may be written as

x~rW,rW8!5 (
L8M8

xL8~r ,r 8!

~rr 8!2
YL8M8

* ~ r̂ !YL8M8~ r̂ 8! ~11!

and, as usual, the Coulomb interaction is expanded as

1

uRW 2rW8u
5(

LM

4p

~2L11!

r ,
L

r .
L11

YLM* ~R̂!YLM~ r̂ 8!, ~12!

with r ,5min(R,r8) and r .5max(R,r8). Inserting the two
preceding expressions into Eq.~6! leads to

dr~rW;RW !52q1(
LM

drL~r ;R!

r 2
YLM* ~ r̂ !YLM~R̂! ~13!

with the multipolar density of transition defined by

drL~r ;R!5
4p

~2L11!
E

0

`

xL~r ,r 8!
r ,

L

r .
L11

dr8. ~14!

The static response functionx(rW,rW8) is a solution of the in-
tegral equation

FIG. 1. Coordinates and notation used in the text.
2-2
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x~rW,rW8!5x0~rW,rW8!1E E x0~rW,r 9W !

3F]VKS

]r G
r5rC

x~rW-,rW8!drW9drW-. ~15!

x0(rW,rW8) is the independent-particle static response functi
which is given by

x0~rW,rW8!5(
i

occ

f i* ~rW !f i~rW8!G~rW,rW8;e i !

1f i~rW !f i* ~rW8!G* ~rW,rW8;e i !

5(
l̃ m̃

x l̃
0
~r ,r 8!

~rr 8!2
Yl̃ m̃

* ~ r̂ ! Yl̃ m̃~ r̂ 8! ~16!

where e i and f i(rW)5(Pnl /r )rYlm( r̂ ) are the eigenvalue
and eigenfunctions of the Kohn-Sham equation~3! and
G(rW,rW8;E) is the retarded Green’s function, which may
expanded as

G~rW,rW8;E!5 (
L8M8

GL8~r ,r 8;E!

rr 8
YL8M8

* ~ r̂ !YL8M8~ r̂ 8!. ~17!

It is easy to show that for the static case

xL
0~r ,r 8!54(

nlL8
Pnl~r !Pnl~r 8!

~2l 11!~2L811!

4p

3S l L 8 L

0 0 0D
2

GL8~r ,r 8;enl!. ~18!

The radial part of the Green’s functionGl(r ,r 8;E) may
be expressed in terms of solutions of the radial homogene
equation at energyE5 1

2 k2:

F d2

dr2
2

l ~ l 11!

r 2
22VKS~r !1k2Gx l~r !50. ~19!

Denoting bywl(r ) the solution of Eq.~19! that behaves as
ymptotically as an outgoing wave andul(r ) the solution that
is regular at the origin, we have

Gl~r ,r 8;E!5
ul~r ,!wl~r .!

W@u,w#
~20!

where we have usedr ,5min(r,r8),r.5max(r,r8), and
W@u,w# is the Wronskian of the functionsul(r ) andwl(r ).
Once the radial Green’s functions are computed,x0(rW,rW8)
may be constructed from Eq.~16!, and the static respons
function x(rW,rW8) is then obtained by solving the integr
equation~15! with the use of a space discretization proc
dure.

Apart from simple poles at the bound state energiesenl ,
the Green’s functionGl(r ,r 8;E) is analytic for complex val-
ues of the energyE. Due to the selection rules of th
02320
,
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-

Clebsch-Gordan coefficient in the expression~18!, it turns
out that, for even multipoles (L52k with kPN), the situa-
tion L85 l and E5enl(v50) appears and the computatio
of Gl can no longer be carried out with the use of Eq.~20!. In
order to overcome this difficulty, we have employed the p
cedure of Stottet al. developed originally for closed-she
atoms and described in detail in Ref.@15#. It is worth noting
that this problem does not occur either for the calculation
the dynamical response function (vÞ0) or for the calcula-
tion of the static dipole response (v50,L51).

By using the expressions~12!, ~13!, and ~14!, one then
may writeUp as

Up~RW !5Up~R!52
q1

2

2 (
L
E

0

`

drL~r ,R!
r ,

L

r .
L11

dr. ~21!

It is easy to check the asymptotic behavior ofUp :

Up~R!;2
q1

2

2 (
L51

`
aL~0!

R2L12
, R→`, ~22!

whereaL(0) are the static multipolar polarizabilities give
by

aL~v50!5
4p

~2L11!
E

0

`E
0

`

xL~r ,r 8!~rr 8!Ldr dr8. ~23!

For the dipole contribution (L51) and for neutral clusters
(q250), the leading term of the polarization interaction e
ergy at large distances has the usual express
2q1

2a1(0)/2R4. One also notes thatUp does not depend on
the sign of the projectile chargeq1. Thus, an electron (q1
,0) or a positron (q1.0) will induce the same polarization
energy.

In a pure classical macroscopic electrostatic model
may idealize a closed-shell simple metal cluster as bein
conducting sphere of radiusRC with a sharp surface. Then
by using the image charge method, the interaction energ
a point charge in front of a neutral metallic sphere~i.e., R
.RC) can be obtained in a closed form and is given by@11#

Up~R![Up
M~R!52

q1
2RC

3

2R2~R22RC
2 !

, ~24!

with the multipolar expansion

Up
M~R!52

q1
2RC

3

2R4
2

q1
2RC

5

2R6
2

q1
2RC

2l 11

2R2l 12
2•••. ~25!

Thus, from the above expression one sees thata1
cl(0)[RC

3

represents the classical static dipole polarizability a
a2

cl(0)[RC
5 the quadrupole one.

The full interaction potential between the incoming pa
ticle of chargeq1 and energyE and a closed-shell meta
cluster of chargeq2 is given by
2-3
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U~R!52q1Vjel~R!2q1E rC~rW8!

uRW 2rW8u
drW81Up~R!1Ux~R;E!

~26!

where the first term describes the interaction with the po
tive background and the second one the interaction with
ground-state electronic density~Hartree potential!. Finally,
Ux is present only when the projectile is an electron and is
energy-dependent potential representing the possibility fo
incoming electron to be exchanged with one valence clu
electron@16#. For instance, this expression can be used
compute electron elastic cross sections@9#. Unfortunately, so
far, no experimental data for this process are available.

As we shall see later, in the impact energy range con
ered in this work,E,3 eV, and in a classical picture, th
capture process occurs at distances well above the clu
radius. Thus, by noting thatUx is a short-range potential, th
interaction potential relevant to our study takes the form@17#

U~R!5
q1q2

R
1Up~R!. ~27!

C. Capture cross section

The scattering problem is treated classically in a w
similar to that of the well-known Langevin theory of ion
molecule reaction@18,19#. Since experimental data are ava
able for collisions of electrons impacting on neutral cluste
in the following, we shall restrict our study toq1521 and
q250. Futhermore, one knows from classical mechan
@20# that, in order to have trajectories approaching the clu
center~and leading to the capture of the projectile!, the ex-
pansion ofU(R) in powers ofR must include only terms
R2n with n.2. This condition is not fulfilled for charged
clusters due to the presence of the Coulomb interaction.

As pointed out by Kasperovichet al. @21# and demon-
strated by Vogt and Wannier@22#, in the impact energy rang
under consideration (E,3 eV and not very low energy!, the
quantum capture cross section for a polarization potent
2q1

2a1(0)/2R4 is essentially equal to the classical on
Since this result is true for the singular potential above we
not know if it still remains valid for the full interaction po
tential, which is not singular at the origin~e.g., see Fig. 2!.
The answer to this question will be a matter of future wo

The procedure to obtain the classical capture cross sec
is given in Ref.@20# and is the following. For a given impac
parameterb and an energyE, the effective potential is given
by

Ue f f~R,b!5
b2E

R2
1Up~R! ~28!

whereb2E/R2 is the centrifugal potential. LetUe f f
m (b) be the

maximum of the functionUe f f(R,b). The critical impact pa-
rameterb0 ~see below! is obtained from the conditionE
5Ue f f

m (b0) and the corresponding capture cross section
given by
02320
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scap~E!5pb0
2 . ~29!

One may understand the meaning ofb0 as follows. Classical
orbits for whichb,b0 pass through the origin and therefo
must lead to the capture reaction. On the contrary, cap
does not occur for all collisions for whichb.b0.

For Up(R)52a1(0)/2R4, the distance of closest ap
proach associated withb5b0 equalsRm05b0 /A2 @19,22#.
We have checked numerically~e.g. see Fig. 3! that, for the
full interaction ~26!, Rm05b0 /a with a,A2. Thus, due to
the fact that classically the details ofU(R) for R,Rm0 are
not needed for the computation of the capture cross sec
and Rm0 is always much larger than the cluster radius, t

FIG. 2. Polarization interaction potential as a function ofR for
Na20. Full line, Up from Eq. ~21! with L51 –8; dashed line,Up

from Eq. ~24!; dotted line,Up52q1
2a1(0)/2R4. The arrow at the

bottom of the figure indicates the position of the cluster radius.

FIG. 3. Effective potential from Eq.~28! as a function ofR for
an electron of energyE53 eV impacting on Na40 and evaluated at
b5b0521.38 a.u. The arrows at the bottom of the figure indic
the positions of the cluster surface and the distance of closes
proachRm0.
2-4
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justifies the use of a first order many-body theory~TDLDA !
and also the use in the calculation of Eq.~27! instead of Eq.
~26!.

If in Eq. ~28! one usesUp(R)52a1(0)/2R4 the result is
analytical @20# and we obtain the so-called Langevin cro
section

scap~E!5F2p2a1~0!

E G1/2

. ~30!

Futhermore, as shown by Klots@23# if in Eq. ~28! Up(R)
5Up

M(R) the result is also analytical and reads

scap~E!5pRc
21F2p2Rc

3

E G1/2

. ~31!

For an interaction potential having an arbitrary shape
capture cross section must be computed using nume
methods.

III. RESULTS

So far, only static electric dipole polarizabilities hav
been measured for selected sizes of sodium, potassium@7#,
and lithium clusters@8#. As far as we know, theoretically a
well as experimentally, nothing is known for metal cluste
about static electric polarizabilities withLÞ1. One may
think that this lack is due to evident experimental and th
retical difficulties~see the evaluation of the Green’s functio
in Sec. II B!. This situation is in contrast with the atom
case for which theoretical and experimental data are av
able for quadrupole polarizabilities@15#. The TDLDA static
dipole and quadrupole polarizabilities for Na20,Na40, and
Na58 are given in Table I. For a given cluster size, the ra
aL(0)/aL

cl(0) is larger forL52 and decreases with increa
ing number of atoms.

Figure 2 shows the polarization interaction potentialUp
as a function ofR for Na20. One sees that the convergence
the sum appearing in Eq.~21! is achieved for all distance
with Lmax58. For R.RC the convergence is faster than
the interior region of the cluster and, for instance, forR
>16 a.u. the value ofLmax is reduced to 4. Futhermore, th
dipole contribution (Lmax51) reaches its asymptotic beha
ior aroundR516 a.u., which is well outside the cluster r
dius RC510.86 a.u. One notes also that, unlike the co
monly used polarization potential2q1

2a1(0)/2R4,Up is not
singular at the origin. For comparison, the macroscopic
teraction given by the image charge model is also shown.
this small cluster size, the difference between the mic

TABLE I. TDLDA static dipole and quadrupole polarizabilitie
normalized to the corresponding classical ones.

Cluster a1(0)/a1
cl(0) a2(0)/a2

cl(0)

Na20 1.448 1.861
Na40 1.412 1.654
Na58 1.290 1.566
02320
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scopic ~TDLDA ! and the macroscopic results is rather im
portant.

In order to illustrate the fact that, in a classical picture, t
capture process occurs far away from the cluster surface
show in Fig. 3 the effective potential obtained from Eq.~28!
as a function ofR for an electron energy of 3 eV impactin
on Na40 and evaluated atb5b0521.38 a.u. This value is
obtained as described in Sec. II C and the value 3 eV co
sponds to the maximun electron energy considered in

FIG. 4. Capture cross sections convoluted with the electron
energy spread as functions of the electron impact energyEi for
three closed-shell sodium clusters. Full line,Up from Eq. ~21! with
L51 –8; dashed line,Up from Eq. ~24!; dotted line, Up5

2q1
2a1(0)/2R4; dots with error bars, experimental inelastic cro

sections@24#.
2-5
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work. Since the distance of closest approach is much la
than RC513.68 a.u.~for lower energiesb0 and Rm0 are
even larger!, the incoming electron does not penetrate ins
the cluster, which justifies the use of the spherical jelliu
model. Also, the perturbation being weak at large distan
justifies the use of a first order many-body theory to comp
the polarization potential. Consequently, the details ofU(R)
for R,Rm0 are not needed for computation of the captu
cross section.

According to the experiment@21#, the measured electro
energy distribution produced by the electron gun,g(E2Ei),
may be well represented by a Gaussian shape with a
width at half maximum of about 0.3 eV forE<1 eV, and
0.4 eV for higher electron energies. Thus, in order to co
pare with the experiment we define the following quantity

s̃cap~Ei !5

E
0

`

scap~E! g~E2Ei !dE

E
0

`

g~E2Ei !dE

. ~32!

We show in Fig. 4, the capture cross sections calcula
by using the above formula as a function of the elect
impact energy for the three systems under study. The m
sured inelastic cross sections of@24# are also shown for com
parison. For impact energies below 3 eV, essentially two p
cesses participate in the inelastic signal: excitation
postcollisional fragmentation and electron capture, the la
being dominant at very low impact energy. The ionizati
process is absent since, for the clusters under study, the
ergy of the highest occupied molecular orbital is alwa
higher than 3 eV.

First of all, the important difference existing between t
TDLDA or the image charge results and those obtained
using the usual polarization potential2q1

2a1(0)/2R4 indi-
cates that it is necessary to go beyond the dipole approx
tion in order to describe the capture process correctly.
expected, this difference increases with increasing clu
size. Secondly, the difference between the TDLDA and
image charge results is not very important (,40%) and de-
creases slightly with increasing size of the cluster.

If the energy deposit in the clusters~which have been
electronically excited during the collision! is larger than the
lowest dissociation energy (;1 eV for sodium clusters!,
fragmentation can occur. Depending on the experime
time-of-flight window, the excited clusters~above the disso-
ciation threshold! contribute or not to the experimental in
elastic cross section. Since more vibrational degrees of f
dom are involved for larger systems, at a given ene
deposit, the fragmentation time increases with increas
number of atoms within the cluster. In the experiment of R
@24#, the cluster velocities are of the order of 1000 m/s a
the distance between the collision region and the beam
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tector is 50 cm, which leads to a time-of-flight windowte
;531024 s. This means that excited clusters~with excita-
tion energyE* ) having a fragmentation timet f(E* ).te do
not contribute to the inelastic cross section. Thus, accord
to the preceding arguments and assuming that the excita
spectrum does not change very much for the three clus
@this is true for photoexcitation (L51) @25##, the difference
between the capture and the experimental inelastic cross
tions must decrease with increasing cluster size. This beh
ior is illustrated in Fig. 4. Only for Na58 is a good agreemen
found between the TDLDA results and the experimental
elastic cross sections.

Very recently, the same authors@21# were able to measure
only capture cross sections. Unfortunately, the experime
cross sections are not absolute and the experiment was
carried out with size selected clusters but rather with a c
ter size distribution. Thus, a comparison with our predictio
is not possible.

IV. CONCLUSION AND PERSPECTIVES

In summary, capture of low-energy electron by close
shell sodium clusters has been studied by using the TDL
within the spherical jellium model and the classical scatt
ing theory of Langevin. The use of this model is complete
justified since the capture process occurs well outside
cluster surface. Capture cross sections have been comp
for Na20,Na40, and Na58 and compared with the prediction
of the classical image charge model and recent experime
results by Kasperovichet al. @24#. It has been shown that in
the range of impact energies considered in this workE
,3 eV) the TDLDA capture cross sections are alwa
larger than the classical ones obtained by using the ma
scopic image charge model. As expected, the difference
tween the two predictions decreases with increasing clu
size. For Na58, a good agreement is found between t
TDLDA results and the experimental inelastic cross sectio

It is worth noticing that the present model does not
clude dynamical effects which seem to play some role in
capture process@4#.

The same model can be applied to study electron atta
ment to C60 fullerenes, for which experimental data are ava
able@26#. The results will be presented in a fothcoming pu
lication. Also, related to the fragmentation of doubly charg
simple metal clusters@27#, fusion barriers may be evaluate
by using the same procedure. We will address our next pa
to this case.
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