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Off-shell T matrices in one, two, and three dimensions
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We discuss the calculation of the off-sh@llmatrix in one, two, and three dimensions using both the
Beliaev-Galitskii relation and the inhomogeneous Sdinger equation. The off-shell matrix depends, in
general, on three quantities: the incoming and outgoing momenta and the energy of the collision, all of which
can be chosen independently. We give a simple proof of the fact that for low-momentum scattefimgatri
depends only on the energy of the collision. Using the inhomogeneousdiuyeo equation we derive ana-
Iytical results for the fully off-shellT matrix in one, two, and three dimensions for hard-sphere central
potentials. The usual form of the Beliaev-Galitskii relation is not quite correct for such potentials. We derive
the appropriate correction term and show that it corresponds exactly to the contributionTtongteix from
the inhomogeneous term in the inhomogeneous Siihger equation.
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I. INTRODUCTION shell T matrix, using the half-on-shell matrix as the input.
The usual form of this relation does not treat hard-core po-

The two-bodyT matrix provides a complete description tentials correctly, so we derive a modified form of the result
of two-particle collisions and is, therefore, of fundamentalthat includes the appropriate correction term. In Sec. IV we
importance in the theoretical description of dilute gases. Irgive a simple proof of the fact that, in the limit of low-
general, thé matrix depends on three quantities: the incom-momentum scattering, the matrix depends only on the en-
ing and outgoing relative momenta of the atoms and theergy of the collision. This result is of some importance for
energy of the collision. For collisions in vacuum, only the the study of cold atoms as it means that particle interactions
on-shellT matrix is physically relevant. This corresponds to can be described by a contact potential. Sections V-VII are
the case wherein the energy of the collision is the same as tievoted to solving the ISE and obtaining analytical results
asymptotic kinetic energy of the atoms before and after. Irfor the off-shellT matrix in 1D, 2D, and 3D.
this paper, however, we are interested in the off-shatha- Although we have derived the correction that must be
trix where the energy of the collision and the initial and final introduced into the BG relation to deal with hard-core poten-
momenta can all be chosen independently. An example of #als, an alternative approach is to use the usual form of the
situation where off-shelll matrices are needed occurs in relation for a finite potential and then to take the infinite
light-assisted collisions where the interaction with a laserpotential limit at the end. These calculations have been per-
beam changes the energy that is available to the collidindormed in 2D and 3D by Sheth, Chang, and Friedd&h
atoms[1]. The off-shell T matrix is also of crucial impor- and in Sec. VIl we present a similar calculation in 1D. The
tance in the study of three-body collisions, where it is theresults obtained are consistent with the correction we have
fundamental input to the Fadeev equati¢®s Another ex-  derived to the BG relation and also with the results from the
ample, of particular interest to the authors, occurs in thdSE, which deals easily with hard-core potentials.
study of degenerate Bose gases, where particle collisions are

described by a many—bodv ma'.[rix 'Fhat takes into account Il. REVIEW OF SCATTERING THEORY
the effect of the mediunfimean field in which the collisions
occur[3—6]. At low temperatures the many-body matrix In this paper we are principally concerned with calculat-

can be approximated by the off-shell two-bodymatrix.  ing the two-bodyT matrix. This is defined as a function of
This is of particular importance for the study of two- the complex variable by the Lippmann-Schwinger equation
dimensional systems, where the on-shethatrix vanishes at [9]

zero momentunj7]. In this case the mean-field shift in the

energy of the collisions is responsible for the finite interac- T(z2)=V+VGy(2)T(2)=V+VG(2)V, ()]
tion strength between particles in the lowest momentum
states. where Gy(z) and G(z) are, respectively, the free and full

In this paper we present analytic results for the off-siell - Green’s functions, defined by
matrix for hard-sphere central potentials in one, two, and
three dimension$1D, 2D, 3D. We start in Sec. Il with a
brief review of the relevant scattering theory, leading to the Go(2)= ,
inhomogeneous Schidmger equatiollSE). The solutions of z—Hg
this equation, which satisfy appropriate asymptotic boundary
conditions, can be used to obtain the off-shelmatrix. In Here Hy is the single particle Hamiltonian Hp=
Sec. Il we describe the Beliaev-GalitskiBG) relation, —7%2V?/2u), H is the full Hamiltonian for a pair of interact-
which provides an alternative means of calculating the offing atoms in the center-of-mass framé€ Hy+V) andu is

1
G(Z)Zﬁ- 2
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the reduced mass. For the cases we are interested in, involwhere kg=\2,E/%2. In the asymptotic limitr—o we,

ing collisions of identical atoms of masm), we have
u=m/2.

We will denote the eigenstates of, by |k), so that
Holk)=Ey|k) with E,=%2%k?/2u. The stationary scattering
states will be denoted bjk+). These are unbound eigen-

therefore, have

+ikgr

r—oo

2
(1 KE) — elke— F

Amh?

(Ker| T(E)|k),
®

states ofH with energy E, [H|k+)=E,|k+)], which at
infinity have the form of an incoming plane wave of wave where we have used E¢5) and took thez axis in the direc-
vectork and an outgoing scattered wave. Here and in the reston of k.

of this paper, wave functions are normalized according to Equation (8) shows that the half-on-shell matrix
(k'[ky=(2m)P5(k—k’) in D dimensions. This means that, (k=ke#k’ or k' =ke#k) describes the amplitude and an-
although theT matrix has the dimensions of energy, its ma- gular distribution of the scattered wave, and is therefore pro-

trix elements have dimensions [dE][L]°.

The two-bodyT matrix is important in scattering prob-
lems because its matrix elemerts’ | T(z)|k) give the am-
plitude for scattering from state to k'. For the case of two

atoms colliding in a vacuum, only the on-shell matrix ele-

ments are physically relevant. These correspond=td’
andz=E,+i 8, wherek=|k| and § is a positive infinitesi-
mal. In this paper, however, we are interested in the gene
off-shell T matrix for whichk, k', andE can all be chosen

independently. This can be obtained by solving an inhomo
geneous Schrbinger equation that can be derived directly

from the Lippmann-Schwinger definition of thE matrix.
Specializing to the case thatE+i 8, we can write Eq(1)
in the form

1+

[K)=(k'|V[k+,E),
3

where the off-shell, outgoing, scattered wake-,E) is de-
fined by

1
KTE)k)y=(K'|V mV}

|k+,E)= 4

1
1+ mvhkf
In the position representation, E@®) is
<k’|T<E)|k>=f d*re ™ V(g (rkE), (5

where s, (r,k,E)=(r|k+,E) and we have assumed thdt
is a local potential. The operator in square brackets in(&q.

portional to the scattering amplitudia 3D this is simply the
coefficient of the outgoing spherical wavé-or later conve-
nience, we introduce an abbreviated notation for this quantity

9

wherek’ is any vector. The fully on-shell' matrix corre-

fk" k) =(k'[T(EW[k)=(k'|V[k+),

r§|ponds to the special case of this white-k. Equation(9)

Is proportional to the scattering amplitude in E8) because
the T matrix is symmetric with respect to its momentum
argumentg11,17]
(K'T(E)K)=(KIT(E)[K"). (10)

Equation(4) can also be used to obtain an inhomogeneous
Schralinger equation fotk+,E). Acting on both sides with
E+id—H gives

(E-H)[k+,E)=(E-Ey) k), (11
where we have used the fact thag|k) = E,|k). In the posi-
tion representation this becomes

[KE+V2=U(n)]y (r,kE)=(kE-Kk)e*", (12
whereU(r)=2uV(r)/42. This equation must be solved sub-
ject to the boundary condition of E(), and the off-shelll
matrix can then be determined from E&). Equation(12)

has been used by Van Leeuwen and Reiner to studylthe
matrix in 3D for potentials consisting of chains of rectangu-
lar wells[13]. It can also be used as the basis of an efficient
numerical algorithm for the calculation of the off-shdll
matrix for more general potentials, as has been shown by

is the Mdler operator that acts on the initial wave to give the Brumer and Shapirf14,15.

full scattered wave. The statfls+,E) are the off-shell gen-
eralization of the scattering stat@ls+) introduced above,
the relation between them beifig+ )= |k+,E=E,).

In the position representation, E@) becomes

¢+(r,k,E)=e‘k'r+f d3’ G (r,r" , E)V(r'") . (r' K,E).

(6)
In 3D, the Green’s function is given by the well-known ex-
pression 10]

1 2u eikElrfr’l
— )= EE—
E_H0+|5| ) Amh? |r—r'|

(7)

Gg (r,r' E)=(r|

In Sec. V-VII, we will solve Eq.(12) and obtain the
off-shell T matrix for hard-sphere central potentials in 1D,
2D, and 3D.

Ill. THE BELIAEV-GALITSKII RELATION

An important relation between off-shell and half-on-shell
T matrix elements was derived by Beliaev and Galitskii
[16,17], and is often used as the basis of calculations of the
off-shell T matrix. In this section we present a derivation of
the Beliaev-Galitskii result. Our method follows that of Van
Leeuwen and Reindrl3] and includes an explicit formula
for the correction to the usual form of the BG result, which
must be included for infinite potentials. For hard-sphere po-
tentials we show that this correction corresponds exactly to
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the contribution to thel matrix from the inhomogeneous

term of the ISE.

We begin with the Lippmann-Schwinger definition of the

T matrix for general complex as given in Eq(1). This can
be manipulated into the form

Go(2)T(2)Go(2)=G(2) — Go(2). (13
Acting on the left with(p’| and on the right witHp) gives

(p'|T(2)|py=(z—Ep)(z—Ep)(p'|G(2) — Go(2)|p).
(14

We now write G in terms of the eigenstates &f as (see
discussion at the end of this sectjon

62)=3 'Z”_><E”|

(19

whereH|n) = E,|n). Substituting this into Eq.14) and writ-
ing z—Ep =(z—E,) +(E,—Ep/) we obtain

(En_ Ep;)(Z— Ep)<p/|n><n|p>
z—E,

<p’|T(z)Ip>=§n)

+(z—Ep)§ [(p’[n){n|p)—(p’|p)].

(16)
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dPk
) (p'[VIk+)(k+[p)

(27

<p’|T(z)Ip>=f

D

f(p’,k)f*(p,k)
i z—Ey }
—(z—Ep) JVdDr el(P=p)r (19

where we also have used E®) [18]. Writing this out for
z,=E+id andz,=E,+i6 and subtracting gives

(P [TE)p)=1(0".p) ~ (B~ | aPr 0o

d°k 1
+f (27T)Df(p K (p,k) E—Etio

1
" Ep,—Ey+id
(20

The first and third terms form the usual Beliaev-Galitskii
result. The second term is the correction that must be intro-
duced to deal with the infinite potential. A comparison with
Egs. (5) and (12) shows that this contribution equals that
from the inhomogeneous term of the ISE for a hard-sphere
potential of radius. However, this correspondence is some-
what surprising, as the inhomogeneous term in the ISE de-
pends only on the width of the potential, not its height. Writ-
ing the correction out for the casg’=p=0, gives the
particularly simple result

For a finite potential, the second line of this expression

would be zero due to the completeness of the stHtes.

For a hard sphere potential, however, we have a modified

completeness relatigri3]

2 (r'Inyn[ry=a8(r=r"), (r| and|r'|>a),

=0, (|r] or |r'|=a).

17

Using this in Eq.(16) gives the correction to the BG result

for the hard-sphere potential
(P'|Teor(2)|p) = — (2= Ep) deDr e (1§

where the integral is over the region of the potenYalln

(0] Teon( E)|0)= — E X (Excluded volumg

E4mad
-——3 (3D),

=—Ewa® (2D),

=—2Ea (1D, (21

where in each cas¥/(|r|) is infinite for [r|<a (see Secs.
V=VIl).

A simpler derivation of the BG relation that neglects the
correction term can be obtained by substituting 8d) for
G directly into Eq.(1). The proof given here includes the
correction becaus& appears a$&s— Gy rather than on its
own. For any finite potential, the contribution & from
states with energies greater themwill be canceled in large
part by Go. Thus the sum over states converges bette® in
— Gy than it does inG alone, allowing the infinite potential

3D, an equivalent result has been obtained previously by Vafimit to be taken inside the summation and producing the

Leeuwen and Reindi3].

The first line of Eq.(16) can be manipulated into the

standard form of the BG result by writing—E,=(z—E,)
+(En—Ep) and USing<p,|(En_Ep’)|n>:<p,|(H_H0)|n>
=(p’|V|n). If we also assume th&t has only a continuous
spectrum, then we can pi&,— [d°k/(2m)°, |n)=|k+)
andE,=E, to obtain

correction term of Eq(18). However, we have not proved
this rigorously, so the derivation given here is somewhat heu-
ristic. Further justification for the validity of Eq18) comes
from the fact that it agrees with the predictions of the ISE
and also with results obtained by using the ordinary BG re-
lation for a finite potential and taking the infinite potential
limit at the end of the calculation. Although this greatly com-
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plicates evaluation of th& matrix, the calculations have correction term is negligible and the matrix is effectively
been performed fop’=p=0 in 2D and 3D by Sheth, independent of momentum. In this case its spatial represen-
Chang, and Friedbef@], and we discuss the 1D case in Sec.tation can be taken to be a contact potential
VIL.

The BG result is useful because it relates the off-sfiell (r'|T(E)|r)~(k’=0|T(E)|k=0)8(r)5(r")
matrix to the half-on-shelll matrix, which in turn can be ,
calculated from the ordinary Schiimger equation. However, =g(B)a(r)o(r=rv), (24)

in order to do the calculation, one must first calculate . o

f(p',p) over the whole relevant range of the integral andbecause Ith's generates g;[he\staﬂhernart]nx In_momentum
then perform the integration. Either or both of these calculag’piic.e.at OV}Y momentuil ] q © noée that Zfi moI;_e stringent
tions may be nontrivial in practice. For the hard-sphere po- efinition o momentgm Independence tor ¢ emz‘i\tnx
tentials we will consider in this paper, it is considerably sim—WOUId require the derivatives with respect koand k' to

pler to use the ISE. This deals easily with infinite potentialsvanISh at zero momenturii.e., g,(E)=0]. This is in fact

and has the additional advantage that Thenatrix can be true for central potentialgalthough not more generajlyas is

obtained for alk’ with very little extra effort over and above ea}SIIy proved from E'q(22) using symmetry arguments. In
that required to obtain it for a single value. this case, the corrections to the contact potential form are of

order (kro)?, as we confirm for hard-sphere potentials in
Secs. V-VIL.

We note that the form of Eq24) is independent of di-
mensionality, which only enters in the explicit expression
In this section we consider the general off-shielinatrix ~ that must be used fay(E). In 3D, g(E) is independent of
and show that its leading order contribution in the low-energy at low energy and for a hard-sphere potential of ra-

momentum limit depends only on the energyf the colli-  diusait is given by(see Sec. ¥

sion and not on the incoming or outgoing momenta. This
result is important because it means that for low-momentum
collisions the spatial representation of thematrix can be 9(E)= m +0(kga)  (3D), (29
taken to be a contact potential(r,r’',E)=g(E)(r) (r

—r’). This form of theT matrix greatly simplifies calcula- \yhere(as beforg ke= V2 E/%2 andm= 24 is the mass of

tions of the properties of cold, dilute gases and is widelygne of the colliding atoms. In 2D we havgec. V)
used in the theory of Bose-Einstein condensation.

IV. CONTACT INTERACTIONS FOR LOW-MOMENTUM
SCATTERING

ﬁZ

The proof of this result is trivial if we use the Lippmann- Axh2im (kea)?
Schwinger definition of thd matrix Eq.(1) in the momen- g(E)=— ( E (2D),
tum basis with the full Green’s function for the interacting i —2y—In[(kga)?/4] In(kga)
pair (26)

, , , where y~0.577 is the Euler-Mascheroni constant, while in
(KTE) )= (K" [VIK)+(K' |V =775 VIKD» 1D (Sec. VI

Dy a—ik’- ik 22 2
= | d°re "™ TV(r)e'™*’ g(E)=—m[|kEa+(kEa) 1. (27)
+f f d®r d°r’ e K V()G (r,r E)V(r)ek T, These results show that while tilematrix is insensitive to
momentum at low momentum, its energy dependence may

(22)  be nontrivial.

If we now suppose that the potential has a finite rangso

that V/(r) is negligible forr >r, then in the limitkry,k'r, V- THREE DIMENSIONS

<1 we can expand the exponentials e‘é’%lfo(kro). In this section we solve the ISE in 3D and obtain analyti-
We can, therefore, write the low-momentum limit of tfie  cal results for the off-shell matrix. We consider the case of
matrix as a hard-sphere interaction potential of radajsv(r)=0 for

r>a, V(r)=« for r=<a. This potential simply acts as a
boundary condition, forcing the wave function to vanish for
r<a. We take the direction of the initial wave to define the
+O[(K'rg)?(kro)2 k'krg], (23  axis, k=kz. We make the usual transformation to partial
waves and decompose the initial plane wave and the full
scattered wave d20]

lim (k'|T(E)[k)=0(E)+g1(E)(K'ro+kro)
k' k—0

whereg(E) andg,(E) will in general depend ong and we
have used Eq(10). Hence the leading-order contribution to
the T matrix at low momentum is a function of the energy of

the collision only and not the momentum. In many cases of elkr = gikz— A2l i (kYO0 28
practical interest, the conditidtry<1 is well satisfied so the Z’o ( MknYi(o), (28
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” ¢ (r,k,E)=0 (r=a). (36
¥ (rk,E) =2, i'VaAm(21+ 1) (1 KE)YP(0), (29
=0 The boundary condition at infinity can also be used to

wherej,(kr) andY?(6) are the usual spherical Bessel func- 9ive an expression for the half-on-shdll matrix with k’

tions and spherical harmonics, respectively. Substitution intg= Ke# k. as shown in the Appendix. However, we want the
Eq. (12) gives the equation fo,(r,k,E) completely general case so we need to substitute the result

for ¢,(r,k,E) into EqQ.(32) and evaluate the integral. On first

1d d [(1+1) inspection this appears difficult because we have an infinite
kg+ - a( fza —————Um)|a(r.kE) potential multiplied by a zero wave function. However, this
r r difficulty can be avoided, if we follow the method of Schick
_ (ké— K2)j,(kr). (30) [7], which involves manipulating Eq§30) and(33) to obtain

an alternative expression for the integral. Specifically, we
Substituting Eqs(28) and (29) into Eq. (5) gives the partial Mmultiply Eq. (30) by j,(k'r) and Eq.(33) (with k—k’) by
wave decomposition of th& matrix ¢ (r,k,E), subtract and integrate. Choosing the limits of in-
tegration to be from O t@, this gives

<k'|T(E)|k>=|§0 iVam2l+ 1)tk K E)Y2(6y),

(31 foadfrzjl(k’r)U(r)¢.(r,k,E)

where

o ]|t
. 0 O
(K K E) = (=)' [ “ar 2V k),

0

a
@ +(-k? [dre g,
and 6, is the angle ok’ relative tok. a
Equation(30) can be solved using the fact that the spheri- —(ké—kz)f drr?j,(k'r)j,(kr), (37)
cal Bessel function,(kr) is the regular solution of the equa- 0

tion

where integration by parts has been used on the kinetic-
_ energy term.
ji(kr)=0. (33 For a hard-sphere potentiab, (r,k,E) vanishes for<a

so the second and third terms on the right-hand §RIS)

We will also be interested in the spherical Neumann functiorP’ Ed- (37) are zero, whileU(r) vanishes for>a so the

n,(kr) that is the irregular solution, and the Hankel function '€ft-hand side is proportional tg(k’,k,E) [cf. Eq. (32)].
of the first kind h{((kr)=j,(kr)+in,(kr), which corre- The last term on the RHS can be evaluated using Bessel

function identities, while the first term can be calculated us-
ing Eqg. (36) and the fact that the Bessel functions satisfy

dr

1d(.d\ I10+1)
2, = 90
k+r2dr(r ) r2

sponds to an outgoing wave in the asymptotic likit— .
A comparison of Eqs.30) and(33) shows that the general
solution for ¢,(r,k,E) for r>a has the form , -
djj(x) iji(x)
$i(r KE)=]i(kn)+(A = 1) (ker) +Biny(ker), (39 Tax o x i 8

where we have included thel in the coefficient of | (kgr)
so thatA,; has its usual value in the on-shell linkig=k. The
boundary condition at infinity giveB,=i(A,—1), which is
clearly required so that the scattered wave is proportional to

We, therefore, obtain the general redilbtained previously
by Van Leeuwen and Reiné¢i3])

h(Y(ker) and hence to an outgoing wawhis result is , RN (xg—x'%) i
proved more formally in the AppendixThe condition that Lk E)==(=1) UO{ (x2—x'2) XJX142(X)
the wave function vanishes ata then gives
O 0l
; ———X"ji(x X
A-1= ji(ka) . (35 (x2—x'?) JX) )+
hl(l)(kEa)
. . h|(~1+)1(XE)
The solution for ¢(r,k,E), which matches the boundary —XEJ|(X)J|(X')h(T(X) : (39
conditions is, therefore, ! E
ji(ka) whereUq=47h2a/m, x=ka, x’'=k’a, andxg=kga. Sub-
¢|(r,k,E)=j|(kr)—Thf”(kEr) (r>a), stitution into Eq.(31) then gives the final expression for the
hi~(kga) off-shell T matrix.
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Various limits of this result are of interest. If we take the The BG relation, therefore, becomes
half-on-shell cas&=kg#k’ and use Bessel function identi-

ties, we obtain 2Uqa

(OT(E)|0)=Uo+

2mE fwdk 1
72 | Jo T kE—K2+is'

Ji(x")

(K K= (=) o 5,
|

(40)

which has an elegent simplicity. Inserting this result into Eq.A comparison with the exact result of E¢2) shows that the
(31) gives contribution of order kga)? is missing. This is as expected,
because we have used the BG relation after taking the limit

* of an infinite potential and so the correction term of ELp)
(K'|T(EQIK)=—iUg>, Vam(21+1) must be included. The comparison of Eqg1) and (42)
=0 shows that this gives the correct result. The alternative pro-
i|(k'a) cedure is to use the BG relation for fin&r) and take the
—1\(?( Or). (41  infinite potential limit at the end. This calculation has been
(kayh{V(ka) performed by Sheth, Chang, and Friedbg8y and the cor-

rection they obtain is precisely the last term of E4R).
This result can also be derived by consideration of the

asymptotic boundary conditior(i.e., without using the
method of Schickas is shown in the Appendix. The other
half-on-shell T matrix (k’=kg#k) can be found by ex- The analysis in 2D is very similar to that in 3D, the main
changingk andk’, which follows from Eq.(10). difference being the replacement of spherical Bessel, Neu-

For smallx the spherical Bessel functions have the formmann, and Hankel functions with their two-dimensional
ji(x)~x', so we see from Eq39) that in the limitka,k'a  counterparts. In this section we give a brief outline of the
<1 the T matrix is independent of andk’ with errors of  calculation and a discussion of the results obtained. We con-
order (a)? as predicted in Sec. IV. Settitg=k’ =0 we get  sider again a hard-disk potential for whisk(r)=0 for r
>a, V(r)=« for r=<a.

We take the direction of the incident wave to define xhe

VI. TWO DIMENSIONS

1
— i _ 2
(OT(E)[0)=Uo| 1—ikea 3(kEa) : (42) axis. The usual partial wave decomposition gi{2%]
This result was derived fdE>0. Analytically continuing to o ” m
E<O0 and using unité=2x=1, we get e =mE:0 €mi"ecog mO) Iy (Kr), (48)
) 1
<O|T(E)|0>=UO{1—| Ea— -Ea?| (E>0), (43) ”
3 Yo (1 KE)= > €ni™cogmo) dm(r.k,E), (49
m=0
1 2
=Ug 1+ V|Ela—zEa’| (E<0), (44 whereey=1, =2 (i #0). J(kr) is the usual Bessel func-

tion that satisfies the equation

where the positive square root should be taken in each case.
This is the same result as that obtained by Chang and co-
workers[8] and includes their correctio(the last term to

the result predicted by the naive use of the BG relation for
the infinite potentialdiscussed below

m2
—) ——Z]Jm(kr)zo, (50)
.

while ¢ (r,k,E) satisfies

A. The Beliaev-Galitskii prediction

1d/ d| m?
It is interesting to compare the above results with the BG k§+ Tar rm) - U(r)|dm(r,k,E)
prediction. For the cask=k’=0 the usual form of this re- r
lation is =(ké—k2)Jm(kr). (51)
= E 3 [f(0k)I* The partial wave decomposition of tHematrix is
(0|T(E)|O)—f(0,0)+(2w)3f d k(Ek—ié)(E—EkJrié)' p p
(45 o
K'|T(E)|k)= €mi™cogmé,)tn(k' kK,E), (52
Taking f(0,k) from Eq. (41) gives (KITElk mE:O " K
(O T(EQ|K)=F(0,k)=Uqe 'ka, (46)  whered,, is the angle ok’ relative tok and
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ee] 2
tm(k’,k,E)=(—i)m27rfO drrd (K r)V(r) ¢p(r,k,E). tm(k'K,E)= —(—|)m27rh [(XE 2) XJI (X" ) I 1(X)
53 (xc=x"?)
(XE—x?)

Comparing Egs(50) and (51) it is clear that the general B (X2_Xf2)x Im(X)Im-2(X")
H@)
el (03 (xry Ha E>]

solution for ¢ (r,k,E) in the regionr >a has the form
Gml(r K E)=Jm(Kr) + (Ap—1)Im(ker) + BmNm(kEr)(r ) H(xg)
54

(58)

wherex=ka, x'=k’a andxg=kga as before. Substitution
into Eq.(52) then gives the final result for the fully off-shell
T matrix in 2D.

Various limits of this result are of interest. We consider
again the half-on-shell cade=kg#k’ where Bessel func-
tion identities simplify the expressions considerably. Using
A —1= Jn(ka) | 55 Eqg. (52) we obtain

H (kea)

where the Neumann functids,,(kr) is the irregular solution
of Eq. (50). The boundary condition at infinity giveB,,
=i(An—1) as before, so the condition et a gives

h? o Jn(k'a
<k’|T(Ek)|k>—2— 2 4 %cos{mﬁw)-
where HH(x) =J(x) +iNp(x) is the Hankel function of m (59
the first kind and corresponds asymptotically to an outgoing
circular wave. The solution fot,(r,k,E), which matches For smallx the Bessel functions have the fordg,(x)~x™,
the boundary conditions is, therefore, so in the limitka,k’a< 1, Eq.(58) shows that thd matrix is
independent ok andk’ with errors of order ka)? as pre-
dicted in Sec. IV. Settingg=k’ =0 we obtain

(1, KE)=J (kr)—&Hm(k r) (r>a)
T WM () T ’ keaH{"(kea)  (kea)?
Tl =275 | 5 |
K1 Hg (kga)
$u(r KE)=0 (r=a), (56) (€0
where the last term is the contribution from the inhomoge-
in direct correspondance with the 3D result of E3f). neous part of the ISE. In the limkg<1 and usingi =2u
To evaluate thd@ matrix, this result should be substituted =1 this becomes
into Eq.(53). As in the 3D case, however, the singular nature 5
of the potential makes direct evaluation of the integral diffi- (O[T(E)|0)= 4 ) Ea
cult and so we use the method of Schj@kto reexpress itin i —2y—In(Ea2/4) In(Ea?)|’
terms of well-defined quantities. We do this by multiplying (61)

Eq. (51) by Jn(k'r) and Eg. (50) (with k—Kk’) by
oém(r,k,E), subtracting and integrating. Choosing the limits where y~0.577 is the Euler-Mascheroni constant. Although
of integration to be from 0 ta gives this result has been derived f&e>0, it can also be used for
E<0 by straightforward analytic continuation. Equati@3i)
a is a well-known result for the low-energy limit of the off-
f drrd (K'HU(r) (1 k,E) shell T matrix in 2D [3]. Adhikari has shown that its func-
0 tional form follows from a consideration of the analytic
, properties of thél matrix at low energy22]. Equation(61)
[ Jn(K'T)F d’m - dJIm(k r)} also shows that th& matrix vanishes at zero energy, which
dr |, is why the medium in which collisions occur must be taken
. into consideration in the study of cold 2D gases.
2 _ 112 , Figure 1 shows the comparison between the exact result
+ke—k )Jo drrdm(k'r) ém of Eq. (60) and the approximation of E@461). It is clear that
. the approximation works better for the real part at positive
—(k%—kz)J drrd (k'r)d,(kr), (57) ﬁ;f;g;?t.than it does at negative energies or for the imagi

where integration by parts has been used on the kinetic- A. The Beliaev-Galitskii prediction

energy term. Following similar steps as in the 3D case, and For k=k’=0 the usual BG relation for the off-shell
using Eq.(56) and Bessel function identities, this becomes matrix is
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VII. ONE DIMENSION

In 1D, the ISE is

2 d?
kE+ &—U(X)

¥i(x,kE)=(kE—k?)e*. (66)

The analog of a central potential is a symmetric potential, so
we consider the case thak(x)=U(—x). In particular, we
will consider an infinite barrier potential for which

U == (x|=a),

Ux)=0 (|x|>a). (67)
The analog of a partial wave expansion in 1D is, therefore, a
parity expansion as described|i24], but we will not intro-
duce this here as the calculation is sufficiently simple that it

FIG. 1. Real and imaginary parts of the zero-momentum, off-IS Not necessary.

shell T matrix (O] T(E)|0) in 2D. The solid lines are the exact result

As before, theT matrix is related to the solution of the

of Eq.(60) and the dotted lines are the low-energy approximation of[SE by

Eq. (61). Units of A=2x=1 have been used.

[f(0,k)|?
E—i0)(E—Ex+io)"
(62

(0] T(E)|0y=1(0,0)+ = fdzk
(2m)? (

Taking f(0,k) from Eq. (59) gives

2

(k’|T(E)|k>=J'dxe“k'XV(x)¢+(x,k,E). (68)

In this equationk’ can be positive or negative corresponding

to waves traveling in the-x or —x directions, respectively.

In all subsequent equations, however, we will take wave vec-
tors to be positive and denote the direction of motion by
writing the sign explicitly.

(63) The solution to Eq.(66), which matches the boundary

h
(O] T(E)|k)=F(0,k)= (_ conditions, is

2#) iHM(ka)

f(0,0) is, therefore, zero and the BG relation becomes z/;+(x,k,E)=e“‘X+f dx’ Gg(x,x’,E)V(x’)z/q(x’,k,E),

69
OT(E)l)=— fdzk .

(2m)? where the free particle Green'’s function is given[ig]
% 1 1 2u) i
" " . + ’ _ ikg|x—x"
IH{D(kay|2 (K2=i8)(kg—k*+i0) Go (x,X",E)= w7 —ZkEe' e, (70)

64
(64 The asymptotic limit of the solution, therefore, has the form

To our knowledge this integral has not been calculated ex-
actly, although it can be done approximately in the limit
kga<1 [7]. Furthermore, it does not give exactly the right
result as the limit of an infinite potential has already been o
taken. It is possible, however, to calculate the correction thag'here G_EX/|X| =+1 (-1) for X>.0 (X.<0)' Subs_t|tut|ng
must be introduced to deal with this, and this has been dongd- (70) into Eq.(69) and comparing with E(68) gives
by Chang and Friedbel@]. They obtain the resu[t23]

[x| e

P (XK E) — e+ f(e)ekel] (71)

2

f(il)z— ﬁ

i
(0|T(E)|0)=[Result of Eq.(64]— 7Ea.  (65) 2k kel T(E) . (72
As in the 3D case, the correction term is precisely the conThe solution to Eq(66) for |x|>a is

tribution derived in Eq.(21). However, the advantages of

using the ISE over the BG relatiofeven in its modified (X, kE)=e*+ (A, —1)eke*+ B, e k&X'  (x>a),
form) are particularly clear in this case. An analytical result (73
for the fully off-shell T matrix can be obtained where the

infinite potential is dealt with correctly and the difficult inte- ¢ (x,k,E)=e**+(A_—1)e*e*+ B_e ke¥x (x<-—a).
gral of Eq.(64) does not have to be evaluated. (74

022706-8



OFF-SHELLT MATRICES IN ONE, TWO, AND THREE . .. PHYSICAL REVIEW A 65 022706

Comparison with Eq(71) gives %2\ 2k
<k|T(Ek>|k>=(2—)i—, (82
B,=(A_—1)=0, (75) #
so the boundary condition at= *+a then gives (- k|T(Ek)|k>:(§)2i_ke—2ika. (83)

(A, —1)=—elkkon,

In this limit, Eq. (77) shows thaty, (x,k,E) is zero forx

>a, while the reflection coefficient has modulus 1 as we
r>)/vould expect. Of course, this requires a nonzero forward

scattering amplitude so that the incident wave can be can-

celed in the regiorx>a and so that the optical theorem is

B_ = _ei(k+kE)a_ (76)

The solution to the ISE, which matches all the bounda
conditions is, therefore,

Yo (x,k,E)=e**—el(k-kelaglkex (x> gq), satisfied.
Using units,i=2u=1, the zero-momentum limit of the
(X, k E)=ek*—glkTkeag=ikex (y—_3) fully off-shell T matrix is
Y (xKE)=0 (|x|=<a). (77

2
(OIT(E)[0y=— (i JVEa+Ea). (84)
Comparison with Eq(72) gives the result for the half-on-

shell T matrix For Ea®<1 and positive energies, the leading-order contri-

72\ 2k bution to theT matrix in 1D is therefore imaginary. This
(ke T(BE)|k)= (—) ZEpmitkeTha, (78  result can also be used f&<0 by straightforward analytic
2p) i continuation where th& matrix is always real

To obtain an expression for the fully off-shdllmatrix, we

once again use the method of Schiéq. The plane wave (0| T(E)|0)= E( [Ela—Ea?) (E<0). (85)
satisfies a
d2 . Although we have focused on hard-sphere potentials in
k'2+ — etk x=0, (79 this paper, it is also of interest to calculate thmatrix in 1D
dx for a 6 function potentialV(r)=Vy48(r). This is a meaning-

o ) iK'y ful potential in 1D in the sense that it leads to a well-defined
Multiplying this by ¢ (x,k,E) and Eq.(66) by e ™ %, sub- T matrix without the need for any ultraviolet renormaliza-
tracting and integrating from-a to a gives tion, in contrast with higher dimensions. This potential is

ik la also of interest because it appears in the exactly soluble
dy B d(e ) many-body boson models considered by Girarded) and
dx *odx by Lieb and Liniger{26]. In this case thd matrix is also a
contact potential so the Lippmann-Schwinger equation, Eq.
(1), reduces to an algebraic equation whose solution is

efik’x

+a .
f dx e ™ U(X) =
—a

—a

+a L,
+(k§—k’2)f dx e KXy,
—a

Vo

2m\ [ i\
72 )\ 2ke
Using Egs.(68) and (77), this gives the final result for the
fully off-shell T matrix in 1D In the limit of an impenetrable’ function (Vy— =) this
agrees with the— 0 limit of Eq. (81) as it should.

(K2—kg) (KT(E)k)=g(E)=

86
+2k_—k,Esin(k—k’)a. (80) (89

1+V,

, 72 | 2(k'k—kZ) ,
(k |T(E)|k>_ ﬂ k—k’ sink—k")a A. The Beliaev-Galitskii prediction
It is interesting to compare the above results with the
ik cos{k—k’)a} (81) prediction of the BG relation. For the cake-k’=0 this is
E .

|f(0K)[?

This reduces to Eq(78) for k'=xkg as it should. It is Ex—i6)(E—E+id)’

apparent from this expression that in the lirki,k'a<<1, (87

the T matrix is independent ok andk’ with corrections of

quadratic order, as expected from the analysis of Sec. IV. We will calculate this initially for the case tha{0k) corre-
If we take the limitk=kg= £k’ we get the fully on-shell sponds to the hard-sphere potential; i.e., the lithit has

T matrix, which is already been taken. In this case E8]1) gives

E ©
OITEI0)=100+ 5 dk;

022706-9
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AZ\ 2k
f(Ok)=|=—|—e™'? (898
2m) i
so the BG relation becomes
(0| T(E)|0)= hZ)ZkéF ket —(ﬁZ)ZkE
\2p) 7w K206 2w
(89

Comparison with the exact result of E@®4) shows that
we are missing the contribution of relative ordea?. This is
because we have used the BG relation after taking the lim
of an infinite potential, whereas we should have used it fo
finite U and taken the limit at the end of the calculation. To
do this we must first calculatg 0k) for finite U. Since this
is an on-shell matrix element, it can be obtained from th
ordinary Schrdinger equation. The wave function fox|
=<a has the form

(X, kE)=Ae**+Be KX (90)
where K2=k?—k? and k3=U. The solution for|x|>a is
given by Eqgs(73)—(75) with ke=k as before, but Eq.76)

PHYSICAL REVIEW AG5 022706

Eq. (84) that was missing in the earlier calculation of Eq.
(89) and is consistent with the prediction of EQ1)

VIIl. CONCLUSIONS

In this paper we have used the inhomogeneous ‘Schro
dinger equation to derive analytic results for the general off-
shell T matrix for the case of hard-sphere central potentials in
one, two, and three dimensions. For the potentials consid-
ered, this approach is considerably simpler than using the
Beliaev-Galitskii relation. The ISE has the additional advan-
tage that it deals easily with infinite potentials. In contrast,
fhe usual form of the BG relation can only be applied di-
Iﬁrectly to finite potentials. We have derived the correction
term that must be introduced to deal with hard-core poten-
tials and found that it corresponds exactly to the contribution

o the T matrix from the inhomogeneous term of the ISE.

We have also shown that for all potentials with a finite
ranger, (not just the hard-spheres considered elsewhere in
the papey, the low-momentum limit of the off-shell matrix
(kro<<1) depends only on energy and not on the incoming or
outgoing relative momenta of the particles involved. This
result is independent of dimensionality, which only affects

no longer applies because the wave function does not vanidh® form of the remaining energy dependence of Thaa-

at |x|=a for a finite potential. Instead we must ensure con-

tinuity of the wave function and its derivative at=*+a.
This allows the coefficent& andB to be determined and the
T matrix can then be evaluated directly from its definition of
Eq. (68). The result of the calculation is

|

This reduces to Eq88) for k,>k but is very different for
k,<k.
The BG integral now becomes

ikefika
K sinKa+ik cosKa’

ﬁZ

2u

sinKa
K

91)

f(0Kk)=2U

T(E e Zkéuzfm dk
(0|T(E)|0)= 20w ).
><sinZKa 1
K2 (K?+kZcodKa)(ki—k?+i6)’

92

. . . c
which can be evaluated by contour integration. We see tha?

as well as the pole &= kg (which is all we had previously
when we took the limik,—« inside the integral there is
also a whole series of poles that occur wikenk,, . Since we
are ultimately interested in the limiit,— we can evaluate

the position and residues of these poles on the assumption  (r k E)

thatk, is very large. The new poles occur wh&ma=(2n
+1)mw(1xi/k,a)/2 for integem. Only the poles with a posi-

trix. The result is important because it means that low-
momentum collisions can be represented by a contact poten-
tial. This greatly simplifies theoretical calculations of the
properties of cold, dilute gases, such as Bose-Einstein
condensates.
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APPENDIX: THE ASYMPTOTIC BOUNDARY CONDITION

In this Appendix we use the boundary condition at infinity
to derive a result used in the main text. This boundary con-
dition also leads to an expression for the half-on-shetia-
trix with k"’ =kg, without the need to use the method of
hick.

In 3D, the asymptotic boundary condition that the solu-
tion of Eq. (12) must satisfy is given in Eq@8), which we
reproduce here for convenience

+ikE|'

r—ow

2
Amh? T

ikz__

— e

(Kef | T(E) k).
(A1)

tive imaginary part contribute to the integral and the corre-

sponding residues in the largd, limit are R(n)
=4iEa/[ w3(2n+1)?]. Summing over these residues using
>” [1/(2n+1)?]==%/4 (and including a factor of 2i
from the residue theorengives a contribution to th& ma-
trix that is —(h2/2,u)2kéa= —2Ea. This is just the term in

The asymptotic limit of the spherical Bessel and Neumann
functions is[10]

= sin(x—1/2)

J1(x) " ,
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X cogx—Im/2)
_ ~ _

n(x) (A2)

Using these expressions and the results of E2.and(34)
in Eq. (A1) and equating coefficients &f"'*e" gives

2 R ]
4W:2<kErIT(E)Ik>=|§O i'\am(21+1)Y2(0)

[(AI_ 1)e—i|71'/2

Ble—il 72
2ike }

2ke

(A3)

_(Al_l)ei|77/2 Bleilﬂ'/Z
2i 2

(A4)

0:2‘0 i'Jam(20+1)YY( 9)[

where 6 is the angle between and thez axis.
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Equating coefficients 0Y|°(0) we obtain

Bi=i(A-1), (A5)
which is a result used in the text. Substituting this into Eq.
(A3) and using Eq(35) for (A;—1) (which comes from the
boundary condition at=a), we get an expression for the
half-on-shellT matrix

(kef | T(E)[K) = —iuogo J4m(21+1)

ji(ka)

_ A6
(kea)h{Y(kga) (A9

YP(6).

The symmetry of th& matrix with respect to its arguments
[cf. Eqg. (10)] shows that this result agrees with that of Eq.
(41) obtained using the method of Schick. A similar analysis
can be carried out in 2D.
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