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Off-shell T matrices in one, two, and three dimensions
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We discuss the calculation of the off-shellT matrix in one, two, and three dimensions using both the
Beliaev-Galitskii relation and the inhomogeneous Schro¨dinger equation. The off-shellT matrix depends, in
general, on three quantities: the incoming and outgoing momenta and the energy of the collision, all of which
can be chosen independently. We give a simple proof of the fact that for low-momentum scattering theT matrix
depends only on the energy of the collision. Using the inhomogeneous Schro¨dinger equation we derive ana-
lytical results for the fully off-shellT matrix in one, two, and three dimensions for hard-sphere central
potentials. The usual form of the Beliaev-Galitskii relation is not quite correct for such potentials. We derive
the appropriate correction term and show that it corresponds exactly to the contribution to theT matrix from
the inhomogeneous term in the inhomogeneous Schro¨dinger equation.
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I. INTRODUCTION

The two-bodyT matrix provides a complete descriptio
of two-particle collisions and is, therefore, of fundamen
importance in the theoretical description of dilute gases
general, theT matrix depends on three quantities: the inco
ing and outgoing relative momenta of the atoms and
energy of the collision. For collisions in vacuum, only th
on-shellT matrix is physically relevant. This corresponds
the case wherein the energy of the collision is the same as
asymptotic kinetic energy of the atoms before and after
this paper, however, we are interested in the off-shellT ma-
trix where the energy of the collision and the initial and fin
momenta can all be chosen independently. An example
situation where off-shellT matrices are needed occurs
light-assisted collisions where the interaction with a la
beam changes the energy that is available to the collid
atoms@1#. The off-shellT matrix is also of crucial impor-
tance in the study of three-body collisions, where it is t
fundamental input to the Fadeev equations@2#. Another ex-
ample, of particular interest to the authors, occurs in
study of degenerate Bose gases, where particle collisions
described by a many-bodyT matrix that takes into accoun
the effect of the medium~mean field! in which the collisions
occur @3–6#. At low temperatures the many-bodyT matrix
can be approximated by the off-shell two-bodyT matrix.
This is of particular importance for the study of two
dimensional systems, where the on-shellT matrix vanishes at
zero momentum@7#. In this case the mean-field shift in th
energy of the collisions is responsible for the finite intera
tion strength between particles in the lowest moment
states.

In this paper we present analytic results for the off-sheT
matrix for hard-sphere central potentials in one, two, a
three dimensions~1D, 2D, 3D!. We start in Sec. II with a
brief review of the relevant scattering theory, leading to
inhomogeneous Schro¨dinger equation~ISE!. The solutions of
this equation, which satisfy appropriate asymptotic bound
conditions, can be used to obtain the off-shellT matrix. In
Sec. III we describe the Beliaev-Galitskii~BG! relation,
which provides an alternative means of calculating the o
1050-2947/2002/65~2!/022706~11!/$20.00 65 0227
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shell T matrix, using the half-on-shellT matrix as the input.
The usual form of this relation does not treat hard-core
tentials correctly, so we derive a modified form of the res
that includes the appropriate correction term. In Sec. IV
give a simple proof of the fact that, in the limit of low
momentum scattering, theT matrix depends only on the en
ergy of the collision. This result is of some importance f
the study of cold atoms as it means that particle interacti
can be described by a contact potential. Sections V–VII
devoted to solving the ISE and obtaining analytical resu
for the off-shellT matrix in 1D, 2D, and 3D.

Although we have derived the correction that must
introduced into the BG relation to deal with hard-core pote
tials, an alternative approach is to use the usual form of
relation for a finite potential and then to take the infin
potential limit at the end. These calculations have been
formed in 2D and 3D by Sheth, Chang, and Friedberg@8#,
and in Sec. VII we present a similar calculation in 1D. T
results obtained are consistent with the correction we h
derived to the BG relation and also with the results from
ISE, which deals easily with hard-core potentials.

II. REVIEW OF SCATTERING THEORY

In this paper we are principally concerned with calcul
ing the two-bodyT matrix. This is defined as a function o
the complex variablez by the Lippmann-Schwinger equatio
@9#

T~z!5V1VG0~z!T~z!5V1VG~z!V, ~1!

where G0(z) and G(z) are, respectively, the free and fu
Green’s functions, defined by

G0~z!5
1

z2H0
, G~z!5

1

z2H
. ~2!

Here H0 is the single particle Hamiltonian (H05
2\2¹2/2m), H is the full Hamiltonian for a pair of interact
ing atoms in the center-of-mass frame (H5H01V) andm is
©2002 The American Physical Society06-1
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the reduced mass. For the cases we are interested in, in
ing collisions of identical atoms of massm, we have
m5m/2.

We will denote the eigenstates ofH0 by uk&, so that
H0uk&5Ekuk& with Ek5\2k2/2m. The stationary scattering
states will be denoted byuk1&. These are unbound eigen
states ofH with energy Ek @Huk1&5Ekuk1&], which at
infinity have the form of an incoming plane wave of wa
vectork and an outgoing scattered wave. Here and in the
of this paper, wave functions are normalized according
^k8uk&5(2p)Dd(k2k8) in D dimensions. This means tha
although theT matrix has the dimensions of energy, its m
trix elements have dimensions of@E#@L#D.

The two-bodyT matrix is important in scattering prob
lems because its matrix elements^k8uT(z)uk& give the am-
plitude for scattering from statek to k8. For the case of two
atoms colliding in a vacuum, only the on-shell matrix e
ments are physically relevant. These correspond tok5k8
and z5Ek1 id, wherek5uku and d is a positive infinitesi-
mal. In this paper, however, we are interested in the gen
off-shell T matrix for whichk, k8, andE can all be chosen
independently. This can be obtained by solving an inhom
geneous Schro¨dinger equation that can be derived direc
from the Lippmann-Schwinger definition of theT matrix.
Specializing to the case thatz5E1 id, we can write Eq.~1!
in the form

^k8uT~E!uk&5^k8uVF11
1

E1 id2H
VG uk&5^k8uVuk1,E&,

~3!

where the off-shell, outgoing, scattered waveuk1,E& is de-
fined by

uk1,E&5F11
1

E1 id2H
VG uk&. ~4!

In the position representation, Eq.~3! is

^k8uT~E!uk&5E d3r e2 ik8•rV~r !c1~r ,k,E!, ~5!

wherec1(r ,k,E)5^r uk1,E& and we have assumed thatV
is a local potential. The operator in square brackets in Eq.~4!
is the Mo” ller operator that acts on the initial wave to give t
full scattered wave. The statesuk1,E& are the off-shell gen-
eralization of the scattering statesuk1& introduced above,
the relation between them beinguk1&5uk1,E5Ek&.

In the position representation, Eq.~4! becomes

c1~r ,k,E!5eik•r1E d3r 8 G0
1~r ,r 8,E!V~r 8!c1~r 8,k,E!.

~6!

In 3D, the Green’s function is given by the well-known e
pression@10#

G0
1~r ,r 8,E!5^r u

1

E2H01 id
ur 8&52

2m

4p\2

eikEur2r8u

ur2r 8u
,

~7!
02270
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where kE5A2mE/\2. In the asymptotic limitr→` we,
therefore, have

c1~r ,k,E! ——→
r→`

eikz2
2m

4p\2

e1 ikEr

r
^kEr̂ uT~E!uk&,

~8!

where we have used Eq.~5! and took thez axis in the direc-
tion of k.

Equation ~8! shows that the half-on-shellT matrix
(k5kEÞk8 or k85kEÞk) describes the amplitude and a
gular distribution of the scattered wave, and is therefore p
portional to the scattering amplitude~in 3D this is simply the
coefficient of the outgoing spherical wave!. For later conve-
nience, we introduce an abbreviated notation for this quan

f ~k8,k![^k8uT~Ek!uk&5^k8uVuk1&, ~9!

wherek8 is any vector. The fully on-shellT matrix corre-
sponds to the special case of this wherek85k. Equation~9!
is proportional to the scattering amplitude in Eq.~8! because
the T matrix is symmetric with respect to its momentu
arguments@11,12#

^k8uT~E!uk&5^kuT~E!uk8&. ~10!

Equation~4! can also be used to obtain an inhomogene
Schrödinger equation foruk1,E&. Acting on both sides with
E1 id2H gives

~E2H !uk1,E&5~E2Ek!uk&, ~11!

where we have used the fact thatH0uk&5Ekuk&. In the posi-
tion representation this becomes

@kE
21¹22U~r !#c1~r ,k,E!5~kE

22k2!eik•r, ~12!

whereU(r )52mV(r )/\2. This equation must be solved sub
ject to the boundary condition of Eq.~8!, and the off-shellT
matrix can then be determined from Eq.~5!. Equation~12!
has been used by Van Leeuwen and Reiner to study thT
matrix in 3D for potentials consisting of chains of rectang
lar wells @13#. It can also be used as the basis of an effici
numerical algorithm for the calculation of the off-shellT
matrix for more general potentials, as has been shown
Brumer and Shapiro@14,15#.

In Sec. V–VII, we will solve Eq.~12! and obtain the
off-shell T matrix for hard-sphere central potentials in 1D
2D, and 3D.

III. THE BELIAEV-GALITSKII RELATION

An important relation between off-shell and half-on-sh
T matrix elements was derived by Beliaev and Galits
@16,17#, and is often used as the basis of calculations of
off-shell T matrix. In this section we present a derivation
the Beliaev-Galitskii result. Our method follows that of Va
Leeuwen and Reiner@13# and includes an explicit formula
for the correction to the usual form of the BG result, whi
must be included for infinite potentials. For hard-sphere
tentials we show that this correction corresponds exactly
6-2
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the contribution to theT matrix from the inhomogeneou
term of the ISE.

We begin with the Lippmann-Schwinger definition of th
T matrix for general complexz as given in Eq.~1!. This can
be manipulated into the form

G0~z!T~z!G0~z!5G~z!2G0~z!. ~13!

Acting on the left with^p8u and on the right withup& gives

^p8uT~z!up&5~z2Ep8!~z2Ep!^p8uG~z!2G0~z!up&.
~14!

We now write G in terms of the eigenstates ofH as ~see
discussion at the end of this section!

G~z!5(
n

un&^nu
z2En

, ~15!

whereHun&5Enun&. Substituting this into Eq.~14! and writ-
ing z2Ep85(z2En)1(En2Ep8) we obtain

^p8uT~z!up&5(
n

F ~En2Ep8!~z2Ep!^p8un&^nup&
z2En

G
1~z2Ep!(

n
@^p8un&^nup&2^p8up&#.

~16!

For a finite potential, the second line of this express
would be zero due to the completeness of the states$un&%.
For a hard sphere potential, however, we have a modi
completeness relation@13#

(
n

^r 8un&^nur &5d~r2r 8!, ~ ur u and ur 8u.a!,

50, ~ ur u or ur 8u<a!. ~17!

Using this in Eq.~16! gives the correction to the BG resu
for the hard-sphere potential

^p8uTcorr~z!up&52~z2Ep!E
V
dDr ei (p2p8)•r, ~18!

where the integral is over the region of the potentialV. In
3D, an equivalent result has been obtained previously by
Leeuwen and Reiner@13#.

The first line of Eq.~16! can be manipulated into th
standard form of the BG result by writingz2Ep5(z2En)
1(En2Ep) and using^p8u(En2Ep8)un&5^p8u(H2H0)un&
5^p8uVun&. If we also assume thatH has only a continuous
spectrum, then we can put(n→*dDk/(2p)D, un&5uk1&
andEn5Ek to obtain
02270
n

d

n

^p8uT~z!up&5E dDk

~2p!D F ^p8uVuk1&^k1up&

1
f ~p8,k! f * ~p,k!

z2Ek
G

2~z2Ep!E
V
dDr ei (p2p8)•r, ~19!

where we also have used Eq.~9! @18#. Writing this out for
z15E1 id andz25Ep1 id and subtracting gives

^p8uT~E!up&5 f ~p8,p!2~E2Ep!E
V
dDr ei (p2p8)•r

1E dDk

~2p!D
f ~p8,k! f * ~p,k!F 1

E2Ek1 id

2
1

Ep2Ek1 idG .
~20!

The first and third terms form the usual Beliaev-Galits
result. The second term is the correction that must be in
duced to deal with the infinite potential. A comparison wi
Eqs. ~5! and ~12! shows that this contribution equals th
from the inhomogeneous term of the ISE for a hard-sph
potential of radiusa. However, this correspondence is som
what surprising, as the inhomogeneous term in the ISE
pends only on the width of the potential, not its height. Wr
ing the correction out for the casep85p50, gives the
particularly simple result

^0uTcorr~E!u0&52E3~Excluded volume!,

52
E4pa3

3
~3D!,

52Epa2 ~2D!,

522Ea ~1D!, ~21!

where in each caseV(ur u) is infinite for ur u<a ~see Secs.
V–VII !.

A simpler derivation of the BG relation that neglects t
correction term can be obtained by substituting Eq.~15! for
G directly into Eq. ~1!. The proof given here includes th
correction becauseG appears asG2G0 rather than on its
own. For any finite potential, the contribution toG from
states with energies greater thanV will be canceled in large
part byG0. Thus the sum over states converges better inG
2G0 than it does inG alone, allowing the infinite potentia
limit to be taken inside the summation and producing
correction term of Eq.~18!. However, we have not prove
this rigorously, so the derivation given here is somewhat h
ristic. Further justification for the validity of Eq.~18! comes
from the fact that it agrees with the predictions of the IS
and also with results obtained by using the ordinary BG
lation for a finite potential and taking the infinite potenti
limit at the end of the calculation. Although this greatly com
6-3
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plicates evaluation of theT matrix, the calculations have
been performed forp85p50 in 2D and 3D by Sheth,
Chang, and Friedberg@8#, and we discuss the 1D case in Se
VII.

The BG result is useful because it relates the off-sheT
matrix to the half-on-shellT matrix, which in turn can be
calculated from the ordinary Schro¨dinger equation. However
in order to do the calculation, one must first calcula
f (p8,p) over the whole relevant range of the integral a
then perform the integration. Either or both of these calcu
tions may be nontrivial in practice. For the hard-sphere
tentials we will consider in this paper, it is considerably si
pler to use the ISE. This deals easily with infinite potenti
and has the additional advantage that theT matrix can be
obtained for allk8 with very little extra effort over and abov
that required to obtain it for a single value.

IV. CONTACT INTERACTIONS FOR LOW-MOMENTUM
SCATTERING

In this section we consider the general off-shellT matrix
and show that its leading order contribution in the lo
momentum limit depends only on the energyE of the colli-
sion and not on the incoming or outgoing momenta. T
result is important because it means that for low-momen
collisions the spatial representation of theT matrix can be
taken to be a contact potential,T(r ,r 8,E)5g(E)d(r )d(r
2r 8). This form of theT matrix greatly simplifies calcula
tions of the properties of cold, dilute gases and is wid
used in the theory of Bose-Einstein condensation.

The proof of this result is trivial if we use the Lippmann
Schwinger definition of theT matrix Eq.~1! in the momen-
tum basis with the full Green’s function for the interactin
pair

^k8uT~E!uk&5^k8uVuk&1^k8uV
1

E2H1 id
Vuk&,

5E dDr e2 ik8•rV~r !eik•r

1E E dDr dDr 8 e2 ik8•rV~r !G1~r ,r 8,E!V~r 8!eik•r8.

~22!

If we now suppose that the potential has a finite ranger 0 so
that V(r ) is negligible forr .r 0, then in the limitkr0 ,k8r 0
!1 we can expand the exponentials aseik•r'11O(kr0).
We can, therefore, write the low-momentum limit of theT
matrix as

lim
k8,k→0

^k8uT~E!uk&5g~E!1g1~E!~k8r 01kr0!

1O@~k8r 0!2,~kr0!2,k8kr0
2#, ~23!

whereg(E) andg1(E) will in general depend onr 0 and we
have used Eq.~10!. Hence the leading-order contribution
theT matrix at low momentum is a function of the energy
the collision only and not the momentum. In many cases
practical interest, the conditionkr0!1 is well satisfied so the
02270
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correction term is negligible and theT matrix is effectively
independent of momentum. In this case its spatial repres
tation can be taken to be a contact potential

^r 8uT~E!ur &;^k850uT~E!uk50&d~r !d~r 8!

5g~E!d~r !d~r2r 8!, ~24!

because this generates the sameT matrix in momentum
space at low momentum@19#. We note that a more stringen
definition of momentum independence for theT matrix
would require the derivatives with respect tok and k8 to
vanish at zero momentum@i.e., g1(E)50#. This is in fact
true for central potentials~although not more generally!, as is
easily proved from Eq.~22! using symmetry arguments. I
this case, the corrections to the contact potential form ar
order (kr0)2, as we confirm for hard-sphere potentials
Secs. V–VII.

We note that the form of Eq.~24! is independent of di-
mensionality, which only enters in the explicit expressi
that must be used forg(E). In 3D, g(E) is independent of
energy at low energy and for a hard-sphere potential of
dius a it is given by ~see Sec. V!

g~E!5
4p\2a

m
1O~kEa! ~3D!, ~25!

where~as before! kE5A2mE/\2 andm52m is the mass of
one of the colliding atoms. In 2D we have~Sec. VI!

g~E!5
4p\2/m

p i 22g2 ln@~kEa!2/4#
1OS ~kEa!2

ln~kEa! D ~2D!,

~26!

whereg'0.577 is the Euler-Mascheroni constant, while
1D ~Sec. VII!

g~E!52
2\2

ma
@ ikEa1~kEa!2#. ~27!

These results show that while theT matrix is insensitive to
momentum at low momentum, its energy dependence m
be nontrivial.

V. THREE DIMENSIONS

In this section we solve the ISE in 3D and obtain analy
cal results for the off-shellT matrix. We consider the case o
a hard-sphere interaction potential of radiusa, V(r )50 for
r .a, V(r )5` for r<a. This potential simply acts as
boundary condition, forcing the wave function to vanish f
r<a. We take the direction of the initial wave to define thez

axis, k5kẑ. We make the usual transformation to part
waves and decompose the initial plane wave and the
scattered wave as@20#

eik•r5eikz5(
l 50

`

i lA4p~2l 11! j l~kr !Yl
0~u!, ~28!
6-4
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c1~r ,k,E!5(
l 50

`

i lA4p~2l 11!f l~r ,k,E!Yl
0~u!, ~29!

where j l(kr) andYl
0(u) are the usual spherical Bessel fun

tions and spherical harmonics, respectively. Substitution
Eq. ~12! gives the equation forf l(r ,k,E)

FkE
21

1

r 2

d

dr S r 2
d

dr D2
l ~ l 11!

r 2
2U~r !Gf l~r ,k,E!

5~kE
22k2! j l~kr !. ~30!

Substituting Eqs.~28! and ~29! into Eq. ~5! gives the partial
wave decomposition of theT matrix

^k8uT~E!uk&5(
l 50

`

i lA4p~2l 11!t l~k8,k,E!Yl
0~uk8!,

~31!

where

t l~k8,k,E!5~2 i ! l4pE
0

`

dr r 2 j l~k8r !V~r !f l~r ,k,E!,

~32!

anduk8 is the angle ofk8 relative tok.
Equation~30! can be solved using the fact that the sphe

cal Bessel functionj l(kr) is the regular solution of the equa
tion

Fk21
1

r 2

d

dr S r 2
d

dr D2
l ~ l 11!

r 2 G j l~kr !50. ~33!

We will also be interested in the spherical Neumann funct
nl(kr) that is the irregular solution, and the Hankel functi
of the first kind hl

(1)(kr)5 j l(kr)1 inl(kr), which corre-
sponds to an outgoing wave in the asymptotic limitkr→`.

A comparison of Eqs.~30! and~33! shows that the genera
solution forf l(r ,k,E) for r .a has the form

f l~r ,k,E!5 j l~kr !1~Al21! j l~kEr !1Blnl~kEr !, ~34!

where we have included the21 in the coefficient ofj l(kEr )
so thatAl has its usual value in the on-shell limitkE5k. The
boundary condition at infinity givesBl5 i (Al21), which is
clearly required so that the scattered wave is proportiona
hl

(1)(kEr ) and hence to an outgoing wave~this result is
proved more formally in the Appendix!. The condition that
the wave function vanishes atr 5a then gives

Al215
2 j l~ka!

hl
(1)~kEa!

. ~35!

The solution forf l(r ,k,E), which matches the boundar
conditions is, therefore,

f l~r ,k,E!5 j l~kr !2
j l~ka!

hl
(1)~kEa!

hl
(1)~kEr ! ~r .a!,
02270
to
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to

f l~r ,k,E!50 ~r<a!. ~36!

The boundary condition at infinity can also be used
give an expression for the half-on-shellT matrix with k8
5kEÞk, as shown in the Appendix. However, we want t
completely general case so we need to substitute the re
for f l(r ,k,E) into Eq.~32! and evaluate the integral. On firs
inspection this appears difficult because we have an infi
potential multiplied by a zero wave function. However, th
difficulty can be avoided, if we follow the method of Schic
@7#, which involves manipulating Eqs.~30! and~33! to obtain
an alternative expression for the integral. Specifically,
multiply Eq. ~30! by j l(k8r ) and Eq.~33! ~with k→k8) by
f l(r ,k,E), subtract and integrate. Choosing the limits of i
tegration to be from 0 toa, this gives

E
0

a

dr r 2 j l~k8r !U~r !f l~r ,k,E!

5F j l~k8r !r 2
df l

dr G
0

a

2Ff l r
2

d j l~k8r !

dr G
0

a

1~kE
22k82!E

0

a

dr r 2 j l~k8r !f l

2~kE
22k2!E

0

a

dr r 2 j l~k8r ! j l~kr !, ~37!

where integration by parts has been used on the kine
energy term.

For a hard-sphere potential,f l(r ,k,E) vanishes forr<a
so the second and third terms on the right-hand side~RHS!
of Eq. ~37! are zero, whileU(r ) vanishes forr .a so the
left-hand side is proportional tot l(k8,k,E) @cf. Eq. ~32!#.
The last term on the RHS can be evaluated using Be
function identities, while the first term can be calculated u
ing Eq. ~36! and the fact that the Bessel functions satisfy

d j l~x!

dx
5

i j l~x!

x
2 j l 11~x!. ~38!

We, therefore, obtain the general result~obtained previously
by Van Leeuwen and Reiner@13#!

t l~k8,k,E!52~2 i ! lU0H ~xE
22x82!

~x22x82!
x j l~x8! j l 11~x!

2
~xE

22x2!

~x22x82!
x8 j l~x! j l 11~x8!

2xEj l~x! j l~x8!
hl 11

(1) ~xE!

hl
(1)~xE!

J , ~39!

whereU054p\2a/m, x5ka, x85k8a, andxE5kEa. Sub-
stitution into Eq.~31! then gives the final expression for th
off-shell T matrix.
6-5
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Various limits of this result are of interest. If we take th
half-on-shell casek5kEÞk8 and use Bessel function ident
ties, we obtain

t l~k8,k,Ek!5~2 i ! l 11U0

j l~x8!

xhl
(1)~x!

, ~40!

which has an elegent simplicity. Inserting this result into E
~31! gives

^k8uT~Ek!uk&52 iU 0(
l 50

`

A4p~2l 11!

3
j l~k8a!

~ka!hl
(1)~ka!

Yl
0~uk8!. ~41!

This result can also be derived by consideration of
asymptotic boundary condition~i.e., without using the
method of Schick! as is shown in the Appendix. The othe
half-on-shell T matrix (k85kEÞk) can be found by ex-
changingk andk8, which follows from Eq.~10!.

For smallx the spherical Bessel functions have the fo
j l(x);xl , so we see from Eq.~39! that in the limitka,k8a
!1 the T matrix is independent ofk and k8 with errors of
order (ka)2 as predicted in Sec. IV. Settingk5k850 we get

^0uT~E!u0&5U0F12 ikEa2
1

3
~kEa!2G . ~42!

This result was derived forE.0. Analytically continuing to
E,0 and using units\52m51, we get

^0uT~E!u0&5U0F12 iAEa2
1

3
Ea2G ~E.0!, ~43!

5U0F11AuEua2
1

3
Ea2G ~E,0!, ~44!

where the positive square root should be taken in each c
This is the same result as that obtained by Chang and
workers @8# and includes their correction~the last term! to
the result predicted by the naive use of the BG relation
the infinite potential~discussed below!.

A. The Beliaev-Galitskii prediction

It is interesting to compare the above results with the
prediction. For the casek5k850 the usual form of this re-
lation is

^0uT~E!u0&5 f ~0,0!1
E

~2p!3E d3k
u f ~0,k!u2

~Ek2 id!~E2Ek1 id!
.

~45!

Taking f (0,k) from Eq. ~41! gives

^0uT~Ek!uk&5 f ~0,k!5U0e2 ika. ~46!
02270
.

e

se.
o-

r

The BG relation, therefore, becomes

^0uT~E!u0&5U01S 2U0a

p D S 2mE

\2 D E
0

`

dk
1

kE
22k21 id

,

5U0~12 ikEa!. ~47!

A comparison with the exact result of Eq.~42! shows that the
contribution of order (kEa)2 is missing. This is as expected
because we have used the BG relation after taking the l
of an infinite potential and so the correction term of Eq.~18!
must be included. The comparison of Eqs.~21! and ~42!
shows that this gives the correct result. The alternative p
cedure is to use the BG relation for finiteV(r ) and take the
infinite potential limit at the end. This calculation has be
performed by Sheth, Chang, and Friedberg@8#, and the cor-
rection they obtain is precisely the last term of Eq.~42!.

VI. TWO DIMENSIONS

The analysis in 2D is very similar to that in 3D, the ma
difference being the replacement of spherical Bessel, N
mann, and Hankel functions with their two-dimension
counterparts. In this section we give a brief outline of t
calculation and a discussion of the results obtained. We c
sider again a hard-disk potential for whichV(r )50 for r
.a, V(r )5` for r<a.

We take the direction of the incident wave to define thex
axis. The usual partial wave decomposition gives@21#

eikx5 (
m50

`

emi m`cos~mu!Jm~kr !, ~48!

c1~r ,k,E!5 (
m50

`

emi m cos~mu!fm~r ,k,E!, ~49!

wheree051, e i52 (iÞ0). Jm(kr) is the usual Bessel func
tion that satisfies the equation

Fk21
1

r

d

dr S r
d

dr D2
m2

r 2 GJm~kr !50, ~50!

while fm(r ,k,E) satisfies

FkE
21

1

r

d

dr S r
d

dr D2
m2

r 2
2U~r !Gfm~r ,k,E!

5~kE
22k2!Jm~kr !. ~51!

The partial wave decomposition of theT matrix is

^k8uT~E!uk&5 (
m50

`

emi m cos~muk8!tm~k8,k,E!, ~52!

whereuk8 is the angle ofk8 relative tok and
6-6
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tm~k8,k,E!5~2 i !m2pE
0

`

dr rJm~k8r !V~r !fm~r ,k,E!.

~53!

Comparing Eqs.~50! and ~51! it is clear that the genera
solution forfm(r ,k,E) in the regionr .a has the form

fm~r ,k,E!5Jm~kr !1~Am21!Jm~kEr !1BmNm~kEr !,
~54!

where the Neumann functionNm(kr) is the irregular solution
of Eq. ~50!. The boundary condition at infinity givesBm
5 i (Am21) as before, so the condition atr 5a gives

Am215
2Jm~ka!

Hm
(1)~kEa!

, ~55!

where Hm
(1)(x)5Jm(x)1 iNm(x) is the Hankel function of

the first kind and corresponds asymptotically to an outgo
circular wave. The solution forfm(r ,k,E), which matches
the boundary conditions is, therefore,

fm~r ,k,E!5Jm~kr !2
Jm~ka!

Hm
(1)~kEa!

Hm
(1)~kEr ! ~r .a!,

fm~r ,k,E!50 ~r<a!, ~56!

in direct correspondance with the 3D result of Eq.~36!.
To evaluate theT matrix, this result should be substitute

into Eq.~53!. As in the 3D case, however, the singular natu
of the potential makes direct evaluation of the integral di
cult and so we use the method of Schick@7# to reexpress it in
terms of well-defined quantities. We do this by multiplyin
Eq. ~51! by Jm(k8r ) and Eq. ~50! ~with k→k8) by
fm(r ,k,E), subtracting and integrating. Choosing the lim
of integration to be from 0 toa gives

E
0

a

dr rJm~k8r !U~r !fm~r ,k,E!

5FJm~k8r !r
dfm

dr
2fmr

dJm~k8r !

dr G
0

a

1~kE
22k82!E

0

a

dr rJm~k8r !fm

2~kE
22k2!E

0

a

dr rJm~k8r !Jm~kr !, ~57!

where integration by parts has been used on the kine
energy term. Following similar steps as in the 3D case,
using Eq.~56! and Bessel function identities, this become
02270
g
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tm~k8,k,E!52~2 i !m
2p\2

2m H ~xE
22x82!

~x22x82!
xJm~x8!Jm11~x!

2
~xE

22x2!

~x22x82!
x8Jm~x!Jm11~x8!

2xEJm~x!Jm~x8!
Hm11

(1) ~xE!

Hm
(1)~xE!

J , ~58!

wherex5ka, x85k8a andxE5kEa as before. Substitution
into Eq. ~52! then gives the final result for the fully off-she
T matrix in 2D.

Various limits of this result are of interest. We consid
again the half-on-shell casek5kEÞk8 where Bessel func-
tion identities simplify the expressions considerably. Usi
Eq. ~52! we obtain

^k8uT~Ek!uk&5
\2

2m (
m50

`

4em

Jm~k8a!

iH m
(1)~ka!

cos~muk8!.

~59!

For smallx the Bessel functions have the formJm(x);xm,
so in the limitka,k8a!1, Eq.~58! shows that theT matrix is
independent ofk and k8 with errors of order (ka)2 as pre-
dicted in Sec. IV. Settingk5k850 we obtain

^0uT~E!u0&52pS \2

2m D F kEaH1
(1)~kEa!

H0
(1)~kEa!

2
~kEa!2

2 G ,

~60!

where the last term is the contribution from the inhomog
neous part of the ISE. In the limitxE!1 and using\52m
51 this becomes

^0uT~E!u0&5
4p

p i 22g2 ln~Ea2/4!
1OF Ea2

ln~Ea2!
G ,

~61!

whereg'0.577 is the Euler-Mascheroni constant. Althou
this result has been derived forE.0, it can also be used fo
E,0 by straightforward analytic continuation. Equation~61!
is a well-known result for the low-energy limit of the off
shell T matrix in 2D @3#. Adhikari has shown that its func
tional form follows from a consideration of the analyt
properties of theT matrix at low energy@22#. Equation~61!
also shows that theT matrix vanishes at zero energy, whic
is why the medium in which collisions occur must be tak
into consideration in the study of cold 2D gases.

Figure 1 shows the comparison between the exact re
of Eq. ~60! and the approximation of Eq.~61!. It is clear that
the approximation works better for the real part at posit
energies than it does at negative energies or for the im
nary part.

A. The Beliaev-Galitskii prediction

For k5k850 the usual BG relation for the off-shellT
matrix is
6-7
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^0uT~E!u0&5 f ~0,0!1
E

~2p!2E d2k
u f ~0,k!u2

~Ek2 id!~E2Ek1 id!
.

~62!

Taking f (0,k) from Eq. ~59! gives

^0uT~Ek!uk&5 f ~0,k!5S \2

2m D 4

iH 0
(1)~ka!

. ~63!

f (0,0) is, therefore, zero and the BG relation becomes

^0uT~E!u0&5
16E

~2p!2E d2k

3
1

uH0
(1)~ka!u2

1

~k22 id!~kE
22k21 id!

.

~64!

To our knowledge this integral has not been calculated
actly, although it can be done approximately in the lim
kEa!1 @7#. Furthermore, it does not give exactly the rig
result as the limit of an infinite potential has already be
taken. It is possible, however, to calculate the correction
must be introduced to deal with this, and this has been d
by Chang and Friedberg@8#. They obtain the result@23#

^0uT~E!u0&5@Result of Eq.~64!#2pEa2. ~65!

As in the 3D case, the correction term is precisely the c
tribution derived in Eq.~21!. However, the advantages o
using the ISE over the BG relation~even in its modified
form! are particularly clear in this case. An analytical res
for the fully off-shell T matrix can be obtained where th
infinite potential is dealt with correctly and the difficult inte
gral of Eq.~64! does not have to be evaluated.

FIG. 1. Real and imaginary parts of the zero-momentum,
shellT matrix ^0uT(E)u0& in 2D. The solid lines are the exact resu
of Eq. ~60! and the dotted lines are the low-energy approximation
Eq. ~61!. Units of \52m51 have been used.
02270
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VII. ONE DIMENSION

In 1D, the ISE is

FkE
21

d2

dx2
2U~x!Gc1~x,k,E!5~kE

22k2!eikx. ~66!

The analog of a central potential is a symmetric potential,
we consider the case thatU(x)5U(2x). In particular, we
will consider an infinite barrier potential for which

U~x!5` ~ uxu<a!,

U~x!50 ~ uxu.a!. ~67!

The analog of a partial wave expansion in 1D is, therefore
parity expansion as described in@24#, but we will not intro-
duce this here as the calculation is sufficiently simple tha
is not necessary.

As before, theT matrix is related to the solution of th
ISE by

^k8uT~E!uk&5E dx e2 ik8xV~x!c1~x,k,E!. ~68!

In this equation,k8 can be positive or negative correspondi
to waves traveling in the1x or 2x directions, respectively
In all subsequent equations, however, we will take wave v
tors to be positive and denote the direction of motion
writing the sign explicitly.

The solution to Eq.~66!, which matches the boundar
conditions, is

c1~x,k,E!5eikx1E dx8 G0
1~x,x8,E!V~x8!c1~x8,k,E!,

~69!

where the free particle Green’s function is given by@10#

G0
1~x,x8,E!52S 2m

\2 D i

2kE
eikEux2x8u. ~70!

The asymptotic limit of the solution, therefore, has the fo

c1~x,k,E! ——→
uxu→`

eikx1 f ~e!eikEuxu, ~71!

where e[x/uxu511 (21) for x.0 (x,0). Substituting
Eq. ~70! into Eq. ~69! and comparing with Eq.~68! gives

f ~61!52S 2m

\2 D i

2kE
^6kEuT~E!uk&. ~72!

The solution to Eq.~66! for uxu.a is

c1~x,k,E!5eikx1~A121!eikEx1B1e2 ikEx ~x.a!,
~73!

c1~x,k,E!5eikx1~A221!eikEx1B2e2 ikEx ~x,2a!.
~74!

-

f

6-8
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Comparison with Eq.~71! gives

B15~A221!50, ~75!

so the boundary condition atx56a then gives

~A121!52ei (k2kE)a,

B252ei (k1kE)a. ~76!

The solution to the ISE, which matches all the bound
conditions is, therefore,

c1~x,k,E!5eikx2ei (k2kE)aeikEx ~x.a!,

c1~x,k,E!5eikx2ei (k1kE)ae2 ikEx ~x,2a!,

c1~x,k,E!50 ~ uxu<a!. ~77!

Comparison with Eq.~72! gives the result for the half-on
shell T matrix

^6kEuT~E!uk&5S \2

2m D 2kE

i
e2 i (kE7k)a. ~78!

To obtain an expression for the fully off-shellT matrix, we
once again use the method of Schick@7#. The plane wave
satisfies

Fk821
d2

dx2Ge6 ik8x50. ~79!

Multiplying this by c1(x,k,E) and Eq.~66! by e2 ik8x, sub-
tracting and integrating from2a to a gives

E
2a

1a

dx e2 ik8xU~x!c15Fe2 ik8x
dc1

dx
2c1

d~e2 ik8x!

dx
G

2a

a

1~kE
22k82!E

2a

1a

dx e2 ik8xc1

12
~k22kE

2 !

k2k8
sin~k2k8!a. ~80!

Using Eqs.~68! and ~77!, this gives the final result for the
fully off-shell T matrix in 1D

^k8uT~E!uk&5
\2

2m H 2~k8k2kE
2 !

k2k8
sin~k2k8!a

22ikEcos~k2k8!aJ . ~81!

This reduces to Eq.~78! for k856kE as it should. It is
apparent from this expression that in the limitka,k8a!1,
the T matrix is independent ofk andk8 with corrections of
quadratic order, as expected from the analysis of Sec. IV

If we take the limitk5kE56k8 we get the fully on-shell
T matrix, which is
02270
y

^kuT~Ek!uk&5S \2

2m D2k

i
, ~82!

^2kuT~Ek!uk&5S \2

2m D2k

i
e22ika. ~83!

In this limit, Eq. ~77! shows thatc1(x,k,E) is zero forx
.a, while the reflection coefficient has modulus 1 as w
would expect. Of course, this requires a nonzero forw
scattering amplitude so that the incident wave can be c
celed in the regionx.a and so that the optical theorem
satisfied.

Using units,\52m51, the zero-momentum limit of the
fully off-shell T matrix is

^0uT~E!u0&52
2

a
~ iAEa1Ea2!. ~84!

For Ea2!1 and positive energies, the leading-order con
bution to theT matrix in 1D is therefore imaginary. This
result can also be used forE,0 by straightforward analytic
continuation where theT matrix is always real

^0uT~E!u0&5
2

a
~AuEua2Ea2! ~E,0!. ~85!

Although we have focused on hard-sphere potentials
this paper, it is also of interest to calculate theT matrix in 1D
for a d function potential,V(r )5V0d(r ). This is a meaning-
ful potential in 1D in the sense that it leads to a well-defin
T matrix without the need for any ultraviolet renormaliz
tion, in contrast with higher dimensions. This potential
also of interest because it appears in the exactly solu
many-body boson models considered by Girardeau@25# and
by Lieb and Liniger@26#. In this case theT matrix is also a
contact potential so the Lippmann-Schwinger equation,
~1!, reduces to an algebraic equation whose solution is

^kuT~E!uk&5g~E!5
V0

11V0S 2m

\2 D S i

2kE
D . ~86!

In the limit of an impenetrabled function (V0→`) this
agrees with thea→0 limit of Eq. ~81! as it should.

A. The Beliaev-Galitskii prediction

It is interesting to compare the above results with t
prediction of the BG relation. For the casek5k850 this is

^0uT~E!u0&5 f ~0,0!1
E

2pE2`

`

dk
u f ~0,k!u2

~Ek2 id!~E2Ek1 id!
.

~87!

We will calculate this initially for the case thatf (0,k) corre-
sponds to the hard-sphere potential; i.e., the limitU→` has
already been taken. In this case Eq.~81! gives
6-9



im
fo
To

th

n
n

e
o

th

ti

re

ng

q.

hro
ff-
in

sid-
the
n-
st,
di-
on
en-
ion

ite
e in

or
is
ts

w-
ten-
e

tein

and
m,
s’’

ol-
-

ity
on-

of

lu-

nn

S. A. MORGAN, M. D. LEE, AND K. BURNETT PHYSICAL REVIEW A65 022706
f ~0,k!5S \2

2m D 2k

i
e2 ika, ~88!

so the BG relation becomes

^0uT~E!u0&5S \2

2m D 2kE
2

p E
2`

`

dk
1

kE
22k21 id

5S \2

2m D 2kE

i
.

~89!

Comparison with the exact result of Eq.~84! shows that
we are missing the contribution of relative orderEa2. This is
because we have used the BG relation after taking the l
of an infinite potential, whereas we should have used it
finite U and taken the limit at the end of the calculation.
do this we must first calculatef (0,k) for finite U. Since this
is an on-shell matrix element, it can be obtained from
ordinary Schro¨dinger equation. The wave function foruxu
<a has the form

c1~x,k,E!5AeiKx1Be2 iKx, ~90!

where K25k22ku
2 and ku

25U. The solution foruxu.a is
given by Eqs.~73!–~75! with kE5k as before, but Eq.~76!
no longer applies because the wave function does not va
at uxu5a for a finite potential. Instead we must ensure co
tinuity of the wave function and its derivative atx56a.
This allows the coefficentsA andB to be determined and th
T matrix can then be evaluated directly from its definition
Eq. ~68!. The result of the calculation is

f ~0,k!52U
\2

2m S sinKa

K D ike2 ika

K sinKa1 ik cosKa
. ~91!

This reduces to Eq.~88! for ku@k but is very different for
ku,k.

The BG integral now becomes

^0uT~E!u0&5S \2

2m D2kE
2U2

p E
2`

`

dk

3
sin2Ka

K2

1

~K21ku
2 cos2 Ka!~kE

22k21 id!
,

~92!

which can be evaluated by contour integration. We see
as well as the pole atk5kE ~which is all we had previously
when we took the limitku→` inside the integral!, there is
also a whole series of poles that occur whenk.ku . Since we
are ultimately interested in the limitku→` we can evaluate
the position and residues of these poles on the assump
that ku is very large. The new poles occur whenKa5(2n
11)p(16 i /kua)/2 for integern. Only the poles with a posi-
tive imaginary part contribute to the integral and the cor
sponding residues in the largeku limit are R(n)
54iEa/@p3(2n11)2#. Summing over these residues usi
(2`

` @1/(2n11)2#5p2/4 ~and including a factor of 2p i
from the residue theorem! gives a contribution to theT ma-
trix that is 2(\2/2m)2kE

2a522Ea. This is just the term in
02270
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Eq. ~84! that was missing in the earlier calculation of E
~89! and is consistent with the prediction of Eq.~21!

VIII. CONCLUSIONS

In this paper we have used the inhomogeneous Sc¨-
dinger equation to derive analytic results for the general o
shellT matrix for the case of hard-sphere central potentials
one, two, and three dimensions. For the potentials con
ered, this approach is considerably simpler than using
Beliaev-Galitskii relation. The ISE has the additional adva
tage that it deals easily with infinite potentials. In contra
the usual form of the BG relation can only be applied
rectly to finite potentials. We have derived the correcti
term that must be introduced to deal with hard-core pot
tials and found that it corresponds exactly to the contribut
to theT matrix from the inhomogeneous term of the ISE.

We have also shown that for all potentials with a fin
ranger 0 ~not just the hard-spheres considered elsewher
the paper!, the low-momentum limit of the off-shellT matrix
(kr0!1) depends only on energy and not on the incoming
outgoing relative momenta of the particles involved. Th
result is independent of dimensionality, which only affec
the form of the remaining energy dependence of theT ma-
trix. The result is important because it means that lo
momentum collisions can be represented by a contact po
tial. This greatly simplifies theoretical calculations of th
properties of cold, dilute gases, such as Bose-Eins
condensates.
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APPENDIX: THE ASYMPTOTIC BOUNDARY CONDITION

In this Appendix we use the boundary condition at infin
to derive a result used in the main text. This boundary c
dition also leads to an expression for the half-on-shellT ma-
trix with k85kE , without the need to use the method
Schick.

In 3D, the asymptotic boundary condition that the so
tion of Eq. ~12! must satisfy is given in Eq.~8!, which we
reproduce here for convenience

c1~r ,k,E! ——→
r→`

eikz2
2m

4p\2

e1 ikEr

r
^kEr̂ uT~E!uk&.

~A1!

The asymptotic limit of the spherical Bessel and Neuma
functions is@10#

j l~x! ——→
x→` sin~x2 lp/2!

x
,

6-10
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nl~x! ——→
x→`

2
cos~x2 lp/2!

x
. ~A2!

Using these expressions and the results of Eqs.~29! and~34!
in Eq. ~A1! and equating coefficients ofe6 ikEr gives

2
2m

4p\2
^kEr̂ uT~E!uk&5(

l 50

`

i lA4p~2l 11!Yl
0~u!

3F ~Al21!e2 i l p/2

2ikE
2

Ble
2 i l p/2

2kE
G ,

~A3!

05(
l 50

`

i lA4p~2l 11!Yl
0~u!F2~Al21!eil p/2

2i
2

Ble
il p/2

2 G ,
~A4!

whereu is the angle betweenr̂ and thez axis.
02270
Equating coefficients ofYl
0(u) we obtain

Bl5 i ~Al21!, ~A5!

which is a result used in the text. Substituting this into E
~A3! and using Eq.~35! for (Al21) ~which comes from the
boundary condition atr 5a), we get an expression for th
half-on-shellT matrix

^kEr̂ uT~E!uk&52 iU 0(
l 50

`

A4p~2l 11!

3
j l~ka!

~kEa!hl
(1)~kEa!

Yl
0~u!. ~A6!

The symmetry of theT matrix with respect to its argument
@cf. Eq. ~10!# shows that this result agrees with that of E
~41! obtained using the method of Schick. A similar analy
can be carried out in 2D.
s

-

in
@1# K. Burnett, Phys. Rep.118, 339 ~1985!.
@2# L.D. Fadeev, Zh. Eksp. Teor. Fiz.39, 1459~1960! @Sov. Phys.

JETP12, 1014~1961!#.
@3# H.T.C. Stoof and M. Bijlsma, Phys. Rev. E47, 939 ~1993!.
@4# M. Bijlsma and H.T.C. Stoof, Phys. Rev. A55, 498 ~1997!.
@5# N.P. Proukakis, K. Burnett, and H.T.C. Stoof, Phys. Rev. A57,

1230 ~1998!.
@6# S.A. Morgan, J. Phys. B33, 3847~2000!.
@7# M. Schick, Phys. Rev. A3, 1067~1971!.
@8# C. Chang and R. Friedberg, Phys. Rev. A49, 913 ~1994!; S.

Sheth and R. Friedberg~unpublished!.
@9# J. R. Taylor,Scattering Theory~Wiley, New York, 1972!.

@10# G. B. Arfken and H. J. Weber,Mathematical Methods for
Physicists, 4th ed.~Academic Press, San Diego, 1995!.

@11# A.S. Reiner, Nuovo Cimento A51, 1 ~1967!.
@12# K.L. Kowalski, Phys. Rev.144, 1239~1966!.
@13# J.M.J. Van Leeuwen and A.S. Reiner, Physica~Amsterdam!

27, 99 ~1961!.
@14# P. Brumer and M. Shapiro, J. Chem. Phys.63, 427 ~1975!.
@15# M. Shapiro and P. Brumer, Phys. Rev. C12, 1371~1975!.
@16# S.T. Beliaev, Zh. Eksp. Teor. Fiz.34, 433 ~1958! @Sov. Phys.

JETP7, 299 ~1958!#.
@17# V.M. Galitskii, Zh. Eksp. Teor. Fiz.34, 151~1958! @Sov. Phys.

JETP7, 104 ~1958!#.
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