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Classical and quantal atomic form factors fornlm\n8l 8m transitions
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An analytical expression for the classical form factor or impulsive probabilityPi f (q) for nlm→n8l 8m
transitions is derived directly from the ‘‘phase-space distribution’’ method@Phys. Rev. A60, 1053~1999!# and
is compared with quantal results. Exact universal scaling laws are derived for the classical probability for any
i→ f transition. Asn is increased, convergence of the quantal to classical results is obtained and it becomes
even more rapid upon averaging in succession over them and then thel substates. The classical results reveal
the basic reason for the underlying structure in the variation ofPi f with momentum transferq. Classical form
factors can operate as an effective averaged version of the exact quantal counterpart.
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I. INTRODUCTION

State-to-state collisional atomic form factors

Pnlm→n8 l8m8~q!5u^cn8 l8m8~r !ueiq•r /\ucnlm~r !&u2 ~1!

are important in theoretical analysis of experiments invo
ing initially oriented or aligned target atoms. Equation~1! is
the probability@1,2# for transitions induced by an impulsiv
perturbation generated, for example, by a short unipolar e
tromagnetic pulse@3–5# or by sudden collisions with an
aligned neutral atom@6–10#. The internal momentumpi of
the target system with wave functionc i5cnlm increases im-
pulsively byq to the momentumpf5pi1q, of the final state
c f5cn8 l8m8 . The form factor~1! is also important to the
analysis of high angular momentuml states in cold Rydberg
gases@11# and in theories@12# of atomic collisions with
Rydberg atoms.

There are several ways to create an unbalanced popul
of magnetic substates in target atoms, e.g., by applicatio
a polarized laser, a weak external static field, or a unidir
tional electromagnetic field pulse. The quantum numb
(nlm) appropriate to spherical coordinates can then be u
to specify the initial and final states and Eq.~1! is used
directly. This is in contrast to experiments@4# with very high
n Rydberg atoms in strong external fields when parab
quantum numbers must be used, since angular momentu
not a conserved quantity.

Highly oscillatory wave functions for the Rydberg ele
tron render unfeasible the direct numerical calculation of
quantal form factor, particularly forn>40. The classical
limit is, however, well defined@1# and provides@13#, in the
limit of large quantum numbers, good agreement fornl
→n8l8, nl→n8, and n→n8 transitions. Classical@14# and
quantal @15,16# form factors for transitions between par
bolic quantum numbers are available. On writing t
exp(iqr /\) operator in terms of the generators for SO~4,2!
noncompact symmetry group of the hydrogen atom@16#, the
quantal form factor has been derived in an elegant fash
for nlm→n8lm transitions, withD l 50 andDm50.

Whenq̂ is taken as the quantization axis of the system
in electromagnetic field pulse experiments, Eq.~1! is non-
1050-2947/2002/65~2!/022703~10!/$20.00 65 0227
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zero only for transitions withDm[m82m50. This is also
true classically since the projection

L f•q̂5r•~pf3q̂!5L i•q̂

of the final L f5r3pf angular momentum along th
momentum-change directionq̂ equals the corresponding pro
jection of the initialL i5r3pi angular momentum.

In this paper, the phase-space distribution~PSD! method
previously presented@13# for nl→n8l8 transitions is ex-
tended to provide an analytic expression for the class
form factor for nlm→n8l8m transitions in a Rydberg atom
for a general electron-core interactionV(r ). The derived ex-
pression agrees with that deduced by Bersonset al. @17#
from a different approach based on the kinematics of an e
tron moving in an elliptical orbit under Coulomb attractio
An advantage of the present PSD method is that gen
classical scaling laws can immediately be derived in tra
parent form. These are then used to explore the converg
of the quantal form factors onto the classical background
the principal quantum numbern is increased. This conver
gence is important for cases whenn is very large (n.400 in
half-cycle experiments of Bromage and Stroud@4#! where
accurate quantal calculations are unfeasible, if not imp
sible. Reliance on the use of classical form factors mu
therefore, be established and justified for state-to-state t
sitions, as here.

II. PHASE-SPACE DISTRIBUTION METHOD

The quantal probability~1! for transitions in which mo-
mentumq is impulsively transferred to the target particle c
be rewritten@1# as

Pi f ~q!5~2p\!3
E r i~r ,p!r f~r ,p1q!drdp

E r i~r ,p!drdp
, ~2!

where quantal densities

r j
q~r ,p!5~2p\!23/2f j* ~p!exp~2 ip•r /\!c j~r ! ~3!
©2002 The American Physical Society03-1
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are expressed in terms of the spatial and momentum w
functionsc j (r ) andf j (p), respectively for the initiali and
final f states. This function~3!, which is the standard ordere
version of the Wigner PSD, is normalized to unity and m
be interpreted as the quantal PSD. The probability

Pi f ~q!5~2p\!3E r i~r ,p!r f~r ,p1q!drdp ~4!

from all degenerate statesi with statistical weights

gi5E r i~r ,p!drdp

satisfies detailed balancePi f (q)5Pf i(2q) and is symmetric
in i and f.

A. Classical distributions

The volume of phase space occupied by particles mov
under HamiltonianH5p2/2m1V(r ) in a symmetrical po-
tential V(r ) with specified energyE, angular momentumL
5r3p and Lz , its component along a fixed directionẑ of
atomic quantization, in the rangedEdLdLz centered abou
(E,L,Lz) is

VELLz
5dEdLdLzE d„H~r ,p!2E…d„ur3pu2L…

3d„~r3p!• ẑ2Lz…drdp

5Vnlmdndldm. ~5!

The number of boundnlm states within volumeVnlm is

gnlm[
Vnlm

~2p\!3
5E rnlm

c ~r ,p!drdp. ~6!

The classical PSD ofnlm states is therefore

rnlm
c ~r ,p!5

1

~2p\!3S dE

dnD S dL

dl D S dLz

dmD d„H~r ,p!2E…

3d~ ur3pu2L !d„~r3p!• ẑ2Lz…, ~7!

which, upon integration, yields

gnlm5
1

~2p\!3S dE

dnD S dL

dl D S dLz

dmD S 8p3

vnl
D

for the number~6! of bound nlm states. The angular fre
quency for bounded radial motion is given, in terms of t
radial action, byvnl[2p]H/]J. Under the substitutions
dE/dn5\vnl , dL/dl5\ anddLz /dm5\, for the spacings
between neighboring states, the phase volume isVnlm
5(2p\)3 and the number of statesgnlm51. The corre-
spondingnlm one-particle PSD is then
02270
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rnlm
c ~r ,p!5

\vnl

~2p\!3
d„H~r ,p!2E… \d~ ur3pu2L !

3\d~~r3p!• ẑ2Lz!, ~8!

which is normalized to one particle. The volume of pha
space occupied by particles in statenl is

Vnl5S dE

dnD S dL

dl D E d„H~r ,p!2E…d~ ur3pu2L !drdp.

~9!

The degeneracygnl is (2p\)23Vnl52l. The classical PSD
appropriate to these 2l boundnl states is then

rnl
c ~r ,p!5

\vnl

~2p\!3
d„H~r ,p!2E…\d~ ur3pu2L !. ~10!

The classical PSD appropriate to the degenerategn5n2

bound hydrogenic states within leveln is similarly

rn
c~r ,p!5

\vn

~2p\!3
d„H~r ,p!2E…. ~11!

The classical correspondence with Eq.~2! may now be
established.

B. Classical-quantal probability correspondence

The phase-space volume occupied by those final (n8l8)
states that can be accessed only from the initial distribu
of (nl) states via an impulsive transfer of momentumq at
electronic separationr is

Vnl,n8 l8~q!5S dEi

dn

dLi

dl

dEf

dn8

dLf

dl8
D E drdp$d„H~r ,p!

2E…d~ ur3pu2L !%$d~r 82r !d„p82~p1q!…%

3$d„H~r 8,p8!2E8…

3d~ ur 83p8u2L8!%dr 8dp8. ~12!

The numbergnl,n8 l8 of final (n8l8) states originating from the
(nl) states isVnl,n8 l8 /(2p\)3. The classical probability for
transitions from one initial state to the band of final states
then the ratio

Pnl,n8 l85gnl,n8 l8 /gnl5Vnl,n8 l8 /Vnl ~13!

of final to initial populations or, alternatively, the ratio of th
overlap phase volume~12! to the initial volume~9!. The
classical probability fornl→n8l8 transitions can therefore b
expressed in terms of the classical PSD~10! for bound states
by
3-2
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Pnl,n8 l8
c

~q!5~2p\!3E rnl
c ~r ,p!rn8 l8

c
~r ,p1q!drdpYE rnl

c ~r ,p!drdp. ~14!
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Comparison between Eqs.~14! and ~2!, therefore, estab
lishes directly the classical-quantal correspondence betw
the impulsive probabilities given as the normalized over
of the corresponding initial and final PSD’s. The probabil
for transitions from the degenerategnl52l initial statesi to
the 2l8 final statesf is the overlap

Pnl,n8 l8
c

~q![gnlPnl,n8 l8
c

~q!

5~2p\!3E rnl
c ~r ,p!rn8 l8

c
~r ,p1q!drdp,

which also satisfies the relationPnl,n8 l8
c (1q)5Pn8 l8,nl

c (2q)
for a detailed balance. The classical probability for tran
tions from the degeneraten2 initial states in leveln of hy-
drogenic atoms to then82 final states in leveln8 is

P n
c~q!5~2p\!3E rn

c~r ,p!rn8
c

~r ,p1q!dr dp.

C. State-to-state transition probabilities

The classical probability~form factor! for i[nlm→ f
[n8l8m8 transitions is

Pnlm,n8 l8m8~q!

5
1

~2p\!3 S dEi

dn

dLi

dl

dLiz

dm

dEf

dn8

dLf

dl8

dLf z

dm8
D Vnlm,n8 l8m8~q!

~15!

in terms of the overlapped volume density~of initial and
final states!,

Vi f ~q!5E d„H~r ,p!2Ei…d~ ur3pu2Li !

3d„H~r ,up1qu!2Ef…d„ur3~p1q!u2L f…

3d„~r3p!• ẑ2Liz…d„@r3~p1q!#• ẑ2L f z…drdp,

~16!

which is simply the phase-space overlap integral ofd func-
tions involving statesi 5(Ei ,Li ,Liz) and f 5(Ef ,L f ,L f z).
This overlap is illustrated in Fig. 1. Evolution to the fina
state manifold is achieved via the allowed phase-space
jectories indicated.

For hydrogenic states,E5e0/2n2,L5 l\,Lz5m\ where
e0 is the atomic unit of energy, and the transition probabil
is obtained upon settingdE/dn5\vn5e0 /n3, dL/dl5\,
anddLz /dm5\ to give

Pnlm,n8 l8m8~q!5
e0

2\

8p3n3n83
Vnlm,n8 l8m8~q! ~17!
02270
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in terms of the volume density~16!. The probabilities for
nl→nl8 and inn→n8 transitions from all degenerate initia
levels are

Pnl,n8 l8~q!5
~e0

2/\!

8p3n3n83
Vnl,n8 l8~q! ~18!

and

Pn,n8~q!5
~e0

2/\3!

8p3n3n83
Vn,n8~q!, ~19!

respectively, in terms of the corresponding volume densi

Vnl,n8 l8~q!5E d„H~r ,p!2Ei…d~ ur3pu2Li !

3d„H~r ,up1qu!2Ef…d„ur3~p1q!u2L f…drdp

~20!

and

Vn,n8~q!5E d„H~r ,p!2Ei…d„H~r ,up1qu!2Ef…drdp,

~21!

respectively.

D. Classical scaling rules

An advantage of the classical formulation above is t
very useful universal scaling laws for the probabilities can
derived. On introducing a scaling factora, such thatp8
5ap and r 85r /a2 for hydrogenic systems, thenH8
[H(p8,r 8)5a2H(p,r ), E85a2E andL 85r 83p85L /a. It
follows that the continuum PSD

rELLz

c ~r ,p!5~2p\!23dEdLdLZd~H2E!d~ ur3pu2L !

3d~L• ẑ2Lz! ~22!

FIG. 1. Classical form factor is a ratio of two phase-space v
umes: the volume of the region within that part of the initial-sta
manifold containing coordinates that can evolve into the final-s
manifold, and the total volume of the initial-state manifold.
3-3
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and the associatedLz and (Lz,L) integrated PSD’s,rEL
c and

rE
c , therefore scale as

rG
c ~r ,p!5rG8

c
~r 8,p8!,

an invariant for all setsG[(ELLz),(EL),E. For continuum-
continuum transitions, the symmetric probabilities

PG i ,G f
~q!5~2p\!3E rG i

c ~r ,p!rG f

c ~r ,p1q!dr dp

therefore scale, independently ofG, as

PG i ,G f
~q!5a3PG i ,G f

~q8!,

where q85aq. Since n5an8, l5a l8 and m5am8, the
bound state PSD’s~8!, ~10! and ~11! however scale accord
ing to

rnlm
c ~r ,p!5a23rn8 l8m8

c
~r 8,p8!, ~23!

rnl
c ~r ,p!5a22rn8 l8

c
~r 8,p8!, ~24!

rn
c~r ,p!5a21rn8

c
~r 8,p8!. ~25!

The probabilities

PG i ,nlm~q!5~2p\!3E rG i

c ~r ,p!rnlm
c ~r ,p1q!dr dp

for continuum-bound~recombination! transitions therefore
scale as

PELLz ,nlm~q!5PE8L8L
z8 ,n8 l8m8~q8!, ~26!

PEL,nl~q!5aPE8L8,n8 l8~q8!, ~27!

PE,n~q!5a2PE8,n8~q8!. ~28!

The probabilities for bound-bound transitions

Pi f ~q!5gi Pi f 5~2p\!3E r i~r ,p!r f~r ,p1q!drdp

~29!

from thegi initial states scale as

Pni limi ,nf l fmf
~q!5a23Pn

i8 l
i8m

i8 ,n
f8 l

f8m
f8
~q8!, ~30!

Pni limi ,nf l f
~q!5a22Pn

i8 l
i8m

i8 ,n
f8 l

f8
~q8!, ~31!

Pni li ,nf l f
~q!5a21Pn

i8 l
i8 ,n

f8 l
f8
~q8!, ~32!

Pni li ,nf
~q!5a0Pn

i8 l
i8 ,n

f8
~q8!, ~33!

Pni ,nf
~q!5aPn

i8 ,n
f8
~q8!. ~34!

Summation over the initial/final substates is implied wh
the corresponding quantum numbers do not appear
subscripts.
02270
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Applications

~A! By choosing a5ni , for example, it can then be
shown that thei→ f symmetric probabilities~30!–~34! writ-
ten asP( i ; f ;q) satisfy the rules

ni
3P~ni limi ;nf l fmf ;q/ni !5P~1,e i ,m i ;h f ,e f ,m f ;q!,

~35!

ni
2P~ni limi ;nf l f ;q/ni !5P~1,e i ,m i ;h f ,e f ,m i ;q!,

~36!

niP~ni li ;nf l f ;q/ni !5P~1,e i ;h f ,e f ;q!, ~37!

ni
21P~ni ;nf ;q/ni !5P~1;h f ;q!, ~38!

where the parameters aree j5 l j /ni , m j5mj /ni and h f
5nf /ni . The transition arrays forall ni can, therefore, be
deduced from the array from a single value ofni , e.g.,ni
51. The dimensionality of the transition arrays is then
duced by one.

~B! The quasielastic transition arrays (ni limi→ni l fmf)
and (ni li→ni l f) can be scaled similarly by choosinga5 li to
provide the rules

li
3P~ni limi ;ni l fmf ;q/ li !5P~b i ,1,d i ;b ig fd f ;q!, ~39!

liP~ni li ;ni l f ;q/ l!5P~b i ,1;b ig fd f ;q!, ~40!

whereb i5ni / li ,g f5 l f / li , andd j5mj / li .

III. ANALYTICAL EXPRESSION FOR THE PROBABILITY

The volume density phase-space integration~16! for state-
to-state transitions is accomplished by noting that thed func-
tions of the initial and final Hamiltonians,Hi5p2/2m
1V(r ) andH f5up1qu2/2m1V(r ), are

d~Hi2Ei !5~m/p!d~p2@2m„Ei2V~r !…#1/2!, ~41!

d~H f2Ef !5~m/pq!dFcosx2
Ef2Hi2q2/2m

pq/m G , ~42!

wherex is the angle betweenp andq such that

H f~p,r !5
p212p•q1q2

2m
1V~r !5Hi1

q2

2m
1

pq

m
cosx.

It now proves extremely advantageous to adopt the sphe
bifocal coordinatesui and uf introduced previously in Ref.
@18# and represented in Fig. 2. Thed functions of the angular
momentum are

d~ ur3pu2Li !5
d~ui2Ui !1d„ui2~p2Ui !…

rpucosUi u
, ~43!

d„ur3~p1q!u2L f…5
d~uf2U f !1d„uf2~p2U f !…

r up1quucosU f u
,

~44!
3-4
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where the anglesuj are determined by cosui5r̂•p̂ and
cosuf5r̂•(p1q)ˆ . Also

sinUi5
Li

rp
; sinU f5

L f

r up1qu
.

The phase-space volume element can then be expre
@18# in terms of theui anduf in Fig. 2 as

dp dr5@p2dpd~cosup!dfp#H 2duiduf

sinA J r 2dr,

where (up ,fp) are the polar and azimuthal angles ofp rela-
tive to a fixed set of axis and whereA is determined from

cosA5
p21up1qu22q222pup1qucosuicosuf

2pup1qusinuisinuf
.

Subsequent calculation of Eq.~16! or Eq. ~20! depends on
whether or not there is a fixed direction of space as spec
by an electric or magnetic field.

~a! When no fixed axis is specified, thenup can be iden-
tified with the anglex betweenp and q. Under the con-
straints~41!–~45!, pup1quucosuiuucosufu5m2RiRf , where the
radial speedsRi , f(r )5 ṙ i , f are determined from energy con
servation

FIG. 2. Basic geometry involved in the calculation of the cla
sical state-to-state form factor.

FIG. 3. In spherical bifocal coordinates, pointA is identified by
anglesUi andU f of arcsBA andCA on the unit sphere. The are
element isdS5dUidUf /sinA, whereA is the angle between arc
BA andCA.
02270
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Ei , f5
1

2
m ṙ i , f

2 1V~r !1
Li , f

2

2mr 2
~45!

as functions only ofr for specified energy and angular mo
mentum. The phase-space integrations in the volume den
~20! for nl→n8l8 transitions can then be performed direct
to yield

Vnl,n8 l8~q!5
8p

q E
R

dr

Ri~r !Rf~r ! F 1

sinA1
1

1

sinA2
GQ~r ,q!

5
16pLiL f

q E
R

dr/r 2

Ri~r !Rf~r !

3H F4Li
2L f

2

r 4 2C1
2 ~r !G21/2

1F4Li
2L f

2

r 4 2C2
2 ~r !G21/2J Q~r ,q!, ~46!

where quantitiesC6 are defined as

C6~r !52m@Ei1Ef22V~r !#64mFEi2V~r !2
Li

2

r 2 G1/2

3FEf2V~r !2
L f

2

r 2 G1/2

2q2

5m2@Ri~r !6Rf~r !#21
~Li

21L f
2!

r 2 2q2.

The step functionQ is unity provided V(r )<Ei2m(Ef
2Ei2q2/2m)2/2q2 and zero otherwise. The regionR of ra-
dial integration, within whichA6 are real, is determined by
the conditionC6

2 (r )<4Li
2L f

2/r 4. The above result~46! is
identical with that calculated previously@13# via a different
integration method. The integrand of Eq.~46! is an ingredi-
ent @12# in classical impulsive theories ofA2B(nl) colli-
sions when the cross sections(g,q) for scattering of the
Rydberg electron byA at relative speedg is a function of
both g and the momentumq transferred. Whens is a func-
tion only of q, the full integral~46! is then applicable@12#.

~b! For transitions betweenm sublevels, there is a fixed
direction of atomic quantization and the calculation is mo
difficult. The d function involvingL f z is

d„@r3~p1q!#• ẑ2L f z…5d„r•~q3 ẑ!2~L f z2Liz!…,
~47!

whereq3 ẑ is a fixed direction in space. For the impulseq
directed along the quantization axisẑ, then ~47! reduces to
d(L f z2Liz) and only transitions withLiz5L f z[Lz occur.
Moreover, the azimuthal anglefp of p may now rotate freely
in the range@02p# and r , for fixed Ui andU f , is attached
to the rotatedp. With the aid of the spherical bifocal coord
nates@18#, it can be shown~see Fig. 3 as well as the Appen
dix! that thed function of Liz in Eq. ~16! reduces to

-

3-5
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d„~r3p!• ẑ2Liz…5dS LiL f

qr
sinA2LizD . ~48!

Under the conditions~41!–~43!, it can be expressed as

d„~r3p!• ẑ2Liz…

5
8q2Lz

r 2 dS C6
2 ~r !1S 2qLz

r D 2

2S 2LiL f

r 2 D 2D
5

8q2Lz

r 2 H(
k

d~r 2r k!

u]F6~r k!/]r uJ , ~49!

where the summation includes all rootsr k of

F6~r ;q!5C6
2 ~r !1S 2qLz

r D 2

2S 2LiL f

r 2 D 2

50,

where thenlm→n8l8m transitions occur classically. The six
fold integration in the probability~17! for nlm→n8l8m tran-
sitions resulting from the impulse\q directed along thez
axis of atomic quantization then reduces to the followi
exact result:

Pnlm→n8 l8m~q!

5
~2l!~2l8!

p2n3n83
~\e0

2!(
k

1

ur k
3Ri~r k!Rf~r k!]F6~r k!/]r u

,

~50!

wheree0 is the atomic unit of energy. This result reduces
that in Ref.@17# for Coulomb attraction and, when summe
over m to the earlier result@13# for nl→n8l8 transitions.
There are always two or four rootsr k . When two roots ac-
cidentally coalesce, where]F6(r )/]r vanishes, the classica
transition probability has a singularity. The basic variation
the classical form factor~50! with q for the n55,l54,m
51→8,2,1 transition in atomic hydrogen is displayed in F
4, together with theq-variation of corresponding rootsr k(q),
given by the intersection of the surfacesz5F6(r ;q) with
thez50 plane. It is seen that cusp singularities are exhibi
in Pnlm→n8 l8m(q) when the lineq5const is tangential to the
r k(q) curves . This occurs at four places in Fig. 4. The ma
nitude of the probability between the singularities is prop
tional to the numberk of contributing radial roots where th
m transitions occur. The probabilitiesPnlm→n8 l8m(q) are, of
course, zero in the classical inaccessible region shown.

The probability~50! obeys the following scaling law:

n2Pnlm→n8 l8m~q/n!5P1,l/n,m/n→n8/n,l8/n,m/n~q!,

cf. Eq. ~36!, which will be used to explore the quanta
classical convergence asn is increased.

IV. QUANTAL FORM FACTOR

Here, a numerical technique is devised for accurate ca
lation of the quantal form factor, even for highn;100. An
analytic expression for the quantal form factor~1! can be
02270
f

.

d

-
-

u-

obtained by using the expansion of the exponential funct
in terms of spherical Bessel functions and spherical harm
ics. Upon integration,

Pnlm→n8 l8m
Q

~q!5Uf (
k5 l1 l812

n1n8

wkdk~2q2/a2!U2

, ~51!

where the prefactor is

f 5
1

4a
A2l811

2l11
A~n2 l21!!

~n1 l!!

3A~n82 l821!!

~n81 l8!!
S 2

nD l12S 2

n8
D l812S q

a D u l2 l8u

,

in terms ofa51/n11/n8. The wk term is the coefficient of
the powerr k in the expansion of the product of radial poly
nomials

~r /a!2RnlRn8 l85 (
k5 l1 l812

n1n8

wkr
k,

where

FIG. 4. Contour lines for equationF6(r ;q)50 in the q2r
plane. In the upper part of the diagram, classical probability
transition (n55,l54,m51)→(n858,l852,m851). Singularities
arise when two rootsr k are equal.
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FIG. 5. Classical~dotted line!
and quantal ~solid line! scaled
form factors as a function of

scaled momentum transferq̄5nq
for nlm→n8l8m transitions. For
transitions with fixed parameter
l/n53/10, n8/n514/10, l8/n
512/10, andm/n51/10 conver-
gence is obtained asn is increased
from n510 to n5100.
o

of
Rnl5~r /a! lLn2 l21
(2l11)S 2r

na D
is the polynomial part of the radial hydrogenic wave functi
defined in terms of Laguerre polynomialsLn

(a)(x). Finally,
theq dependence of the quantal form factor~51! is contained
within the functionsdk defined by
0227
n

dk~x!5
1

~12x!k (
s50

min(l,l8)

Cl80L0
l0 Cl8mL0

lm ~k1L !!

~2L21!!!

3x 2
s F1FL2k11

2
,
L2k

2
11,L13/2;xG ,

whereC are Clebsch-Gordan coefficients for the addition
03-7



n

M. R. FLANNERY AND D. VRINCEANU PHYSICAL REVIEW A 65 022703
FIG. 6. Classical~dotted line!
and quantal~solid line! symmetric
scaled form factors as a functio

of scaled momentum transferq̄
5nq for nl→n8l8 transitions. For
fixed parametersl/n51/5, n8/n
57/5, andl8/n56/5, convergence
is obtained asn is increased from
n55 to n540.
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angular momental and l8. The resulting angular momentum
L is given byL5u l2 l8u12s, such thatL takes values be
tween u l2 l8u and l1 l8 with the same parity asl1 l8. The
hypergeometric function2F1 reduces to a polynomial tha
obeys a simple recursion relation since either the first or
second argument of2F1 is a negative integer. The quant
form factor has, therefore, a very simple structure as a fu
tion of momentum transferq, being a polynomial divided by
(11q2/a2)n1n8. Unfortunately, factorials of large argumen
lead to very large but integer coefficients in the polynom
expression. Accurate results forn.40 cannot be obtained b
using the usual floating-point machine accuracy. By us
integer and rational number arithmetic, calculation can, ho
ever, be performed in infinite precision if the momentu
transfer is approximated by a rational number. The result
turn, is obtained as an exact rational number, with an
tremely large numerator and denominator. Even though
02270
e

c-

l

g
-

in
-
e

form factor can be calculated in this way for arbitrary qua
tum numbers~computer time and memory being the on
constraints!, the results exhibit an increasing number of o
cillations, as seen inn.80 subplots of Fig. 5. The usefulnes
of the exact, rigorous, quantal results, therefore, beco
questionable for such large quantum numbers and only
averaging procedure can provide practical quantitative
sults. The classical form factor has the ability to operate
an effective averaged version of the exact quantal coun
part, as illustrated in Fig. 5.

V. QUANTAL-CLASSICAL CONVERGENCE

Quantal-classical correspondence is evident when
classical curve provides the essential framework on wh
the quantal oscillatory structure is superimposed. In t
sense, Fig. 5 illustrates the convergence of the scaled qu
3-8
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FIG. 7. Classical~dotted line!
and quantal ~solid line! scaled
form factors as a function of

scaled momentum transferq̄5nq
for n→n8 transitions. For transi-
tions with constant ration8/n52,
convergence is obtained asn in-
creases fromn52 to n57.
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form factorsn2Pnlm→n8 l8m
Q (q/n) onto the universal classica

curve P1,l/n,m/n→n8/n,l8/n,m/n
C as a function of scaledq for

nlm→n8l8m transitions. Convergence ranges from good
n as low as 30 to excellent forn>80. The oscillations can be
attributed to interference effects between phases~quantal or
semiclassical! of the contributions to the amplitude tha
arises from each locationr k .

Convergence to the classical results is much faster w
the results are averaged over allm values, as for the scale
probabilities nPnl→n8 l8 for nlm→n8l8m transitions, dis-
played in Fig. 6. Finally, in Fig. 7, the classical and quan
probabilitiesn21Pn→n8 for the l,m-averaged transitions con
tain no oscillatory structure and agree forn as low as 2. This
result is well known and is the basis for classical descripti
of n→n8 collisional transitions.

VI. CONCLUSION

Using the PSD formulation@13#, the classical-quantal cor
respondence has been established by showing that the a
form factor~1! for state-to-state transitions in a general on
electron atom can be written in the generic form~2! where
the quantal and classical distributions are given by Eqs.~3!
and~7!, respectively. Exact calculations of the derived pro
ability ~50! for nlm→n8l8m transitions are presented. Th
classical state-to-state form factor~50! is expressed analyti
cally in terms of the radial electronic locationsr k where the
transitions occur. Agreement with previously published
02270
r

n

l

s

mic
-

-

-

sults@17# is obtained for the special case of atomic hydrog
~Coulombic potential!.

The classical background contains two classical inacc
sible regions~at small and large momentum transfersq) and
four singularities attributed to four cases where two rootsr k

converge for four values ofq. The method also permits th
construction of important classical scaling laws obeyed
the form factor for anyi→ f transition, involving bound or
continuum states. Use of these scaling rules then facilitat
detailed investigation of the rate of convergence of the qu
tal results to the classical background, asn is increased. The
quantal results at highn are shown to reduce to oscillator
structure superimposed on the classical background, a
Fig. 5. The rate of this convergence is accelerated upon
eraging, in succession, over them substates and then thel
states, as for thenl→n8l8 andn→n8 transitions displayed in
Figs. 6 and 7, respectively. Figures 5–7 also illustrate t
classical form factors have the capability to operate as
effective and reliable averaged version of its quantal co
terpart. This is of particular significance to experiments t
involve very high values ofn.400, as in the half-cycle ex
periments of Bromage and Stroud@4#.

In summary, the phase-space distribution method@13# has
permitted ~a! universal scaling laws for the classical for
factor to be immediately derived in transparent form,~b! the
construction of an analytic expression~50! for the form fac-
tor for state-to-state transitions in a system with general
teractionV(r ), and ~c! the detailed numerical investigatio
3-9
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of the convergence of the quantal form factors onto the c
sical background.
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APPENDIX: COMPONENT OF ANGULAR MOMENTUM
ALONG q̂

When the axisẑ of atomic quantization is along the direc
tion q̂ of the impulse, then

~r3p!• ẑ[
r

q
•@p3~p1q!#5F rp

q
up1quGsinu i f cosu,

where the anglesu i f andu are depicted in Fig. 3.
From the spherical trianglesABC andABD, then

sinVi

sinU f
5

sinVf

sinUi
5

sinA

sinu i f

and

cosu5sinUisinVi ,

respectively, so that

~r3p!• ẑ5F rp

q
up1quGsinUi sinU f sinA.

Since sinUi5Li /rp and sinUf5Lf /rup1qu, then

~r3p!• ẑ5S LiL f

qr D sinA,
,

v.

m

02270
s-

.

as in Eq.~48! of the text. From spherical triangleABC, the
angleA is determined from

cosA5
cosu i f 2cosUi cosU f

sinUi sinU f
,

where

cosu i f 5
p21up1qu22q2

2pup1qu
.

Sincep cosui5mṙ i and up1qucosuf5mṙ f in terms of the ra-
dial speeds, thenA is determined from

cosA65S r 2

2LiL f
D @p21up1qu262m2ṙ i ṙ f #.

Under the constraints~41! and ~42!, then

cosA65
r 2

2LiL f
C6~r !,

where

C6~r !52m@Ei1Ef22V~r !#62m2ṙ i ṙ f2q2

52m@Ei1Ef22V~r !#64mFEi2V~r !2
Li

2

r 2 G1/2

3FEf2V~r !2
L f

2

r 2 G1/2

2q2,

as in Eq.~46! of the text.
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