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Classical and quantal atomic form factors fornlm—n'l"m transitions
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An analytical expression for the classical form factor or impulsive probabiiffq) for nim—n’l'm
transitions is derived directly from the “phase-space distribution” mettiitys. Rev. 460, 1053(1999] and
is compared with quantal results. Exact universal scaling laws are derived for the classical probability for any
i—f transition. Asn is increased, convergence of the quantal to classical results is obtained and it becomes
even more rapid upon averaging in succession oventhaed then theé substates. The classical results reveal
the basic reason for the underlying structure in the variatioR; pfvith momentum transfeq. Classical form
factors can operate as an effective averaged version of the exact quantal counterpart.
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[. INTRODUCTION zero only for transitions withm=m'—m=0. This is also
true classically since the projection
State-to-state collisional atomic form factors
Li-q=r-(psxq)=L;-q
Pnlm%n’l’m’(CI):|<¢n'|’m’(r)|eiq'r/h|¢nlm(r)>|2 (1) .
of the final L{=rXp; angular momentum along the
_momentum-change directic&nequals the corresponding pro-

jection of the initialL;=r X p; angular momentum.

In this paper, the phase-space distributi®sD method
Qreviously presented13] for nl—n’l" transitions is ex-
tended to provide an analytic expression for the classical
form factor fornim—n’l’m transitions in a Rydberg atom
for a general electron-core interactidtir). The derived ex-
pression agrees with that deduced by Bersenal. [17]
from a different approach based on the kinematics of an elec-
tron moving in an elliptical orbit under Coulomb attraction.
An advantage of the present PSD method is that general
classical scaling laws can immediately be derived in trans-
(H?rent form. These are then used to explore the convergence

the quantal form factors onto the classical background as
the principal quantum number is increased. This conver-

are important in theoretical analysis of experiments involv
ing initially oriented or aligned target atoms. Equatidn is
the probability[1,2] for transitions induced by an impulsive
perturbation generated, for example, by a short unipolar ele
tromagnetic pulsg3-5] or by sudden collisions with an
aligned neutral atorf6—10]. The internal momenturp; of
the target system with wave functiah= ¢, increases im-
pulsively byq to the momentunp; = p; + g, of the final state

t=Ynm . The form factor(l) is also important to the
analysis of high angular momentunstates in cold Rydberg
gases[11] and in theorieg12] of atomic collisions with
Rydberg atoms.

There are several ways to create an unbalanced populati
of magnetic substates in target atoms, e.g., by application
a polarized laser, a weak external static field, or a unidirec o . )
tional electromagnetic field pulse. The quantum number ence 1s |mportqnt for cases whes very large (=400 in
(nIm) appropriate to spherical coordinates can then be use li-cycle experiments Of. Bromage and _Stro[w_j) Whe_re
to specify the initial and final states and E@) is used accurate quantal calculations are unfeasible, if not impos-

directly. This is in contrast to experimerj#] with very high sible. Reliance on f[he use Of. C""?S.S'Ca' form factors must,
n Rydberg atoms in strong external fields when parabolicth?refore' be established and justified for state-to-state tran-
guantum numbers must be used, since angular momentum F4ONS. as here.
not a conserved quantity.

Highly oscillatory wave functions for the Rydberg elec- Il. PHASE-SPACE DISTRIBUTION METHOD
tron render unfeasible the direct numerical calculation of the
quantal form factor, particularly fon=40. The classical
limit is, however, well defined1] and provideg13], in the
limit of large quantum numbers, good agreement fdr
—n'l", nl—n’, andn—n’ transitions. Classicdl14] and
quantal[15,16] form factors for transitions between para- pi(r,p)ps(r,p+q)drdp
bolic quantum numbers are available. On writing the P, (q)=(27h)3
exp(qr/#) operator in terms of the generators for @Q) j _ drd
noncompact symmetry group of the hydrogen afd@, the pi(r.p)drdp
guantal form factor has been derived in an elegant fashion
for nlm—n’Im transitions, withAl=0 andAm=0. where quantal densities

Whend is taken as the quantization axis of the system, as a Cap s )
in electromagnetic field pulse experiments, Eb). is non- pi(r,p)=(2mh) "¢ (p)exp(—ip-r/fh);(r) (3

The quantal probability1) for transitions in which mo-
mentumgq is impulsively transferred to the target particle can
be rewritten[1] as

. @
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are expressed in terms of the spatial and momentum wave
functions ;(r) and ¢;(p), respectively for the initial and

final f states. This functio3), which is the standard ordered
version of the Wigner PSD, is normalized to unity and may
be interpreted as the quantal PSD. The probability

ﬁwm

T (2ah)?

Prim(T.P) S(H(r,p)—E) 7 d(|rxp|-L)

X#HS((rxp)-z—L,), €)

Pif(q):(ZWh)sf pi(r.p)pe(r.p+a)drdp  (4)

from all degenerate statéswith statistical weights

gi:f pi(r,p)drdp

satisfies detailed balan@;(q) =P;;(—q) and is symmetric
in i andf.

A. Classical distributions

which is normalized to one particle. The volume of phase
space occupied by particles in statkis

dE\/dL
V”':(ﬁ)(a)f S(H(r,p)—E)&(|r xp|—L)drdp.
9

The degeneracy,, is (27h) 3V, =2I. The classical PSD
appropriate to thesel boundnl states is then

ﬁwm

(27h)3

prr.p) = S(H(r,p)=BE)is(|rxp[-L). (10)

The volume of phase space occupied by particles moving

under HamiltonianH = p%/2m+V(r) in a symmetrical po-
tential V(r) with specified energ{, angular momentuni

=rxp andL,, its component along a fixed directianof
atomic quantization, in the rangtEdLdL, centered about
(E,L,L,) is

VELLZ=dEdeLZf S(H(r,p)—E)d8(jrxp|—L)

X 8((rxp)-z—L,)drdp

=V, mdndldm (5)

The number of boundIm states within volumé/,,, is

- [ o5mtr prcrap. ©)

The classical PSD afilm states is therefore

1

c B dE
pnlm(rvp)_ (th).?a

dn

dL)(sz

a0 dm)é(H(r,p)—E)

X 8(|rxp|—L)8((rxp)-z—L,), (7)

which, upon integration, yields

1 dE)(dL)(dLZ) 8773)
g”'m_(zwﬁﬁ(ﬁ ar/ldm (w_m

for the number(6) of bound nim states. The angular fre-

The classical PSD appropriate to the degenemjte n?
bound hydrogenic states within levelis similarly

hwy

(27h)3

o(H(r,p)—E). (11)

pa(r.p)=

The classical correspondence with EQ) may now be
established.

B. Classical-quantal probability correspondence

The phase-space volume occupied by those final'}
states that can be accessed only from the initial distribution
of (nl) states via an impulsive transfer of momentgnat
electronic separation is

dE; dL; dE; dL,

Vo (d)= an g an gr

)fdrdp{&(H(np)

—E)&([rxp|=L)H8(r'=r) (' —(p+a))}
X{S6(H(r",p")—E")

X &(|r'xp'|—L")}dr'dp’. (12

The numbeg,, /- of final (n’l") states originating from the
(nl) states isVn,,n/V/(Zwﬁ)?’. The classical probability for

transitions from one initial state to the band of final states is
then the ratio

PnI,n'I’:gnI,n’I’/‘.:JnI:VnI,n’I’/VnI (13

qguency for bounded radial motion is given, in terms of the

radial action, byw,=2m7dH/4J. Under the substitutions,
dE/dn=tw,, dL/dI=A anddL,/dm=*, for the spacings
between neighboring states, the phase volumeVig,
=(27h)® and the number of stateg,n,=1. The corre-
spondingnim one-particle PSD is then

of final to initial populations or, alternatively, the ratio of the
overlap phase volumél2) to the initial volume(9). The
classical probability fonl—n’l" transitions can therefore be
expressed in terms of the classical PAD) for bound states

by
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Pﬁan(Q):(ZWﬁ)sf Pﬁ|(r-p)Pﬁr|r(r,p+Cl)drdp/f pC(r,p)drdp. (14)

Comparison between Eqgé€l4) and (2), therefore, estab-

in terms of the volume densityl6). The probabilities for

lishes directly the classical-quantal correspondence betwearl—nl’ and inn—n’ transitions from all degenerate initial
the impulsive probabilities given as the normalized overlapevels are

of the corresponding initial and final PSD’s. The probability

for transitions from the degeneragg,= 2l initial statesi to
the 2’ final stated is the overlap

Pﬁl,n’l’(q)Egnlpﬁhnqr(q)
:<27Tﬁ)3f pCi(r,p)p,,(r,p+q)drdp,

which also satisfies the relatigh, .., (+9)="P;,, (=)

for a detailed balance. The classical probability for transi-

tions from the degenerat# initial states in levein of hy-
drogenic atoms to tha'? final states in leveh’ is

Pﬁ(q)=(2wﬁ)3J pS(r,p)p;, (r,p+q)dr dp.

C. State-to-state transition probabilities

The classical probabilityform factop for i=nim—f
=n'l'm’ transitions is

Pnlm,n’l’m’(Q)

1 (clEi dL; dL;, dE; dL; dL,

“(2ah)*| dn g dm gq dI”

dn dl dm dn’ dl’ H)me,n’l’m’(q)

(15
in terms of the overlapped volume densityf initial and

final stateg

vif<q>=f S(H(r,p)—E8(|rxpl—Ly)

X S(H(r,|p+a])—E)d(rx(p+q)|—Lp)
X 8((rxp)-z—Li)8(rx(p+q)]-z—L¢,)drdp,
(16)

which is simply the phase-space overlap integrabdtinc-
tions involving states =(E;,L;,L;,) and f=(E;s,L¢,L¢,).

This overlap is illustrated in Fig. 1. Evolution to the final-
state manifold is achieved via the allowed phase-space tra-

jectories indicated.

For hydrogenic states = e,/2n%,L=I#%,L,=m# where
€, is the atomic unit of energy, and the transition probability

is obtained upon settingE/dn=7%w,=¢e,/n%, dL/dl=4,
anddL,/dm=+% to give
2

eoh
Pnlm,n’l’m’(Q):mvnlm,n’l’m’(cﬂ (17)

(eg/h)
Painri (@)= me,nw(Q) (18)

and
)

Pn,n’(q):m n.n

(a), (19

respectively, in terms of the corresponding volume densities

an,n’l’(q):J S(H(r,p)—Eps(|rxp|—L;)

X S(H(r,|p+a|)—E)s(|rx (p+q)|—Lgdrdp
(20
and

Vo (@)= | 8(H(r )~ E)a(H(r. o+ )~ Enarp,
2

respectively.

D. Classical scaling rules

An advantage of the classical formulation above is that
very useful universal scaling laws for the probabilities can be
derived. On introducing a scaling facter, such thatp’
=ap and r'=r/a? for hydrogenic systems, them’
=H(p',r')=a’H(p,r), E'=a’E andL’'=r'xXp'=L/a. It
follows that the continuum PSD

pELL(r.P)=(27h) *dEdLdL;8(H—E)&(|rxp|—L)

X 8(L-z—L,) (22

initial
(n)e!m)

r

FIG. 1. Classical form factor is a ratio of two phase-space vol-
umes: the volume of the region within that part of the initial-state
manifold containing coordinates that can evolve into the final-state
manifold, and the total volume of the initial-state manifold.
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and the associatdd, and (L,,L) integrated PSD’spg, and Applications
pg, therefore scale as (A) By choosinga=n;, for example, it can then be
c et shown that the —f symmetric probabilitie$30)—(34) writ-
pr(r.p)=pr.(r',p"), ten asP(i;f;q) satisfy the rules
an invariant for all set§'=(ELL,),(EL),E. For continuum- 3 meneleme ca/n ) = P(1e - .
continuum transitions, the symmetric probabilities NEP(kimy il a/ng) =Pl i€ e ,q),(35)
Pr, ,rf(CI):(ZWh)sj pr(r.p)pr (r,p+q)dr dp nZP(nilimyingle;a/n) =P(Le,wi w65, 50), .
36
therefore scale, independently Bf as
niP(nilisnelesaln) =P(L.€ ;7. €650), (37)
Pr, r(@=a’Pr, ("), »
ni “P(ni;ng;aln)=P(1;7¢;0), (38)
where q'=«aq. Sincen=an’, I=al’ and m=am’, the
bound state PSD’63), (10) and (11) however scale accord- where the parameters arg=I;/n;, u;=m;/n; and »;
ing to =n¢/n;. The transition arrays foall n; can, therefore, be
. - deduced from the array from a single valuerpf e.g.,n;
Prm(HP) = “pm (1',P7), (23)  =1. The dimensionality of the transition arrays is then re-
duced by one.
por.p)=a 2p;, . (r',p"), (24) (B) The quasielastic transition arrays;km;— n;lm;)
and (;l;—n;l;) can be scaled similarly by choosinag=1; to
ps(r,p)=a pg,(r',p'). (25)  provide the rules
The probabilities PP(nilimy inilsme ;a/l) =P (B, 1.8 : Biv161;0), (39)
Pr, 'mm(q):(zﬂ-ﬁ)?’f pE.(1.p)pim(r P+ a)dr dp LP(nilisnilesal)=P(Bi, 1;8iv::,0), (40)

. L . whereBi=n;/l;,ys=I¢/l;, ands;=m; /I, .
for continuum-bound(recombinatioh transitions therefore Bi=nilli, yi=lell e

scale as
I1l. ANALYTICAL EXPRESSION FOR THE PROBABILITY
Pet, nm(@)=Periri) nrm(d), (26) The volume density phase-space integrafith) for state-
, to-state transitions is accomplished by noting thatdlenc-
PeLn(@)=aPer nr(q), (27 tions of the initial and final HamiltoniansH;=p2/2u
) +V(r) andH¢=|p+q|?/2u+V(r), are
Pen(d)=a*Per (). (28 =lp+d

_Ey— _ __ 1
The probabilities for bound-bound transitions o(H —E)=(u/p) (p—[2u(E - V(NI (41

Ei—H,—q%2u
Pif(Q):giPif:(27Tﬁ)3f pi(r,p)p¢(r,p+aq)drdp S(Hi—Eg)=(u/pa)d| cosy— pal . (42)
(29)
wherey is the angle betweep andq such that
from theg; initial states scale as
p®+2p-q+9? 9°  pq
— 3 ’ — —
Pnilimi,nflfmf(Q)_a Pni’li’mi’ ,nf’lf’mf’(q ), (30) Hf(prr)_T"'V(r)_Hi-"ﬂ-"7003)(-
Pom gt (@) =a 2Py ar(a'), (3D it now proves extremely advantageous to adopt the spherical
bifocal coordinatess; and u; introduced previously in Ref.
P, mf.f(q) =a P,y mfr.fr(q’), (32 [18] and represented in Fig. 2. Tidfunctions of the angular
H momentum are
7) N = OP "roat ! s 33
nyl; ,nf(Q) a n/l; ,nf(q ) ( ) 5(Ui_Ui)+5(Ui_(7T_Ui))
, a(rxpl-L)= oTcosU] CE)
Pni ,nf(q): aPni’ ,n%(q ). (39 P !
Summation over the initialffinal substates is implied when 5o (o o)y - S(us—Uyg) + 8(us— (m—Uy))
the corresponding quantum numbers do not appear as P4 f r|p—+g||cosUs| '
subscripts. (44)
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B = 2+ V() + L
i1~ 5 Ml (r) 2ur?

(49

as functions only of for specified energy and angular mo-
mentum. The phase-space integrations in the volume density
(20) for nl—n’l" transitions can then be performed directly

FIG. 2. Basic geometry involved in the calculation of the clas-

sical state-to-state form factor.

where the angles); are determined by cag=r-p and
cosus=r - (p+q). Also

. Li
smUizm;

The phase-space volume element can then be expressed

[18] in terms of theu; andu; in Fig. 2 as

2du;du
—lf] rzdr,

dpdr:[pded(cosﬁp)d‘f’p][ sinA

where (@, ,¢,) are the polar and azimuthal anglespofela-
tive to a fixed set of axis and whereis determined from

p2+|p+q|?—q%—2p|p+ q|cosu;cosu;
2p|p+q|sinu;sinus '

COSA=

Subsequent calculation of E¢L6) or Eq. (20) depends on

to yield

v _87TJ' dr 1 o
”"“/'/(Q)_F = Ri(NR(r) sinA++sinA_ (r.q)
_167TLiLfJ‘ dr/r?
g r Ri(NR¢(r)
41212 12
I
X|| @ —CLn
41212 -1z
{ 1 —c2<r>} ]@(rm, (46)

where quantitie.. are defined as

21172
ci<r>=2u[Ei+Ef—zvm]rw[Ei—V(r)—7‘;}

X

L? 1/2
Ef—vm—r—z} —?

L2412
= w[Ri(r)=Ry(r)]*+ #— 2,

The step function® is unity provided V(r)<E;— u(E¢
—E;—9?%/2)%/29% and zero otherwise. The regidd of ra-
dial integration, within whichA.. are real, is determined by

whether or not there is a fixed direction of space as specifiethe conditionC? (r)<4L?L?/r*. The above resul{46) is

by an electric or magnetic field.

(@ When no fixed axis is specified, thety can be iden-
tified with the angley betweenp and g. Under the con-
straints(41)—(45), p|p+ q||cosu||cosus|= u?RRy, where the

radial speedﬁi,f(r)?r” are determined from energy con-
servation

FIG. 3. In spherical bifocal coordinates, poits identified by
anglesU; andU; of arcsBA andCA on the unit sphere. The area
element isdS=dU;dU; /sinA, whereA is the angle between arcs
BA andCA.

identical with that calculated previous|it3] via a different
integration method. The integrand of E¢6) is an ingredi-
ent[12] in classical impulsive theories d&—B(nl) colli-
sions when the cross sectiern(g,q) for scattering of the
Rydberg electron by at relative speed is a function of
both g and the momenturg transferred. Whemr is a func-
tion only of g, the full integral(46) is then applicablé¢12].
(b) For transitions betweem sublevels, there is a fixed
direction of atomic quantization and the calculation is more
difficult. The & function involvingL;, is

Srx(p+a)]-z—Li)=8(-(qx2)— (Li,—Lip),
(47)

whereqx z is a fixed direction in space. For the impulge

directed along the quantization axis then (47) reduces to
o(L¢,—L;,) and only transitions with_;,=L¢,=L, occur.
Moreover, the azimuthal angtg, of p may now rotate freely
in the rangg 0— 7] andr, for fixed U; andUzs, is attached
to the rotatedp. With the aid of the spherical bifocal coordi-
nateq 18], it can be showrisee Fig. 3 as well as the Appen-
dix) that the s function ofL;, in Eq. (16) reduces to
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5((rXp)2—L|z):5(£3InA— LIZ) (48)
ar (5,4,1) — (8,2,1)

Under the condition$41)—(43), it can be expressed as
8((rxp)-z—Ly,) n
2qu)2 (2LiLf)2)

r2

_8q°L, o(r—ry)
r? {Ek:|aF+(rk)/ar|]’ (49

89°L
=0 Za(ci(r)+

where the summation includes all rooisof

2 [2LiL\?
— r2 :0,

2qL,
r

F.(r;q)=Ca(r)+

where thenlm—n’l"m transitions occur classically. The six-
fold integration in the probability17) for nim—n’l'm tran-
sitions resulting from the impulséq directed along the
axis of atomic quantization then reduces to the following
exact result:

Pnlmﬂn’l’m(q)
0.2 0.3 04 0.5 0.6
Cenen 1 q
=— 33 (he :
7°n°n’3 K rRR(NOR(1 ) aF < (r)/ar| FIG. 4. Contour lines for equatiof . (r;q)=0 in the q—r

(50) plane. In the upper part of the diagram, classical probability for

. . . . transition fi=5l=4m=1)—(n"=8|"=2m’=1). Singularities
wheree is the atomic unit of energy. This result reduces t0gyise when two roots, are equal.

that in Ref.[17] for Coulomb attraction and, when summed

over m to the earlier resul{13] for nl—n’l" transitions.  ghained by using the expansion of the exponential function

There are always two or four rootg. When two roots ac- i terms of spherical Bessel functions and spherical harmon-
cidentally coalesce, whew..(r)/dr vanishes, the classical g Upon integration

transition probability has a singularity. The basic variation of
the classical form factof50) with g for the n=5]=4m

n+n’
=1—28,2,1 transition in atomic hydrogen is displayed in Fig. Q _| 22
4, together with thej-variation of corresponding roots(q), Paim—n7m(Q) /k:,%",” wid(=a*/a) -, (5D

given by the intersection of the surfaces F..(r;q) with
thez=0 plane. It is seen that cusp singularities are exhibited,;ore the prefactor is
in Pom_n1'm(d) when the lineq=const is tangential to the
r(q) curves . This occurs at four places in Fig. 4. The mag- 1 e Y
nitude of the probability between the singularities is propor- = (n )!
tional to the numbek of contributing radial roots where the 4a NV 21+1 (n+1)!
1+2( 5 \1"+2 g\
ERCE

m transitions occur. The probabilitié®,,,_,/;'m(Q) are, of
course, zero in the classical inaccessible region shown. y (n"=1I"=1)! ( 2

in terms ofa=1/n+1/n’. Thew, term is the coefficient of
cf. Eq. (36), which will be used to explore the quantal- the powerr in the expansion of the product of radial poly-

The probability(50) obeys the following scaling law: (n'+1")! n

2 _
n Pnlm—»n’l’m(q/n) - Pl,l/n,m/n—»n//n,l//n,m/n(q)r

classical convergence asis increased. nomials
IV. QUANTAL FORM FACTOR n+n’
. . . . (r/a)anan’l’: E Wkrka
Here, a numerical technique is devised for accurate calcu- k=1+1"+2

lation of the quantal form factor, even for high-100. An
analytic expression for the quantal form factd can be where
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20 form factors as a function of
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i‘; ;T scaled momentum transfegr=nq
£ £ for nlm—n’l'm transitions. For
‘e E 10 transitions with fixed parameters
/n=3/10, n’'/n=14/10, I'/n
=12/10, andm/n=1/10 conver-
00 gence is obtained asis increased
from n=10 ton=100.
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05 1.0 15 20
nq
2r min(l,1") I
Ro= (L2 2| A B R (ST
(l—X)k e 1"oLo™I mL0(2|__1)”
is the polynomial part of the radial hydrogenic wave function < [L—k+1 L-k
defined in terms of Laguerre polynomials$®?(x). Finally, XXy —%— 5+ 1L +3/2x],
the q dependence of the quantal form factbd) is contained
within the functionsd, defined by whereC are Clebsch-Gordan coefficients for the addition of
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FIG. 6. Classicaldotted ling
and quanta(solid line) symmetric
scaled form factors as a function
of scaled momentum transfey
=nq for nl—n’l" transitions. For
fixed parameterd/n=1/5, n'/n
=7/5, andl’/n=6/5, convergence
) ) is obtained a% is increased from
= x n=5 ton=40.
o o<
08
! n=35
o o<

angular momenthand!’. The resulting angular momentum form factor can be calculated in this way for arbitrary quan-
L is given byL=|I—1"|+2s, such thatl takes values be- tum numbers(computer time and memory being the only
tween|l—1’| andl+1" with the same parity as+1’. The constraintg the results exhibit an increasing number of os-
hypergeometric function,F; reduces to a polynomial that cillations, as seen in>80 subplots of Fig. 5. The usefulness
obeys a simple recursion relation since either the first or th@f the exact, rigorous, quantal results, therefore, becomes
second argument ofF, is a negative integer. The quantal questionable for such large quantum numbers and only an
form factor has, therefore, a very simple structure as a funcaveraging procedure can provide practical quantitative re-
tion of momentum transfey, being a polynomial divided by sults. Th(_a classical form fa_ctor has the ability to operate as
(1+q2/a2)n+n" Unfortunately, factorials of large arguments an effective averaged version of the exact quantal counter-

lead to very large but integer coefficients in the polynomialP@'t as illustrated in Fig. 5.
expression. Accurate results for-40 cannot be obtained by
using the usual floating-point machine accuracy. By using
integer and rational number arithmetic, calculation can, how-
ever, be performed in infinite precision if the momentum Quantal-classical correspondence is evident when the
transfer is approximated by a rational number. The result, irtlassical curve provides the essential framework on which
turn, is obtained as an exact rational number, with an exthe quantal oscillatory structure is superimposed. In this
tremely large numerator and denominator. Even though theense, Fig. 5 illustrates the convergence of the scaled quantal

V. QUANTAL-CLASSICAL CONVERGENCE
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c .
curve Pljl/n’m,an,{n_',,/mn,n as a function of scaledj for
nlm—n’l’m transitions. Convergence ranges from good for
nas low as 30 to excellent for=80. The oscillations can be

attributed to interference effects between phasesntal or

(g/n) onto the universal classical Sults[17]is obtained for the special case of atomic hydrogen
(Coulombic potential

The classical background contains two classical inacces-
sible regiongat small and large momentum transfe)sand
four singularities attributed to four cases where two raQts

semiclassical of the contributions to the amplitude that converge for four values af. The method also permits the
arises from each locatior. construction of important classical scaling laws obeyed by

Convergence to the classical results is much faster whet€ form factor for anyi—f transition, involving bound or
the results are averaged over ailvalues, as for the scaled Ccontinuum states. Use of these scaling rules then facilitates a
probabilities nP,_,,» for nim—n’l'm transitions, dis- detailed investigation (_)f the rate of convergence of the quan-
played in Fig. 6. Finally, in Fig. 7, the classical and quantaltal results to the classical background,reis increased. The
probabilitiesn 1P, .., for thel,m-averaged transitions con- quantal results at high are shown to (educe to oscillatory _
tain no oscillatory structure and agree foas low as 2. This  Structure superimposed on the classical background, as in

result is well known and is the basis for classical descriptiondd- 5. The rate of this convergence is accelerated upon av-
of n—n’ collisional transitions. eraging, in succession, over the substates and then the

states, as for thel—n'l" andn—n’ transitions displayed in
Figs. 6 and 7, respectively. Figures 5-7 also illustrate that
classical form factors have the capability to operate as an
Using the PSD formulatiofiL3], the classical-quantal cor- effective and reliable averaged version of its quantal coun-
respondence has been established by showing that the atonépart. This is of particular significance to experiments that
form factor (1) for state-to-state transitions in a general one-involve very high values oh=400, as in the half-cycle ex-
electron atom can be written in the generic fo(® where  periments of Bromage and Stro{d.
the quantal and classical distributions are given by E8js. In summary, the phase-space distribution metfi&] has
and(7), respectively. Exact calculations of the derived prob-permitted (a) universal scaling laws for the classical form
ability (50) for nim—n’l’m transitions are presented. The factor to be immediately derived in transparent foth), the
classical state-to-state form fact@O) is expressed analyti- construction of an analytic expressi@0) for the form fac-
cally in terms of the radial electronic locationgwhere the tor for state-to-state transitions in a system with general in-
transitions occur. Agreement with previously published re-teractionV(r), and(c) the detailed numerical investigation

VI. CONCLUSION
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of the convergence of the quantal form factors onto the clasas in Eq.(48) of the text. From spherical triangkBC, the

sical background.

PHYSICAL REVIEW A 65 022703

angleA is determined from
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where
APPENDIX: COMPONENT OF ANGULAR MOMENTUM
ALONG q“ cosb: :W
T 2plp+q

When the axis of atomic guantization is along the direc-

tion q of the impulse, then Sincep cosu,=ur; and|p+ q|cosus=ur; in terms of the ra-

dial speeds, theA is determined from
sin 6;:cos4, 2

2L;L

Xp)-7= = -[pX (p+ —[m|+|
(r p)-Z—q-[p (pt+a)]= q PTa

COSA. = [p*+[p+al?=2urr(].

where the angle#;; and 6 are depicted in Fig. 3.

From the spherical trianglesBC and ABD, then Under the constraintg}l) and (42), then
sinV, B sinV; B SinA
sinUs  sinU; siné; COsA. =

r2

2L,L,

C.(r),

and

) _ where
cosf=sinU;sinV;,

respectively, so that C.(r)=2u[Ei+E¢—2V(r)]+ 2411 —q?

(rxp)-z= sinU; sinU; sinA. =2u[Ei+E—2V(r)]x4u Ei—V(f)—r—'z

2}1/2

rp
—|p+
q||o al

Since sinJ;=L;/rp and sinU;=L;/r|p+q|, then %

% 1/2
Ef—vm—r—z} a2,

~ [Likg)
(rxp)-Z—(T)S'”Ay as in Eq.(46) of the text.
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