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Effect of hard-core repulsion on the structures of a trapped two-dimensional three-boson system

C. G. Bao, Y. Z. He, and G. M. Huang
Department of Physics, Zhongshan University, Guangzhou 510275, People’s Republic of China

T. Y. Shi
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

~Received 2 August 2001; published 11 January 2002!

A two-dimensional three-boson system interacting with hard-core repulsion and trapped by parabolic con-
finement has been investigated. Two density functions associated with breathing motion and deformation,
respectively, have been defined. Based on these density functions, the wave functions of low-lying states have
been analyzed in detailed. The states are found to have explicit geometric features caused by the hard-core
repulsion, these features depend strongly on the constraints imposed by symmetry. Striking similarity exists in
the density functions, so that breathing bands can be well defined. A classification scheme is thereby proposed.
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I. INTRODUCTION

The observation of Bose-Einstein condensation~BEC! in
trapped atomic gases has stimulated much theoretical stu
on the systems of interacting bosons@1,2#. One of the inter-
esting directions in recent studies is the interplay between
dimensionality and the effect of interaction. The prospects
creating an effectively low-dimensional condensate appea
be very optimistic. For example, the trap containing atom
gases can be made to reach the limit of quasi-two-dimen
or quasi-one-dimension, so that interesting effects of dim
sionality can also be investigated. A number of theoreti
works have been done for BEC in two dimension@3–17# and
in one dimension@18–21#. The results from exact diagona
ization of the Hamiltonian are compared with those from
mean-field approximation and other approximate meth
@16,17,22#.

For the two-dimensional case, the studies on rotat
Bose-Einstein condensates~BECs! with a weak interaction
~approximated by zero-range potential! is interesting@3–16#.
The properties of the lowest-energy quantum states wit
given nonzero angular momentum, which are referred to
yrast states, have been analyzed by several authors@3–7#.
Cooper and Wilkin and Wilken and Gunn revealed the sim
larities between the quantum states in rotating BECs with
coherence length being larger than the size of the system
in incompressible fractional quantum Hall states@8,9#. They
also found the existence of certain angular momentum st
of enhanced stability in few-boson systems. Such an ang
momentum is called a magic angular momentum.

It is noted that the validity of the zero-range interacti
approximation might be questionable if the so-called ‘‘g
parameter,’’ which measures the importance of interact
and is defined asna3 with n being the density of particle an
a being thes-wave scattering length, is high@2#. One of the
purpose of this paper is to study the properties of trap
boson systems going beyond the zero-range interaction
proximation. Since the understanding of particle correlat
is a crucial point to understanding any system, a three-bo
model system has been chosen to be calculated and ana
in this paper to expose, in detail, the particle correlation. T
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analysis would lead to the understanding of the geome
features and the modes of excitation of the system, ther
the quantum states can be classified. Emphasis is place
the study of the effect of symmetry, which is believed to pl
an important role but has been of less concern in the prev
literatures in BEC.

II. MODEL AND METHOD

Let the three identical bosons of massm be trapped in a
plane by a parabolic confinement with a strength\v0 . We
use\v0 andA\/mv0 as units of energy and length, respe
tively, through out the paper. It is assumed that the bos
interact with each other via a short-ranged hard-core re
sion UQ(b2r i j ), whereU and b are constants,r i j is the
interparticle distance, andQ(x)51 if x>0, or Q(x)50 if
x,0. Let rW i be the position vector of thei th boson. Let a set
of Jacobi coordinatesrW andRW be adopted,rW5rW22rW1 andRW
5rW321/2(rW11rW2). In the center-of-mass frame, the intern
Hamiltonian reads

HI52¹ r
21

1

4
r 22

3

4
¹R

21
1

3
R21(

i , j
UQ~b2r i j !. ~1!

In order to diagonalizeHI , let us introduce a virtual adjust
able single-particle Hamiltonian of harmonic oscillatio
21/2¹s

211/2v2s2. Here,sW is a two-dimensional vector an
v is an adjustable parameter. Letwmk(vsW) be an eigenstate o
this harmonic oscillation with an eigenenergy (m1k11)v
and an angular momentum (m2k)\. Then, the eigenstate
of HI with a given angular momentumL can be expanded a

CL5S(
i

CiwmkSA1

2
vrW DwMKSA2

3
vRW D . ~2!

Here, i denotes the set (mkMK), S is a symmetrizer,m2k
1M2K5L is assumed, andv serves as a variational pa
rameter.CL and the corresponding eigenenergies can be
tained after the diagonalization ofHI . It turns out that, when
v is appropriately chosen via a variational procedure, l
©2002 The American Physical Society08-1
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than 2000 independent basis functions included in the exp
sion ~2! are sufficient to provide solutions accurate enou
for our purpose.

Once the eigenstatesCL have been obtained, a detaile
analysis of them will be made. For this purpose, the hyp
radius

j5A1

2
r 21

2

3
R2, ~3!

and the hyperangle

b5
2

3 S R

j D 2

, ~4!

are introduced. Here,b is related to the usually defined hy
peranglea by b5sin2 a. The domain ofb is from 0 to 1,
while a is from 0 to p/. The correlated-densities extracte
below usingb as the argument is invariant under partic
permutations, this is the reason why we useb to replacea.
The volume element can be written as

dW r dW R5rR dr dR df rdfR5
3

2
j3dj db df rdfR . ~5!

We thus can define the density function associated with
size of the system@23#

r~j!5E uCLu2
3

2
j3db df rdfR ~6!

fulfilling

E r~j!dj51. ~7!

Instead of usingf r andfR , we useu5f r2fR andfR as
arguments, whereu is the angle betweenrW andRW . Then we
define the correlated density function associated with de
mation

r~u,b!5E uCLu2
3

2
j3dj dfR ~8!

fulfilling

E r~u,b!du db51. ~9!

We shall see that the feature of geometric structure and
ternal motion can be well understood via the above den
functions.

III. RESULTS AND DISCUSSION

All the states have the sameL constitute aL series. LetLi
denotes thei th state of aL series. The energies of the low
lying Li states withU5200 andb50.1 are listed in Table I.
Where the ground state has an energyE(01)52.847. If the
hard-core repulsion is removed, we would haveE(01)52.
02250
n-
h

r-

e

r-

n-
ty

So, the additional 0.847 arises from the hard-core repuls
When the center-of-mass~c.m.! motion is taken into account
it has been found that for some systems the lowest-ene
state of anyL series is the one where the angular moment
is all carried by the c.m. motion@10#. This finding does not
fit the present system. For example, we know from the ta
that the energy difference of the 21 and 01 states is 1.664.
When the c.m. motion is taken into account and if the an
lar momentum of the 21 state arises from the c.m. motion
then the energy difference would be 2. Therefore, the low
L52 state of our case cannot have the c.m. motion exci
Similarly, we can see that the lowestL53 and 6 states can
not have their c.m. motion excited.

It was found by Pitaevskii and Rosch@24# that two-
dimensional bosonic systems with zero-range interacti
display a breathing mode arising from theSO(2,1) symme-
try, the energy difference of adjacent breathing levels
2\v0 . Although the hard-core interaction with a finite rang
is used in this paper to replace the zero-range interaction
feature of the 2\v0 spacing remains in the spectrum. For
example, from the table we found thatE(02)-E(01)
52.052 andE(04)-E(02)52.043. Thus, the 01 , 02 , and 04
might be the members of a breathing band. Furthermore,
haveE(05)-E(03)52.012, thus they might be the membe
of another breathing band. We shall give further evidence
the existence of these bands. The 2\v0 spacing appears als
in LÞ0 states. For examples, theE(L3)-E(L1) with L51,
4, and 6, and theE(L2)-E(L1) with L52, 3, and 5 are all
very close to 2 as shown in the table. Thus, the breath
mode existing in the systems with zero-range interacti
might also exist in our system. This is an interesting point
implies that the hard core does not yield very different resu
than the zero-range interaction. In fact, the energy spectr
these two types of interaction are similar. For exampl
when the interactionUQ(b2r i j ) is replaced byh/2d(xi
2xj )d(yi2yj ) and if the strengthh51.2, then the calcu-
lated energies of 01 to 05 are 2.227, 4.231, 6.059, 6.241, an
8.076, respectively. Thus, just as the hard core, the 01 to 05
states are divided into two bands. The first, second,
fourth states belong to the lowest band, while the third a
fifth belong to a higher band.

Let us study the wave functions. It is noted thatb50, 1/4,
1/2, 3/4 and 1 correspond toR/r 50, 1/2,)/2, 3/2, and̀ ,
respectively. Thus, in theu2b plane, the point (u,b)
5(p/2,1/2) is associated with an equilateral triangle~ET!,

TABLE I. The eigenenergies of theLi states withU5200 and
b50.1.

i 51 i 52 i 53 i 54

L50 2.847 4.899 6.222 6.942
L51 5.713 7.165 7.737
L52 4.511 6.535 7.999
L53 5.220 7.228 7.631
L54 6.370 8.192 8.364
L55 7.294 9.301 9.483
L56 8.000 8.338 10.001
8-2
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FIG. 1. Contour diagrams of
r~u, b! of theL50 states with the
hard-core interaction.U5200 and
b50.1 are assumed, The darke
area has a largerr~u, b!. The con-
tours are symmetric with respec
to u590°.
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the points~0, 3/4! and~u, 0! are both associated with a ciga
shape with two particles located at the two ends and
right at the middle~denoted as CG1!, the points~0, 1/4! and
~u, 1! are both associated with another cigar shape with
particles located at the same end while the other one at
opposite end~denoted as CG2!. With this in mind, let us first
observe ther~u, b! of L50 states as plotted in Fig. 1. Fig
1~a!, 1~b!, and 1~d! are strikingly similar, they all have a
peak at an ET and the wave function extends smoothly to
CG1. Therefore, the geometric features of the 01 , 02 , and 04
states are the same, they all are a mixture of the ET and C
the former is more important. Ther~j! of them are given in
Fig. 2. They have one, two, and three peaks, respectiv
Therefore, the breathing mode~the contraction and extensio
of the size! is not excited in 01 , but is excited in 02 with one
node, and is more fiercely excited in 04 with two nodes.
Since these states are highly similar inr~u, b!, the formation
of the suggested breathing band is confirmed. Since this b
is based on the mixture of ET and CG1, it is called an (
1CG1) band.

It is noted that ther~j! of the 01 is peaked atj51.52, the
associated side length of the most probable ET is also 1
therefore, the average particle-particle separation is m
larger than the radiusb of the hard core. This is a ver
interesting point that a well-defined geometric structure
be caused by a hard core even the radius of the core is m
smaller than the average interparticle distance. The
02250
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peaks of ther~j! of the 02 is located atj51.1 and 2.5,
respectively. It implies that the amplitude of the breathing
quite large. For higher members of the (ET1CG1) band, the
amplitude is even larger.

Ther~u, b! of the 03 and 05 states are given in Figs. 1~c!
and 1~e!, they are also strikingly similar to each other b
different from those of the (ET1CG1) band. They all have a
sharp peak at an ET, and two lower peaks at~0, 3/4! and~u,
0! both associated with the cigar-shape CG1 but having
ferent permutations of particles at the shape. Sincer~u, b! is
invariant with respect to particle permutation, the two low
peaks have exactly the same height. The trajectory from
sharp peak~p/2, 1/2! to the lower peak~p/2, 0! is associated
with a contraction of the height of an isosceles triang
and/or an extension of the base. This is called a hinge m
of oscillation@25# that transforms an ET to an CG1, and vic
versa. Since there is a node lying along the trajectory,
hinge mode has been excited. The trajectory from~p/2, 1/2!

to ~0, 3/4! is mainly associated with a swing ofRW ~a variation
of u!. This is called a swing mode of oscillation@25# that
transforms also an ET to an CG1, and vice versa. A nod
also contained in this mode, so the swing mode is also
cited. Ther~j! of 03 and 05 shown in Fig. 2 demonstrate tha
the breathing mode is not excited in 03 but excited in 05 .
Since theirr~u, b! are highly similar, they form anothe
breathing band based also on the mixture of the ET and C
FIG. 2. r~j! of theL50 states.
U5200 andb50.1 are assumed.
8-3
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FIG. 3. Contour diagrams of
r~u, b! of the LÞ0 states.U
5200 andb50.1 are assumed.
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but with the hinge mode and swing mode excited. This ba
is called a (ET1CG1)* band. In this band, the excited hing
mode and swing mode coexist with the breathing mode.

It is noted that, forLÞ0 states, the ET and/or CG1 ma
be prohibited by symmetry. When the particles form an ET
rotation by 2p/3 about the c.m. is equivalent to a cycl
permutation of particles. The rotation would cause the
pearance of a factore2 i2pL/3 in the wave functions, while the
permutation would cause no effect in bosonic systems. T
the ET is allowed only if$L[0 mod 3%, otherwise the wave
function has to be zero at the ET. When the particles form
CG1, a rotation byp is equivalent to an interchange of th
two particles at the ends of the CG1. The former wou
induce a factore2 ipL, while the latter would cause no effec
as before. Thus, the CG1 is allowed only ifL is even.

For L51 states, both the ET and CG1 are prohibite
Since the prohibition of a shape implies the appearance
node in the wave function at the shape, since the existenc
a node implies an excitation of motion, the kinetic ener
thereby increases. For these reasons, the 11 state is quite high
in energy as shown in Table I, it is even higher than the1
and 31 states. Ther~u, b! of the 11 state is plotted in Fig.
3~a!, there are three nodes associated with the prohibitio
the ET and CG1~due to the symmetry constraints!, and the
prohibition of the CG2~due to the hard core!. On the other
hand, there are two peaks, both are associated with a
sharp isosceles triangle~close to a CG2!. Since ther~u, b! is
invariant with respect to particle permutation, these t
peaks have exactly the same height. Furthermore, the gla
similarity found in theL50 states emerges also inLÞ0
states. Ther~u, b! of the 13 state is found to be strikingly
similar to the one of the 11 state, and ther~j! of the 11 and
13 states contain one and two peaks, respectively. Thus, t
is a breathing band based on the sharp triangle, it is call
sharp-triangle band. The 12 and 14 states have strikingly
02250
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similar r~u, b! as shown in Fig. 3~b!, where the peaks are
peaked at a very flat isosceles triangle. Furthermore, ther~j!
of the 12 and 14 states are found to contain one and tw
peaks, respectively. Thus, they form the flat-triangle band

While the ET is not allowed inL52 states, the CG1 is
allowed. Thus, one would expect thatL52 states would pre-
fer the cigar shape. This is confirmed as shown in Fig. 3~c!,
where peaks are located at the CG1. Based on the CG
breathing band with the members 21,22,24 .... is found ~the
CG1 band!. The 23 state is found to be a mixture of a CG
and a sharp isosceles triangle as shown in Fig. 3~d!.

While the CG1 is not allowed inL53 states, the ET is
allowed. Thus, one would expect thatL53 states would pre-
fer the ET but deny the CG1. In fact, the main band~the
lowest band! of L53 states is an ET band with membe
31,32,35 .... They have very similarr~u, b! as shown in Fig.
3~e!. In the ET band, the wave functions do not extend to
CG1, thus, the ET shape is well defined. The 33 state is
found to be a mixture of an ET and a collinear structure w
the third particle oscillating back and forth around the cen
of a cigar shape with a node at the center as shown
Fig. 3~f!.

The L54 and 2 states are similarly constrained by sy
metry. The CG1 band found inL52 states exists also inL
54 states. The 41 and 43 are members of this band as show
in Fig. 3~g!. On the other hand, the 42 and 45 are found to be
the members of a sharp-triangle band. Incidentally, Figs. 3~c!
and 3~g! are very similar. Thus,similarity exists not only
among the states with the same L, but also among the st
with different L but similarly constrained by symmetry.

The L55 and 1 states are similarly constrained by sy
metry. Both the sharp-triangle band and the flat-triangle b
found inL51 states exist also inL55 states. The member
of these two bands are 51,52 ,..., and 54 ,..., respectively, as
8-4
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TABLE II. The breathing bands.

Bands Members Examples ofr(u,b)

(ET1CG1) 01 , 02 , 04 , ¯61 , 63¯ Figs. 2~a!, 2~b!, 2~d!, 3~k!

(ET1CG1)* 03 , 05 , ¯62 , 65,¯ Figs. 2~c!, 2~e!, 3~l!
Sharp-triangle 11 , 13 , ¯42 , 45 , ¯51 , 52 ,¯ Figs. 3~a!, 3~h!

Flat-triangle 12 , 14 , ¯54,¯ Figs. 3~b!, 3~j!
CG1 21 , 22 , 24 , 41 , 43 ,¯ Figs. 3~c!, 3~g!

ET 31 , 32 , 35 ,¯ Fig. 3~e!
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shown in Figs. 3~h! and 3~j!. The 53 state is collinear and is
dominated by collinear oscillation with a node at the CG1
shown in Fig. 3~i!. This state can be called a CG* state~here,
the star implies the excited oscillation existing in the cig
shape!. Although higher states have not been analyzed,
believed that, based on the finding of Pitaevskii and Ro
@24#, a CG* band characterized by the excited collinear o
cillation would exist. Since the collinear structure has
larger moment of inertia and therefore can reduce the r
tion energy, it will appear quite often in the low-lying stat
with a largerL.

Similar to theL50 states, both the ET and CG1 are a
lowed in L56 states. The (ET1CG1) band and the
(ET1CG1)* band found inL50 states exist also inL56
states. The members of the (ET1CG1) band are 61,63 ,...,
as shown in Fig. 3~k!. The members of the (ET1CG1)*
band are 62,65 ,..., asshown in Fig. 3~l!. It is recalled that in
the (ET1CG1)* band ofL50 states, the peak at the ET
higher. However, in the (ET1CG1)* band ofL56 states,
the peak at the ET is small. Evidently, whenL gets larger and
larger, collinear structures will become more preferred.

The breathing bands are summarized in Table II. Wh
we change the radius of the core, while the repulsive c
remains to be hard. The above findings remain true in
qualitative aspect. For example, ifU51000 andb50.03, the
02250
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h
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r~u, b! of some selected states are plotted in Fig. 4. Th
contour diagrams are very similar to the corresponding d
grams in Figs. 1 and 3.

Since only the lower states have been investigated in
paper, in addition to the bands listed in Table II, more ban
higher in energy would also exist. It was shown in Table
that states distinct inL may belong to the same breathin
band, they are similar inr~u, b! and may have the sam
number of peaks inr~j!. For example, the 01 and 61 both
belonging to the (ET1CG1) band are qualitatively similar in
r~u, b! @refer to Figs. 1~a! and 3~k!#, and both have a peak in
r~j!. The former is peaked atj51.52, while the latter is
peaked atj52.74, thus, the 61 has a much bigger size. Sinc
they are qualitatively similar inr~u, b! andr~j!, they can be
further grouped in a rotation band denoted as
(ET1CG1)0 band, where the subscript 0 denotes that
breathing oscillation contains zero node. Similarly, the2
and 63 form a rotation band, the (ET1CG1!1 band, contain-
ing a node in the breathing oscillation; the 21 and 41 form a
rotation band, the (CG1)0 band, containing zero node in th
breathing oscillation, etc.

It is noted that the ET and CG1 are strictly constrained
symmetry, therefore, the members of the rotation band ba
on these shapes are strictly selected by symmetry and ca
more or less predicted. For an example, the members of
.

FIG. 4. Contour diagrams of
r~u, b! of the L50 states.U
51000 andb50.03 are assumed
8-5
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(ET1CG1)0 band should contain only the both ET- an
CG1-accessible states. Thus, they are expected to be
01,61,121,181 ,..., states; while the members of the (CG10
band should contain the ET-inaccessible and CG1-acces
states 21,41,81,101 ,...,. On theother hand, the sharp triangl
and flat triangle are not constrained by symmetry, thus
members of the associated bands are difficult to be fores
For an example, theL54 and 5 states are differently con
strained by symmetry, but they both are found in the sha
triangle band~refer to Table II!.

For a comparison of the effects of the two types of int
action on wave functions, the results ofr~u, b! of the 01 state
with a zero-range interactionh/2d(xi2xj )d(yi2yj ) and
with h512 are plotted in Fig. 5. It is shown that the resu
found in Fig. 5 are qualitatively very similar to those in Fi
1~a!. Thus, the zero-range interaction is a good approxim
tion to the hard-core interaction. It was shown that the ra
of ther~u, b! in Fig. 5 is from 0.025 to 0.20. Ifh is reduced
to 1.2 and 0.12, the figure would remain nearly unchange
the Z axis is rescaled and the range is from 0.12–0.17,
from 0.155–0.160, respectively. Thus, whenh is greatly re-
duced, the distribution with respect tou andb is close to be
uniform.

IV. SUMMARY

We have calculated numerically the low-lying eigensta
and energies for an interacting two-dimensional~2D! three-
boson system. A hard-core potential between bosons is
sumed. We reach the following conclusions.

~i! The density functionsr~j! andr~u, b! defined in this
paper are found to be very useful in the analysis of wa
functions, the structures of low-lying states can be theref
well understood. Very detailed information on the eigensta
of the two-dimensional trapped three-boson system w
hard-core repulsion has been obtained. To the knowledg
the authors, the correlated densityr~u, b! has not yet been
calculated before. It is worthy to introduce this function
the investigation of other three-body systems, includ
three-dimensional systems. In the cases of three-dimens

FIG. 5. 3D surface diagrams ofr~u, b! of the L50 states with
the zero-range interaction.h512 is assumed.
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systems,r~u, b! should be generalized torQ(u,b) fulfilling

(
Q

E rQ~u,b!du db51, ~10!

whereQ is the component ofL along the third axis of a body
frame @26#.

~ii ! It was found that the hard core does not yield ve
different results than the zero-range interaction. They h
similar spectra. Specifically, the breathing bands existing
the systems with zero-range interactions are found to e
also in the systems with hard-core repulsion. Furthermo
their wave functions are also one-to-one similar.

~iii ! It is interesting to see that very clear geometric stru
tures can be induced by the hard-core repulsion. This is
even if the radius of the core is very small, if the core is ha
enough, and even in the case of zero-range interactions,h
is large enough. Striking similarity inr~u, b! was found to
exist among specific states, this fact is expected from
SO~2, 1! symmetry and leads to the formation of breathi
bands. The internal structures of the bands can be unders
by observingr~u, b!. The low-lying states can be classifie
into several bands. The character of each band and the m
bers of the band have been clarified.

~iv! The members of a breathing band may have differ
L, thus they can be further classified into rotation bands, e
the (ET1CG1)1 band. This leads to a complete classificati
scheme. The angular momenta of a rotation band is foun
jump from a value to another separate value@e.g., L
50,6,12,..., in the (ET1CG1)0 band# due to the symmetry
constraints, this is a noticeable feature.

~v! The effect of symmetry is found to be great, in pa
ticular for the low-lying states. The feature ofr~u, b! de-
pends strongly on the ET and CG1 accessibility, which
determined by symmetry. In fact, the structures of low-lyi
states can be objectively classified according to the ET
CG1 accessibility, thereby the classification scheme was
posed. The states constrained in the same way by symm
have similar structures~e.g., theL50 and 6 states, or the
L51 and 5 states!, these structures can be more or less p
dicted.

~vi! The eigenenergies of the both ET-accessible a
CG1-accessibleL1 states, namely, the 01,61 ,..., states, are
found to be relatively lower. They are the first candidates
the ground state in a rotating bosonic system. The
accessible but CG1-inaccessibleL1 states, namely the
31,91 ,..., states, are the second candidates. The idea of
cessibility might be generalized to explain the stability
states of a general bosonic system, and therefore might
plain the magic numbers found in rotating bosonic syste
This point deserves a deeper study.

It is planned to extend the above investigation to the s
tems containing more bosons.
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