PHYSICAL REVIEW A, VOLUME 65, 022508
Effect of hard-core repulsion on the structures of a trapped two-dimensional three-boson system
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A two-dimensional three-boson system interacting with hard-core repulsion and trapped by parabolic con-
finement has been investigated. Two density functions associated with breathing motion and deformation,
respectively, have been defined. Based on these density functions, the wave functions of low-lying states have
been analyzed in detailed. The states are found to have explicit geometric features caused by the hard-core
repulsion, these features depend strongly on the constraints imposed by symmetry. Striking similarity exists in
the density functions, so that breathing bands can be well defined. A classification scheme is thereby proposed.
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[. INTRODUCTION analysis would lead to the understanding of the geometric
features and the modes of excitation of the system, thereby
The observation of Bose-Einstein condensatBEC) in  the quantum states can be classified. Emphasis is placed on
trapped atomic gases has stimulated much theoretical studi#e study of the effect of symmetry, which is believed to play
on the systems of interacting bosdrs2]. One of the inter- an important role but has been of less concern in the previous
esting directions in recent studies is the interplay between théteratures in BEC.
dimensionality and the effect of interaction. The prospects of
creating an effectively low-dimensional condensate appear to Il. MODEL AND METHOD
be very optimistic. For example, the trap containing atomic _ i _
gases can be made to reach the limit of quasi-two-dimension Let the three identical bosons of massbe trapped in a
or quasi-one-dimension, so that interesting effects of dimenPane by a parabolic confinement with a strengjih,. We
sionality can also be investigated. A number of theoretical'S€% o and yi/me, as units of energy and length, respec-
works have been done for BEC in two d|mens[8|q_17] and tiVer, through out the paper. It is assumed that the bosons
in one dimensio18—21]. The results from exact diagonal- interact with each other via a short-ranged hard-core repul-
ization of the Hamiltonian are compared with those from thesion U®(b—rj;), whereU andb are constantst;; is the
mean-field approximation and other approximate method#terparticle distance, an@(x)=1 if x=0, or ©(x)=0 if
[16,17,22. x<0. Letr; be the position vector of thigh boson. Let a set
For the two-dimensional case, the studies on rotatingf Jacobi coordinateg and R be adoptedf=r,—; andR
Bose-Einstein condensatéBEC9 with a weak interaction =r3;—1/2(F,+,). In the center-of-mass frame, the internal
(approximated by zero-range potential interesting 3—16]. Hamiltonian reads
The properties of the lowest-energy quantum states with a
given nonzero angular momentum, which are referred to as , 1, 3 _, 1,
yrast states, have been analyzed by several aufB3erg). Hi=-Vi+zr°-7Vrt3R ﬂg UB(b—ry). (1)
Cooper and Wilkin and Wilken and Gunn revealed the simi- .
larities between the quantum states in rotating BECs with th
coherence length being larger than the size of the system a le single-particle Hamiltonian of harmonic oscillation

in incompressible fractional quantum Hall stai8s9]. They —1/2V2+ 1/202<2. Here.£ is a two-dimensional vector and
also found the existence of certain angular momentum states. S : '

A v is an adjustable parameter. vS) be an eigenstate of
of enhanced stability in few-boson systems. Such an angul%iS harmi)nic oscﬁlation withﬁkgianenergmik+ 1)o

order to diagonalizéd,, let us introduce a virtual adjust-

momentum is called a magic angular momentum. and an angular momentunm(-k)7%. Then, the eigenstates
It is noted that the validity of the zero-range interaction £ H. with gul | t. m ,b Y ded
approximation might be questionable if the so-called “gas0 1 With a given anguiar momentuincan be expanded as
parameter,” which measures the importance of interaction 1 5

and is defined asa® with n being the dgns_ny of particle and ‘I’LZSE Ciomi \/:UF) Pk \ﬁvR) ) )

a being thes-wave scattering length, is hid2]. One of the . 2 3

purpose of this paper is to study the properties of trapped

boson systems going beyond the zero-range interaction apiere,i denotes the seintkMK), Sis a symmetrizerm—k
proximation. Since the understanding of particle correlationt M —K=L is assumed, and serves as a variational pa-
is a crucial point to understanding any system, a three-bosarmmeter W, and the corresponding eigenenergies can be ob-
model system has been chosen to be calculated and analyzedhed after the diagonalization bf; . It turns out that, when
in this paper to expose, in detail, the particle correlation. This is appropriately chosen via a variational procedure, less
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than 2000 independent basis functions included in the expan- TABLE I. The eigenenergies of thie; states withU =200 and
sion (2) are sufficient to provide solutions accurate enoughp=0.1.

for our purpose.
Once the eigenstateB, have been obtained, a detailed

analysis of them will be made. For this purpose, the hyper-

radius

é= \/%r2+§R2, 3)

and the hyperangle

R 2
ok @

are introduced. Here3 is related to the usually defined hy-
peranglea by B=sir? «. The domain ofg is from 0 to 1,
while « is from 0 to #/. The correlated-densities extracted

i=1 i=2 i=3 i=4
L=0 2.847 4.899 6.222 6.942
L=1 5.713 7.165 7.737
L=2 4511 6.535 7.999
L=3 5.220 7.228 7.631
L=4 6.370 8.192 8.364
L=5 7.294 9.301 9.483
L=6 8.000 8.338 10.001

So, the additional 0.847 arises from the hard-core repulsion.
When the center-of-mags.m) motion is taken into account,

it has been found that for some systems the lowest-energy
state of anyL series is the one where the angular momentum

below usingg as the argument is invariant under particle s all carried by the c.m. motiofL0]. This finding does not

permutations, this is the reason why we & replacea.
The volume element can be written as

.. 3
drdR=rRdrdR d¢rd¢R=§§3d§dﬁ dodor. (5

We thus can define the density function associated with th%imilarly

size of the systemi23]
23 3
p(6)= [ 1w £dpdado ©
fulfilling

f p(§)dé=1. ()

Instead of usingp, and ¢, we usefd= ¢, — ¢g and ¢r as

arguments, wheré@ is the angle between and R. Then we
define the correlated density function associated with defo
mation

3
p(a,m:f W |?5 £°d¢ dg ®)
fulfilling

f p(6,8)d6dB=1. 9

fit the present system. For example, we know from the table
that the energy difference of the Zand 0, states is 1.664.
When the ¢.m. motion is taken into account and if the angu-
lar momentum of the 2 state arises from the c.m. motion,
then the energy difference would be 2. Therefore, the lowest
L=2 state of our case cannot have the c.m. motion excited.
we can see that the lowdst 3 and 6 states can-
not have their c.m. motion excited.

It was found by Pitaevskii and Rosdl24] that two-
dimensional bosonic systems with zero-range interactions
display a breathing mode arising from tB€X2,1) symme-
try, the energy difference of adjacent breathing levels is
2hwq . Although the hard-core interaction with a finite range
is used in this paper to replace the zero-range interaction, the
feature of the 2 wq spacing remains in the spectrum. For an
example, from the table we found thd(0,)-E(0,)
=2.052 ande(0,)-E(0,)=2.043. Thus, the p, 0,, and Q,
might be the members of a breathing band. Furthermore, we
lf_1aveE(05)—E(03)=2.012, thus they might be the members
of another breathing band. We shall give further evidence on
the existence of these bands. Theu®) spacing appears also
in L#0 states. For examples, ti{L3)-E(L,) with L=1,

4, and 6, and th&(L,)-E(L,) with L=2, 3, and 5 are all
very close to 2 as shown in the table. Thus, the breathing
mode existing in the systems with zero-range interactions
might also exist in our system. This is an interesting point, it
implies that the hard core does not yield very different results
than the zero-range interaction. In fact, the energy spectra of
these two types of interaction are similar. For examples,

We shall see that the feature of geometric structure and inwhen the interactior®(b—rj;) is replaced by»/25(x;
ternal motion can be well understood via the above density-X;j) (y;—Y;) and if the strengthpy=1.2, then the calcu-

functions.

IIl. RESULTS AND DISCUSSION

All the states have the sanheconstitute & series. LeL;
denotes theéth state of el series. The energies of the low-
lying L; states withU =200 andb=0.1 are listed in Table I.
Where the ground state has an enekq,) =2.847. If the
hard-core repulsion is removed, we would hdv0,)=2.

lated energies of Pto 05 are 2.227, 4.231, 6.059, 6.241, and
8.076, respectively. Thus, just as the hard core, theo®s
states are divided into two bands. The first, second, and
fourth states belong to the lowest band, while the third and
fifth belong to a higher band.

Let us study the wave functions. It is noted tifat 0, 1/4,
1/2, 3/4 and 1 correspond ®/r =0, 1/2,v3/2, 3/2, and=,
respectively. Thus, in thed—pB plane, the point ¢,8)
=(m/2,1/2) is associated with an equilateral triangf€T),
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FIG. 1. Contour diagrams of

p(6, B) of theL=0 states with the
hard-core interactiorl =200 and
b=0.1 are assumed, The darker
area has a largen(6, B). The con-
tours are symmetric with respect
to 6=90°.
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the points(0, 3/4 and(#, 0) are both associated with a cigar peaks of thep(¢) of the 0, is located até=1.1 and 2.5,
shape with two particles located at the two ends and oneespectively. It implies that the amplitude of the breathing is
right at the middle(denoted as CG1the points(0, 1/4 and  quite large. For higher members of the (ECG1) band, the
(6, 1) are both associated with another cigar shape with tw@mplitude is even larger.

particles located at the same end while the other one at the The (6, B) of the 0; and Q states are given in Figs(d)
opposite enddenoted as CG2With this in mind, let us first 439 ge), they are also strikingly similar to each other but
observe thep(6, B) of L=0 states as plotted in Fig. 1. Figs. gifferent from those of the (E¥ CG1) band. They all have a

1(a), 1(b), and X1d) are strikingly .similar, they all have a sharp peak at an ET, and two lower peakéGat3/4 and (6,
peak at an ET and the wave function extends smoothly to thg) both associated with the cigar-shape CG1 but having dif-

Cthl' Thrertegore, ::e %ﬁomﬁ}”(’; featmuirfts :)f ﬂﬁr?? ’E?rndn%l cG erent permutations of particles at the shape. Spidep) is
states are the same, they all are a ure ofthe £1 a iHvariant with respect to particle permutation, the two lower

th_e former is more important. The¢) of them are given n peaks have exactly the same height. The trajectory from the
Fig. 2. They have one, two, and three peaks, respectlvely.h Km/2, 1/ to the | Kaf2, 0) i iated
Therefore, the breathing modine contraction and extension sharp peakmiz, . ) to the OWEr peaKm/z, .) IS associate

with a contraction of the height of an isosceles triangle

of the siz¢ is not excited in @, but is excited in @ with one . s C >
node, and is more fiercely excited in, vith two nodes. and/or_ an extension of the base. This is called a hinge mode
Since these states are highly similapit, ), the formation of OSC|IIa_t|0n[25] tha_t transforms_an ET to an CGl_, and vice
of the suggested breathing band is confirmed. Since this banfrsa. Since there is a node lying along the trajectory, the
is based on the mixture of ET and CG1, it is called an (ETiNge mode has been excited. The trajectory f(ori2, 1/2
+CG1) band. to (0, 3/4) is mainly associated with a swing Bf (a variation

It is noted that thep(é) of the 0, is peaked at=1.52,the of 6). This is called a swing mode of oscillatid25] that
associated side length of the most probable ET is also 1.52tansforms also an ET to an CG1, and vice versa. A node is
therefore, the average particle-particle separation is muchlso contained in this mode, so the swing mode is also ex-
larger than the radiu® of the hard core. This is a very cited. Thep(¢) of 03 and @; shown in Fig. 2 demonstrate that
interesting point that a well-defined geometric structure carthe breathing mode is not excited i Out excited in @.
be caused by a hard core even the radius of the core is mu@ince theirp(6, B) are highly similar, they form another
smaller than the average interparticle distance. The twdreathing band based also on the mixture of the ET and CG1

a 0; [ 0; ¢ 0; |4 . e 0

p(E)

FIG. 2. p(¢) of theL=0 states.
U=200 andb=0.1 are assumed.
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FIG. 3. Contour diagrams of
p(6, B) of the L#0 states.U
=200 andb=0.1 are assumed.
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but with the hinge mode and swing mode excited. This bandimilar p(6, 8) as shown in Fig. @), where the peaks are
is called a (E®-CG1)* band. In this band, the excited hinge peaked at a very flat isosceles triangle. Furthermorepte
mode and swing mode coexist with the breathing mode. of the 1, and 1, states are found to contain one and two

It is noted that, forL# 0 states, the ET and/or CG1 may peaks, respectively. Thus, they form the flat-triangle band.
be prohibited by symmetry. When the particles form an ET, a while the ET is not allowed in.=2 states, the CG1 is
rotation by 2r/3 about the c.m. is equivalent to a cyclic zjjowed. Thus, one would expect tHat 2 states would pre-
permutation of particles. The rotation would cause the apfer the cigar shape. This is confirmed as shown in Fig),3
pearance of a fact@ " in the wave functions, while the \yhere peaks are located at the CG1. Based on the CG1, a
permutr_;ltion would cause no effect in bosoniq systems. Th“%reathing band with the members, 2,2, .... is found (the ’
the ET is allowed only iiL=0mod 3, otherwise the wave o bandl. The 2 state is found to be a mixture of a CG1
function has to be zero at the ET. When the patrticles form And a sharp isosceles triangle as shown in Fig).3

CG1, a rotation byr is equivalent to an interchange of the While the CGL1 is not allowed i.=3 states, the ET is

two particles at the ends of the CG1. The former woul
P ou daIIowed. Thus, one would expect tHat 3 states would pre-

induce a factoe™' ™, while the latter would cause no effect .
as before. Thus, the CGL1 is allowed onlLifis even. fer the ET but deny the CGL1. In fact, the main baftide

For L=1 states, both the ET and CG1 are prohibited.loweSt bang of L=3 states is an ET band with members
Since the prohibition of a shape implies the appearance of a1-32:3 .- They have very similap(6, B) as shown in Fig.
node in the wave function at the shape, since the existence 8f®)- In the ET band, the wave functions do not extend to the
a node implies an excitation of motion, the kinetic energyCG1, thus, the ET shape is well defined. The Sate is
thereby increases. For these reasons, {hatdte is quite high found to be a mixture of an ET and a collinear structure with
in energy as shown in Table I, it is even higher than the 2 the third particle oscillating back and forth around the center
and 3, states. Thep(6, B) of the 1, state is plotted in Fig. of a cigar shape with a node at the center as shown in
3(a), there are three nodes associated with the prohibition ofig. 3(f).
the ET and CGXdue to the symmetry constraiftsand the TheL=4 and 2 states are similarly constrained by sym-
prohibition of the CG2due to the hard cojeOn the other metry. The CG1 band found ih=2 states exists also ih
hand, there are two peaks, both are associated with a very4 states. The dand 4, are members of this band as shown
sharp isosceles triang(elose to a CGR Since thep(¢, B) is  in Fig. 3(g). On the other hand, the,&nd 4; are found to be
invariant with respect to particle permutation, these twothe members of a sharp-triangle band. Incidentally, Figs. 3
peaks have exactly the same height. Furthermore, the glarirand 3g) are very similar. Thussimilarity exists not only
similarity found in theL=0 states emerges also In+0 among the states with the same L, but also among the states
states. Thep(6, B) of the 15 state is found to be strikingly with different L but similarly constrained by symmetry
similar to the one of the {state, and the(¢) of the 1, and TheL=5 and 1 states are similarly constrained by sym-
1, states contain one and two peaks, respectively. Thus, thereetry. Both the sharp-triangle band and the flat-triangle band
is a breathing band based on the sharp triangle, it is called fmund inL=1 states exist also ih=5 states. The members
sharp-triangle band. The,land 1, states have strikingly of these two bands are 5,,..., and 3,..., respectively, as
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TABLE Il. The breathing bands.

Bands Members Examples pf 0, B)
(ET+CG1) 0,, 0,, 04, ---64, 65 -- Figs. @), 2(b), 2(d), 3(k)
(ET+CG1) 03, Og, =6, 65" Figs. Zc), 2(e), 3(1)
Sharp-triangle 1, 15, --+45, 45, ---54, 55, " Figs. 3a), 3(h)
Flat-triangle L, 1, 54 Figs. 3b), 3(j)

CG1 2,25, 24,44, 43, Figs. 3¢), 3(9)

ET 31, 3, 35, Fig. (e

shown in Figs. &) and 3j). The 5; state is collinear and is p(6, B) of some selected states are plotted in Fig. 4. These
dominated by collinear oscillation with a node at the CG1 asontour diagrams are very similar to the corresponding dia-
shown in Fig. 8i). This state can be called a CGtate(here, grams in Figs. 1 and 3.

the star implies the excited oscillation existing in the cigar Since only the lower states have been investigated in this
shape. Although higher states have not been analyzed, it ipaper, in addition to the bands listed in Table Il, more bands
believed that, based on the finding of Pitaevskii and Roscliigher in energy would also exist. It was shown in Table I
[24], a CG" band characterized by the excited collinear os-that states distinct il. may belong to the same breathing
cillation would exist. Since the collinear structure has aband, they are similar ip(6, 8) and may have the same
larger moment of inertia and therefore can reduce the rotaaumber of peaks ip(£). For example, the fand 6, both

tion energy, it will appear quite often in the low-lying states belonging to the (EFCG1) band are qualitatively similar in
with a largerL. p(6, B) [refer to Figs. 1a) and 3k)], and both have a peak in

Similar to theL=0 states, both the ET and CGL1 are al- p(¢). The former is peaked af=1.52, while the latter is
lowed in L=6 states. The (EF¥CG1l) band and the peaked at=2.74, thus, the has a much bigger size. Since
(ET+CG1)* band found inL=0 states exist also ih=6  they are qualitatively similar ip(6, 8) andp(§), they can be
states. The members of the (ECG1) band are §6;,...,  further grouped in a rotation band denoted as the
as shown in Fig. &). The members of the (EFTCG1)* (ET+CG1), band, where the subscript 0 denotes that the
band are §,65,..., asshown in Fig. 8)). It is recalled that in  breathing oscillation contains zero node. Similarly, the O
the (ET+CG1)* band ofL=0 states, the peak at the ET is and 6 form a rotation band, the (EFCG1), band, contain-
higher. However, in the (EFCG1)* band ofL=6 states, ing a node in the breathing oscillation; the &nd 4, form a
the peak at the ET is small. Evidently, whiemgets larger and rotation band, the (CG$)band, containing zero node in the
larger, collinear structures will become more preferred. breathing oscillation, etc.

The breathing bands are summarized in Table Il. When It is noted that the ET and CG1 are strictly constrained by
we change the radius of the core, while the repulsive coreaymmetry, therefore, the members of the rotation band based
remains to be hard. The above findings remain true in then these shapes are strictly selected by symmetry and can be
gualitative aspect. For example Uf=1000 ancb=0.03, the  more or less predicted. For an example, the members of the

1.00

03

0.75 H
0.50

0.25

FIG. 4. Contour diagrams of
p(6, B) of the L=0 states.U
=1000 andb=0.03 are assumed.
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systemsp(6, B) should be generalized {ay(#,3) fulfilling

% f po(6,8)d0dB=1, (10)

whereQ is the component df along the third axis of a body
frame[26].

(ii) It was found that the hard core does not yield very
different results than the zero-range interaction. They have
similar spectra. Specifically, the breathing bands existing in
the systems with zero-range interactions are found to exist
also in the systems with hard-core repulsion. Furthermore,
their wave functions are also one-to-one similar.

(iii ) It is interesting to see that very clear geometric struc-
tures can be induced by the hard-core repulsion. This is true
even if the radius of the core is very small, if the core is hard
enough, and even in the case of zero-range interactions, if
) ) is large enough. Striking similarity ip(6, 8) was found to

FIG. 5. 3D surface diagrams pf¢, p) of theL=0 states with  ayist ‘among specific states, this fact is expected from the
the zero-range interactiom=12 is assumed. SO(2, 1) symmetry and leads to the formation of breathing

) bands. The internal structures of the bands can be understood
(ET+CG1), band should contain only the both ET- and py ohservingp(, B). The low-lying states can be classified
CGl-accessible states. Thus, they are expected to be thgg several bands. The character of each band and the mem-
0,,6,12,18,,..., states; while the members of the (CG1) pers of the band have been clarified.
band should contain the ET-inaccessible and CG1l-accessible (iv) The members of a breathing band may have different
states 2,41,8,,10;,...,. On theother hand, the sharp triangle | thus they can be further classified into rotation bands, e.g.,
and flat triangle are not constrained by symmetry, thus thene (ET+CG1), band. This leads to a complete classification
members of the associated bands are difficult to be foreseegeheme. The angular momenta of a rotation band is found to
For an example, the=4 and 5 states are differently con- jymp from a value to another separate valfeg., L
strained by symmetry, but they both are found in the sharp—q 6 12, ..., in the (EFCG1), band due to the symmetry
triangle bandrefer to Table 1). ~ constraints, this is a noticeable feature.

I_:or a comparison of the effects of the two types of inter- (v) The effect of symmetry is found to be great, in par-
action on wave functions, the resultsgif), ) of the Oy state  ticylar for the low-lying states. The feature p6, ) de-
with a zero-range interactiom/25(x;—x;)8(yi—Yy;) and  pends strongly on the ET and CG1 accessibility, which are
with =12 are plotted in Fig. 5. It is shown that the results getermined by symmetry. In fact, the structures of low-lying
found in Fig. 5 are qualitatively very similar to those in Fig. states can be objectively classified according to the ET and
1(a). Thus, the zero-range interaction is a good approximacG1 accessibility, thereby the classification scheme was pro-
tion to the hard-COI’e interaction. It was ShOWﬂ that the rangﬁosed_ The states Constrained in the same Way by Symmetry
of the p(6, B) in Fig. 5 is from 0.025 to 0.20. Iy is reduced  have similar structurege.g., theL=0 and 6 states, or the

to 1.2 and 0.12, the figure would remain nearly unchanged if =1 and 5 statésthese structures can be more or less pre-
the Z axis is rescaled and the range is from 0.12—-0.17, angjcted.

o0 00

from 0.155-0.160, respectively. Thus, whgns greatly re- (vi) The eigenenergies of the both ET-accessible and
duced, the distribution with respect toand 8 is close to be CG1l-accessiblé , states, namely, the,( ..., states, are
uniform. found to be relatively lower. They are the first candidates of
the ground state in a rotating bosonic system. The ET-
IV. SUMMARY accessible but CGl-inaccessible; states, namely the

We have calculated numerically the low-lying eigenstates31’91""’ states, are the second candidates. The idea of ac-

and energies for an interacting two-dimensiof@D) three- cessibility might be generalized to explain the stability of

boson system. A hard-core potential between bosons is astates of a ge_neral bosonic system, aqd therefore might ex-

sumed. We reach the following conclusions. pIgm thg magic numbers found in rotating bosonic systems.
(i) The density functiong(¢) and p(6, B) defined in this This point deserves a deeper study._ I

paper are found to be very useful in the analysis of wav Itis plan_n(_ed to extend the above investigation to the sys-

functions, the structures of low-lying states can be therefor ems containing more bosons.

well understood. Very detailed information on the eigenstates ACKNOWLEDGMENTS

of the two-dimensional trapped three-boson system with

hard-core repulsion has been obtained. To the knowledge of This work is supported by the NSFC under Grant Nos.

the authors, the correlated densityp, 8) has not yet been 90103028 and 10174098. T.Y.S. is supported in part by

calculated before. It is worthy to introduce this function in Chemical Sciences, Geosciences and Biosciences Division,

the investigation of other three-body systems, includingOffice of Basic Energy Sciences, Office of Science, U.S.

three-dimensional systems. In the cases of three-dimensionBepartment of Energy.

022508-6



EFFECT OF HARD-CORE REPULSION ON TH. ..

PHYSICAL REVIEW A 65 022508

[1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. [14] A. D. Jackson, G. M. Kavoulakis, B. Mottelson, and S. M.

Mod. Phys.71, 463 (1999.

[2] A. J. Leggert, Rev. Mod. Phyg§.3, 307 (2001J).

[3] B. Mottelson, Phys. Rev. Let83, 2695(1999.

[4] G. F. Bertsch and T. Papenbrock, Phys. Rev. L&%.5412
(1999.

[5] G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, Phys. Rev.

A 62, 063605(2000.

Reimann, Phys. Rev. Let86, 945 (2001).

[15] B. Paredes, P. Fedicheyv, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 87, 010402(2001).

[16] T. Haugset and H. Haugerud, Phys. Re\6A 3809(1998.

[17] M. A. H. Ahsan and N. Kumar, Phys. Rev. 84, 013608
(20012).

[18] W. Ketterle and N. J. van Druten, Phys. Re\b4 656(1996.

[6] G. M. Kavoulakis, B. Mottelson, and S. M. Reimann, Phys. [19] B. Tanatar and K. Erkan, Phys. Rev.6®, 053601(2000.

Rev. A63, 055602(2001).

[7] T. Nakajima and M. Ueda, Phys. Rev.68, 043610(2002.

[8] N. R. Cooper and N. K. Wilkin, Phys. Rev. BO, R16279
(1999.

[9] N. K. Wilkin and J. M. F. Gunn, Phys. Rev. Le&4, 6 (2000.

[10] N. K. Wilkin, J. M. F. Gunn, and R. A. Smith, Phys. Rev. Lett.
80, 2265(1998.

[11] R. A. Smith and N. K. Wilkin, Phys. Rev. A2, 061602R)
(2000.

[12] W.-J. Huang, Phys. Rev. 83, 015602(2000.

[13] T. Papenbrock and G. F. Bertsch, Phys. Rew63\ 023616
(2001.

[20] M. D. Girardeau and E. M. Wright, Phys. Rev. Le8t, 5239
(2000; 94, 5691(2000.

[21] M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev.
A 63, 033601(2002.

[22] T. Papenbrock and G. F. Bertsch, Phys. Rev5@& 4854
(1998.

[23] Y. Z. He and C. G. Bao, J. Phys. 83, 1641(2002.

[24] L. P. Pitaevskii and A. Rosch, Phys. RevbA, R853(1997).

[25] G. Herzberg, Molecular Spectra and Molecular Structure
(Krieger, Princeton, NJ, 1945

[26] C. G. Bao, W. F. Xie, and W. Y. Ruan, Few-Body Sy&2, 135
(1997.

022508-7



