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Spontaneous electric multipole emission in a condensed medium and toroidal moments
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The contribution of toroidal moments to the spontaneous electric emission in a continuous homogeneous
nonabsorbing condensed medium is calculated. The probability of toroidal emission of multipokdeipends
on dielectric and magnetic constants f$e) -2, 52 wheref_(¢) is the local-field factor. The linear
refractive-index dependence of the spontaneous emission probability for electric-dipole transitions in dielec-
trics in the real cavity model transforms to afh dependence in the range= 1/wag .
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The dependence of the elect(i€) and magnetidM) di-

pole spontaneous emission probability on dielecteicand Hin(t) = —ef jat DAt ()

magnetic(x) constants of a condensed medium was first pre-

dicted by Nienhuis and Alkemad@.] ACCOfding to that wheree is the electron Chargq'f’;(t,r):(pﬁ(t,r),jﬁ(t,r)) is

work theE1 andM 1 emission probabilities must increase by the currenti.e., the matrix element of the current operator

factors ofe*?u%% and €¥%u%”, respectively, in contrast with for an electron transition between initidl) and final (f)

the emission probabilities in vacuum. These results wergtated, and A,(t,r) is the vector potential of the radiation

confirmed experimentally for dielectrics in R¢R]. The for-  fie|d. The vector-potential operator and the current operator

mulas, which connect the spontaneous emission probabilityre evident in the interaction picture in E@). It is known

of arbitrary multipolarity transitiongL) in a nonabsorbing  that these operators satisfy the same equations of motion and

medium W) and in a vacuum\/,,J were obtained in Ref.  the same permutation relations as the operators of free fields

[3], in a medium in the Heisenberg pictufg]. Therefore the
field operators depend on the electronic properties of the me-
dium, where fields propagate. This enables one to take into

W= fE(e)e- Y2 VAN, (1) account the medium’s properties within the frame work of
perturbation theory for QED. Adopted system of units is
h=c=1.

WML = £2( ) -T2 L 3ANME 2) The vector part oA, (t,r) in the Coulomb gauge for the

case of photon emission can be presented Ads,r)

The functionsf| in Egs.(1) and(2) correct for a factor in the =(1|A(t,)|0), where

local field, i.e., the difference between the local fielgg, or
B\, interacting with the radiating atom, and the electromag-
netic fields in a mediunk,,, andB,, (see details in Ref§3,

4)).

The result of Refs|1,3] for electric transitions, expressed &, , is the photon creation operatar,and w are the photon
by Eq. (1), is true if the following three conditions are satis- polarization and energy, respectivelpy ,(r) are plane
fied simultaneously(a) the long-wave approximation can be waves
used in describing the emission proce$g;the medium has
relatively small values fore and u; (c) the corresponding 0\ 12
charge and magnetic transition moments of the radiating sys- Ay (r)=¢g x(_) gikr (4)
tem are nonzero. ’ T\ Ew

Now we consider electric multipole emission in a me- ) ) o
dium, which arises from toroidal transitions, and obtain a lan@"d &\ is the unit polarization vector. The factaR 7/ ew
that is analogous to Egél) and(2). Then a formula will be 1N EQ. (4 folloyvs frqm the.formula for the energy of a free
deduced for electric multipole emission in a medium with€lectromagnetic field in a medium %§(E,Dy,

An=2> 2 a5 Af (e,
k a=12 '

large values of and u. +H,Bm)d%r, and ensures the standard form for the field
The interaction Hamiltonian for the electric emission of €nergy and momentum 9peratcﬁ$6].
arbitrary multipolarityL (EL emission is derived from the The transition currenjy in Eq. (3) occurs between bound

general formula for the Hamiltonian of the interaction of the states. Therefore, angular momentum is conserved in the

current of the emitting systef(t,r) with the vector poten- transition, and one can use the standard expansion of the
tial of the radiation fieldA (x) wave function(4) in the transverse eIectriAEm(k,r) and

magneticA}, (k,r) multipole fields(see Refs[3,7]). These
fields together with the longitudinal multipole fiemfm(k,r)
*Email address: tkalya@srd.sinp.msu.ru are the vector solutions of the Helmholtz equatidA(r)
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+k?A(r)=0, and constitute a basis set. Here, the paramete§uch an approximation is not correct, because the toroidal
k= \euw is the absolute value of the photon momentkm mMoments are lost. One obtains a stricter representation for
in the medium. the electric multipole form factofJ;m¢|QE (k)|J;m;), if

The Hamiltonian for radiation in the EL mode follows one takes into account higher-order terms in the Bessel func-
from EC](S), if one substitutes in this equation the multipole tion’s expansion into a power series in E@)_(Y)
expansion for the plane wavé) [3], Toroidal moments are a familiar part of atomic-nuclear
physics now. Static toroidal moments cause parity noncon-
servation in atomssee Refs[11,12, and references thergin
arising from theP-odd part of the weak interactions. Wood
et al. measured a dipole toroidal moment of tHéCs
X(_i)L+1E Dh]s;\(gok 9,,0) n_ucleus in _the atomic S—>7§ t_ransitiqn in 199711]. The

m dipole toroidal moment coincides with the known anapole

EL . 20 1/2
Hinc() =exfli(w— wﬁ)t]e<5) [2m(2L+1)]"2

moment of Zel'dovich[13]. In the framework of classical
% f d3r AEX (k,1)js(r). (5)  Physics a dipole toroidal moment describes a curjéntin
a conventional solenoid folded into a small torus. Such a
Here wy is the transition energ)D;A(w,ﬁk,O) are Wigner f[or(.)idal solenoid has a_ring—shaped mqgnetic field situated
D functions, and the explicit form for the electric multipole |n§|de the torus and a dipole mome&D_Twaected along the
field is axis of symmetry of the torugl0,14: Q"= [d%rq", where
q'=5[r(r-j)—2r?] is a density of the toroidal moment. A
2 toroidal solenoid does not have a charge distribugiér) or
jL_1(knYEt(ny) a charge dipole momen®$,,~ fd3r p(r)rY¥,.(n;). Mag-
netic dipole moments of the ring currerq,-'g =1[r;Xj;] from
vz Lot a closed circle. Therefore, a sum of this momegi{scan be
m) JLea(KNY = (ne), (6)  expressed as a curl of some vectitris easy to prove that
g“=curlq"), and as a consequence the torus magnetic dipole
wherej (kr) are spherical Bessel functiof@], andY?(n;) moment QY ~ fd% divgMrY¥,(n,) [15] is equal to zero

AEm(k,I’)Z

2L+1

are spherical vector functior§3]. too. So, contracted to a point a toroidal solenoid does not
To evaluate the integral in Ed5) let us introduce the interact with static homogeneous fields. However a current
electric multipole form factor penetrating into a solenoifi.e., running through the point-
like toroidal solenoidl interacts with its magnetic field. This
. @L+D1 [ L \Y? amz \1? interaction enables one to find th&'Cs anapole moment in
(I1me| Qm(K)[Jimy) = e e B Ty the experimen{11]. Really, nS electronic wave functions
have large amplitudes at the origin, and, as a consequence,
3. Ex electrons in the 6 and 7S states effectively penetrate the
Xf drs(r)Arm (k1) ™ nucleus. The electromagnetic interaction between the elec-

tronic current and the nuclear dipole toroidal moment mixes
states of opposite pariti.e., SandP electronic statgsand
leads to nonzerdcl transition amplitudes between th& 6

R R and 7S states. It is significant that this interaction depends on
lim (J;my| QF (k)| Jim) =i w(Isme|QC,|Jim)), (8)  the nuclear spirunlike the usualP-odd part of the weak
k=0 interaction between electron and nuclgwnd its contribu-
tion to transitions between different hyperfine structure com-
Bonents vary12]. Thus if the static nuclear anopole moment
exists as a result of the parity nonconservation part of nuclear
forces, it can be found in hyperfine spectra of atomic transi-

With this definition the form factor goes over into the charge
multipole moment a& tends to zero,

where the standard formula is used for the charge multipol
momentg 9]

- v tions in the optical range, as was observed in the experiment
Qi QEnl3m) = 551 f drog(rYiund. ) P o P
(9) Toroidal moments of transitions could exist even if a sys-
) ) . ) tem does not have a static toroidal moments. For a very
Equations(8) and (9) are obtained easily from Eq7), if  |imited number of nuclei, the toroidal moments of transitions

one calculates the integral using the known relationcan be extracted from data on anomalous internal conversion
in the low-energy limit AF (k,r)~\(L+1)/LA{(k,r)  [16] (this is a quantum electrodynamical second-order pro-
=\J(L+1)/LIKV[j (k)Y m(n)], and by the continuity cess for the decay of a nuclear level accompanied by ejection
equation for the currej;(r) =i wspsi(r) (see details in the of an inner-shell electronThis paper will demonstrate how
Ref. [3]). In nuclear physics this reduction of the electric to find a toroidal moment contribution to the probability
form factor to the charge moment is known as Siegert's theoef ordinary atomic emission, which is a first-order QED
rem[7]. In 1974 Dubovik and CheshkoM 0] proved that process. The medium will play a leading role in this demon-
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stration. Such an overall view of toroidal moments is impor- 5 mf|Q |3m;)
tant because, as we now understand, the multipole paramet§ Lm

zation of an arbitrary system of charges and currents is not i [ 4w \1? 12 3 Lot yL_1*
complete without the toroidal momer{ts0]. =5lot71) \i11 d>rjg(Or="" Yim ™ (ny)
Toroidal multipole form factors are introduced according "
to the relation10,1 2 L *
o tavslirn) Yo <”r>)- 12
AE _: AC _
(I1me| QL (K) [ Jimy) =i w5 Isme| Q| Jymy) This result enables one to make a more accurate param-

o AT etrization in the Hamiltonian for radiation of the EL mode in
+ik*(Irme| Qm(K)[Jim;). (10) Eq. (5),

The explicit form for(Jsm¢| Q[ (k)|J;m;) is easily obtained. ikl L1\ Y22 41\ 12
The auxiliary relation follows from Eqg7) and (8), if one J d3rA,_m(k Niju(r)= TSI 7 )
expands the Bessel functign_;(kr) in the range&kr<1 and 2L+ m
neglects the function, , ,(kr) in Eq. (6), @ R
X F<mef|QEm|Jimi>
f (Mg Q| Jimy) = V47T|—f dsrjfi(r)rL_lYtr;l*(nr)- .
+ k<mef|QIm|Jimi>) 13

Extracting this result from Eq7) one derives an exact equa-
tion for the toroidal form factors in the rangekr<1.
As was pointed out in Ref§14,10, (previously it had
been established by Blatt and Weisskpph]), electric mul-

(3sme| Q[ (K)|3my) tipole emission is possible even gf;=0, i.e., if all charge
multipole moments are equal to zero. Now it is evident from
L+n! [ L \Y?Y axm Eq. (13).
Tl L+1 2L+1 The first-order element of th& matrix can be written

through the interaction Hamiltonian Eq(5) as SiV

3. vz =i [dtHEL(t) [9]. The probability of spontaneous emission,

x| dria(r) 2L+1 Ju-a(kn) or a radiative width, is calculated in the framework of QED
from the formula[9]

Lo VLFTVRLAT|

—(kr) ORI Yim~ (Ny) 1 |S§1 12 g3k
1/2 2J +lml mp A 77);'
N L+1%
2L+1 JLea(knYim™ ()| 1D wheretis a large, but finite time intervalt is canceled out

with an analogous interval, which arises in the numerator
The toroidal multipole moment&J;m¢|Q,|3im;) result  together with the 2r8(w— wy) from the|S{M|? as result of
from Eg. (11) in the limit of k—0. Expanding the Bessel integration over the timg9]).
functions  j _q(kr)~(kn-"Y/(2L—1)11(1— (kn?/[2(2L The final formula for the EL emission in a nonabsorbing
+1)]) andj 4, (kr)~(kr)-"1/(2L+3)!! [8] one obtains medium is

Re(J¢| QIR I QENII:) + Im(IIQ[ [ I Im( 3¢ QT 3;)
(I QEN 3y 2

WE':fE(E)ELlleHl/ZW%c(C)( 1+2weu

o2 2M2|<Jf||oz|u>|2> »

(I QENI)I2

where(J;| Q|| J;) are the reduced matrix elements for mul- imaginary parts, anW=L{<) is the regular emission probabil-
tipole moments(9) and (12), Re and Im are the real and ity in vacuum connected with the charge transitjéh
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~ 10
WeLo 2 AL TDELED) QeI 10
vac L[(2L+1)!1]? 2J+1 10
Suppose we have an emitting system with toroidal transi- 2, 10%
tion moments only(One can imagine, for example, a quan- B \
tum system with a dipole toroidal moment such as a molecu- 5, 10
lar wheel, where spins are added vectorially to the ring by E 10°]
analogy with magnetic moments of ring currenf$ of the
type described aboveln this case the spontaneous emission 10° . , . .
probability in a nonabsorbing medium is 10’ 10' 10’ 10° 10*
n
WELT = £2( ¢) b+ 312, L+ 50202 2(L+1)(2L+ 1) w2 +3 FIG. 1. Plot of\_/V,'il/WE_jq as a function of the refractive index
m LL(2L+1)! ] for a typical atomic transition in the optical range. The plot corre-

AT ) sponds to a real cavity. The plot for a virtual cavity can be obtained
« I(IAQLIII 15 by multiplying by a factor~n*.
23 +1

From Eq.(19) it follows that a medium changes the sponta-nance for some values of the parametess and y. More

neous emission probability for toroidal transitions byafactorparticma”y these problems were investigated later in the

f(e)e-+32u-52 This is even stronger than for magnetic Refs.[20, 21] both for real and virtual cavity models.

transitiong compare with Eq(2)]. This is a result of the fact The strong dependence of t LT one and u [see Eq.

that toroidal moments arise in the next higher order of{kr) (15)] enables one to try an experiment for observation of the

than do the charge transition moments in the parametrizatiogyroidal transition contribution to the electric-dipole sponta-

process of the integrajld3rAE,:(k,r)jﬁ(r) in Eq. (7). neous emission. The toroidal moments in ELR) have the
The functionf, (¢) for toroidal transitions coincides with dimensionsr-*%, whereas the charge moments in E§)

the function for electric transitions calculated in R&. For  have the dimensiong-. So, the toroidal term in the E¢14)

the real (R) [4] and virtual () [17] cavity models these becomes equal approximately to the charge term in the range

functions are eu~1lwa, where thea is a characteristic size of the emit-
ting system. If an atom emits an optical range photon, then

R . €2L+1) . eL+L+1 a=ag, whereag is the Bohr radius. Inside a dielectric me-
fie)= e(L+1)+L’ 't S TRT dium, for example, in the real cavity model the known linear

refractive-index  dependence WE-/WEL=n  becomes
Effects of local fields on spontaneous emission in dieIectrinEqL/W\%C: n® in the rangen=1/\/wag. Respectively in the

media were investigated in detail experimentafigr small  yjirtyal cavity model the dependenwé:-/WEL =n° becomes

values of the refractive index) [2,18] and theoretically \yEL\WEL ~® vac
. . . - m ! VWyac : _
[4,19-23 in recent years. In nonabsorbing dielectrics the The 1/7 —1/2* and =<0~ atomic transitions are suit-

: Ry2 __ 2 2 2 Vy2 _ 2
funct|or215 f)°=[3n%(2n"+1)]° and  (f1)"=[(n able for experimental investigation of the dipole toroidal mo-
+2)/3]” modify the decay rate additionally by a factors 1.8 ment contribution to théE1 emission, because there is no

and 4, respectively, even ii=2. At large values of the  \ component in such transitions. Using the curf@jt
asymptotic behavior of the local-field correction factors are

(fR2~[(2L+1)/(L+1)]?> and (f))?>~n*[L/(2L+1)]>

That is, the virtual cavity modifies the spontaneous emission ; )— LSOV (D) =TV o ()1 (r +&V
rate appreciably at large unlike the behavior for a real Ja(r) 2mel Wi V=V (1G] es
cavity. NI

As for absorption dielectrics the local-field correction fac- X[o5 (N8P ],

tors are crucially important too. This was first pointed out by

Burnett, Huttner, and Loudofil9]. According to their re- wherem,, u., ands are the electron mass, magnetic mo-
sults, one should make the substitutiohge)?— |f,(¢€)|? ment, and spin, respectively, one can calculate the spontane-
ande'?>—n in Eq. (1) for anE1 transition in a nonmagnetic ous emission probability. A typical plot df\/ﬁllw\',zalC as a
(n=1) absorbing dielectric, whene is the real part of the function of the refractive inder for the real cavity model is
refractive index. Burnett and co-workers considered a virtuashown in Fig. 1. The plot corresponds to an atomic transition
cavity and demonstrated a key role of the fadta(e)|? is  with an energy in the range 2—3 eV. The curvature of the line
modifying the spontaneous emission rate by considering thies in the rangen=500—1000.

example of a simple model dielectric constafwb) based on In conclusion, the formulas obtained describe the sponta-
a single medium resonance at the frequenagy e(w)=1  neous emission in a medium due to toroidal moments, the
+ w%/(w%— w’—iyw), wherewp is the plasma frequency of third fundamental family of multipole moments that belong
the dielectric, andy is the loss coefficient. It was found that in a class with the charge and magnetic ones. The strong
the factorn|f,(€)|? can take on large values near the reso-dependence of the toroidal transition probability on the me-
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dium’s electronic properties provides an opportunity for de-the €%.7/2 effect in materials already in existence.

tecting a corresponding electromagnetic emission in atomic

E1 transitions, especially if one takes into account the recent . )

rapid progress in the engineering of media with controlled This work was supported partly by the Russian Founda-
properties. On the other hand, the development of “Spin_rindion for Basic Research, Grant No. 01-02-16199, and Grant

radiators” will enable us to find “toroidal'E1 emission and

No. 00-15-96651 in support of the leading scientific schools.
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