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Spontaneous electric multipole emission in a condensed medium and toroidal moments
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The contribution of toroidal moments to the spontaneous electric emission in a continuous homogeneous
nonabsorbing condensed medium is calculated. The probability of toroidal emission of multipolarityL depends
on dielectric and magnetic constants asf L

2(e)eL13/2mL15/2, where f L(e) is the local-field factor. The linear
refractive-index dependence of the spontaneous emission probability for electric-dipole transitions in dielec-
trics in the real cavity model transforms to ann5 dependence in the rangen*1/vaB .
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The dependence of the electric~E! and magnetic~M! di-
pole spontaneous emission probability on dielectric~e! and
magnetic~m! constants of a condensed medium was first p
dicted by Nienhuis and Alkemade@1#. According to that
work theE1 andM1 emission probabilities must increase
factors ofe1/2m3/2 ande3/2m5/2, respectively, in contrast with
the emission probabilities in vacuum. These results w
confirmed experimentally for dielectrics in Ref.@2#. The for-
mulas, which connect the spontaneous emission probab
of arbitrary multipolarity transitions~L! in a nonabsorbing
medium (Wm) and in a vacuum (Wvac) were obtained in Ref.
@3#,

Wm
EL5 f L

2~e!eL21/2mL11/2Wvac
EL , ~1!

Wm
ML5 f L

2~m!eL11/2mL13/2Wvac
ML. ~2!

The functionsf L in Eqs.~1! and~2! correct for a factor in the
local field, i.e., the difference between the local fieldsEloc or
Bloc interacting with the radiating atom, and the electroma
netic fields in a mediumEm andBm ~see details in Refs.@3,
4#!.

The result of Refs.@1,3# for electric transitions, expresse
by Eq. ~1!, is true if the following three conditions are sati
fied simultaneously:~a! the long-wave approximation can b
used in describing the emission process;~b! the medium has
relatively small values fore and m; ~c! the corresponding
charge and magnetic transition moments of the radiating
tem are nonzero.

Now we consider electric multipole emission in a m
dium, which arises from toroidal transitions, and obtain a l
that is analogous to Eqs.~1! and~2!. Then a formula will be
deduced for electric multipole emission in a medium w
large values ofe andm.

The interaction Hamiltonian for the electric emission
arbitrary multipolarityL ~EL emission! is derived from the
general formula for the Hamiltonian of the interaction of t
current of the emitting systemj fi

n(t,r ) with the vector poten-
tial of the radiation fieldAn(x)
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H int~ t !52eE j fi
n~ t,r !An~ t,r !d3r , ~3!

wheree is the electron charge,j fi
n(t,r )5„rfi(t,r ),j fi(t,r )… is

the current@i.e., the matrix element of the current operat
for an electron transition between initial~i! and final ~f!
states#, and An(t,r ) is the vector potential of the radiatio
field. The vector-potential operator and the current opera
are evident in the interaction picture in Eq.~3!. It is known
that these operators satisfy the same equations of motion
the same permutation relations as the operators of free fi
in a medium in the Heisenberg picture@5#. Therefore the
field operators depend on the electronic properties of the
dium, where fields propagate. This enables one to take
account the medium’s properties within the frame work
perturbation theory for QED. Adopted system of units
\5c51.

The vector part ofAn(t,r ) in the Coulomb gauge for the
case of photon emission can be presented asA(t,r )
5^1uÂ(t,r )u0&, where

Â~ t,r !5(
k

(
l51,2

âk,l
1 Ak,l* ~r !eivt,

âk,l
1 is the photon creation operator,l andv are the photon

polarization and energy, respectively,Ak,l(r ) are plane
waves

Ak,l~r !5ek,lS 2p

ev D 1/2

eikr , ~4!

andek,l is the unit polarization vector. The factorA2p/ev
in Eq. ~4! follows from the formula for the energy of a fre
electromagnetic field in a medium 1/8p*(EmDm
1HmBm)d3r , and ensures the standard form for the fie
energy and momentum operators@3,6#.

The transition currentj fi
n in Eq. ~3! occurs between bound

states. Therefore, angular momentum is conserved in
transition, and one can use the standard expansion of
wave function~4! in the transverse electricALm

E (k,r ) and
magneticALm

M (k,r ) multipole fields~see Refs.@3,7#!. These
fields together with the longitudinal multipole fieldALm

Y (k,r )
are the vector solutions of the Helmholtz equationDA(r )
©2002 The American Physical Society04-1
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1k2A(r )50, and constitute a basis set. Here, the param
k5Aemv is the absolute value of the photon momentumk
in the medium.

The Hamiltonian for radiation in the EL mode follow
from Eq.~3!, if one substitutes in this equation the multipo
expansion for the plane wave~4! @3#,

H int
EL~ t !5exp@ i ~v2vfi!t#eS 2p

ev D 1/2

@2p~2L11!#1/2

3(2 i )L11(
m

Dml
L* ~wk ,qk,0!

3E d3rALm
E* ~k,r !j fi~r !. ~5!

Herevfi is the transition energy,Dml
L (wk ,qk,0) are Wigner

D functions, and the explicit form for the electric multipo
field is

ALm
E ~k,r !5S L11

2L11D 1/2

j L21~kr!YLm
L21~nr !

2S L

2L11D 1/2

j L11~kr!YLm
L11~nr !, ~6!

where j L(kr) are spherical Bessel functions@8#, andYJm
L (nr)

are spherical vector functions@7#.
To evaluate the integral in Eq.~5! let us introduce the

electric multipole form factor

^Jfmf uQ̂Lm
E ~k!uJimi&5

~2L11!!!

kL21 S L

L11D 1/2S 4p

2L11D 1/2

3E d3r j fi~r !ALm
E* ~k,r !. ~7!

With this definition the form factor goes over into the char
multipole moment ask tends to zero,

lim
k→0

^Jfmf uQ̂Lm
E ~k!uJimi&5 ivfi^Jfmf uQ̂Lm

C uJimi&, ~8!

where the standard formula is used for the charge multip
moments@9#

^Jfmf uQ̂Lm
C uJimi&5S 4p

2L11D 1/2E d3rrfi~r !r LYLM* ~nr !.

~9!

Equations~8! and ~9! are obtained easily from Eq.~7!, if
one calculates the integral using the known relat
in the low-energy limit ALm

E (k,r )'A(L11)/LALm
Y (k,r )

5A(L11)/L1/k“@ j L(kr)YLm(nr)#, and by the continuity
equation for the current¹ j fi(r )5 ivfirfi(r ) ~see details in the
Ref. @3#!. In nuclear physics this reduction of the electr
form factor to the charge moment is known as Siegert’s th
rem @7#. In 1974 Dubovik and Cheshkov@10# proved that
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such an approximation is not correct, because the toro
moments are lost. One obtains a stricter representation

the electric multipole form factor̂Jfmf uQ̂Lm
E (k)uJimi&, if

one takes into account higher-order terms in the Bessel fu
tion’s expansion into a power series in Eqs.~6!–~7!.

Toroidal moments are a familiar part of atomic-nucle
physics now. Static toroidal moments cause parity nonc
servation in atoms~see Refs.@11,12#, and references therein!
arising from theP-odd part of the weak interactions. Woo
et al. measured a dipole toroidal moment of the133Cs
nucleus in the atomic 6S→7S transition in 1997@11#. The
dipole toroidal moment coincides with the known anapo
moment of Zel’dovich@13#. In the framework of classica
physics a dipole toroidal moment describes a currentj (r ) in
a conventional solenoid folded into a small torus. Such
toroidal solenoid has a ring-shaped magnetic field situa
inside the torus and a dipole momentQT directed along the
axis of symmetry of the torus@10,14#: QT5*d3rqT, where
qT5 1

10 @r (r "j )22r 2j # is a density of the toroidal moment. A
toroidal solenoid does not have a charge distributionr(r ) or
a charge dipole momentQ1m

C ;*d3rr(r )rY1m* (nr). Mag-
netic dipole moments of the ring currentsqi

M5 1
2 @r i3 j i# from

a closed circle. Therefore, a sum of this momentsqM can be
expressed as a curl of some vector~it is easy to prove that
qM5curlqT!, and as a consequence the torus magnetic dip
moment Q1m

M ;*d3r div qMrY1m* (nr) @15# is equal to zero
too. So, contracted to a point a toroidal solenoid does
interact with static homogeneous fields. However a curr
penetrating into a solenoid~i.e., running through the point
like toroidal solenoid! interacts with its magnetic field. This
interaction enables one to find the133Cs anapole moment in
the experiment@11#. Really, nS electronic wave functions
have large amplitudes at the origin, and, as a conseque
electrons in the 6S and 7S states effectively penetrate th
nucleus. The electromagnetic interaction between the e
tronic current and the nuclear dipole toroidal moment mix
states of opposite parity~i.e., S andP electronic states! and
leads to nonzeroE1 transition amplitudes between the 6S
and 7S states. It is significant that this interaction depends
the nuclear spin~unlike the usualP-odd part of the weak
interaction between electron and nucleus!, and its contribu-
tion to transitions between different hyperfine structure co
ponents vary@12#. Thus if the static nuclear anopole mome
exists as a result of the parity nonconservation part of nuc
forces, it can be found in hyperfine spectra of atomic tran
tions in the optical range, as was observed in the experim
@11#.

Toroidal moments of transitions could exist even if a sy
tem does not have a static toroidal moments. For a v
limited number of nuclei, the toroidal moments of transitio
can be extracted from data on anomalous internal conver
@16# ~this is a quantum electrodynamical second-order p
cess for the decay of a nuclear level accompanied by ejec
of an inner-shell electron!. This paper will demonstrate how
to find a toroidal moment contribution to the probabili
of ordinary atomic emission, which is a first-order QE
process. The medium will play a leading role in this demo
4-2
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stration. Such an overall view of toroidal moments is imp
tant because, as we now understand, the multipole param
zation of an arbitrary system of charges and currents is
complete without the toroidal moments@10#.

Toroidal multipole form factors are introduced accordi
to the relation@10,14#

^Jfmf uQ̂Lm
E ~k!uJimi&5 ivfi^Jfmf uQ̂Lm

C uJimi&

1 ik2^Jfmf uQ̂Lm
T ~k!uJimi&. ~10!

The explicit form for^Jfmf uQ̂Lm
T (k)uJimi& is easily obtained.

The auxiliary relation follows from Eqs.~7! and ~8!, if one
expands the Bessel functionj L21(kr) in the rangekr!1 and
neglects the functionj L11(kr) in Eq. ~6!,

ivfi^Jfmf uQ̂Lm
C uJimi&5A4pLE d3r j fi~r !r L21YLm

L21* ~nr !.

Extracting this result from Eq.~7! one derives an exact equa
tion for the toroidal form factors

^Jfmf uQ̂Lm
T ~k!uJimi&

52 i
~2L11!!!

kL21 S L

L11D 1/2S 4p

2L11D
3E d3r j fi~r !F S S L11

2L11D 1/2

j L21~kr!

2~kr!L21
AL11A2L11

~2L11!!! DYLm
L21* ~nr !

2S L

2L11D 1/2

j L11~kr!YLm
L11* ~nr !G . ~11!

The toroidal multipole momentŝJfmf uQ̂Lm
T uJimi& result

from Eq. ~11! in the limit of k→0. Expanding the Besse
functions j L21(kr)'(kr)L21/(2L21)!! „12(kr)2/@2(2L
11)#… and j L11(kr)'(kr)L11/(2L13)!! @8# one obtains
l-
d

02250
-
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ot

^Jfmf uQ̂Lm
T uJimi&

5
i

2 S 4p

2L11D 1/2S L

L11D 1/2E d3r j fi~r !r L11S YLm
L21* ~nr !

1
2

2L13 S L

L11D 1/2

YLm
L11* ~nr ! D . ~12!

This result enables one to make a more accurate par
etrization in the Hamiltonian for radiation of the EL mode
Eq. ~5!,

E d3rALm
E* ~k,r !j fi~r !5

ikL

~2L11!!! S L11

L D 1/2S 2L11

4p D 1/2

3S v

k
^Jfmf uQ̂Lm

C uJimi&

1k^Jfmf uQ̂Lm
T uJimi& D ~13!

in the rangekr!1.
As was pointed out in Refs.@14,10#, ~previously it had

been established by Blatt and Weisskopf@15#!, electric mul-
tipole emission is possible even ifrfi50, i.e., if all charge
multipole moments are equal to zero. Now it is evident fro
Eq. ~13!.

The first-order element of theS matrix can be written
through the interaction Hamiltonian Eq.~5! as Sfi

(1)

5 i *dtHint
EL(t) @9#. The probability of spontaneous emissio

or a radiative width, is calculated in the framework of QE
from the formula@9#

W5
1

2Ji11 (
m1 ,mf ,l

E uSfi
~1!u2

t

d3k

~2p!3 ,

wheret is a large, but finite time interval~t is canceled out
with an analogous interval, which arises in the numera
together with the 2pd(v2vfi) from the uSfi

(1)u2 as result of
integration over the time@9#!.

The final formula for the EL emission in a nonabsorbi
medium is
Wm
EL5 f L

2~e!eL21/2mL11/2Wvac
EL~C!S 112vem

Rê Jf iQ̂L
TiJi&Rê Jf iQ̂L

CiJi&1Im^Jf iQ̂L
TiJi&Im^Jf iQ̂L

CiJi&

u^Jf iQ̂L
CiJi&u2

1v2e2m2
u^Jf iQ̂L

TiJi&u2

u^Jf iQ̂L
CiJi&u2D , ~14!
l-
where^Jf iQ̂L
T,CiJi& are the reduced matrix elements for mu

tipole moments~9! and ~12!, Re and Im are the real an

imaginary parts, andWvac

EL(C) is the regular emission probabi
ity in vacuum connected with the charge transition@9#
4-3
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Wvac
EL~C!5e2

2~L11!~2L11!

L@~2L11!!! #2 v2L11
u^Jf iQ̂L

CiJi&u2

2Ji11
.

Suppose we have an emitting system with toroidal tran
tion moments only.~One can imagine, for example, a qua
tum system with a dipole toroidal moment such as a mole
lar wheel, where spins are added vectorially to the ring
analogy with magnetic moments of ring currentsqi

M of the
type described above.! In this case the spontaneous emiss
probability in a nonabsorbing medium is

Wm
EL~T!5 f L

2~e!eL13/2mL15/2e2
2~L11!~2L11!

L@~2L11!!! #2 v2L13

3
u^Jf iQ̂L

TiJi&u2

2Ji11
. ~15!

From Eq.~15! it follows that a medium changes the spon
neous emission probability for toroidal transitions by a fac
f L

2(e)eL13/2mL15/2. This is even stronger than for magnet
transitions@compare with Eq.~2!#. This is a result of the fac
that toroidal moments arise in the next higher order of (k2

than do the charge transition moments in the parametriza

process of the integral*d3rALm
E* (k,r ) j fi(r ) in Eq. ~7!.

The functionf L(e) for toroidal transitions coincides with
the function for electric transitions calculated in Ref.@3#. For
the real ~R! @4# and virtual (V) @17# cavity models these
functions are

f L
R~e!5

e~2L11!

e~L11!1L
, f L

V~e!5
eL1L11

2L11
.

Effects of local fields on spontaneous emission in dielec
media were investigated in detail experimentally@for small
values of the refractive indexn! @2,18# and theoretically
@4,19–22# in recent years. In nonabsorbing dielectrics t
functions (f 1

R)25@3n2/(2n211)#2 and (f 1
V)25@(n2

12)/3#2 modify the decay rate additionally by a factors 1
and 4, respectively, even ifn52. At large values ofn the
asymptotic behavior of the local-field correction factors a
( f L

R)2;@(2L11)/(L11)#2 and (f L
V)2;n4@L/(2L11)#2.

That is, the virtual cavity modifies the spontaneous emiss
rate appreciably at largen unlike the behavior for a rea
cavity.

As for absorption dielectrics the local-field correction fa
tors are crucially important too. This was first pointed out
Burnett, Huttner, and Loudon@19#. According to their re-
sults, one should make the substitutionsf 1(e)2→u f 1(e)u2

ande1/2→n in Eq. ~1! for anE1 transition in a nonmagneti
(m51) absorbing dielectric, wheren is the real part of the
refractive index. Burnett and co-workers considered a virt
cavity and demonstrated a key role of the factoru f 1(e)u2 is
modifying the spontaneous emission rate by considering
example of a simple model dielectric constante~v! based on
a single medium resonance at the frequencyv0 : e(v)51
1vP

2 /(v0
22v22 igv), wherevP is the plasma frequency o

the dielectric, andg is the loss coefficient. It was found tha
the factornu f 1(e)u2 can take on large values near the res
02250
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nance for some values of the parametersvP and g. More
particularly these problems were investigated later in
Refs.@20, 21# both for real and virtual cavity models.

The strong dependence of theWm
EL(T) on e andm @see Eq.

~15!# enables one to try an experiment for observation of
toroidal transition contribution to the electric-dipole spon
neous emission. The toroidal moments in Eq.~12! have the
dimensionsr L11, whereas the charge moments in Eq.~9!
have the dimensionsr L. So, the toroidal term in the Eq.~14!
becomes equal approximately to the charge term in the ra
em;1/va, where thea is a characteristic size of the emi
ting system. If an atom emits an optical range photon, th
a.aB , whereaB is the Bohr radius. Inside a dielectric me
dium, for example, in the real cavity model the known line
refractive-index dependence Wm

EL/Wvac
EL .n becomes

Wm
EL/Wvac

EL .n5 in the rangen*1/AvaB. Respectively in the
virtual cavity model the dependenceWm

EL/Wvac
EL .n5 becomes

Wm
EL/Wvac

EL .n9.
The 1/22↔1/21 and 16↔07 atomic transitions are suit

able for experimental investigation of the dipole toroidal m
ment contribution to theE1 emission, because there is n
M2 component in such transitions. Using the current@9#

j fi~r !5
1

2mei
$c f* ~r !“c i~r !2@“c f* ~r !#c i~r !%1

me

es
“

3@c f* ~r !ŝc i~r !#,

whereme , me , ands are the electron mass, magnetic m
ment, and spin, respectively, one can calculate the spont
ous emission probability. A typical plot ofWm

E1/Wvac
E1 as a

function of the refractive indexn for the real cavity model is
shown in Fig. 1. The plot corresponds to an atomic transit
with an energy in the range 2–3 eV. The curvature of the l
lies in the rangen.500– 1000.

In conclusion, the formulas obtained describe the spon
neous emission in a medium due to toroidal moments,
third fundamental family of multipole moments that belon
in a class with the charge and magnetic ones. The str
dependence of the toroidal transition probability on the m

FIG. 1. Plot ofWm
E1/Wvac

E1 as a function of the refractive indexn
for a typical atomic transition in the optical range. The plot cor
sponds to a real cavity. The plot for a virtual cavity can be obtain
by multiplying by a factor;n4.
4-4
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dium’s electronic properties provides an opportunity for d
tecting a corresponding electromagnetic emission in ato
E1 transitions, especially if one takes into account the rec
rapid progress in the engineering of media with control
properties. On the other hand, the development of ‘‘spin-r
radiators’’ will enable us to find ‘‘toroidal’’E1 emission and
tt
H.

-

,

.

t.

L
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the e5/2m7/2 effect in materials already in existence.
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