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Powerful effective one-electron Hamiltonian for describing many-atom interacting systems
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In this paper, we present an alternative way to build the effective one-electron picture of a many-atom
interacting system. By simplifying the many-body general problem we present two different options for the
bond-pair model Hamiltonian. We have found that the successive approximations in order to achieve the
effective description have a dramatic influence on the result. Thus, only the model that introduces the correct
renormalization in the diagonal term due to the overlap is able to reproduce, even in a quantitative fashion, the
main properties of simple homonuclear diatomic molecules. The success of the model resides in the accurate
definitions~free of parametrization! of the Hamiltonian terms, which, therefore, could be used to describe more
complex interacting systems such as polyatomic molecules, adsorbed species, or atoms scattered by a surface.
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I. INTRODUCTION

The interaction between two atoms can be thought o
the fundamental knowledge in the study of many-atom in
acting systems. Thus, a model able to describe intricate
tems such as polyatomic molecules, adsorbed species, o
oms scattered by surfaces, in terms of a superposition
bond-pair interactions, becomes a very desirable objec
Most of the theoretical approaches concerning molec
modeling have put efforts to incorporating effects beyond
effective one-electron picture@1–3#. However, in this work
we will show that lots of important ingredients reside at t
effective one-electron picture level when the approximatio
are properly made.

Consequently, we are going to concentrate on the wa
building a consistent model, which, starting from the
emental atom-atom interaction, provides a good basis for
description of more complex systems. The basic ideas of
model have already been presented and employed
quantum-chemistry calculations@4#, in adsorption @5,6#,
~chemical and physical! and dynamical-charge-exchang
processes@7,8#. Nevertheless, further analysis of the chem
cal features involved in the model~such as molecular-orbita
symmetries, electronic configurations, etc.!, have not been
explored at present. No comparative analysis of the two p
sibilities that we have to build an effective Hamiltonian h
been extensively discussed before. In this work we prog
in this sense, and we find that the successive approximat
in order to achieve a good effective model, have a mean
ful influence on the results.

In order to verify the capabilities of the proposal, we c
culate the properties of very simple homonuclear dimers
compare our results with other standard and powerful th
1050-2947/2002/65~2!/022503~9!/$20.00 65 0225
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retical formalisms such as the local-spin-density approxim
tion ~LSDA! and the full-electron unrestricted Hartree-Fo
~HF! molecular-orbital~MO! calculations. In addition, we
show that, contrarily to these methods, our proposal provi
an overall description of the interaction process within
wide range of atom-atom separation distances, including
bonding and dissociation of atoms through the formation
molecular-orbital states.

This paper is organized as follows: in Sec. II we pres
the theoretical aspects of the alternative options of the ma
body Hamiltonian for a two-atom interacting system, and
mean-field approximations performed in each case. In S
III the full-electron self-consistent calculation of the prope
ties of diatomic molecules is described, while in Sec. IV t
results for the homonuclear dimers of the first row are d
cussed and compared with the ones obtained from the LS
and the usual MO calculations, and also with the experim
tal findings. Section V is devoted to the concluding remar

II. THEORY

A. A model for the atom-atom interaction

Our starting point is the second-quantized version of
many-body electronic Hamiltonian including electro
electron repulsion

Ĥ5 (
i , j ,s

t i j ĉis
1 ĉ j s1 (

i , j ,k,l ,s,s8
v i jkl ĉis

1 ĉ j s8ĉks
1 ĉls8 , ~1!

where the indexi denotes the orthonormal atomic basis s
$f i% and n̂i5 ĉi

1ĉi is the fermionic number operator. Th
parameters of the one- and two-electron terms of the Ha
tonian are
©2002 The American Physical Society03-1
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t i j 5K f i~r !U2 1

2
¹ r

22(
a

Za

ur 2RauUf j~r !L , ~2!

and

v i jkl 5 K f i~r !f j~r 8!U 1

ur 2r 8uUfk~r !f l~r 8!L . ~3!

The following step is to neglect all terms involving fou
different spin-orbital states, except those related with sp
flip terms such asĉ j 2s

1 ĉi 2sĉis
1 ĉ j s , and the result of this

approximation is a many-body Hamiltonian written as a
perposition of bond pairs

Ĥ5(
i ,s

F« i1
1

2
Uin̂i 2s1

1

2 (
j Þ i

~Ji j n̂ j 2s1Gi j n̂j s!G n̂is

1 (
iÞ j ,s

F T̂i j
s 1

1

2
Ji j

x ĉ j 2s
1 ĉi 2sG ĉis

1 ĉ j s . ~4!

Here we have introduced the hopping operatorT̂i j
s ,

T̂i j
s 5t i j 1(

k
@hk,i j n̂k2s1~hk,i j 2hk,i j

x !n̂ks#, ~5!

and we have defined according with Eqs.~2! and ~3!: « i

5t i i , Ui5v i i i i , Ji j 5v i j i j , Ji j
x 5v i i j j , Gi j 5Ji j 2Ji j

x , hk,i j

5vkik j , andhk,i j
x 5vki jk .

Now we can perform a mean-field approximation of E
~4! by decoupling in the standard way the many-body ope
tors. The one-electron effective Hamiltonian obtained in t
form corresponds to option I.

The orthonormal basis set$f i% is constructed by follow-
ing the symmetric orthogonalization procedure@9#,

f i5(
j

~11S! i j
21/2w j , ~6!

wherew j is the atomic orbital~j labels both, the the type o
orbital and the atom site! and the overlap matrix elements a
defined bySi j 5^w j uw j&2d i j .

We will see now that the overlap provides an importa
guideline to construct an effective Hamiltonian that r
sembles the correct features consistently with the o
electron picture. On the other hand, the convenience of
basis set is based on two important concluding remarks
phasized in the Lo¨wdin’s work @9#: ~i! for an effective one-

electron Hamiltonian operator Hˆ
eff , the problem of solving

the secular equations including the overlap integrals Sij can
be reduced to the same form as it has in the simplified the

that neglects the overlap if the matrix Hˆ
eff is replaced by the

matrix Ĥeff5(11S)21/2Ĥeff(11S)21/2. (ii) The solution of the
problem of constructing the molecular orbitals, when taki
the overlap integrals into consideration, is the same as if
consider the orthonormalized functions given by Eq. (6).

It is found that the diagonal term of an one-electr
Hamiltonian has to respond to the following express
when a second-order overlap expansion is performed@10#:
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02(

j
Si j t i j 1

1

2 (
j

Si j
2 ~« i

02« j
0!, ~7!

where the super-index 0 denotes that the calculation of
respective parameter must be evaluated as in Eq.~2! but after
replacing the orthonormal basis set by the atomic one. H
the one-electron hoppingt i j is maintained in the orthonorma
basis set. If now, in the many-body Hamiltonian given by E
~4!, we expand up to second order in the atomic overlap
the parameters, except the hopping operatorsT̂i j

s , and retain
consistently only those terms that lead to a superposition
bond-pair interactions, we arrive at option II of the man
body Hamiltonian. An expression completely equivalent
Eq. ~4! is obtained,

ĤII 5(
i ,s

F «̂̃ is1
1

2
Ũ i n̂i 2s1

1

2 (
j Þ i

~ J̃i j n̂ j 2s1G̃i j n̂ j s!G n̂is

1 (
iÞ j ,s

F T̂i j
s 1

1

2
J̃i j

x c̃ j 2s
1 ĉi 2sG ĉis

1 ĉ j s, ~8!

where now the different terms are redefined in accorda
with

«̂̃ is5« i
02(

j
Si j T̂i j

s 1
1

4 (
j

Si j
2 DÊi j

s , ~9a!

DÊi j
s 5S « i

01(
k

Jik
0 n̂k2s1(

kÞ j
Gik

0 n̂ksD
2S « j

01(
k

Jjk
0 n̂k2s1(

kÞ i
Gjk

0 n̂ksD ,

Ũ i5Ui
02(

j
Si j

2 Ji j
x0, ~9b!

J̃i j 5Ji j
0 2Si j

0 Ji j
x0, ~9c!

G̃i j 5~Ji j
0 2Ji j

x0!~11Si j
2 !, ~9d!

J̃i j
x 5Ji j

x02(
k

~Sikhjik
x0 1Sjkhi jk

x0 !1(
k

~Sjk
2 Jik

x01Sik
2 Jjk

x0!

1
3

4 (
k

~Sik
2 Ji j

x01Sjk
2 Ji j

x0!1
1

2
Si j

2 ~Ji j
x01Ji j

0 !. ~9e!

One can see from Eqs.~9a! and ~9b! that the diagonal
term of the effective one-electron Hamiltonian has the sa
renormalization by overlap than the expression~7!, but now
involving also the two-electron interaction terms.

It is worth to note here that in this option II:~i! we have
not changed the basis of the problem,ĉis

1 andĉ j s operate on
the orthonormal basis set yet;~ii ! the expressions given b
Eqs. ~9a!–~9e! are not simply the expansion up to seco
order in the overlap of each parameter, but these arise fro
3-2
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reordering of the different terms in order to achieve the
duced overlap renormalizations expected within a correct
fective one-electron picture.

Option II also offers the possibility of extending th
model to large systems. The remaining question of how
hopping parameters defined within an orthonormal basis
are calculated in these cases was solved by constraining
orthogonalization to a dimeric subspace, this approxima
being justified through a proposed treatment of the thr
center integrals@11,5#.

As in option I, the following step is to perform a mea
field approximation of Eq.~8! leading to an one-electron-lik
description. The typical expression of the effective electro
Hamiltonian in the second-quantized language is~in the Ap-
pendix we show the details of the mean-field approximat
performed in both options!

Ĥeff
I ,II 5(

is
z is

I ,II n̂is1 (
iÞ j ,s

~Vi j ,sĉis
1 ĉ j s1H.c.!. ~10!

The final expressions for the diagonal parameterz is
I ,II are

z is
I 5« is1Ui^ni 2s& I1(

j Þ i
~Ji j ^nj 2s& I1Gi j ^nj s& I !

1(
kÞ j

@hik j^ck2s
1 cj 2s& I1~hik j2hik j

x !^cks
1 cj s& I #,

~11!

z is
II 5^«̂̃ is&1Ũ i^ni 2s& II 1(

j Þ i
~ J̃i j ^nj 2s& II 1G̃i j ^nj s& II !

1(
kÞ j

@hik j^ck2s
1 cj 2s& II 1~hik j2hik j

x !^cks
1 cj s& II #.

~12!

The symbol̂ «̂̃ is& indicates that the number operatorsn̂is
have been replaced by their corresponding average va

^n̂is& in the Eq. ~9a!. The contributions2Si j ^T̂i j
s & and

1/4Si j
2 ^DÊi j

s & in the definition of^«̂̃ is& reflect the important
effect of the overlap in the renormalization of the diagon
parameters. It is straightforward to see that onlyz is

II re-
sembles the overlap expansion of the one-electron prob
being this a direct consequence of the reordering done in
many-body version of option II@Eq. ~8!#. This is not the
case of Ĥeff

I , where the mean-field approximation is pe
formed before doing any expansion in the overlap. In con
quence the correct renormalizations2Si j ^T̂i j

s & and

1/4Si j
2 ^DÊi j

s & of the diagonal terms are not recovered wh
the overlap expansion is afterwards performed. This f
makes an important difference betweenĤeff

I andĤeff
II in such

a way thatĤeff
I is not able to describe the binding of atoms

practically all the homonuclear dimers analyzed, whileĤeff
II

gives systematically a good description, as we are goin
see in the forthcoming sections.
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III. SELF-CONSISTENT FULL-ELECTRON HF
CALCULATION

In the HF approximation, the ground state is described
a single determinantuF& constructed by occupying with th
N electrons the lowest-energy one-electron molecular-orb
states~MOs! $Cas%. These MOs are expanded in the orth
normal atomic basis$f i%,

Cas5(
i

ai
asf i ,

and consequently the density-matrix elements are given

r i j
s 5 (

a occ
ai

as* aj
as5^ ĉis

1 ĉ j s&,

where^ĉis
1 ĉ j s& denotes the average value on the ground s

uF& of the fermionic operators creating and destroying el
trons in the orthonormalized atomic states.

The self-consistent procedure starts at the separate a
limit for which the charge configuration is known:r i j

s 5d i j

for the occupied atomic states, andr i j
s 50 otherwise. The

initial atomic-charge configurations follow from the applic
tion of Hund’s rules to each atom for ensuring good dis
ciation products; and the spin componentŜz of the molecule
is selected by pairing the corresponding spin states of
atoms forming the dimer. For decreasing internuclear d
tances, the inputsr i j

s are taken as the corresponding se
consistent output values of the preceding point. In this fo
we are constructing the molecule up from the properties
the constituent atoms, and the self-consistency is achie
more efficiently. Asr i j

↑ is different fromr i j
↓ in general, the

procedure employed is an unrestricted HF calculation.
The more appropriate minimal basis set of an atom is

set of the HF atomic orbitals. In the present work we use
HF atomic basis set calculated in terms of Gaussian-t
orbitals ~GTOs! by Huzinaga@12#.

The total energy of the two-atom~AB! system is calcu-
lated for each internuclear distanceR5uRA2RBu as

EA2B~R!5 (
as occ

eas2@X#1
ZAZB

R
,

whereeas are the eigenvalues of the corresponding occup
MOs and@X# symbolizes the whole set of terms to be su
stracted according with the mean-field approximation, a
the last term is the nucleus-nucleus repulsion.

The interaction energy between atomA and atomB is
defined as

Eint~R!5EA2B~R!2~EA1EB!,

being EA and EB the total energies of the isolated atomsA
andB, respectively.

The magnitudes chosen to characterize each dimer are
binding energy (Eb), the equilibrium distance (Re) and the
vibrational frequency (ve). The Eb and Re values are ob-
tained directly from the interaction energy curveEint(R),
3-3



of

e

io

l-
-
F
o

l th

ic
by
au
o

an
i

tiv
e
th
th

te
o-

s

s
ry

the

i-
ls,

lar-
the
tive
hy-

are

o-

as

n-
nt
m

u-
en-
on
e

s
i-
e
y

tom
ses

n

LUGO, VERGARA, BOLCATTO, AND GOLDBERG PHYSICAL REVIEW A65 022503
while ve is evaluated from the harmonic approximation
the Morse potential that fits the calculated results.

IV. RESULTS AND DISCUSSION

The energy interaction curvesEint(R) for Li2, Be2, B2,
C2, N2, and O2 were calculated and compared with the on
obtained by Painter and Averill@13# within the local-spin-
density approximation by using the exchange-correlat
functional parametrized by Vosko, Wilk, and Nusair@14#
~LSDA-VWN!; and also with a quantum-chemistry MO ca
culation~QCMO! @15#. This last option, QCMO, was calcu
lated with theGAUSSIAN98code selecting an unrestricted H
approximation and using the same GTOs basis set that in
model calculation. Here, we present and discuss in detai
results obtained for N2 ~Fig. 1! and C2 ~Fig. 2!, the discus-
sion for the other systems is similar. The first point to not
from Figs. 1 and 2, is the good dissociation limit shown
our calculated curves, this being an expected result bec
the noninteracting atoms are the input for our calculation
Eint(R). With the only exception of Li2, option I and the
QCMO calculations are unable to describe the binding
show a loss of continuity in the self-consistent procedure
some cases. On the other hand, option II of the effec
Hamiltonian provides satisfactory results for all the analyz
dimers. Besides, our results compare quite good with
LSDA energy curves, in the range of distances where
comparison is possible.

It is also important to remark that the nonpolar charac
of the bonding is only ensured by option II in all the hom
nuclear dimeric systems.

In Table I, we summarize the equilibrium propertiesEb ,
Re , andve that were extracted from the interaction curve
We include also the results of theXa model @16#, and the
experimental values@17#. We can observe that the value
obtained from option II for each property are in ve

FIG. 1. Interaction energy for the N2 system.~ ! option II of
the effective Hamiltonian,~ ! option I of the effective Hamil-
tonian, ~• • • •! unrestricted HF MO calculation,~ • • • !
LSDA calculation from Ref.@13#.
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good agreement with the experimental values and with
theoretical results from the LSDA andXa . The major dis-
agreement is in the Be2 system, in which there is not exper
mental evidence of its stability but all the theoretical mode
including ours, predict a stable molecule.

A. About the ground state of the molecule by using an
effective Hamiltonian

We will discuss here the results concerning the molecu
orbital properties of the ground state. First, we remark
differences between the one-electron picture and an effec
one. In the one-electron description and considering un
bridization between 2s and 2p states, it is expected that:~i!
in the separated atom limit, the energies of the up states
equal to the down states for each atom~ii ! the two atoms are
indistinguishables, i.e., the exchange ofA and B does not
modify the relative weight of each atomic state in the m
lecular orbital;~iii ! in the C2 and N2 systems, the electronic
configuration follows an ordering in energy such
(1sg)(1su)(2sg)(2su)(1pu)(3sg) @18#.

Due to the electronic Coulomb repulsion within a mea
field approximation, the effective scheme is clearly differe
from the one-electron one. For simplicity we analyze fro
the expressions ofz is

I ,II @Eqs. ~11! and ~12!# only how the
Ji j ^nj 2s& term acts. This kind of term represents the co
lomb repulsion between the electronic charge density c
tered on thei state and another charge density centered
the j state. This positive contribution will renormalize th
atomic-energy level with spins, when thej state is occupied
with an electron with spin2s. In an open-shell atom such a
nitrogen, the maximum multiplicity requirement leads to ub
cate the threep electrons with the same spin projection, w
say up. Hence, the downp states feel the repulsion given b
Ji j ^nj↑&, but not the upp states sincênj↓& are equal to zero.
This reasoning is also valid for thes states. In Figs. 3 and 4
we show the electronic configurations of the separate a
and bounded situations for each spin projection in the ca

FIG. 2. Interaction energy for the C2 system. The same as i
Fig. 1.
3-4
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TABLE I. Binding energy (Eb) is expressed in eV, equilibrium distance (Re) in a.u., and frequency (ve)
in cm21.

Option I Option II LSDA Xa QCMO Expt.

Li 2 Re 5 4.5 5.12 5.12 5.4 5.05
Eb 0.36 0.42 1.01 0.21 1.03
ve 350 347 336 351

Be2 Re 4 4.63 4.58
Eb 0.86 0.5 0.43
ve 684 362 484

B2 Re 3.81 3 3.03 3.03 5.2 3.04
Eb 0.39 5.32 3.93 3.79 2.9
ve 1095 1082 1078 1051

C2 Re 2.3 2.36 2.36 2.5 2.35
Eb 6 7.19 6 6.2
ve 1781 1869 1955 1857

N2 Re 2.6 2 2.08 2.08 2.25 2.07
Eb 10.66 11.34 9.09 9.91
ve 2927 2387 2429 2358

O2 Re 2.1 2.31 2.28 2.5 2.28
Eb 5 7.54 7.01 5.2
ve 1756 1536 1610 1580
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of N2 and C2 molecules, respectively. We can observe t
the effective picture yields necessarily an asymmetric sit
tion even for homonuclear molecules and, therefore, the
bridization betweens- and p-states is unavoidable. There
fore, the relative ordering ofs and p molecular states can
change, varying also in this form their bonding or antibon
ing character.

In both options the electronic configurations of the is
lated atoms are the input in our calculation. The good dis
ciation limit is obtained by obeying the Hund’s rule in ea
atom. The eigenstates ofĤeff

I,II are also eigenstates of theŜz

component of the total spin operator, but they are not ofŜ2.
Then, for the case of partially filled shells in the atoms
can choose either a maximum or a minimum multiplic
state for the molecule.

1. Dimer N2

The 1Sg spectral term for the ground state of N2 is ob-
tained in this form by starting the self-consistent calculat
with the following electronic configuration~the molecule is
oriented along the z axis!: N(1s22s22px↑2py↑2pz↑)
1N(1s22s22px↓2py↓2pz↓). This is the only possible deter
minantal configuration for describing the good dissociat
limit. Thus, our calculation implies basically an unrestrict
self-consistent MO calculation in the cases of open-s
atoms.

However, in Fig. 3 we see that for the equilibrium di
tance (R.2 a.u.), the MOs as linear combinations of t
orthonormalized atomic orbitals result to be equal for
two-spin components. The starting unrestricted MO calcu
tion becomes a restricted one near the equilibrium dista
when it has been imposedSz50 for the state of the mol-
ecule. From the comparison between Figs. 3~a! and 3~b! we
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can observe that although the separate atom limit is the s
for both options, the resulting MOs are quite different. O
tion II gives systematically MO energies lower than tho
given by option I for all the molecular states. In addition, t
ordering of (3sg) and (1pu) is exchanged.

In the one-electron picture, it is usual to define a quali
tive quantity, the bond order, as the difference between bo
ing and antibonding electrons divided by two@19#; the value
of the bond order being larger for more strongly bound
molecules. Taking this qualitative idea, we see that in opt
II there are eight bonding electrons and two antibonding a
consequently the number of bonds is three. On the o
hand, in option I, the bonding or antibonding character
each MO is less clear, but it seems that the (3sg) MO has an
antibonding character which favors a reduction of the bo
order ~and its binding energy!.

2. Dimer C2

In the C2 molecule the situation is more comple
from both, the theoretical and the experimental points
view. The spectroscopy data indicates the existence o
strong band in the visible~the Swan band! related with
the transition from a3Pu state to a3Pg state for C2 vapor
@20#. Then, the molecular symmetry indicates th
the corresponding electronic configuration should
(1sg)2(1su)2(2sg)2(2su)2(1pu)3(3sg)1. This configura-
tion comes evidently from the electron-electron interactio
such ordering not being possible in the one-electron pictu
A 3Pu state can be achieved from the followin
electronic configuration in the separate-atom lim
C(1s22s22px↑2py↑)1C(1s22s22px↓2pz↓). The curves in
Fig. 2 and the values in Table I correspond to this config
ration. In Figs. 4~a! and 4~b! we show the energy-leve
3-5
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LUGO, VERGARA, BOLCATTO, AND GOLDBERG PHYSICAL REVIEW A65 022503
scheme for both options of calculation. Here, the power
the effective-field description is clearly evidenced. Ea
electron feels a different mean field, and in consequence,
possible to find a situation in which the 3sg-down electron
has lower energy than the 1pu one, but the contrary is true
for up electrons. Regarding the comparison between the
options of calculation, we conclude the same that in the2
molecule, option I gives systematically higher molecular e
ergies and the MO (3sg) has an antibonding characte
which may be indicative of a nonbounded situation due
the reduction of the bond order.

In the one-electron description, the crossover po
between (1pu) and (3sg) orbitals is close to the stabil

FIG. 3. MO energy scheme for the separate atom and boun
situations for the N2 system.~a! Option II of the effective Hamil-
tonian; ~b! option I of the effective Hamiltonian. Left panel corre
sponds to up electrons and right panel to down electrons.
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ity position of the molecule. Then, a1Sg state for the
C2 molecule arising from a configuration such
(1sg)2(1su)2(2sg)2(2su)2(1pu)4 is another possibility to
be analyzed. In fact, this state is observed in the C2 spectrum,
but because of the selection rules, the relative position to
3Pu state is unknown@21#. A 1Sg state can be prepared i
two ways. One of this is~obviously px can be exchanged
by py!: C(1s22s22px↑2pz↑)1C(1s22s22px↓2pz↓). The
binding energy obtained with this configuration
Eb59 eV, and the electronic configuration
(1sg)2(1su)2(2sg)2(2su)2(3sg)2(1pu)2. The MO energy

ed
FIG. 4. MO energy scheme for the separate atom and boun

situations for the3Pu spectral term of C2. ~a! Option II of the
effective Hamiltonian;~b! option I of the effective Hamiltonian.
Left panel corresponds to up electrons and right panel to do
electrons.
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scheme is included in Fig. 5~a!. The other electronic configu
ration that also fulfills the symmetry requirement
C(1s22s22px↑2py↑)1C(1s22s22px↓2py↓). In this case we
obtain a binding energy around 3 eV and the electronic c
figuration is (1sg)2(1su)2(2sg)2(2su)2(1pu)4. The corre-
sponding energy-level scheme is included in Fig. 5~b!.
Therefore, from these results one concludes that a comb
tion of equally weighted initial configurations that provid
the correct dissociation products has to be the more ap
priate proposal. In this way a binding energy between 3

FIG. 5. MO energy scheme for the separate atom and boun
situations for the 1Sg spectral term of C2. ~a!
(1sg)2(1su)2(2sg)2(2su)2(3sg)2(1pu)2 electronic configura-
tion; ~b! (1sg)2(1su)2(2sg)2(2su)2(1pu)4 electronic configura-
tion. Both results from option II. Left panel corresponds to u
electrons and right panel to down electrons.
02250
-

a-

o-
V

and 9 eV would be expected for the C2 molecule, but this
means to do interaction of configurations that is out of
scope of this work.

B. Energy parameters and transferability to more complex
systems

The main difference between the two options resides
the approximation of the diagonal term of the Hamiltoni
z is . The hopping term is essentially the same, the diff
ences come only from the self-consistent calculation. In F
6 we show the evolution ofz is

I andz is
II for i 52s, 2px , and

2pz states of the N atom in the homonuclear dimeric syste
Consistently with the previous results, it is observed that
repulsive contribution in option I is stronger than in optio
II. This fact is then reflected in a nonbounded situation
the molecule described by option I. From the point of vie
of the transference of these Hamiltonian parameters to m
complex systems, as for instance, dynamical resonant
cesses of charge transfer between a moving atom and a
face ~atom-surface scattering processes!, the energy terms
calculated by either one or another model Hamiltonian c
lead to very different results for the final charge states of
atom @22#. The resonant mechanism of charge transfer
pends strongly on the variation of the energy atom level w
respect to the band-energy levels of the surface. Then
accurate description of the energy Hamiltonian paramete
necessary for ensuring a good description of the dynam
process. And the way we have to decide for the best ca
lation of the Hamiltonian parameters is through an exha
tive study of the atom-atom interaction in dimeric system
In this sense we argue that a good mean-field descriptio
option II for the many-body Hamiltonian, which retains th
basic physics, is an appropriate model to describe the in
action in many-atom systems.

V. CONCLUSIONS

A many-body Hamiltonian written in a second quantiz
language and using a symmetrically orthonormalized ba

ed

FIG. 6. Diagonal terms of the Hamiltonian for 2s, 2px , and 2pz

states of the N atom in the homonuclear dimeric system. Optio
~full symbols!; option I ~empty symbols!.
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set allows to introduce the correct renormalizations by
overlap in the diagonal terms of the effective one-elect
Hamiltonian. This effective Hamiltonian responds to a sup
position of bond-pair interactions, with diagonal and non
agonal terms well defined up from the one-and two-elect
integrals defined within the atomic basis set. It was sho
through the study of diatomic molecules, that the corr
renormalizations of the diagonal terms by the overlap
pected within a one-electron picture, and the consiste
with a bond-pair interaction model maintained when t
overlap expansion is performed, ensure a very good bala
between the repulsive and attractive contributions in the s
consistent calculation of the total energy of the system.
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APPENDIX: MEAN-FIELD APPROXIMATION

The one-electron effective Hamiltonians within the tw
options I and II are constructed by performing a mean-fi
approximation over the many-body Hamiltonians given
Eqs. ~4! and ~8!, respectively. The typical expression of th
effective Hamiltonian,

Ĥeff5(
is

z isn̂is1 (
iÞ j ,s

~Vi j ,sĉis
1 ĉ j s1H.c.!1Vn2n ,

is obtained by the following procedure in each case.

1. Option I

A complete mean-field approximation is performed ov
the all two-electron terms of Eq.~4! arriving to the corre-
sponding HF version with the Hamiltonian parameters
fined as

z is
I 5« i1Ui^ni 2s&1(

j Þ i
~Ji j ^nj 2s&1Gi j ^nj s&!

1(
kÞ j

@hik j^ck2s
1 cj 2s&1~hik j2hik j

x !^cks
1 cj s&#,
C

y

02250
e
n
r-
-
n
n
t
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y

ce
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o

d

r
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Vi j ,s
I 5^T̂i j

s &2Gi j ^cj s
1 cis&1Ji j

x ^ci 2s
1 cj 2s&

2(
k

@~hik j2hik j
x !^cks

1 cis&1~hjik2hjik
x !^cj s

1 cks&#,

where

^T̂i j
s &5t i j 1(

k
@hki j^nk2s&1~hki j2hki j

x !^nks&#.

2. Option II

Here, a mean-field calculation is also performed over
two-electron terms of Eq.~8!, except the«̂̃ isn̂is terms that
are considered within the average form^«̂̃ is&n̂is . The ex-
pressions found for the diagonal and off-diagonal terms
Ĥeff are in this case

z is
II 5^«̂̃ is&1Ũ i^ni 2s&1(

j Þ i
~ J̃i j ^nj 2s&1G̃i j ^nj s&!

1(
kÞ j

@hik j^ck2s
1 cj 2s&1~hik j2hik j

x !^cks
1 cj s&#,

Vi j ,s
II 5^T̂i j

s &2G̃i j ^cj s
1 cis&1 J̃i j

x ^ci 2s
1 cj 2s&

2(
k

@~hik j2hik j
x !^cks

1 cis&1~hjik2hjik
x !^cj s

1 cks&#,

where^«̂̃ is& is defined as

^«̂̃ is&5« i
02(

j
Si j ^T̂i j

s &1
1

4 (
j

Si j
2 ^DÊi j

s &,

with

^DÊi j
s &5S « i

01(
k

Jik
0 ^n̂k2s&1(

kÞ j
Gik

0 ^n̂ks& D
2S « j

01(
k

Jjk
0 ^n̂k2s&1(

kÞ i
Gjk

0 ^n̂ks& D ,

and thê T̂i j
s & have the same formal expression as in option
ys.

J.

s.

C.
@1# P. Hohenberg, and W. Kohn, Phys. Rev.136, B864 ~1964!; W.
Kohn and L. J. Sham, Phys. Rev.140, A1133 ~1965!.

@2# J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,
3865 ~1996!.

@3# F. Ruette, A. Sierraalta, and A. Hernandez, inQuantum Chem-
istry Approaches to Chemisorptions and Heterogeneous
talysis, edited by F. Ruette~Kluwer, Dordrecht, 1992!.

@4# P. G. Bolcatto, E. C. Goldberg, and M. C. G. Passeggi, Ph
Rev. A50, 4643~1994!.
a-

s.

@5# P. G. Bolcatto, E. C. Goldberg, and M. C. G. Passeggi, Ph
Rev. B58, 5007~1998!.

@6# P. G. Bolcatto, E. C. Goldberg, and M. C. G. Passeggi,
Phys.: Condens. Matter12, 8369~2000!.

@7# Evelina A. Garcı´a, P. G. Bolcatto, and E. C. Goldberg, Phy
Rev. B52, 16 924~1995!.

@8# Evelina A. Garcı´a, P. G. Bolcatto, M. C. G. Passeggi, and E.
Goldberg, Phys. Rev. B59, 13 370~1999!.
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