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Powerful effective one-electron Hamiltonian for describing many-atom interacting systems
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In this paper, we present an alternative way to build the effective one-electron picture of a many-atom
interacting system. By simplifying the many-body general problem we present two different options for the
bond-pair model Hamiltonian. We have found that the successive approximations in order to achieve the
effective description have a dramatic influence on the result. Thus, only the model that introduces the correct
renormalization in the diagonal term due to the overlap is able to reproduce, even in a quantitative fashion, the
main properties of simple homonuclear diatomic molecules. The success of the model resides in the accurate
definitions(free of parametrizatiorof the Hamiltonian terms, which, therefore, could be used to describe more
complex interacting systems such as polyatomic molecules, adsorbed species, or atoms scattered by a surface.
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[. INTRODUCTION retical formalisms such as the local-spin-density approxima-
tion (LSDA) and the full-electron unrestricted Hartree-Fock
The interaction between two atoms can be thought of aéHF) molecular-orbital(MO) calculations. In addition, we
the fundamental knowledge in the study of many-atom intershow that, contrarily to these methods, our proposal provides
acting systems. Thus, a model able to describe intricate sy&n overall description of the interaction process within a
tems such as polyatomic molecules, adsorbed species, or dfide range of atom-atom separation distances, including the
oms scattered by surfaces, in terms of a superposition dtonding and dissociation of atoms through the formation of
bond-pair interactions, becomes a very desirable objectivénolecular-orbital states. _
Most of the theoretical approaches concerning molecular ThiS paper is organized as follows: in Sec. Il we present
modeling have put efforts to incorporating effects beyond théhe theoretical aspects of the alternative options of the many-
effective one-electron pictuf—3]. However, in this work ~Pody Hamiltonian for a two-atom interacting system, and the
we will show that lots of important ingredients reside at theMean-field approximations performed in each case. In Sec.
effective one-electron picture level when the approximationd!! the full-electron self-consistent calculation of the proper-
are properly made. ties of diatomic molecules is described, while in Sec. IV the

Consequently, we are going to concentrate on the way diesults for the homonucllear dimers of thg first row are dis-
building a consistent model, which, starting from the el-cussed and compared Wlth the ones obtalned from the _LSDA
emental atom-atom interaction, provides a good basis for th@nd the usual MO calculations, and also with the experimen-
description of more complex systems. The basic ideas of thial findings. Section V is devoted to the concluding remarks.
model have already been presented and employed in
quantum-chemistry calculationg4], in adsorption [5,6], Il. THEORY
(chemical and physicaland dynamical-charge-exchange
processe$7,8]. Nevertheless, further analysis of the chemi-
cal features involved in the mod&uch as molecular-orbital ~ Our starting point is the second-quantized version of the
symmetries, electronic configurations, gthave not been many-body electronic Hamiltonian including electron-
explored at present. No comparative analysis of the two poslectron repulsion
sibilities that we have to build an effective Hamiltonian has
been extensively discgssed before. In this_ work we progress E tijéitréjo"' 2 Uijkléitréja’él:—oéla’ Y
in this sense, and we find that the successive approximations, i,
in order to achieve a good effective model, have a meaning-
ful influence on the results. where the index denotes the orthonormal atomic basis set

In order to verify the capabilities of the proposal, we cal-{¢#;} and f;=¢&¢&; is the fermionic number operator. The
culate the properties of very simple homonuclear dimers angarameters of the one- and two-electron terms of the Hamil-
compare our results with other standard and powerful thecotonian are

A. A model for the atom-atom interaction

i,j.k 1,00
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1 zZ, _ 1
tij:<¢i(f) —EVf—g =R, ¢j(r)>u 2 Sizsio_; thj"’i; Si(e) &), (7)
and where the super-index 0 denotes that the calculation of the
respective parameter must be evaluated as inZdut after
Vig = ()i (1) —— () (1)) . 3 replacing the orthonormal basis set by the atomic one. Here
i <¢'( () Ir—r’| )il )> ® the one-electron hoppirtg is maintained in the orthonormal

basis set. If now, in the many-body Hamiltonian given by Eq.

The following step is to neglect all terms involving four 4 \we expand up to second order in the atomic overlap all
different spin-orbital states, except those related with Spmfhe arameters. excent the hoppina operatdrs and retain
flip terms such a€” ,¢&_,&.,&j,, and the result of this P ’ b Pping operalds

Lo o L : consistently only those terms that lead to a superposition of
approximation Is a many—body Hamiltonian written as a Su'bond-pair interactions, we arrive at option Il of the many-
perposition of bond pairs body Hamiltonian. An expression completely equivalent to
Eq. (4) is obtained,

11 ) .
e+ =Uif_ + 52 (JijRj- o+ Gijj,)

FI:E I,’\]io’
i,o 2 j#i . 1. 1 B B
. AN=2 18, +5T0ih o+ 5 2 (J”ﬁ,_g+G,,ﬁw)}ﬁ,U
-0 PN PN A+ A io ]#i
ﬂ;m Tij+§‘]ixjcj+—oci—o CioCio 4 .
~ + . 2 TIO]—+ E’jlxj’ér— 0’6| - éitrejo" (8)
Here we have introduced the hopping operatgr, 1)

o R < where now the different terms are redefined in accordance
Tij:tij"'Ek [h,ij M- ot (hiij = hicij) ke ®)  with

and we have defined according with Eq2) and (3): &;
=ti, Ui=oiii, Jij=vijij, Jij=viij» Gij=Jij—Jj, Ny
= Ukikj» andh)lz,ijzvkijk-

Now we can perform a mean-field approximation of Eq. .
(4) by decoupling in the standard way the many-body opera- AEfj=
tors. The one-electron effective Hamiltonian obtained in this
form corresponds to option |.

The orthonormal basis s€t;} is constructed by follow- -
ing the symmetric orthogonalization proced(igs,

. .1 .
zi,,:s?—; sﬂT;JmZ}j) STAET, (9a)

0 0~ 0~
€ +§k: Jik”k—ﬁf% Giknko)

0 0 a 0 A
SJ- +2k ijnk,0.+|§i ijnk0.>,

$i=2, (1+9); Y2;, (6) Di=u?—2 Sl (9b)
]

where g; is the atomic orbitalj labels both, the the type of N _ 10 _ 0 qx0

AL : . Jij=Ji;— S;jJij (90
orbital and the atom sijend the overlap matrix elements are
defined byS;;={(¢i|¢.)— &; - -

We will see <noj\|/v Jt%at the overlap provides an important Gij=(IF IO (1+S)), (9d)
guideline to construct an effective Hamiltonian that re-
sembles the correct features consistently with the one- . . 0 5 0 2 %0
electron picture. On the other hand, the convenience of this Jij=Jjj —; (Skhjik+sjkhijk)+; (Sjidik + Sikdji
basis set is based on two important concluding remarks em-
phasized in the Ledin’s work [9]: (i) for an effective one- ) 0 w2 oo Lo 0 0
electron Hamiltonian operator kt, the problem of solving + ZE,(: (Sikdij” + Sjidij ) + Esﬂ'(‘lij +Jip)- (%9
the secular equations including the overlap integrajsc&n
be reduced to the same form as it h:its in the simplified theory one can see from Eq€9a) and (9b) that the diagonal
that neglects the overlap if the matrix.fis replaced by the term of the effective one-electron Hamiltonian has the same
matrix Hor=(1+9 Y?Hx(1+S Y2 (ii) The solution of the renormalization by overlap than the expressi@) but now
problem of constructing the molecular orbitals, when takinginvolving also the two-electron interaction terms.
the overlap integrals into consideration, is the same as if we It is worth to note here that in this option If) we have
consider the orthonormalized functions given by Eq. (6). not changed the basis of the probledyj, and¢;,, operate on

It is found that the diagonal term of an one-electronthe orthonormal basis set ydti) the expressions given by
Hamiltonian has to respond to the following expressionEgs. (98—(9e) are not simply the expansion up to second
when a second-order overlap expansion is perforpdéd order in the overlap of each parameter, but these arise from a

w
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reordering of the different terms in order to achieve the in- Ill. SELF-CONSISTENT FULL-ELECTRON HF
duced overlap renormalizations expected within a correct ef- CALCULATION
fective one-electron picture.

Option I also offers the possibility of extending the
model to large systems. The remaining question of how th
hopping parameters defined within an orthonormal basis s
are calculated in these cases was solved by constraining t
orthogonalization to a dimeric subspace, this approximatio
being justified through a proposed treatment of the three-
center integral$11,5]. V.= at e,

As in option 1, the following step is to perform a mean- !
field approximation of Eq(8) leading to an one-electron-like
description. The typical expression of the effective electroni
Hamiltonian in the second-quantized languagérighe Ap-
pendix we show the details of the mean-field approximation pi= > ai‘*"* af”:(ergew%
performed in both options a occ

In the HF approximation, the ground state is described by
single determinaritb) constructed by occupying with the
%electrons the lowest-energy one-electron molecular-orbital
ates(MOs) {V¥,,}. These MOs are expanded in the ortho-

rpormal atomic basi§¢;},

Cand consequently the density-matrix elements are given by

where(g;,,¢;,,) denotes the average value on the ground state
Al =2 4i'fie+ 2 (Vi .88, TH.c). (100  |®) of the fermionic operators creating and destroying elec-
' %o trons in the orthonormalized atomic states.
The self-consistent procedure starts at the separate atom

The final expressions for the diagonal paramétgl are limit for which the charge configuration is knowp{} = &;
for the occupied atomic states, apd =0 otherwise. The
O o=, Uini_ )+ > (5N o)+ Gij (N o)) initial atomic-charge configurations follow from the applica-
J#i tion of Hund’s rules to each atom for ensuring good disso-

ciation products; and the spin compon&tof the molecule
+ 2 [hi(Ci oCi— o'+ (N = N {(CoCi)' T, is selected by pairing the corresponding spin states of the
k#] atoms forming the dimer. For decreasing internuclear dis-
(11)  tances, the inputg; are taken as the corresponding self-
consistent output values of the preceding point. In this form
~ _ ~ ~ we are constructing the molecule up from the properties of
=G+ 0n_ )"+ 2 (- ) +Gij(nj )™ the constituent atoms, and the self-consistency is achieved
17 more efficiently. Asp]; is different fromp}; in general, the
. | . . | procedure employed_is an _unrestricte_d HF calculation._
+|;< [hikj{Ck=oCj-o) + (igj— ikj)<ckocja> 1. The more appropriate minimal basis set of an atom is the
’ set of the HF atomic orbitals. In the present work we use the
(12 HF atomic basis set calculated in terms of Gaussian-type
orbitals (GTO9 by Huzinagda12].
The symbok;,) indicates that the number operatdrs The total energy of the two-atorfAB) system is calcu-
have been replaced by their corresponding average valudated for each internuclear distanBe=|Ry— Rg| as

(fi,) in the Eg. (9a). The contributions—Sjﬁ{}) and
1/4S5(AE) in the definition of(%;,,) reflect the important Eag(R)= X €,,—[X]+
effect of the overlap in the renormalization of the diagonal a0 oce

parameters. It is straightforward to see that oijly re-

sembles the overlap expansion of the one-electron problen‘{"heree“” are the eigenvalues of the corresponding occupied

being this a direct consequence of the reordering done in thIXIOs and[X] sy_mboli;es the whole set of terms to pe sub-
many-body version of option I[Eq. (8)]. This is not the stracted according with the mean-field approximation, and

~ i o the last term is the nucleus-nucleus repulsion.
case ofHgy, where the mean-field approximation is per-  tnq interaction energy between atotnand atomB is

formed before doing any expansion in the overlap. In consegefined as
guence the correct renormalizations- 31-('1'{]7} and

1/4S5(AE{) of the diagonal terms are not recovered when Ein(R)=Ea-s(R) — (Ea+ Ep),
the overlap expansion is afterwards performed. This fact

. : - AN being E, and Eg the total energies of the isolated atoms
Il A B
makes an important difference betweep,; andH in such andB, respectively.

a way thatH is not able to describe the binding of atomsin - The magnitudes chosen to characterize each dimer are the
practically all the homonuclear dimers analyzed, WPhJIIéf binding energy E,), the equilibrium distanceR,) and the
gives systematically a good description, as we are going twibrational frequency ¢.). The E, and R, values are ob-

see in the forthcoming sections. tained directly from the interaction energy curtg«(R),

Zalg
R

022503-3



LUGO, VERGARA, BOLCATTO, AND GOLDBERG PHYSICAL REVIEW A65 022503

T 20
10 -
15
5+ i
10
E 0r % 5
ui u_ig
5 | 0r
.5 -
-10 .
— 7T 77— 77T 7 -10 A 1 A 1 N 1 . 1 . ] R 1 .
1.0 15 20 25 30 35 40 45 50 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
Rla.u.] Rla.u]
FIG. 1. Interaction energy for the Nystem.(—) option Il of FIG. 2. Interaction energy for the ,Gystem. The same as in
the effective Hamiltonian(— — —) option | of the effective Hamil-  Fig. 1.
tonian, (- - - +) unrestricted HF MO calculation(—-—-—-—)

LSDA calculation from Ref[13]. good agreement with the experimental values and with the

theoretical results from the LSDA anle. The major dis-
while We is evaluated from the harmonic apprOXimation of agreement is in the Be‘)ystem’ in which there is not experi_
the Morse potential that fits the calculated results. mental evidence of its stability but all the theoretical models,
including ours, predict a stable molecule.

IV. RESULTS AND DISCUSSION

A. About the ground state of the molecule by using an

The energy interaction curves;(R) for Li,, Be, B,, effective Hamiltonian

C,, N,, and G were calculated and compared with the ones
obtained by Painter and Averi[lL3] within the local-spin- We will discuss here the results concerning the molecular-
density approximation by using the exchange-correlatiorprbital properties of the ground state. First, we remark the
functional parametrized by Vosko, Wilk, and Nus&ir4]  differences between the one-electron picture and an effective
(LSDA-VWN); and also with a quantum-chemistry MO cal- one. In the one-electron description and considering unhy-
culation (QCMO) [15]. This last option, QCMO, was calcu- bridization between 2 and 2p states, it is expected thé)
lated with thecAUusSIAN98 code selecting an unrestricted HF in the separated atom limit, the energies of the up states are
approximation and using the same GTOs basis set that in o@qual to the down states for each atGimthe two atoms are
model calculation. Here, we present and discuss in detail thidistinguishables, i.e., the exchange Afand B does not
results obtained for N(Fig. 1) and G (Fig. 2), the discus- modify the relative weight of each atomic state in the mo-
sion for the other systems is similar. The first point to noticelecular orbital;(iii) in the G, and N, systems, the electronic
from Figs. 1 and 2, is the good dissociation limit shown byconfiguration follows an ordering in energy such as
our calculated curves, this being an expected result becau$éog)(1o,)(204)(20,)(1m,)(30,) [18].
the noninteracting atoms are the input for our calculation of Due to the electronic Coulomb repulsion within a mean-
Ein(R). With the only exception of Lj option | and the field approximation, the effective scheme is clearly different
QCMO calculations are unable to describe the binding androm the one-electron one. For simplicity we analyze from
show a loss of continuity in the self-consistent procedure irthe expressions o{,'(," [Egs. (11) and (12)] only how the
some cases. On the other hand, option Il of the effectivel;;(n;_,) term acts. This kind of term represents the cou-
Hamiltonian provides satisfactory results for all the analyzedomb repulsion between the electronic charge density cen-
dimers. Besides, our results compare quite good with théered on the state and another charge density centered on
LSDA energy curves, in the range of distances where thishe j state. This positive contribution will renormalize the
comparison is possible. atomic-energy level with spio, when thg state is occupied

It is also important to remark that the nonpolar charactewith an electron with spin-¢. In an open-shell atom such as
of the bonding is only ensured by option Il in all the homo- nitrogen, the maximum multiplicity requirement leads to ubi-
nuclear dimeric systems. cate the thre@ electrons with the same spin projection, we

In Table |, we summarize the equilibrium propertieg, say up. Hence, the dowmstates feel the repulsion given by
Re, and w, that were extracted from the interaction curves.J;;(n;;), but not the up states sincén; ) are equal to zero.
We include also the results of théa model[16], and the This reasoning is also valid for ttestates. In Figs. 3 and 4
experimental value$l7]. We can observe that the values we show the electronic configurations of the separate atom
obtained from option Il for each property are in very and bounded situations for each spin projection in the cases

022503-4
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TABLE I. Binding energy E,,) is expressed in eV, equilibrium distand®.j in a.u., and frequencyef)

incm™L.
Option | Option Il LSDA Xa QCMO Expt.
Li, Re 5 45 5.12 5.12 5.4 5.05
Ep 0.36 0.42 1.01 0.21 1.03
We 350 347 336 351
Be, Re 4 4.63 4.58
Ep 0.86 0.5 0.43
We 684 362 484
B, R. 3.81 3 3.03 3.03 5.2 3.04
Ep 0.39 5.32 3.93 3.79 29
we 1095 1082 1078 1051
C, Re 2.3 2.36 2.36 25 2.35
Ep 6 7.19 6 6.2
We 1781 1869 1955 1857
N, Re 2.6 2 2.08 2.08 2.25 2.07
Ep 10.66 11.34 9.09 9.91
we 2927 2387 2429 2358
0O, Re 2.1 2.31 2.28 25 2.28
Ep 5 7.54 7.01 5.2
we 1756 1536 1610 1580

of N, and G molecules, respectively. We can observe thatcan observe that although the separate atom limit is the same
the effective picture yields necessarily an asymmetric situafor both options, the resulting MOs are quite different. Op-
tion even for homonuclear molecules and, therefore, the hytion Il gives systematically MO energies lower than those
bridization betweers- and p-states is unavoidable. There- given by option | for all the molecular states. In addition, the
fore, the relative ordering ofr and 7 molecular states can ordering of (3r4) and (1m,) is exchanged.
change, varying also in this form their bonding or antibond- In the one-electron picture, it is usual to define a qualita-
ing character. tive quantity, the bond order, as the difference between bond-
In both options the electronic configurations of the iso-ing and antibonding electrons divided by tWt]; the value
lated atoms are the input in our calculation. The good dissoef the bond order being larger for more strongly bounded
ciation limit is obtained by obeying the Hund’s rule in each molecules. Taking this qualitative idea, we see that in option
atom. The eigenstates 6fli are also eigenstates of ti&e Il there are eight bonding electrons and two antibonding and
consequently the number of bonds is three. On the other
hand, in option |, the bonding or antibonding character of
each MO is less clear, but it seems that the{BMO has an
antibonding character which favors a reduction of the bond
order(and its binding energy

component of the total spin operator, but they are ndsof
Then, for the case of partially filled shells in the atoms we
can choose either a maximum or a minimum multiplicity
state for the molecule.

1. Dimer N,

The 3, spectral term for the ground state of Ié ob- 2. Dimer G,
tained in this form by starting the self-consistent calculation In the G molecule the situation is more complex,
with the following electronic configuratiofthe molecule is  from both, the theoretical and the experimental points of
oriented along thez axis): N(1522522I0x¢2py¢2pz1) view. The spectroscopy data indicates the existence of a
+N(1522322le2pyl2le). This is the only possible deter- strong band in the visibldthe Swan bandrelated with
minantal configuration for describing the good dissociationthe transition from &1, state to a?‘l'[g state for G vapor
limit. Thus, our calculation implies basically an unrestricted[20]. Then, the molecular symmetry indicates that
self-consistent MO calculation in the cases of open-shelthe corresponding electronic configuration should be
atoms. (Log)*(lay)?(204)*(20,)*(1my)3(30) . This configura-

However, in Fig. 3 we see that for the equilibrium dis- tion comes evidently from the electron-electron interaction,
tance R=2 a.u.), the MOs as linear combinations of the such ordering not being possible in the one-electron picture.
orthonormalized atomic orbitals result to be equal for theA 31, state can be achieved from the following
two-spin components. The starting unrestricted MO calculaelectronic configuration in the separate-atom limit:
tion becomes a restricted one near the equilibrium distanc@(lsZZSZZpXTZpyT)+C(1$22322le2le). The curves in
when it has been impose®,=0 for the state of the mol- Fig. 2 and the values in Table | correspond to this configu-
ecule. From the comparison between Fig®) &nd 3b) we  ration. In Figs. 4a) and 4b) we show the energy-level

022503-5



LUGO, VERGARA, BOLCATTO, AND GOLDBERG PHYSICAL REVIEW A65 022503

1.0--A B A B - 1.0 1.0--A B A B--1.0

Energy (a.u.)

15au. 2au. 15au. 15au 2au. 15a.u.

5a.u. 23au. 5au. 5au. 23au. 5au.

Energy (a.u.)

201 --2.0

15a.u. 2au. 15au. 15au. 2au. 15au. 4.8+ =18

5au. 23au. 5au. 5au. 23au. 5au.
FIG. 3. MO energy scheme for the separate atom and bounded
situations for the B system.(a) Option Il of the effective Hamil-
tonian; (b) option | of the effective Hamiltonian. Left panel corre-
sponds to up electrons and right panel to down electrons.

FIG. 4. MO energy scheme for the separate atom and bounded
situations for the®IT, spectral term of & (a) Option Il of the
effective Hamiltonian;(b) option | of the effective Hamiltonian.
Left panel corresponds to up electrons and right panel to down
scheme for both options of calculation. Here, the power oflectrons.
the effective-field description is clearly evidenced. Each. -
electron feels a different neean field, andyin consequence, it iy Position of the molecule. Then, 34 state for the
possible to find a situation in which thesg-down electron G n;olecul;a ansing frzom a _configuration  such as
has lower energy than therd, one, but the contrary is true (10¢)“(10u)*(20¢)*(20)(1m,)" is another possibility to
for up electrons. Regarding the comparison between the twb€ analyzed. In fact, this state is observed in thggiectrum,
options of calculation, we conclude the same that in the N but because of the selection rules, the relative position to the
molecule, option | gives systematically higher molecular en-"11, state is unknowri21]. A '3, state can be prepared in
ergies and the MO (69) has an antibonding character, two ways. One of this igobviously p, can be exchanged
which may be indicative of a nonbounded situation due tdby py): C(1522$22px¢_2pz¢)+(_3(1522$22px12|0_z¢)- The
the reduction of the bond order. binding energy obtained with this configuration is
In the one-electron description, the crossover pointE,=9eV, and the electronic configuration is
between (Ir,) and (30,) orbitals is close to the stabil- (log)*(10,)%(204)%(20,)?(30g)?(1m,)?. The MO energy
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1.0--A B A B--1_0 LN R LA LA R R L B B

0.0 |-

-0.5 |

Energy [a. u.]

Energy (a.u.)

ICTY 3 AN R [ S R R U U R N
05 10 15 20 25 3.0 35 40 45 50 55

Rla.u]

FIG. 6. Diagonal terms of the Hamiltonian fos22p,, and 2,
states of the N atom in the homonuclear dimeric system. Option Il
5au. 23au. 5au 5au. 23au. 5au (full symbols); option | (empty symbols

10T A B A B T'0 and 9 eV would be expected for the, Golecule, but this
means to do interaction of configurations that is out of the
scope of this work.

B. Energy parameters and transferability to more complex
systems

The main difference between the two options resides in
the approximation of the diagonal term of the Hamiltonian
i The hopping term is essentially the same, the differ-
ences come only from the self-consistent calculation. In Fig.
6 we show the evolution of! _and{!! for i=2s, 2p,, and
2p, states of the N atom in the homonuclear dimeric system.
Consistently with the previous results, it is observed that the
repulsive contribution in option | is stronger than in option
Il. This fact is then reflected in a nonbounded situation for
the molecule described by option I. From the point of view
of the transference of these Hamiltonian parameters to more
complex systems, as for instance, dynamical resonant pro-
cesses of charge transfer between a moving atom and a sur-

454 1lis face (atom-surface scattering processebe energy terms
S5au. 23au. 5au. 5au 23au 5au. calculated by either one or another model Hamiltonian can
lead to very different results for the final charge states of the

FIG. 5. MO energy scheme for the separate atom and boundegtom [22]. The resonant mechanism of charge transfer de-
situations  for the 'S, spectral term of & (@  pends strongly on the variation of the energy atom level with
(1og)*(1o)%(209)%(20,)*(30)*(1m,)* electronic configura- respect to the band-energy levels of the surface. Then, an
tion; (b) (1og)*(1o)*(20g)*(20,)*(1m,)* electronic configura-  accurate description of the energy Hamiltonian parameter is
tion. Both results from option II. Left panel corresponds to up necessary for ensuring a good description of the dynamical
electrons and right panel to down electrons. process. And the way we have to decide for the best calcu-

o o ) i lation of the Hamiltonian parameters is through an exhaus-
scheme is included in Fig(&. The other electronic configu- tive study of the atom-atom interaction in dimeric systems.
ration t?at also fulfills 2thezz symmetry requirement IS | this sense we argue that a good mean-field description as
C(1s°252py;2pyy) + C(1°25°2py  2py). In this case we  gption 11 for the many-body Hamiltonian, which retains the
obtain a binding energy around 3 eV and the electronic conpasic physics, is an appropriate model to describe the inter-
figuration is (1og)*(10,)%(207¢)*(20,)*(1m,)*. The corre-  action in many-atom systems.
sponding energy-level scheme is included in Figb)5
Therefore, from these results one concludes that a combina- V. CONCLUSIONS
tion of equally weighted initial configurations that provide
the correct dissociation products has to be the more appro- A many-body Hamiltonian written in a second quantized
priate proposal. In this way a binding energy between 3 eManguage and using a symmetrically orthonormalized basis

Energy (a.u.)
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set allows to introduce the correct renormalizations by they,! :<-'|‘-57.>_G“<Cﬂ- Cio)+I5(c Ciy)

overlap in the diagonal terms of the effective one-electron 7 " A Femlel D Hp I —emme

Hamiltonian. This effective Hamiltonian responds to a super- « N « N
position of bond-pair interactions, with diagonal and nondi- _zk: [(hikj_hikj)<ckaci(r>+(hjik_hjik)<cjackrr>]v
agonal terms well defined up from the one-and two-electron

integrals defined within the atomic basis set. It was showreNhere
through the study of diatomic molecules, that the correct

renormalizations of the diagonal terms by the overlap ex-

pected within a one-electron picture, and the consistency (T =t + > [hiii{ Nk o) + (i — NS i) 1-
with a bond-pair interaction model maintained when the e S
overlap expansion is performed, ensure a very good balance
between the repulsive and attractive contributions in the self- .
consistent calculation of the total energy of the system. 2. Option Il

Here, a mean-field calculation is also performed over the
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APPENDIX: MEAN-FIELD APPROXIMATION +E [hikj<ck+—<rcj—a>+(hikj_ ixkj)<ck+acj(r>]a
k#j

The one-electron effective Hamiltonians within the two
options | and Il are constructed by performing a mean-field
approximation over the many-body Hamiltonians given by
Egs.(4) and (8), respectively. The typical expression of the
effective Hamiltonian, —; [(hikj = M) (CkoCio) + (jik— D )(C /' Cko) 1,

VII = <i—ﬂ> - éij <Cj+uci(r> +jIXJ (Cit (rcj —(r>

ij,o

Her=> Ciohiot Vii oCit 8ot H.C)+V, .
ef % oo i#zj:,o( oCioCiot HC)+ Voo, where(%,,) is defined as
is obtained by the following procedure in each case. R R 1 -
(Eiy=el—2 ST+ 72 SHAE),
1. Option | ! !

A complete mean-field approximation is performed overyith
the all two-electron terms of Ed4) arriving to the corre-
sponding HF version with the Hamiltonian parameters de-

fined as <Aéﬂ = e+ P+ 2 Gi0k<ﬁkrr>)
X K7

§=028i+ui<ni—u>+; (Jij(nj- o)+ Gij(njs))

8?+2k \]Jok<ﬁk_(r>+k2¢i G?k<ﬁka'>)'

+ h"C+_ Ci_ +h.4— X C+C‘ , ~ . ) .
I;j (i€ Cie—oC -0 F (i = i ){Ciis ) and the(T{]) have the same formal expression as in option .
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