
China

PHYSICAL REVIEW A, VOLUME 65, 022320
Optimally conclusive discrimination of nonorthogonal entangled states by local operations
and classical communications
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Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of

~Received 16 April 2001; published 15 January 2002!

We consider one copy of a quantum system prepared with equal prior probability in one of two nonorthogo-
nal entangled states of multipartite distributed among separated parties. We demonstrate that these two states
can be optimally distinguished in the sense of conclusive discrimination by local operations and classical
communications alone. This proves strictly the conjecture that Virmaniet al. confirmed numerically and
analytically. Generally the optimal protocol requires local POVM operations which are explicitly constructed.
The result manifests that distinguishable information is obtained only and completely at the last operation and
all prior operations give no information about that state.
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In quantum-information theory, two fascinating properti
are distinguished from classical information. One is e
tanglement and the other is nonorthogonality. Entanglem
lies at the heart of many aspects of quantum-informat
theory, such as quantum information@1#, quantum computa-
tion @2#, quantum error correction@3#, and teleportation@4#.
Without entanglement, many quantum tasks could not be
ried out. In this sense, it is a quantum resource. It is a
point that it is impossible to discriminate perfectly betwe
nonorthogonal quantum states if only one copy is provid
The well-known no-cloning theorem@5# demonstrates tha
nonorthogonal states cannot be cloned exactly. Generally
thogonal states may be distinguished perfectly only
means of global measurements since quantum informatio
orthogonality may be encoded in entanglement, which m
not be extracted by local operations and classical comm
cations ~LOCC! operations. Bennettet al. @6# showed that
there exist bases of product orthogonal pure states w
cannot be locally reliably distinguished despite the fact t
each state in the basis contains no entanglement. Rece
Walgateet al. @7# demonstrated that any two orthogonal mu
tipartite pure states can be distinguished perfectly by o
LOCC operations. Virmaniet al. @8# utilized their result@7#
to show that optimal discrimination of two nonorthogon
pure states can also be achieved by LOCC in the sens
inconclusive discrimination. They also numerically and an
lytically confirmed that it is the case for a large set of sta
in conclusive discrimination. The problem of identifying tw
nonorthogonal states has been considered in@9# and @10# by
global measurements. We have discussed the problem of
criminating two nonorthogonal product states by LOCC@11#.
In this paper, we consider the issue of conclusive discri
nation of two nonorthogonal entangled states and pr
strictly the conjecture that the optimal discrimination by g
bal measurements can be achieved by LOCC operations

Suppose Alice and Bob know the precise forms of t
entangled states in which one of them is shared betw
them. These two possible entangled states,uf& anduc&, gen-
erally nonorthogonal are provided with equal prior probab
ity. They are separated from each other and can commun
classical information only. Their aim is to identify the shar
states optimally in the sense of conclusive discrimination
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LOCC operations. Conclusive discrimination means that
measurement on the copy gives three outcomes which a
us to determine the prior state isuf& or uc& with certainty or
‘‘do not know.’’ The optimization of conclusive discrimina
tion is to obtain the maximal probability of decisive ou
comes.uf& and uc& can be represented in a general form

uf&5(
i 51

n

Ar i uei&Auh i&B ,

uc&5(
i 51

n

Asi uei&Aug i&B , ~1!

where$uei&A% form an orthonormal basis set for Alice, an
the vectors$uh i&B% and$ug i&B% are normalized and generall
nonorthogonal. In@7#, it was proved that the two states ca
be expressed as the following form in another orthonorm
basis set on Alice’s side:

uf&5(
i 51

n

Ar i8uei8&Auh i8&B ,

uc&5(
i 51

n

Asi8uei8&Aug i8&B , ~2!

satisfying

Ar i8si8^h i8ug i8&B5Ar j8sj8^h j8ug j8&B , ~3!

where$uei8&A% forms another orthonormal basis set. For o
thogonal states, Walgateet al. showed that̂ h i8ug i8&B50 for
all i 51,2, . . . ,n and proved that Alice and Bob can alway
distinguish between the two possible orthogonal states
fectly by LOCC operations. In the following, we suppo
that the two states have been expressed as the form a
and denote them still as their original form for convenien
Before our main theorem, let us introduce lemma 1.

Lemma 1. Let M be a 232 matrix (zt
xy) whose diagonal

elements are real, andU be a unitary matrix (sin ue2iv
cosu

2cosu
sin ueiv u).
©2002 The American Physical Society20-1
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There existsU such that the diagonal elements ofUMU† are
real and of which this property is independent ofu.

Proof: This lemma can be easily proved by direct comp
tation,

x85x cos2u1t sin2u1~sinu cosu!~ye2 iv1zeiv!,

t85x sin2u1t cos2u2~sinu cosu!~ye2 iv1zeiv!. ~4!

Set Im(ye2 iv1zeiv)50 and there will always be an ang
v satisfying the equation which is explicitly independent
u. This completes the proofj. Employing Lemma 1, we can
transform the two states further to the form that is expres
as Theorem 1.

Theorem 1. In a proper orthonormal basis set$u i &% on
Alice’s side,uf& and uc& can be expressed as the form

uf&5(
i 51

n

At i u i &um i&,

uc&5(
i 51

n

At i u i &un i&, ~5!

and um i&, un i& satisfy the condition that the phase differen
between eacĥm i un i& and ^fuc& is 0 or p.

Proof. Supposê fuc& is real and we will show this doe
not lose any generality for the complex case. We also s
pose thatuf& anduc& have been expressed as the form of~1!
and satisfyAr isi^h i ug i&B5Ar jsj^h j ug j&B . It is explicit that
every ^h i ug i& is real. As ( i r i5( isi51, there must exist
r i ,si and r j ,sj satisfyingr i>si ,r j<sj . Without no loss of
generality, we setr 1>s1 ,r 2<s2. We first change the two
bases$ue1&,ue2&% into $ue18&,ue28&% only. According to the re-
sult in @12#, the corresponding terms on Bob’s side transfo
as

S cosu e2 ivsinu

eivsinu 2cosu D S Ar 1uh1&

Ar 2uh2&
D 5S Ar 18uh18&

Ar 28uh28&
D ,

S cosu e2 ivsinu

eivsinu 2cosu D S As1ug1&

As2ug2&
D 5S As18ug18&

As28ug28&
D , ~6!

and

r 185r 1cos2u1r 2sin2u1Ar 1r 2~cosu sinu!~e2 iv^h1uh2&

1eiv^h2uh1&!,

s185s1cos2u1s2sin2u1As1s2~cosu sinu!~e2 iv^g1ug2&

1eiv^g2ug1&!. ~7!

The matrix

M5SAr 1s1^h1ug1&
Ar 2s1^h2ug1&

Ar 1s2^h1ug2&
Ar 2s2^h2ug2&

D
is transformed toU* MU†* @7#. In lemma 1, we see that th
property that diagonal elements are real is dependent onl
02232
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v and independent ofu. So the value ofv is determined by
real diagonal elements. Explicitly, its solution is given b
equation

Im~Ar 1s2^h1ug2&e
2 iv1Ar 2s1^h2ug1&e

iv!50. ~8!

So ^h18ug18& and^h28ug28& are real, positive, or negative. The
we supposer 185s185t1 and see whether this equation alwa
has a solution. Denotee2 iv^h1uh2&1eiv^h2uh1&5x,
e2 iv^g1ug2&1eiv^g2ug1&5y for short, which are real. The
equation is reduced as

@~r 12s1!1~r 22s2!#1@~r 12s1!2~r 22s2!#cos 2u

1~xAr 1r 22yAs1s2!sin 2u50. ~9!

Denote (r 12s1)1(r 22s2)5C, (r 12s1)2(r 22s2)5A,

xAr 1r 22yAs1s25B. We know uAu>uCu from r 1>s1 ,r 2
<s2 and the equation always has a solution,

u52
1

2 S arcsin
C

AA21B2
1arctan

A

BD . ~10!

We notice the fact thatr 11r 25r 181r 28 under the unitary op-
eration, sor 18 ,r 28 are also probabilities. So ares18 ,s28 . Now
we find that in the new basis set$ue18&,ue28&,uei&, i
53,•••,n%, the two statesuf&,uc& can be expressed as

uf&5At1ue18&uh18&1Ar 28ue28&uh28&1(
i 53

n

Ar i uei&uh i&,

uc&5At1ue18&ug18&1As28ue28&ug28&1(
i 53

n

Asi uei&ug i&,

~11!

where all inner products of the corresponding terms rem
real. By repeating the above process for then21 terms, we
could obtain the form expressed by Theorem 1. It is cl
that it is also the case when^fuc& is complex. What differs
in the real case is that the phase of the inner product of e
corresponding term is equal to that of^fuc& or p different
from it. That completes our proof.

In @9# and @10#, it is proved that the optimal conclusiv
discrimination of two nonorthogonal states is given byP
512 z^fuc& z without any limitation of operations. For dis
criminating general states by LOCC operations, a restric
protocol is suggested in@8# that Alice performs local one-
dimensional projections which would give her no inform
tion and leave Bob’s particle in residual states, which co
perhaps be easily distinguished from each other. In our
tation, these amount tor i5si and PL512( i r i z^h i ug i& z
while the optimal discrimination isPopt512 z( i r i^h i ug i& z. If
all the equations in addition toPL5Popt are satisfed, then the
protocol is optimal. Our main idea is simlar to theirs and o
conclusion demonstrates that the idea is very illuminati
However, two main obstacles are in the way. One is how
realize the equal probability of corresponding terms and
other is how to adjust the phases of all the inner products
corresponding terms to the same one. Each of them is
0-2
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straightforward. To satisfy both conditions at the same tim
POVM on Alice’s side is required in general. In the follow
ing theorem, we try to solve the problem.

Theorem 2. Optimally conclusive discrimination betwee
two nonorthogonal entangled states can be achieved
LOCC operations.

Proof. In Theorem 1,uf&,uc& can be expressed as th
form of Eq. ~5! and satisfy the condition that the phase
each term^m i un i& is the same as that of̂fuc& or hasp
difference from that of̂ fuc&.

If all the phases of̂ m i un i&,i 51, . . . ,n are the same a
that of ^fuc&, then Alice performs standard measurement
the basis set$u i &% and leaves Bob’s state asum i& or un i& when
u i & occurs. Bob performs the optimal conclusive discrimin
tion betweenum i& andun i& which gives the optimal probabil
ity Pu i512 z^m i un i& z. The overall optimal probability is av
eraged as

PL5(
i

t i Pu i512(
i

t i z^m i zn i& z

512U(
i

t i^m i un i&U512 z^fuc& z. ~12!

The third equality comes from the same phase of^m i un i&,i
51, . . . ,n, and the optimal discrimination could be realize
by LOCC operations.

If there exist some terms of^h i ug i& whose phases havep
difference from that of̂ fuc&, then POVM or an auxiliary
system is necessarily introduced on Alice’s side. Our ide
that after Alice’s subsystem interacts properly with the a
iliary systemSon her side, the two states including auxilia
systemS can be expressed as

UASus0&uf&5(
i 51

m

At i usi&uf i&1 (
i 5m11

N

At i usi&u i &um i&,

UASus0&uc&5(
i 51

m

At i usi&uc i&1 (
i 5m11

N

At i usi&u i &un i&,

~13!

where ^f i uc i&AB50 and ^m i un i&B have the same phase a
that of ^fuc&AB . Once we can express them as the form
Eq. ~13!, we could obtain the optimal protocol achieved
LOCC operations. If it is true, Alice can first project syste
S onto the orthonormal basis$usi&%. Occurrence ofusi&,i
<m projects systemAB onto uf i& or uc i&, which is orthogo-
nal to each other and can be distinguished with certainty
the protocol in@7#. Occurrence ofusi&,i .m projects onto
u i &um i& or u i &un i&, which can be identified conclusively o
Bob’s side with optimal probabilityPu i512 z^m i un i& z. And
the optimal probability overall by LOCC is
02232
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PL5(
i 51

m

ti1 (
i 5m11

N

ti~12 z^m i un i& z!

512 (
i 5m11

N

ti z^m i un i& z

512u (
i 5m11

N

ti^m i un i&u512 z^fuc& z. ~14!

In the following, we will prove that we can really transform
to Eq. ~13!. Without loss of any generality, we suppose th
^fuc& is real and̂ fuc&>0. Moreover, set̂m1un1&.0 and
^m2un2&,0. First, we deal with these two terms and choo
U1

AS such that

U1
ASus0& zf&5At1ux&ASum1&1At2ux'&ASum2&

1(
i 53

n

At i usi&u i &um i&,

U1
ASus0&uc&5At1ux&ASun1&1At2ux'&ASun2&

1(
i 53

n

At i usi&u i &un i&, ~15!

where $usi&,i 51, . . . ,n% is an orthonormal basis set an
ux&AS and ux'&AS lie in the subspace spanned b
$usi&u j &,i , j 51,2%. Our task is to find suitable forms ofux&AS
and ux'&AS. This also means that we select proper inter
tion between systemAS. We find that if t1z^m1un1& z
>t2z^m2un2& z, then we can choose

ux&5cosaus1&u1&1sinaus2&u2&,

ux'&5us1&u2&. ~16!

The reason to choose such forms is that we want the sta
AB in the second term to be a product vector. Substitut
$ux&AS,ux'&AS% with Eq. ~15!, we can get

U1
ASus0&uf&5us1&~At1cosau1&um1&1At2u2&um2&)

1us2&At1sinau2&um1&1(
i 53

n

At i usi&u i &um i&,

U1
ASus0&uc&5us1&~At1cosau1&un1&1At2u2&un2&)

1us2&At1sinau2&un1&1(
i 53

n

At i usi&u i &un i&.

~17!

It is clear that the corresponding terms remain the same p
abilities. Our aim is to make the vectors of systemAB in the
first corresponding terms orthogonal, which gives

t1cos2a^m1un1&1t2^m2un2&50. ~18!
0-3
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And from the supposition that̂m1un1&.0,̂ m2un2&,0 and
t1z^m1un1& z>t2z^m2un2& z, we can see it always has a solutio

a5arccosA2
t2^m2un2&
t1^m1un1&

. ~19!

And the inner product of the second corresponding term
AB has the same phase as that of^fuc&, so we eliminate one
negative term. If for all the negative terms we can find c
responding positive terms satisfying the above conditio
repeat the process for each pair of terms and we can res
all the negative terms and transform to the desired form
for the negative term we cannot find its corresponding te
satisfying the conditions, we can exchange the role of ne
tive and positive terms. In this case,^m1un1&,0,̂ m2un2&
.0, andt1z^m1un1& z>t2z^m2un2& z. We adopt the same proto
col and the only difference is that the second term is ne
tive. However, the absolute value of negativet1^m1un1& de-
creases tozt1sin2a^m1un1&z. We can continue to reduce th
absolute value of the negative term until it is transformed
positive, and we can always do that since^fuc&.0 means
that the sum of the positive terms is larger than that of
negative ones. So we can indeed obtain the form of Eq.~13!
and achieve the optimal discrimination by LOCC alone.
our discussion, it is easy to see this is also the case
complex^fuc&. That completes our proof.

We have considered only the bipartite case so far, but
protocol can be easily generalized to two multipartite e
tangled states. As for the case of two tripartite states, we
group systemBC as one and apply the protocol betweenA
andBC to transform as Eq.~13!,

UASus0&uf&ABC5(
i 51

m

At i usi&uf i&ABC

1 (
i 5m11

N

At i usi&u i &Aum i&BC ,
ev

t-

, a

in,
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UASus0&uc&ABC5(
i 51

m

At i usi&uc i&ABC

1 (
i 5m11

N

At i usi&u i &Aun i&BC , ~20!

where^f i uc i&ABC50 and^m i un i&BC have the same phase a
that of ^fuc&ABC . Each pairuf i&ABC ,uc i&ABC , can be ex-
actly distinguished@7#, while each pairum i&BC ,un i&BC can be
optimally discriminated byBC with Pu i

L512 z^m i un i&BCz.
And averaging over all the possible cases gives the ove
probability PL512 z^fuc& z that is optimal. It is noticeable
that the optimal conclusive discrimination can be achiev
by LOCC in the condition that in general the operation p
formed by the last one provides the distinguishable inform
tion while all operations performed beforehand give no
formation aboutuf& anduc&. The operations in advance he
the last one to distinguish states optimally.

In conclusion, we have found the LOCC protocol achie
ing the optimal conclusive discrimination between two no
orthogonal entangled states occurring with equal prior pr
ability. Generally, local POVM operations are require
Interestingly, the protocol shows that the distinguishable
formation is obtained at the last operation and all the o
beforehand give no information. The result strongly impli
that optimal discrimination is also achieved by LOCC f
unequal prior probability. But in such situations the idea th
the prior operations give no information does not work, a
much more intricate transformation is required for discuss
this case further.
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