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Optimally conclusive discrimination of nonorthogonal entangled states by local operations
and classical communications
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We consider one copy of a quantum system prepared with equal prior probability in one of two nonorthogo-
nal entangled states of multipartite distributed among separated parties. We demonstrate that these two states
can be optimally distinguished in the sense of conclusive discrimination by local operations and classical
communications alone. This proves strictly the conjecture that Virneamil. confirmed numerically and
analytically. Generally the optimal protocol requires local POVM operations which are explicitly constructed.
The result manifests that distinguishable information is obtained only and completely at the last operation and
all prior operations give no information about that state.
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In guantum-information theory, two fascinating propertiesLOCC operations. Conclusive discrimination means that our
are distinguished from classical information. One is en-measurement on the copy gives three outcomes which allow
tanglement and the other is nonorthogonality. Entanglemenis to determine the prior state|i$) or | ) with certainty or
lies at the heart of many aspects of quantum-informatiorfdo not know.” The optimization of conclusive discrimina-
theory, such as quantum informatigh], quantum computa- tion is to obtain the maximal probability of decisive out-
tion [2], quantum error correctiof8], and teleportatiofi4]. ~ comes.|¢) and|y) can be represented in a general form,
Without entanglement, many quantum tasks could not be car-
ried out. In this sense, it is a quantum resource. It is a key n
point that it is impossible to discriminate perfectly between |6)=2, Vriledalm)e.
nonorthogonal quantum states if only one copy is provided. =t
The well-known no-cloning theorerft] demonstrates that n
nonorthogonal states cannot be cloned exactly. Generally, or- _
thogonal states may be distinguished perfectly only by |¢>_i§1 Vsiledal vi)e. @D
means of global measurements since quantum information of

orthogonality may be encoded in entanglement, which mayyhere{|e;)»} form an orthonormal basis set for Alice, and
not be extracted by Io<_:a| operations and classical communihe vectorg| 7;)g} and{|y;)g} are normalized and generally
cations (LOCC) operations. Bennetét al. [6] showed that nonorthogonal. If7], it was proved that the two states can

there exist bases of product orthogonal pure states whiche expressed as the following form in another orthonormal
cannot be locally reliably distinguished despite the fact thabgsis set on Alice’s side:

each state in the basis contains no entanglement. Recently,

Walgateet al.[7] demonstrated that any two orthogonal mul- n

tipartite pure states can be distinguished perfectly by only |¢>=E \/ﬁlei’)Al )8,

LOCC operations. Virmanet al. [8] utilized their resul{7] =1

to show that optimal discrimination of two nonorthogonal

pure states can also be achieved by LOCC in the sense of . -, ,

inconclusive discrimination. They also numerically and ana- |¢>:i§l \/§|ei Al v)e, 2

lytically confirmed that it is the case for a large set of states

in conclusive discrimination. The problem of identifying two satisfying

nonorthogonal states has been considerd@jimand[10] by

global measurements. We have discussed the problem of dis- [Tt/ 1IN [Tt/ 110

criminating two nonorthogonal product states by LOQ]. st (il v)e= Tyl v ®

In this paper, we consider the issue of conclusive discrimi-

nation of two nonorthogonal entangled states and prov

strictly the conjecture that the optimal discrimination by glo- - - _

bal measurements can be achieved by LOCC operations. &l 1=1.2, ... n and proved that Alice and Bob can always
Suppose Alice and Bob know the precise forms of twodistinguish between the two possible orthogonal states per-

entangled states in which one of them is shared betweel§Ctly Py LOCC operations. In the following, we suppose
them. These two possible entangled stais,and| ), gen- that the two states_have be_en v_ax_pressed as the form above
erally nonorthogonal are provided with equal prior probabil-and denote them still as their original form for convenience.
ity. They are separated from each other and can communicaf€fore our main theorem, let us |n.trod)l/Jce lemma 1.

classical information only. Their aim is to identify the shared ~Leémma 1Let M be a 2<2 matrix (;{) whose diagonal

. . . . .. . . . ] inpga @
states optimally in the sense of conclusive discrimination byelements are real, and be a unitary matrix xfﬂe,iﬂ‘cﬁiﬁ .

here{|e/ )} forms another orthonormal basis set. For or-
thogonal states, Walgatt al. showed that | y/ )g=0 for
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There existdJ such that the diagonal elementswMU" are  » and independent of. So the value of is determined by

real and of which this property is independentéof real diagonal elements. Explicitly, its solution is given by
Proof. This lemma can be easily proved by direct compu-equation
tation,

IM(Jr 1S 1] v2)e O+ VI os1(m,] v1)€'“)=0.  (8)

_ _ So(n1|y1) and({7;|y;) are real, positive, or negative. Then
t' =xsir?6+tcogd—(sindcosd)(ye '“+z€). (4)  we suppose;=s;=t; and see whether this equation always
has a solution. Denotee™'“(n|n,)+€“(n,| n1) =X,
e "(y1] yo) + €'y, y1) =y for short, which are real. The
equation is reduced as

X' =xcogf+tsirf o+ (sinf cosh)(ye '“+zd®),

Set Imye '“+zd“)=0 and there will always be an angle
w satisfying the equation which is explicitly independent of
6. This completes the prod. Employing Lemma 1, we can
transform the two states further to the form that is expressed [(r;—s;)+(r,—S,)]+[(r;—s;) — (ro,—s,)]cos 260
as Theorem 1.

Theorem 1 In a proper orthonormal basis sgi)} on +(X\rqr2—ys;s)sin 26=0. €)

Alice’s side,|¢) and|¢) can be expressed as the form Denote f1—5))+(Fa—S,)=C. (F1—S1)—(Fo—S)=A.

" _ X\ 1r,—Yyvs1S,=B. We know |A|=|C| from r;=s;,r,
|¢>:i§l Vel i), <s, and the equation always has a solution,
. o= — - el 4 arct (10)
. =— | arcsit——— +arctan | .
=3 Elln). ) 2| " arer B

and|u;), |v;) satisfy the condition that the phase difference V& notice the f,aCt thatty +1,=ry + 15 underthe urlltary op-
between eacki;| ;) and(a|4) is 0 or 7 eration, sor;,r, are also probabilities. So as,s;. Now
I I " . H H ! ! H

Proof. Suppose ¢|#) is real and we will show this does W€ find that in the new basis sefler).[ez) e, i

not lose any generality for the complex case. We also sup=3: " *.N}, the two state$e),|) can be expressed as

pose that¢) and| ) have been expressed as the forniiof n

and satisty\ris (mil s =\ 8l ype. 1S explicit that )= \t;|e})| mi) + Vrilen)| ma)+ 3, Vrile)lm),

every (;|y;) is real. AsZ;r;=3;5,=1, there must exist i=3

ri,s andr;,s; satisfyingr;=s; ,r;<s;. Without no loss of

generality, we set,=s;,r,<s,. We first change the two _ N — .

bases{|e;),|e,)} into {|e}),|e5)} only. According to the re- ) ="uleplyi)+ sy e2>|72>+§3 Jsilenl ),
sultin[12], the corresponding terms on Bob’s side transform (11)
as

where all inner products of the corresponding terms remain
\/ﬁl 71) real. By repeating the above process for thel terms, we
\/r—’| y ; could obtain the form expressed by Theorem 1. It is clear
2172 that it is also the case whew| ) is complex. What differs

cosf e '“sin 0) Vrl )
e’sing  —cosé |\ \ry|n,)
in the real case is that the phase of the inner product of each

( cosd e ""smﬁ) Vsily1) _ Vsilv) (6  corresponding term is equal to that @bly) or  different
e'“sing  —cos |\ \s,|y,) Jsilvyy ) from it. That completes our proof.
In [9] and[10], it is proved that the optimal conclusive
and discrimination of two nonorthogonal states is given By
_ =1-|(¢| )| without any limitation of operations. For dis-
[1=11C0S0+1,SirP 0+ \r 11 5(cos@ sin ) (e “( 74| 17,) criminating general states by LOCC operations, a restricted

protocol is suggested if8] that Alice performs local one-
dimensional projections which would give her no informa-
tion and leave Bob’s particle in residual states, which could
perhaps be easily distinguished from each other. In our no-

+e'(my| 1)),

S] =5,008 0+ S,SirP 6+ \/s;5,(cosh sin ) (e "“( y4|v,)

+ €90 y,| y)). (7)  tation, these amount to;=s; and Pt=1—-Sril( 7| vl
i H i mi H ipopt_
while the optimal discrimination iB%'=1—|Z;r;{ 7| vi)|. If
The matrix all the equations in addition 8- = P°" are satisfed, then the
protocol is optimal. Our main idea is simlar to theirs and our
[ Nrasml v NSl v2) conclusion demonstrates that the idea is very illuminating.
- VI 281U 72| Y1) VI 2So( 72| ¥2) However, two main obstacles are in the way. One is how to

realize the equal probability of corresponding terms and the
is transformed tdJ* MU ™ [7]. In lemma 1, we see that the other is how to adjust the phases of all the inner products of
property that diagonal elements are real is dependent only azorresponding terms to the same one. Each of them is not
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straightforward. To satisfy both conditions at the same time, m N
POVM on Alice’s side is required in general. In the follow- PL=> ti+ > ti(1—Kmiw)D
ing theorem, we try to solve the problem. =1 i=mel
Theorem 2 Optimally conclusive discrimination between N
two nonorthogonal entangled states can be achieved by =1— > tilmil v
LOCC operations. 1=mt1

Proof. In Theorem 1,|¢),|#) can be expressed as the N
form of Eq. (5) anq satisfy the condition that the phase of :1_|. E ti il vid| =1— @l ). (14)
each term{u;|v;) is the same as that df¢|¢) or has i=m-+1
difference from that of ¢| ). . _

If all the phases of u;|v;),i=1, ... n are the same as In the followm_g, we will prove that we can really transform
that of( | 1), then Alice performs standard measurement orf® EQ. (13). Without loss of any generality, we suppose that
the basis seffi)} and leaves Bob’s state #s;) or |v;) when  (#|#) is real and(¢|)=0. Moreover, se{suy|»1)>0 and
i) occurs. Bob performs the optimal conclusive discrimina- :‘;24 v2)<0. First, we deal with these two terms and choose
tion betweer| ;) and|»;) which gives the optimal probabil- U1~ such that
ity P;j=1—[(ui|v)|- The overall optimal probability is av-
eraged as ULSiso) ) = Vtal x)ad 1) + Vial x* ad i)

+ 3, VIS0,
PL:Ei tiPn=1—2i til{milvi)l
UL so) [ #) = Vtal x)ad va) + Vtal X Y ad v2)

:1—2 ti{wilvi)| =1= (ol ¥)l. (12 n _
+i=23 Vel siliylw), (15
The third equality comes from the same phase€ @f v;),i  where{|s;),i=1,...n} is an orthonormal basis set and
=1, ... n, and the optimal discrimination could be realized |y)as and |x*)as lie in the subspace spanned by
by LOCC operations. {Isi)]j).i,j=1,2}. Our task is to find suitable forms ¢f)as

If there exist some terms d@fy;| y;) whose phases have  and|x*),s. This also means that we select proper interac-
difference from that of ¢|¢), then POVM or an auxiliary tion between systemAS. We find that if t,|(u|vy)]|
system is necessarily introduced on Alice’s side. Our idea is=t,|( u,| v,)|, then we can choose
that after Alice’s subsystem interacts properly with the aux-
iliary systemSon her side, the two states including auxiliary |x)=cosa|s;)|1)+sinals,)|2),
systemS can be expressed as

Ix")=[s1)2). (16)
m N .
) The reason to choose such forms is that we want the state of
UAS|30>|¢>:§1 \/E|Si>|¢i>+i:;+l \/E|Si>||>|:“i>v AB in the second term to be a product vector. Substituting
{IX)as:[x")agh with Eq. (15), we can get

m N U/fs|50>|¢>=|31>(\/HC0501|1>|M1>+\/E|2>|,U«2>)
UAS|30>|'/I>:_21 \/E|Si>|’;bi>+__2+l Veilsilidlw), n

B o (13) +|32>\/ESina|2>|M1>+i:23 Vil siid] i),
ULSiso) | #) =[s1) (Ntscosa| 1) v1) + V| 2)| v2))

where ( ¢i| i) ag=0 and(u;|v;)g have the same phase as

that of (¢|#)ag. Once we can express them as the form of n

Eq. (13), we could obtain the optimal protocol achieved by +s)tsinal2)|vy)+ X, Viils) i) ).
LOCC operations. If it is true, Alice can first project system =3

S onto the orthonormal basi§s;)}. Occurrence ofls;),i (17

<m projects systenAB onto|¢;) or |#;), which is orthogo-

nal to each other and can be distinguished with certainty byt is clear that the corresponding terms remain the same prob-
the protocol in[7]. Occurrence ofs;),i>m projects onto abilities. Our aim is to make the vectors of systam in the
[iY|mi) or |i)|»), which can be identified conclusively on first corresponding terms orthogonal, which gives

Bob’s side with optimal probabilityP; =1 —|( ;| »)|. And

the optimal probability overall by LOCC is tycoSa(wq| v1) +to{uo| o) =0. (18

022320-3



YI-XIN CHEN AND DONG YANG PHYSICAL REVIEW A 65 022320

And from the supposition thatu,|v1)>0,u,|v,)<0 and m
ty|(peq|v1)|= ol ol v2) |, we can see it always has a solution, UASso) [ 4h) apc= El Vtilsl ) asc

B  t(uglvy) N
a—arCCO'v'\/i W (19) +i:;+l \/E|Si>|i>A| vi)sc, (20

And the inner product of the second corresponding terms of

AB has the same phase as tha{#fi), so we eliminate one where( | ;) asc=0 and(sui| »)sc have the same phase as
negative term. If for all the negative terms we can find cor-i 5t of (¢| ) asc. Each pair|éi)asc,|idasc, can be ex-
responding positive terms sausfymg the above cond|t|onsact|y distinguished7], while each paitx;)sc,|vi)sc can be
repeat the process for each pair of terms and we can reso"ffptimally discriminated byBC with PILi: 1— (il v)edl-

all the negative terms and transform to the desired form. liny averaging over all the possible cases gives the overall
for _the_ negative term we cannot find its corresponding ter robability P =1—|( | )| that is optimal. It is noticeable
satisfying the conditions, we can exchange the role of neggy5¢ the optimal conclusive discrimination can be achieved

tive and positive terms. In this casuy|vy)<0(ua|v2) by LOCC in the condition that in general the operation per-
>0, andty[(u| v1)|=tal( el v2)|. We adopt the same proto- ormeq by the last one provides the distinguishable informa-
col and the only difference is that the second term is negagon \hile all operations performed beforehand give no in-

tive. However, the absolute value of negatty€uy|v1) de-  formation about ) and|). The operations in advance help
creases tdt;sirfa{u,|r,)|. We can continue to reduce the the last one to distinguish states optimally.

absolute value of the negative term until it is transformed to |, conclusion, we have found the LOCC protocol achiev-
positive, and we can always do that sires|:)>0 means g the optimal conclusive discrimination between two non-
that the sum of the positive terms is larger than that of theiihogonal entangled states occurring with equal prior prob-
negative ones. So we can indeed obtain the form of(E8).  pjjity. Generally, local POVM operations are required.
and achieve the optimal discrimination by LOCC alone. Injnerestingly, the protocol shows that the distinguishable in-
our discussion, it is easy to see this is also the case fQfrmation is obtained at the last operation and all the ones
complex(¢|#). That completes our proof. beforehand give no information. The result strongly implies
We have considered only the bipartite case so far, but 0Uat optimal discrimination is also achieved by LOCC for
protocol can be easily generalized to two multipartite en-ynequal prior probability. But in such situations the idea that

tangled states. As for the case of two tripartite states, we cajpe prior operations give no information does not work, and
group systenBC as one and apply the protocol betwe&n 1, ,ch more intricate transformation is required for discussing

andBC to transform as Eq13), this case further.
m
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