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Squeezing is good at low information rates
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We evaluate the performance of a squeezed-state channel, in which classical information is conveyed by
squeezed states. The evaluation is carried out by calculating the expurgated lower bound for the reliability
function. As a result, we find that using squeezed states improves the channel performance near the zero
information rate.
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I. INTRODUCTION

Recently quantum continuous channels, in which class
information is conveyed by quantum states parametri
continuously, have been widely noticed because they h
various relevant applications@1–3#. The general formulas
concerning the capacity and the reliability function for su
channels were proved by Holevo and coworkers@4,5#. The
capacity represents the ultimate capability of informat
transmission. This means we can transmit information at
rate R below the capacity within an arbitrary small err
probability. Here the information rateR is defined by
(ln M)/n when we transmitM messages withn use of the
channel, that is, a block code of lengthn. On the other hand
the reliability functionE(R) shows the speed of the expo
nential decay of error probabilityPe at any rateR below the
capacity: Pe'exp@2nE(R)#. The reliability function gives
much more detailed and practical description of the asym
totical channel performance than the capacity. The imp
tance of the reliability function is recognized well in th
classical information theory, and extensive studies have b
devoted to it@6#. On the analogy from the classical cas
Holevo defined the random coding boundEr(R) and the ex-
purgated boundEex(R) for the quantum channel, and prove
that these give the lower bounds for the reliability functi
E(R) truly @4#. Note that only the random coding bound f
mixed input states is yet to be proved. The random cod
bound Er(R) gives good evaluation of the channel perfo
mance at high information rate, and is defined such that
value ofR satisfyingEr(R)50 is equivalent to the channe
capacity. Thus the channel coding theorem can be sh
immediately from the random coding bound@4#. On the
other hand the expurgated boundEex(R) is good at the in-
formation rate below the so-called ‘‘cutoff rate.’’

When we intend to find a block code to send messa
faithfully and efficiently, it is important to evaluate before
hand the reliability function of the channel as the target p
formance of coding@7–9#; the evaluation is carried out b
calculating its lower bounds. The random coding and

*Email address: sohma@mrit.mei.co.jp
†Email address: hirota@lab.tamagawa.ac.jp
1050-2947/2002/65~2!/022319~6!/$20.00 65 0223
al
d

ve

y

-
r-

en
,

g

e

n

s

r-

e

expurgated bounds for classical Gaussian channel can be
tained easily@6#. On the contrary, it is much more difficult to
get these bounds for a quantum Gaussian channel. In fa
is known that the random coding bound cannot be obtai
analytically, and the way to get the expurgated bound w
found only for coherent-state channel@4,5#. This paper ex-
tends the result to more general case, that is, we calculate
expurgated bound for noiseless squeezed-state channe
considering suboptimala priori probability distribution. As a
result we find that using squeezed states improves the c
nel performance at information rates below the so-cal
‘‘cutoff rate.’’ This conclusion is important, because comm
nication at low rates is typical for many practical situation
such as, for example, in cryptographic applications.

The properties of squeezed-state channel has been in
tigated on the basis of two information theoretical quantiti
the mutual information and the capacity. As mention
above, this paper reveals many effects of squeezed state
turning our attention to the reliability function. To clarify th
historical meaning of our result, let us recall the previo
works. In 1970s, Yuen and Shapiro@10–12# fully revealed
effects of the squeezed states on the semiclassical comm
cation process with photon counting schemes that invo
homodyne and heterodyne measurement processes.
proved that the maximum mutual information for an op
mum noiseless squeezed-state channel with the homo
measurement is ln(112Nt), showing the maximum signal-to
quantum noise ratio, whereNt represents the signal photo
number. On the other hand, due to the general formula of
capacity@4#, we can evaluate the ultimate capability of th
quantum channel, considering more general quantum m
surements including so-called entangled measurements
particular, we can give the rigorous formulation and pro
for Gordon’s conjecture that the capacity of noisele
coherent-state channel under input power constraintNt is
given by (Nt11)ln(Nt11)2Nt ln Nt @4#, which corresponds
to the Yuen-Ozawa bound@13#. This implies that using
squeezed states cannot improve the capacity@14#. However,
squeezed states provide a simple coding scheme for ach
ing the Gordon’s capacity (Nt11)ln(Nt11)2Nt ln Nt . Our
previous paper showed@14# the capacity of certain noiseles
squeezed-state channel achieves the Gordon’s capacit
coding based on only real number alphabet, while we can
©2002 The American Physical Society19-1
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MASAKI SOHMA AND OSAMU HIROTA PHYSICAL REVIEW A 65 022319
avoid using complex number alphabet in the case of
coherent-state channel.

This paper is organized as follows. In Sec. II we remi
the definitions of quantum continuous channel and formu
the general expurgated bound for the error probability. Th
we specialize it to the case of Gaussian channel in one m
In Sec. III, by evaluating the expurgated bound, we find t
using squeezed states improves the channel performan
low information rates.

II. THE QUANTUM EXPURGATED BOUND

A. Case of general quantum-continuous channel

We shall describe the expurgated bound for quantu
continuous channels following@5#; the bound is expected t
enable us to investigate the channel performance at any
formation rate below the cutoff rate. For reader’s conv
nience, we start with recalling a general formulation of t
quantum-continuous channel. Take as the input alphabeA
an arbitrary Borel subset in a finite-dimensional Euclide
spaceE. The quantum-continuous channel is described b
weakly continuous mappingx→rx from the input alphabe
A to the set of density operators inH.

Let us consider also the product channel in the Hilb
spaceH^ n5H^¯^ H, where a density operator

rw5rx1
^¯^ rxn

corresponds to a word of lengthn, w5(x1 ,...,xn)PAn. As
in the classical case, we should impose an additive const
on the signals of quantum continuous channel

f ~x1!1¯1 f ~xn!<nE, ~2.1!

wheref is a fixed continuous positive function onE. To carry
out the random coding procedure for a quantum-continu
channel with such a constraint, we consider ana priori prob-
ability distributionp5p(dx) on A, satisfying

E
A

f ~x!p~dx!<E. ~2.2!

We denote byP1 a set ofa priori probability distributions
satisfying this inequality. The random coding procedu
plays an essential role in the derivation of the expurga
bound.

Now we define

Eex~R!5max
1<s

@max
0<p

max
pPP1

m̃~p,s,p!2sR#, ~2.3!

wherem̃ is the quantum Gallager function given by

m̃~p,s,p!52s ln E
A
E

A
exp$@ f ~x!1 f ~y!22E#%

3~TrArxAry!1/sp~dx!p~dy!. ~2.4!
02231
e

te
n
e.
t
at

-

in-
-

n
a

t

int

s

e
d

In @5# we derived the following expurgated bound for th
error probability of the channel using codes of sizeM
5enR, with codewords of lengthn,

Pe~n,enR!&e2nEex~R!,

whereR is an information rate below the channel capacityC
andPe(n,M ) denotes the error probability achieved with th
optimal code consisting ofM code words of lengthn and the
optimal quantum detection process described by a pos
operator-valued measure.

To make clear the meaning of expurgated bound, let
recall some other quantities characterizing the quantu
continuous channel. When the information rate is less t
the channel capacity,R,C, we can estimate the logarithmi
rate of convergence of the error probabilityPe(n,enR) by the
reliability function defined as

E~R!52 lim inf
n→`

1

n
ln Pe~n,enR!. ~2.5!

The expurgated bound gives a lower bound for such defi
reliability function. For higher rates there is a better bou
given by the random coding without expurgation@5#. This
bound is called therandom coding bound Er(R), which is
analytically much less tractable than the expurgated bou
The quantity characterizing the channel performance at
information rate is the valueE(10) of the reliability func-
tion at the zero rate. Fortunately we can obtain not o
lower bound but also upper bound forE(10) @5#,

Eex~0!<E~10!

<22 min
pPP1

E E ln TruArxAryup~dx!p~dy!.

~2.6!

In particular, in the pure state case, upper and lower bou
coincide, that is, we have

E~10!5Eex~0!. ~2.7!

Using the quantum Gallager functionm̃(p,s,p), we can de-
fine another interesting quantity, thecutoff rate

C̃5 max
pPP1

max
0<p

m̃~p,1,p!, ~2.8!

which gives the channel performance at an intermediate
formation rate. The cutoff rate is a concept widely used
practical applications of classical information theory@15#.

In Sec. III we evaluate the channel performance at l
information rates by means of the expurgate bound.
should remark that this is based on the assumption that
expurgated boundEex(R) gives a good approximation to th
reliability function E(R) below the cutoff rate. Strictly
speaking, the expurgated bound is a mere lower bound
the reliability function. In particular, the expurgated bound
obtained by assuming square-root measurement as the q
9-2
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tum detection process. Hence it seems that we cannot e
nate the possibility that the optimum quantum detection p
cess yields different results. Fortunately Eq.~2.7! shows that
the valueE(10) of the reliability function at zero rate i
equal toEex(0). This indicates that our assumption holds
least near zero information rate.

B. Case of quantum Gaussian channel

Although our interest focuses on noiseless quantum ch
nels with squeezed states, we should consider a more ge
category of states, namely, Gaussian states@5,14#; this gen-
eral formulation provides us with a powerful tool of calc
lating various quantities characterizing the channels. In
following we recall the definition of Gaussian density ope
tor in one mode.

We consider quantum system described by operatoq
andp satisfying the Heisenberg canonical commutation re
tion ~CCR!

@q,p#5 i\I , @q,q#50, @p,p#50. ~2.9!

Let H be the Hilbert space of irreducible representation
CCR. Introducing the unitary operator inH for a vectorz
5@zq ,zp#8,

V~z!5expi ~zqq1zpp!, ~2.10!

we define the Gaussian density operator as follows:
The density operatorr is called Gaussian, if its quantum
characteristic function has the form

Tr rV~z!5expF imtz2
1

2
ztazG , ~2.11!

wherem is a two-dimensional column vector@mq ,mp# t and

a5Faqq aqp

aqp appG ~2.12!

is a real symmetric matrix.
The meanm can be an arbitrary vector; the necessary a
sufficient condition on the correlation matrixa is the uncer-
tainty relation

aqqapp2~aqp!2>\2/4, ~2.13!

where the stater is pure if and only if the equality holds.
Let us consider the quantum Gaussian channelm→rm ,

whererm is the quantum Gaussian density operator with
meanm and the fixed correlation matrixa. In addition we
assume the energy constraint~2.1! with f (m)5mtm/2. Then
we can take thea priori Gaussian distribution with the cor
relation matrixS:

p~dm!5
1

2pAdetS
expF2

1

2
mtS21mGdm, ~2.14!

and compute the expurgated bound as follows~see@5#!
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m̃~p,s,p!52psE1
s

2
ln det†~ I 2pS!$I 2pS

1@sg1/s~Adeta/\!a#21S%‡, ~2.15!

where

gs~d!5
1

2d

~d11/2!s1~d21/2!s

~d11/2!s2~d21/2!s . ~2.16!

III. EXPURGATED BOUND FOR SQUEEZED-STATE
CHANNELS

In this section we mainly discussnoiseless squeezed-sta
channel, m→rm . Squeezed state, which is just a pu
Gaussian state, in the one-mode case is conventionally
resented asS(z)u0& with z5geiu and S(z)5exp„@z* a2

2z(a†)2#…, wherea is the annihilation operator of the mode
This physical parametrization is related to Eq.~2.11! via for-
mulas

aqq5
\

2
@cosh 2g2sinh 2g cosu#

app5
\

2
@cosh 2g2sinh 2g cosu#

aqp5
\

2
sinh 2g sinu. ~3.1!

In the following we putu50 for simplicity and denote by
a~g! the correlation matrix with the elements~3.1!. To see
the effects of squeezing, we consider a transmitter ene
constraint, given by taking

f ~m!5
1

2
@mtm1Spa~g!#, ~3.2!

in Eq. ~2.1!. Then the constraint ona priori probability dis-
tribution ~2.2! takes the form

1

2
Sp„S1a~g!…<E, ~3.3!

and hence the Gallager functionm̃(p,s,p) is modified by
replacing the termE in Eq. ~2.15! with E2Spa(g)/2.

Whenr0 is a coherent state, that isg50, the expurgated
bound can be computed as@4,5#

Eex~R!

5H 2Nt~12A12e2R!, R, ln q~2Nt!

2@Nt112q~2Nt!#1 ln q~2Nt!2R, otherwise,

~3.4!

where
9-3
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q~x!5
11Ax211

2
.

HereNt represents an average number of signal photons
responding to energy boundE, E5\(Nt11/2). On the other
hand, we have not yet found the way to perform analytica
maximization in Eq.~2.3! and to compute the expurgate
bound whenr0 is a squeezed state.

In this paper we evaluate the expurgated bound for
squeezed-state channel, by considering suboptimala priori
probability distribution. That is, we restrict thea priori dis-
tributions to Gaussians with correlation matrix of the form

Fs1 0

0 s2
G , ~3.5!

wheres1s250. Amonga priori distributions that have the
form ~3.5! and satisfy the constraint~3.3!, the optimal one is
given by

s152En~g!, s250, if g>0

s150, s252En~g!, otherwise, ~3.6!

where

En~g!5E2
1

2
Spa~g!5\~Nt2sinh2 g!. ~3.7!

In the following we restrict ourselves to the caseg>0 for
simplicity and denote byp̂ the a priori distribution with
elements~3.6!. Although such degeneratea priori distribu-
tion might not maximizem̃ in Eq. ~2.3!, it allows us to evalu-
ate the expurgated bound for noiseless squeezed-state
nels. Indeed, the degeneratea priori distribution of the form
~3.5! is known to be optimal in several cases.

~i! Among semiclassical photodetections, the homod
detection of the squeezed-state channel with squeezing
rameterg56 lnA2Nt11[6g0 is optimal@12#. The homo-
dyne detection corresponds to a channel with the degene
a priori distribution.

~ii ! The degeneratea priori distribution achieves the ca
pacity of squeezed-state channel withg56g0 @14#.

~iii ! The degeneratea priori distribution is optimal for
Eex(0) of squeezed-state channel@5#.

The quantum Gallager function for thisa priori distribu-
tion p̂ is obtained as

m̃~p̂,s,p!52psEn~g!1
s

2
ln@122pEn~g!#F122pEn~g!

1
4En~g!

s\
e2gG . ~3.8!

Using this function, we obtain the approximation to the e
purgated bound as follows:
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Êex~R!5max
1<s

@max
0<p

m̃~p̂,s,p!2sR# @<Eex~R!#.

~3.9!

HereÊex(R) andEex(R) have the same value at zero rate@5#

Eex~0!5Êex~0!. ~3.10!

Calculating Eq.~3.9! and finding the optimum squeezing p
rameterg5g0 ~see the Appendix!, we obtain

Êex~R!5H 2Nt~Nt11!~12A12e22R!, R<R0

Ĉ2R, otherwise,
~3.11!

where

R05
1

2
ln q„4Nt~Nt11!… ~3.12!

and Ĉ[Êex(R0)2R0 is calculated as

Ĉ52Nt~Nt11!112q„4Nt~Nt11!…

1
1

2
ln q„4Nt~Nt11!…. ~3.13!

Note thatĈ gives a lower bound for the cutoff rateC̃ given
by Eq. ~2.8!.

In Fig. 1 we present graphs ofÊex(R) for the squeezed
state channel withg5g0 and the coherent-state channe
when Nt51. Note that the information rateR satisfying
Êex(R)50 is equal to Ĉ. This figure shows that using
squeezed states under the transmitter energy constrain
ticeably increases the value ofÊex(R) at low information
ratesR. From this we conclude that the squeezing improv
the channel performance at low information rate. Stric

FIG. 1. Êex(R) with respect to information rateR for the
squeezed-state channel withg5g0 and the coherent-state chann
with Nt51, where the information rateR and the expurgated boun

Êex(R) are measured in nats.
9-4
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speaking, we cannot evaluate channel performance prec
by the expurgated boundÊex(R). In order to confirm our
statement we should evaluate the reliability functionE(R)
directly. Fortunately Eqs.~2.7! and ~3.10! shows that the
valueE(10) of the reliability function at zero rate is equ
to Êex(0). Now, from Eqs.~3.4! and~3.11!, we can find that
the value ofÊex(0) @equal toE(10)# for squeezed states
2Nt(Nt11), is larger than that for coherent states 2Nt . Here
the reliability functionE(R) is monotonously decreasing an
the value ofE(10) is representative of the behavior ofE(R)
at low information rates. Thus we can confirm the statem
that squeezing is good at low information rates. On the ot
hand, the squeezing is not good at high information ra
Indeed it has been shown in@14# that the channel capacity
which reflects the behavior of reliability function at hig
information rates, is not improved by squeezing.

IV. CONCLUDING REMARKS

As a serial work on the quantum capacity and cod
theorem, we have calculated the expurgated bound for
squeezed-state channel. As a result, we have found that u
squeezed states improves asymptotic channel performan
low information rates, while it does not help near the chan
capacity. In this paper, on the analogy of classical case,
assume that the expurgated bound gives a faithful evalua
of the channel performance at information rates below
cutoff rate. Based on this assumption, we can conclude
the Fig. 1 shows the efficiency of squeezing. In additio
seeing that the expurgated bound coincides with the relia
ity function at zero rate, we have confirmed that our assum
tion holds at least near zero information rate. The problem
find good codes satisfying the expurgated bound remains
the classical case such codes have been already known@7#.
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APPENDIX

Let us prove Eq.~3.11!. Optimizing Eq.~3.8! with respect
to p, we have

max
0<p

m̃~p̂,s,p!2sR5
2En~g!e2g

\
1s2sqS 4En~g!e2g

s\ D
1

s

2
ln qS 4En~g!e2g

s\ D2sR. ~A1!
.
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Taking derivative of Eq.~A1! with respect tos, we obtain the
equation

qS 4En~g!e2g

s\ D5e2R, ~A2!

the solution of which is

s5
2En~g!e2g

\

1

Ae4R2e2R
. ~A3!

If this is larger than 1, which is equivalent to

R<
1

2
ln qS 4En~g!e2g

\ D[R0 , ~A4!

then the maximum is achieved for the value ofs given by Eq.
~A3! and is equal to

Êex~R!5
2En~g!e2g

\
~12A12e22R!. ~A5!

In the range

R.
1

2
ln qS 4En~g!e2g

\ D , ~A6!

we have

Êex~R!5Ĉ2R, ~A7!

whereĈ5Êex(R0)2R0 . Since

2e2gEn~g!

\
52

1

2
@e2g2~2Nt11!#212Nt~Nt11!

~A8!

holds, we can findg5g05 ln A2Nt11 maximizesÊex(R).
Substitutingg5g0 into Eq. ~A5!, we have

Êex~R!52Nt~Nt11!~12A12e22R!, ~A9!

in the range~4!. ThenĈ is calculated as

Ĉ52Nt~Nt11!112q„4Nt~Nt11!…

1
1

2
ln q„4Nt~Nt11!…. ~A10!
-
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