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Squeezing is good at low information rates
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We evaluate the performance of a squeezed-state channel, in which classical information is conveyed by
squeezed states. The evaluation is carried out by calculating the expurgated lower bound for the reliability
function. As a result, we find that using squeezed states improves the channel performance near the zero
information rate.
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[. INTRODUCTION expurgated bounds for classical Gaussian channel can be ob-
tained easily6]. On the contrary, it is much more difficult to
Recently guantum continuous channels, in which classicaget these bounds for a quantum Gaussian channel. In fact it
information is conveyed by quantum states parametrizegs known that the random coding bound cannot be obtained
continuously, have been widely noticed because they havgnalytically, and the way to get the expurgated bound was
various relevant applicationgl-3]. The general formulas found only for coherent-state chanrdl,5]. This paper ex-
concerning the capacity and the reliability function for suchtends the result to more general case, that is, we calculate the
channels were proved by Holevo and coworkigf$]. The  expurgated bound for noiseless squeezed-state channel by
capacity represents the ultimate capability of informationconsidering suboptimal priori probability distribution. As a
transmission. This means we can transmit information at anyesult we find that using squeezed states improves the chan-
rate R below the capacity within an arbitrary small error nel performance at information rates below the so-called
probability. Here the information rat&k is defined by “cutoff rate.” This conclusion is important, because commu-
(InM)/n when we transmitM messages witm use of the nication at low rates is typical for many practical situations,
channel, that is, a block code of lengthOn the other hand, such as, for example, in cryptographic applications.
the reliability functionE(R) shows the speed of the expo-  The properties of squeezed-state channel has been inves-
nential decay of error probabiliti, at any rateR below the  tigated on the basis of two information theoretical quantities,
capacity: P.~exd —nE(R)]. The reliability function gives the mutual information and the capacity. As mentioned
much more detailed and practical description of the asympabove, this paper reveals many effects of squeezed states by
totical channel performance than the capacity. The importurning our attention to the reliability function. To clarify the
tance of the reliability function is recognized well in the historical meaning of our result, let us recall the previous
classical information theory, and extensive studies have beemorks. In 1970s, Yuen and Shapif&@0—12 fully revealed
devoted to it[6]. On the analogy from the classical case,effects of the squeezed states on the semiclassical communi-
Holevo defined the random coding bouBg(R) and the ex- cation process with photon counting schemes that involve
purgated bouné,(R) for the quantum channel, and proved homodyne and heterodyne measurement processes. They
that these give the lower bounds for the reliability functionproved that the maximum mutual information for an opti-
E(R) truly [4]. Note that only the random coding bound for mum noiseless squeezed-state channel with the homodyne
mixed input states is yet to be proved. The random codingneasurement is In@2N;), showing the maximum signal-to-
bound E;(R) gives good evaluation of the channel perfor- quantum noise ratio, whens; represents the signal photon
mance at high information rate, and is defined such that thaumber. On the other hand, due to the general formula of the
value of R satisfyingE,(R)=0 is equivalent to the channel capacity[4], we can evaluate the ultimate capability of the
capacity. Thus the channel coding theorem can be showguantum channel, considering more general quantum mea-
immediately from the random coding bourid]. On the surements including so-called entangled measurements. In
other hand the expurgated boukd,(R) is good at the in- particular, we can give the rigorous formulation and proof
formation rate below the so-called “cutoff rate.” for Gordon’s conjecture that the capacity of noiseless-
When we intend to find a block code to send messagesoherent-state channel under input power constrislinis
faithfully and efficiently, it is important to evaluate before- given by (N;+ 1)In(N;+1)—N; In N, [4], which corresponds
hand the reliability function of the channel as the target perto the Yuen-Ozawa boundl3]. This implies that using
formance of coding7-9]; the evaluation is carried out by squeezed states cannot improve the capatity. However,
calculating its lower bounds. The random coding and thesqueezed states provide a simple coding scheme for achiev-
ing the Gordon’s capacityN;+ 1)In(N;+1)—N; InN;. Our
previous paper showdd4] the capacity of certain noiseless
*Email address: sohma@mrit.mei.co.jp squeezed-state channel achieves the Gordon’s capacity by
TEmail address: hirota@lab.tamagawa.ac.jp coding based on only real number alphabet, while we cannot
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avoid using complex number alphabet in the case of thén [5] we derived the following expurgated bound for the
coherent-state channel. error probability of the channel using codes of sikk
This paper is organized as follows. In Sec. Il we remind=e"R with codewords of lengtm,
the definitions of quantum continuous channel and formulate
the general expurgated bound for the error probability. Then Po(n,e"R)<e "EexR)
we specialize it to the case of Gaussian channel in one mode.
In Sec. IlI, by evaluating the expurgated bound, we find thatvhereR is an information rate below the channel capa@ty
using squeezed states improves the channel performance a&itdPc(n,M) denotes the error probability achieved with the
low information rates. optimal code consisting d#l code words of lengtin and the
optimal quantum detection process described by a positive
operator-valued measure.
To make clear the meaning of expurgated bound, let us
A. Case of general quantum-continuous channel recall some other quantities characterizing the quantum-
continuous channel. When the information rate is less than

continuous channels followind]; the bound is expected to the channel capacitig=C, we can estimate thenlogarlthmlc
enable us to investigate the channel performance at any jfate of convergence of the error probabilRy(n,e"™) by the
formation rate below the cutoff rate. For reader’s conve- Teliability function defined as

nience, we start with recalling a general formulation of the

quantu_m-continuous chanr_lel. Tgk_e as the i_nput alphgbet E(R)=—liminf = In Po(n,e"). (2.5

an arbitrary Borel subset in a finite-dimensional Euclidean o

space€. The quantum-continuous channel is described by a

weakly continuous mapping— p, from the input alphabet The expurgated bound gives a lower bound for such defined

II. THE QUANTUM EXPURGATED BOUND

We shall describe the expurgated bound for quantum-

A to the set of density operators ft. reliability function. For higher rates there is a better bound
Let us consider also the product channel in the Hilbertgiven by the random coding without expurgatipl. This
spaceH®*"=H®:--®H, where a density operator bound is called theandom coding bound ER), which is

analytically much less tractable than the expurgated bound.

Pu=Px, @ ®px_ The quantity characterizing the channel performance at low

information rate is the valu&(+0) of the reliability func-
x,) e A", As tion at the zero rate. Fortunately we can obtain not only
n .

corresponds to a word of len w=(Xq,...,
P gth (x4 jpwer bound but also upper bound f&(+0) [5],

in the classical case, we should impose an additive constrai
on the signals of quantum continuous channel

E.(0)<E(+0)
F(xg) -+ F(xg) = .
(Xa) oo+ T <NE, @3 -2 minff In Tr| Vp,py| m(dx) m(dy).
TePy

wheref is a fixed continuous positive function ¢h To carry
out the random coding procedure for a quantum-continuous (2.6)
channel with such a constraint, we consideaguriori prob-

ability distribution 7= m(dx) on A, satisfying In particular, in the pure state case, upper and lower bounds

coincide, that is, we have

L £(x)m(dx) <E. 2.2 E(+0)=Eey(0). 2.7

Using the quantum Gallager functigi(,s,p), we can de-

We denote byP; a set ofa priori probability distributions ~ fine another interesting quantity, ticetoff rate

satisfying this inequality. The random coding procedure 3

plays an essential role in the derivation of the expurgated C= maxmaxu(m,1,p), (2.9
bound. me Py 0<p

Now we define . . . L
which gives the channel performance at an intermediate in-

_ formation rate. The cutoff rate is a concept widely used in
Eex(R)=ma{maxmaxi(m,s,p)—sR], (23 practical applications of classical information thefi)].
1ss 0=pmePy In Sec. Il we evaluate the channel performance at low
information rates by means of the expurgate bound. We
should remark that this is based on the assumption that the
expurgated bouné.,(R) gives a good approximation to the

whereq is the quantum Gallager function given by

- B reliability function E(R) below the cutoff rate. Strictly
f(m.s,p)=—sin LJA exp([f(x)+f(y)—2E]} speaking, the expurgated bound is a mere lower bound for
the reliability function. In particular, the expurgated bound is
X(Trypy\py) Yom(dx) m(dy). (2.4  obtained by assuming square-root measurement as the quan-
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tum detection process. Hence it seems that we cannot elimi- s
nate the possibility that the optimum quantum detection pro- (m,s,p)=2psEt S Indef{(l - P ){I - pX
cess yields different results. Fortunately E2}.7) shows that
the valueE(+0) of the reliability function at zero rate is +[sgl/s(~/deta/ﬁ)a]‘12}], (2.15
equal toE.,(0). This indicates that our assumption holds at
least near zero information rate. where

B. Case of quantum Gaussian channel 1 (d+1/2)5+(d—1/2)° (2.16

Although our interest focuses on noiseless quantum chan- o 2d (d+1/2)°—(d—1/2)* ’

nels with squeezed states, we should consider a more general
category of states, namely, Gaussian stge4]; this gen- Ill. EXPURGATED BOUND FOR SQUEEZED-STATE
eral formulation provides us with a powerful tool of calcu- CHANNELS

lating various quantities characterizing the channels. In the

following we recall the definition of Gaussian density opera- [N this section we mainly discusmiseless squeezed-state
tor in one mode. channe] m—p,. Squeezed state, which is just a pure

We consider quantum system described by operagors Gaussian state, in the one-mode case is conventionally rep-
andp satisfying the Heisenberg canonical commutation relafesented asS(¢)|0) with ¢=ye'’ and S(¢)=exp({*a?

tion (CCR) —(a")?]), wherea is the annihilation operator of the mode.
This physical parametrization is related to E2.11) via for-
[q,p]=i#l, [q,9]=0, [p,p]=0. (2.9  mulas
Let H be the Hilbert space of irreducible representation of h .
CCR. Introducing the unitary operator i for a vectorz a9=7 [cosh 2y—sinh 2y cosd]

:[anzp]’:

. h
V(2) =expi(z49+2pp), (2.10 aPP= [cosh 2y—sinh 2y cos(]

we define the Gaussian density operator as follows:
The density operatop is called Gaussian if its quantum 3
characteristic function has the form ot p=§sinh 2ysiné. (3.0

In the following we putd=0 for simplicity and denote by
, (2.1) X T
a(y) the correlation matrix with the element3.1). To see

) ) ) the effects of squeezing, we consider a transmitter energy
wherem is a two-dimensional column vectpmy,my]' and  ¢onstraint, given by taking

_ 1
TrpV(z)=expim'z— > Zaz

299 AP 1
a=| ap app} (212 f(m)=S[m'm+Spa(y)], 3.2
is a real symmetric matrix. in Eq. (2.1). Then the constraint oa priori probability dis-

The meanm can be an arbitrary vector; the necessary andripution (2.2) takes the form
sufficient condition on the correlation matrixis the uncer-
tainty relation 1
ES[J(E-!—a('y))SE, (3.3
a%9aPP— (a9P)2=12/4, (2.13

and hence the Gallager functiga(,s,p) is modified by

where the state is pure if and only if the equality holds. replacing the tem in Eq. (2.15 with E— S pa(7)/2.

Let us consider the quantum Gaussian chammelp,,,
wherep, is the quantum Gaussian density operator with the \whenp, is a coherent state, that 4s=0, the expurgated
meanm and the fixed correlation matrix. In addition we  pound can be computed B4,5]
assume the energy constraf@tl) with f(m)=m'm/2. Then
we can take the priori Gaussian distribution with the cor- g (R)
relation matrix3:: &

[2Ny(1- Vi—e R, R<Ind(2N,)

1 1 = )
m(dm)= ————ex ——mtzlm}dm, 21 2[Ni+1—9(2Ny)]+In3(2N,)—R, otherwise,
(= aers ’{ 2 (214 3.4
and compute the expurgated bound as follgaee[5]) where
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14+ :

F(X)= 5

~—

HereN, represents an average number of signal photons cor
responding to energy bourtf] E=7%(N;+ 1/2). On the other 9—‘;
hand, we have not yet found the way to perform analytically (u?
maximization in Eq.(2.3) and to compute the expurgated
bound whery, is a squeezed state.

In this paper we evaluate the expurgated bound for the
squeezed-state channel, by considering suboptanadiori
probability distribution. That is, we restrict thee priori dis-

[

squeezed state

_________________ coherent state

tributions to Gaussians with correlation matrix of the form 0.2 1.4
Information rate R
g1 O A~
, (3.5 FIG. 1. E.(R) with respect to information rat®R for the
0 o squeezed-state channel with= y, and the coherent-state channel

with N;=1, where the information rate and the expurgated bound

whereo,0,=0. Amonga priori distributions that have the g (R) are measured in nats
ex .

form (3.5) and satisfy the constraiii8.3), the optimal one is

given by
Ecx(R)=ma{maxi(,s,p)—sR] [<Eq(R)].
01=2E(y), 0,=0, if y=0 ex(R) 1s§{0sp“( p)—SR] [<Ee(R)]
(3.9
170, 727 2E(7), - othenvise, 39 HereE.,(R) andE,,(R) have the same value at zero rfi¢
where

Eex(0)=E¢,(0). (3.10

E —E-_s —%(N.—sint? v). 3. Calculating Eq(3.9) and finding the optimum squeezing pa-
n(7) 2 pa(y) =A(Ny=sinfr ) S rametery= vy, (see the Appendjx we obtain

In the following we restrict ourselves to the cage=0 for A 2N(N+1)(1—1—e ), R<R,
simplicity and denote byr the a priori distribution with Ecx(R)=1 . _

elements(3.6). Although such degenerate priori distribu- C—R, otherwise,

tion might not maximizéx in Eq. (2.3), it allows us to evalu- (3.11

ate the expurgated bound for noiseless squeezed-state Ch@v'}iere
nels. Indeed, the degeneratgoriori distribution of the form
(3.5 is known to be optimal in several cases. 1
(i) Among semiclassical photodetections, the homodyne Ro== In 9(4Ny(N,+1)) (3.12
detection of the squeezed-state channel with squeezing pa- 2
rametery= *1Iny2N;+ 1= =* vy, is optimal[12]. The homo- A _
dyne detection corresponds to a channel with the degenera®dC=Eex{Ro) —Ro is calculated as
a priori distribution.

(ii) The degenerata priori distribution achieves the ca- C=2Nt(Nt+ 1)+1—9(4N(N;+1))
pacity of squeezed-state channel withkr + y, [14]. 1
(i) The degenerate priori distribution is optimal for + Eln 9(AN,(N,+1)). (3.13

E.,(0) of squeezed-state chaniibl.
The quantum Gallager function for théspriori distribu- R _
tion 7r is obtained as Note thatC gives a lower bound for the cutoff rat@ given
by Eg.(2.8).
s In Fig. 1 we present graphs &.,(R) for the squeezed
p(r,s,p)=2pSEy(y)+ 5 In[1-2pEy(y)]| 1-2pEq(y) state channel withy=1y, and the coherent-state channel,
when N,=1. Note that the information rat® satisfying
E.(R)=0 is equal toC. This figure shows that using
squeezed states under the transmitter energy constraint no-
ticeably increases the value é‘eX(R) at low information
Using this function, we obtain the approximation to the ex-ratesR. From this we conclude that the squeezing improves
purgated bound as follows: the channel performance at low information rate. Strictly

4En(v)

+sh

eZV} . (3.9
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speaking, we cannot evaluate channel performance preciselaking derivative of Eq(A1) with respect tes, we obtain the

by the expurgated bounH.,(R). In order to confirm our €quation
statement we should evaluate the reliability functiB(R)

directly. Fortunately Eqs(2.7) and (3.10 shows that the 19(4En(7)627)_eZR A2)
value E(+0) of the reliability function at zero rate is equal sh S

to EeX(O). Now, from Egs.(3.4) and(3.11), we can find that ] o

the value ofE.,(0) [equal toE(+0)] for squeezed states, the solution of which is

2N{(N;+1), is larger than that for coherent statdé,2 Here )

the reliability functionE(R) is monotonously decreasing and _ 2Eq(y)e”” 1 (A3)
the value ofe(+0) is representative of the behaviorBfR) f efR_ 2R’

at low information rates. Thus we can confirm the statement

that squeezing is good at low information rates. On the othelf this is larger than 1, which is equivalent to

hand, the squeezing is not good at high information rates.

Indeed it has been shown [i4] that the channel capacity, 1 AE(y)e?Y

which reflects the behavior of reliability function at high R<3In ﬁ(T =Ry, (A4)

information rates, is not improved by squeezing.
then the maximum is achieved for the valuesgfiven by Eq.

IV. CONCLUDING REMARKS (A3) and is equal to
As a serial work on the quantum capacity and coding 2E(y)e2”
theorem, we have calculated the expurgated bound for the Eo(R) = +(1—\/1—e‘2R). (A5)

squeezed-state channel. As a result, we have found that using
squeezed states improves asymptotic channel performance
low information rates, while it does not help near the channe
capacity. In this paper, on the analogy of classical case, we 1 4E 2y

assume that the expurgated bound gives a faithful evaluation R>=In 19( n(y)e ) (AB)
of the channel performance at information rates below the 2 h ’

cutoff rate. Based on this assumption, we can conclude that

the Fig. 1 shows the efficiency of squeezing. In addition V& have

seeing that the expurgated bound coincides with the reliabil- R R

ity function at zero rate, we have confirmed that our assump- E.(R)=C—R, (A7)
tion holds at least near zero information rate. The problem to o

find good codes satisfying the expurgated bound remains; iwhereC=E.,(Ry) —Ry. Since

the classical case such codes have been already kfidwn

|ﬁtthe range

2e7Eq(y) 1., 5
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APPENDIX Substitutingy= v, into Eq. (A5), we have

Let us prove Eq(3.11). Optimizing Eq.(3.8) with respect Eex( R)=2Ny(N+1)(1—J1—e 2R), (A9)
to p, we have

in the range4). ThenC is calculated as

maxzu(r,s,p) —SR=

O=p

h sh C=2N,(N{+1)+1— 3(4N,(N,+1))

s 4E, (y)e?”
+=1In z‘}(—nw)
sh

5 )—SR (A1) +;In F(AN(N+1)). (A10)
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