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Remote-state preparation in higher dimension and the parallelizable manifolds"™*
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This paper proves that the remote-state prepard®8P scheme in real Hilbert space can only be imple-
mented when the dimension of the space is 2, 4, or 8. This fact is shown to be related to the parallelizability
of the (n—1)-dimensional spher8"~ 1. When the dimension is 4 and 8 the generalized scheme is explicitly
presented. It is also shown that for a given state with components having the same norm, RSP can be
generalized to arbitrary dimension case.
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Remote-state preparatidRSP [1-3] is called “telepor-  result to higher-dimension case. It will be shown that one can
tation of a known state.” Unlike quantum teleportation directly generalize the equatorial case. On the other hand, the
[4—8], in RSP, Alice knows the state that she will transmit to generalization of the polar great circle case is highly non-
Bob. Her task is to help Bob construct a state that is unirivial.
known to him by means of a prior shared entanglement and We first consider the generalization of the polar great
a classical communication channel. Recently, Pati has showgircle casei.e., the case that the state has real compohents
that a state of a qubit chosen from equatorial or polar grederecisely, we formulate our problem as follows. Suppose that
circles on the Bloch sphef@e., a state with the components Alice and Bob can share entangled state between two iden-
of the same amplitude or with real componéntan be re- tical quantum systems the dimension of the state space of
motely prepared with one cbit from Alice to Bob if they Which is n. Choose an orthonormal basfg;|i=0,1,...n
share one ebit of entanglemefrif]. Here, qubit stands for —1} of the state space. By measuring the system with re-
quantum bit whose state is a superposition of two orthonorspect to a certain basis, Alice wishes to prepare a quantum
mal baseg0) and|1); one chit is one-ary classical states of state of the form
communication carrying classical information; and ebit is the
so-called entanglement bit usually carrying a Bell state. It is
noted that in Pati’s special case, to remotely prepare a state W)= Zﬁ ail i)
of one qubit, the entanglement cost is the same as that in

teleportation but the classical information cost is only half ofat Bob, where the coefficients are real numbers. Between
that in teleportation. Most recently, @] and Bennetetal.  pjice and Bob there is a classical channel capable of trans-
[3] have studied the classical information cost for generaitting information carried by classical states that can take
state preparation in the scheme of RSP, using the concepts @ffferent values, say, 0,1,n+ 1. By prior agreement, each
entanglement dilutiofi9], high-entanglement limit and low- yajye carried by the classical state can be corresponded to a
entanglement RSP3]. They have also investigated the trade ynjtary operation on the quantum system at Bob. That is to
off between entanglement cost and classical communicatiogay, when Bob receives a valuehe will exert a certain
cost in RSH2,3]. However, in protocols of Lo or Bennett ynjtary operatiorlJ; on his system. Now our question is the
et al. either the entanglement cost or the classical mformamnowing: for the above minimum RSP procedure to be re-
tion cost is more than that in Pati’'s special case. This fact cagjizable what condition should the dimensiorsatisfy? By

be well understood by considering the geometry of Pati's;onvention, in the procedure of RSP the maximally en-

case: Pati’s states lie on the equatorial or polar great circleg%mg|ed state shared by Alice and Bob, will be the Einstein-
on a Bloch sphere. For this reason, we call the case treatgshqo|sky-RoselEPR state,

by Pati the “minimum” case.

As Pati presents his result only in the qubit case, it is n-1
natural to ask whether his result can be generalized to the |<I>>AB:—( > )| b)
higher-dimension case. It is well known that as far as tele- Vn 'l i=o
portation, which transmits an unknown state, is concerned,
the generalization from the qubit case to higher-dimension Remark In Ref. [1], the EPR state i$®)ag=(142),
case is straightforward. In fact, the finstdimensional tele- (|0)®|1)—[1)®|0)), which is a little different from the
portation protocol is just given by Bennett al. in their first ~ EPR state we use here. But there is no essential difference.
paper that introduced the celebrated concept of quantum tele- To prepare the state) in a remote place, similar to the
portation[4]. Later then-dimensional case of teleportation Pati’s protocol in the qubit case, Alice needs to find a set of
and its mathematical background were studied in more detafiithonormal basig|¥;)}/=g with respect to which the mea-
by many other authorfl0—13. Even in the case concerning surement is done on her system. The EPR $thjgg can be
continuous variabld14], it can well be tackled15]. The  written as |®)ap=1//nZ;|¥)®|Q;). Here [Q))
purpose of this paper is to seek a generalization of Pati's=X; \|W)[(¥|d)(¥i|#k)], i=0,...n—1. We notice that

n—1

1050-2947/2002/62)/0223164)/$20.00 65 022316-1 ©2002 The American Physical Society



BEI ZENG AND PENG ZHANG PHYSICAL REVIEW A65 022316

{lQ)"-¢ is a set of orthonormal vectors. To realize thegarded as a point 08"~ *. Thus the mag¥)—V;|¥) de-
minimum RSP task, there should existinitary operators);  fines an i— 1) field on the manifolds"~*. This means that
(i=0,1,..n—1) independent of [¥) such that |Q;) S" *is parallelizable.

=U;|W). If such unitary operators do exist, then Alice can Now we are prepared to present the main result of this
measure her system with respect to the bais)}""¢ and ~ Paper. . , _ , _

get a statg¥;). Then through the classical communication Main theorem Minimum RSP is realizable in rea_l Hilbert
channel, she can send Bob the valuéfter receiving the space if and only if the dimension of the space is 1, 2, 4,

. or 8.
Message, Bob will be ab!e to construqt the target sttdy We notice that the “only if” part of the theorem is a direct
letting his system experience the unitary evolutldn, ac-

consequence of the above proposition and the cited theorem

cording to their prior agreement. It turns out that the req“ire'preceding it. To prove the “if part” of the theorem we only

ment that such unitary operatoks;’s exist imposes Very noed to show that when=1, 2, 4, or 8 there exist real
strong restriction on the dimension of the state space. Befor@nitary matrices/;(i=0,1,...n— 1) such that for ang¥" with
proceeding along with the discussion, let us prepare somgyg| coefficients{V;|¥)|i=0,1,..n—1} is an orthonormal

terminology about parallelizable manifold. basis of the state space. Indeed if such unitary matrices exist
Let M be a manifold of dimension. The tangent space then the EPR state can be rewritten as

TM is well defined for every pointe M as the real vector

space consisting of all tangent vectors Nbat x [16]. A n-1
continuous vector field in M is a continuous function that |(I)>AB:T< > |[v)e|v)
assigns a vectar(x) e TyM to everyxe M. By ak-field we nit=o

mean ak-tuplevq,v,,...,vx Of continuous vector fleI(_js on where|W;)=V;|¥). Then it is clear that RSP can be real-
M, such that the vectors;(x),....un(x) at each poinX ;a4 Since the one-dimensional case is trivial and the two-
€M are linearly independent. The largdsfor which ak  gimensional case have been dealt with by P&} in the
field exists is called SpaM). If SpanM)=n, then the  {5|lowing we only consider the cases nf4 andn=S8.
manifold is said to be parallelizable. It is a difficult problem  \ne observe that the existence of the above mentiafed
to determine Spa{) for any given manifold. But we have g closely related to the existence ofi£1)-field on the
the following deep resu[tli].l . , manifold S"~ 1. So at this point it is enlightening to recall the
Theorem The sphereS™ " is parallelizable only fom 5 elous method of relating the dimensiomf a division
=1,2,4,8. We proceed to prove the following interesting|gepra over the real number figkto the parallelizability of

result. o , , _the manifoldS"~ 1. It turns out that by this method we can
Proposition If the minimum RSP scheme is realizable in §,q theV,’s we need
. . . _1 . .
n-dimensional real Hilbert space, then the sphgfe™ is It is noticed that ifA is a division algebra of dimensiam
parallelizable. one can choose a vector space isomorphisiadatoR" and

Proof. From the above discussion, if RSP is realizabletransfer the multiplication defined oA to R" [17]. Let

there should exisn unitary operatorsU;(i=0,1,.n=1) ¢ o = o e the standard basis vectors Rt and lety
such that|Q;)=U;|¥). As pointed out above{|Q)[i =1 Then the vectors;-y, €,-y,....e, y are linear in-
=0,1,..n—1} is a set of orthonormal vectors. Thus we have yependent. If we orthonormalize them we obtaivectors
_ . VO(y)! Vl(y),---,vn_l(y)- The VeCtOfSVl(y),...,Vn_l(y)
(YU, "Uj|¥)=0, i=12..n-1. are tangential t&8""! at the pointVy(y). They define an
(n—1) field onS"~ 1. Now it is not difficult to see that when
Write Uy 'U; as we takeA to be the quarternion algebra and the ontonion
algebra, whose dimension is 4 and 8, respectively, thigse
Uy Tui=Vi+V-1w,, are exactly what we need. This finishes the proof of the main
theorem.
whereV,; andW; are real matrices. Then it follows that To illustrate the above procedure we explicitly calculate
theV,’s as follows.
(¥|V;|¥y=0, i=12,.n-1 Whenn=4, we consider the quaternion field H. A quater-
nion in H can be expressed aA=agey+a;e;+ase;
as [¥) has real coefficients. If we only consider the case+ase;, where{e}>_, form the standard basis of quaternion.
W;=0, i.e., the minimum RSP scheme in real Hilbert spaceAccording to the rules of Hamilton multiplicatiofi7], two
this{V;|¥)} (i=0,1,2,.n—1) form an orthonormal basis of quaternion’s Hamilton multiplication can be calculated as
n-dimensional real Hilbert space. Obvious) can be re- follows:

A-B=(apey+a;e;+aye,+ases)- (bpeg+bie;+bre,+bsey)
=(agbp—ajb;—azb,—agbs)ey+ (agh;, +ahg+abz—ash,)e; +(apgh,—a;bs+azbg+asb;)e;

+ (a0b3+ albz_ azb1+ a3b0)63 .
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Of course, with the usual addition and scalar prodtict, 0 O 0o -1
can be considered as a vector space &avhich is isomor- 0 o - 0
phic toR* andey, e, e,, e; form a set of natural basis of V= Tx
this linear space. The inner productihcan be defined as 1o o, O 0|’
(e ,€))=25;, i.e, (AB)y==2 ab;. For an arbitrary unit I 0o O 0

vector A that satisfie¢éA,A)=1, we can define a set of vec-
tors {A;=¢,-A}>_,. Using the property of division algebra

[17], we have(A; Ay =(€; ,&)(A,A)=(ej &)=, . There- 0 0 0 ~ioy
fore, {A}_, is a set of orthonormal basis. It is easy to see 0 0 -0, O
thatA,=A and the orthonormal transformatiofi }>_, that Vo= 0 . 0 0

X

transform A to {A;}2_, are independent of\. Therefore,
{V;}2_, are just what we want to find.
A direct calculation following the above steps gives the
following result in the four-dimension case: Moreover, in general the case that+0, i.e., minimum
RSP scheme for states with real components in complex Hil-

~ig, 0 0 O

—ioy 0 bert space should be taken into account. We conjecture that
Vo=1, Vi= 0 I even in this case, minimum RSP scheme can only be imple-
loy mented when the dimension of the space is 2, 4, or 8.
Now we consider the generalization of RSP scheme of the
0 -o, 0 —oy equatorial case. In this case, the state to be remotely prepared
Vs , V3= can be written in the form
g, O g, 0

Whenn=8, using the rules of Cayley multiplicatiqa 7],

=3 Loty
similarly we can ge{V;}/_,. The result is as follows: a=o \n '

—ioy 0 0 0 Without loss of generality, we set,=0. We will show
0 —ioy O 0 the RSP scheme for such states is realizable whatever the
Vo=I, Vi= . ' dimension n is. It is easily seen that{|¥)||¥,)
0 0 iocy, 0 1 : P .
_ =1/\nZj_te@mi/Mabel%| g))}n_{ is an orthonormal basis
0 0 0 —lay in the n-dimensional case, and that the unitary transformation
U,: U,|P)y=|T,) is independent of’). As the first step
0 -0, 0 O to remotely preparé¢¥), Alice needs to do a local unitary
o o0 0 transformationU o(|]¥)) on her particle. HereUJ (| V) is
vo=| 7* defined as
1o —1 |
0 0O 1 0 n-1
Ua(lW))= 2, la)(n—alexdi(6,+ 6, .)]1+|0)(0].
0 -oo O 0
vae| 0 0 0 Thus we have
10 o0 0 —ioy
0 0 —ioy O n-1 4
UA(|\P>)®IB|(I)>AB: E _|\Pa>®|q,a>'
a=0 \/ﬁ
0 -0, O
Vo= 0 | Here |®),5 is the EPR state|®),g=3"_31/Vn|a)
1o, 0 ' ®|a) of the entangled pair that is priorly shared by Alice and
0 —I 0o 0 Bob. After the transformation, Alice can measure her particle
with respect to the basi§ ¥ ,)}"_% and tell her result to
Bob. Then Bob can do the unitary transformatlo)@1 to get
0 0 -0 O the statdW¥). This implements the RSP task.
0 0 0 io In summary, this paper generalizes Pati's minimum RSP
y . ; .
Vg= , scheme to the case of higher dimension. We have shown that
ox 0 0 0 the minimum RSP scheme in real Hilbert space can be
0 ioy O 0 implemented only when the dimension is 2, 4, or 8, while the
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