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Remote-state preparation in higher dimension and the parallelizable manifoldSnÀ1
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This paper proves that the remote-state preparation~RSP! scheme in real Hilbert space can only be imple-
mented when the dimension of the space is 2, 4, or 8. This fact is shown to be related to the parallelizability
of the (n21)-dimensional sphereSn21. When the dimension is 4 and 8 the generalized scheme is explicitly
presented. It is also shown that for a given state with components having the same norm, RSP can be
generalized to arbitrary dimension case.
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Remote-state preparation~RSP! @1–3# is called ‘‘telepor-
tation of a known state.’’ Unlike quantum teleportatio
@4–8#, in RSP, Alice knows the state that she will transmit
Bob. Her task is to help Bob construct a state that is
known to him by means of a prior shared entanglement
a classical communication channel. Recently, Pati has sh
that a state of a qubit chosen from equatorial or polar g
circles on the Bloch sphere~i.e., a state with the componen
of the same amplitude or with real components! can be re-
motely prepared with one cbit from Alice to Bob if the
share one ebit of entanglement@1#. Here, qubit stands fo
quantum bit whose state is a superposition of two orthon
mal basesu0& and u1&; one cbit is one-ary classical states
communication carrying classical information; and ebit is
so-called entanglement bit usually carrying a Bell state. I
noted that in Pati’s special case, to remotely prepare a s
of one qubit, the entanglement cost is the same as tha
teleportation but the classical information cost is only half
that in teleportation. Most recently, Lo@2# and Bennettet al.
@3# have studied the classical information cost for gene
state preparation in the scheme of RSP, using the concep
entanglement dilution@9#, high-entanglement limit and low
entanglement RSP@3#. They have also investigated the tra
off between entanglement cost and classical communica
cost in RSP@2,3#. However, in protocols of Lo or Benne
et al. either the entanglement cost or the classical inform
tion cost is more than that in Pati’s special case. This fact
be well understood by considering the geometry of Pa
case: Pati’s states lie on the equatorial or polar great cir
on a Bloch sphere. For this reason, we call the case tre
by Pati the ‘‘minimum’’ case.

As Pati presents his result only in the qubit case, it
natural to ask whether his result can be generalized to
higher-dimension case. It is well known that as far as te
portation, which transmits an unknown state, is concern
the generalization from the qubit case to higher-dimens
case is straightforward. In fact, the firstn-dimensional tele-
portation protocol is just given by Bennettet al. in their first
paper that introduced the celebrated concept of quantum
portation @4#. Later then-dimensional case of teleportatio
and its mathematical background were studied in more de
by many other authors@10–13#. Even in the case concernin
continuous variable@14#, it can well be tackled@15#. The
purpose of this paper is to seek a generalization of Pa
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result to higher-dimension case. It will be shown that one c
directly generalize the equatorial case. On the other hand
generalization of the polar great circle case is highly no
trivial.

We first consider the generalization of the polar gre
circle case~i.e., the case that the state has real componen!.
Precisely, we formulate our problem as follows. Suppose
Alice and Bob can share entangled state between two id
tical quantum systems the dimension of the state spac
which is n. Choose an orthonormal basis$f i u i 50,1,...,n
21% of the state space. By measuring the system with
spect to a certain basis, Alice wishes to prepare a quan
state of the form

uC&5 (
i 50

n21

ai uf i&

at Bob, where the coefficients are real numbers. Betw
Alice and Bob there is a classical channel capable of tra
mitting information carried by classical states that can takn
different values, say, 0,1,...,n21. By prior agreement, eac
value carried by the classical state can be corresponded
unitary operation on the quantum system at Bob. That is
say, when Bob receives a valuei he will exert a certain
unitary operationUi on his system. Now our question is th
following: for the above minimum RSP procedure to be
alizable what condition should the dimensionn satisfy? By
convention, in the procedure of RSP the maximally e
tangled state shared by Alice and Bob, will be the Einste
Podolsky-Rosen~EPR! state,

uF&AB5
1

An
S (

i 50

n21

uf i& ^ uf i& D .

Remark. In Ref. @1#, the EPR state isuF&AB5(1/&),
(u0& ^ u1&2u1& ^ u0&), which is a little different from the
EPR state we use here. But there is no essential differen

To prepare the stateuC& in a remote place, similar to the
Pati’s protocol in the qubit case, Alice needs to find a set
orthonormal basis$uC i&% i 50

n21 with respect to which the mea
surement is done on her system. The EPR stateuF&AB can be
written as uF&AB51/An( i uC i& ^ uV i&. Here uV i&
5( j ,kuC j&@^C j ufk&^C i ufk&#, i 50,...,n21. We notice that
©2002 The American Physical Society16-1
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$uV i&% i 50
n21 is a set of orthonormal vectors. To realize t

minimum RSP task, there should existn unitary operatorsUi
( i 50,1,...,n21) independent of uC& such that uV i&
5Ui uC&. If such unitary operators do exist, then Alice c
measure her system with respect to the basis$uC i&% i 50

n21 and
get a stateuC i&. Then through the classical communicatio
channel, she can send Bob the valuei. After receiving the
message, Bob will be able to construct the target stateuC& by
letting his system experience the unitary evolutionUi , ac-
cording to their prior agreement. It turns out that the requ
ment that such unitary operatorsUi ’s exist imposes very
strong restriction on the dimension of the state space. Be
proceeding along with the discussion, let us prepare so
terminology about parallelizable manifold.

Let M be a manifold of dimensionn. The tangent space
TxM is well defined for every pointxPM as the real vector
space consisting of all tangent vectors toM at x @16#. A
continuous vector fieldv in M is a continuous function tha
assigns a vectorv(x)PTxM to everyxPM . By a k-field we
mean ak-tuple v1 ,v2 ,...,vk of continuous vector fields on
M, such that the vectorsv1(x),...,vn(x) at each pointx
PM are linearly independent. The largestk for which a k
field exists is called Span(M ). If Span(M )5n, then the
manifold is said to be parallelizable. It is a difficult proble
to determine Span(M ) for any given manifold. But we have
the following deep result@17#.

Theorem. The sphereSn21 is parallelizable only forn
51,2,4,8. We proceed to prove the following interesti
result.

Proposition. If the minimum RSP scheme is realizable
n-dimensional real Hilbert space, then the sphereSn21 is
parallelizable.

Proof. From the above discussion, if RSP is realiza
there should existn unitary operatorsUi( i 50,1,...,n21)
such that uV i&5Ui uC&. As pointed out above,$uV i&u i
50,1,...,n21% is a set of orthonormal vectors. Thus we ha

^CuU0
2†Ui uC&50, i 51,2,...,n21.

Write U0
2†Ui as

U0
2†Ui5Vi1A21Wi ,

whereVi andWi are real matrices. Then it follows that

^CuVi uC&50, i 51,2,...,n21

as uC& has real coefficients. If we only consider the ca
Wi50, i.e., the minimum RSP scheme in real Hilbert spa
this $Vi uC&% ( i 50,1,2,...n21) form an orthonormal basis o
n-dimensional real Hilbert space. Obviously,uC& can be re-
02231
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garded as a point onSn21. Thus the mapuC&→Vi uC& de-
fines an (n21) field on the manifoldSn21. This means that
Sn21 is parallelizable.

Now we are prepared to present the main result of t
paper.

Main theorem. Minimum RSP is realizable in real Hilber
space if and only if the dimension of the space is 1, 2,
or 8.

We notice that the ‘‘only if’’ part of the theorem is a direc
consequence of the above proposition and the cited theo
preceding it. To prove the ‘‘if part’’ of the theorem we onl
need to show that whenn51, 2, 4, or 8 there exist rea
unitary matricesVi( i 50,1,...,n21) such that for anyC with
real coefficients$Vi uC&u i 50,1,...,n21% is an orthonormal
basis of the state space. Indeed if such unitary matrices e
then the EPR state can be rewritten as

uF&AB5
1

An
S (

i 50

n21

uC i& ^ uC i& D ,

where uC i&5Vi uC&. Then it is clear that RSP can be rea
ized. Since the one-dimensional case is trivial and the tw
dimensional case have been dealt with by Pati@1#, in the
following we only consider the cases ofn54 andn58.

We observe that the existence of the above mentionedVi
is closely related to the existence of (n21)-field on the
manifoldSn21. So at this point it is enlightening to recall th
marvelous method of relating the dimensionn of a division
algebra over the real number fieldR to the parallelizability of
the manifoldSn21. It turns out that by this method we ca
find theVi ’s we need.

It is noticed that ifA is a division algebra of dimensionn,
one can choose a vector space isomorphism toA ontoRn and
transfer the multiplication defined onA to Rn @17#. Let
e1 ,e2 ,...,en be the standard basis vectors ofRn and let y
PSn21. Then the vectorse1•y, e2•y,...,en•y are linear in-
dependent. If we orthonormalize them we obtainn vectors
V0(y), V1(y),...,Vn21(y). The vectorsV1(y),...,Vn21(y)
are tangential toSn21 at the pointV0(y). They define an
(n21) field onSn21. Now it is not difficult to see that when
we takeA to be the quarternion algebra and the onton
algebra, whose dimension is 4 and 8, respectively, theseVi ’s
are exactly what we need. This finishes the proof of the m
theorem.

To illustrate the above procedure we explicitly calcula
the Vi ’s as follows.

Whenn54, we consider the quaternion field H. A quate
nion in H can be expressed asA5a0e01a1e11a2e2

1a3e3 , where$ei% i 50
3 form the standard basis of quaternio

According to the rules of Hamilton multiplication@17#, two
quaternion’s Hamilton multiplication can be calculated
follows:
A•B5~a0e01a1e11a2e21a3e3!•~b0e01b1e11b2e21b3e3!

5~a0b02a1b12a2b22a3b3!e01~a0b11a1b01a2b32a3b2!e11~a0b22a1b31a2b01a3b1!e2

1~a0b31a1b22a2b11a3b0!e3 .
6-2
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Of course, with the usual addition and scalar productH
can be considered as a vector space overR, which is isomor-
phic to R4 ande0 , e1 , e2 , e3 form a set of natural basis o
this linear space. The inner product inH can be defined as
^ei ,ej&5d i j , i.e., ^A,B&5( i 50

3 aibi . For an arbitrary unit
vector A that satisfieŝA,A&51, we can define a set of vec
tors $Ai5ei•A% i 50

3 . Using the property of division algebr
@17#, we havê Ai ,Aj&5^e j ,ei&^A,A&5^ej ,ei&5d i j . There-
fore, $Ai% i 50

3 is a set of orthonormal basis. It is easy to s
thatA05A and the orthonormal transformations$Vi% i 50

3 that
transform A to $Ai% i 50

3 are independent ofA. Therefore,
$Vi% i 50

3 are just what we want to find.
A direct calculation following the above steps gives t

following result in the four-dimension case:

V05I , V15F2 isy 0

0 2 isy
G ,

V25F 0 2sz

sz 0 G , V35F 0 2sx

sx 0 G .
Whenn58, using the rules of Cayley multiplication@17#,

similarly we can get$Vi% i 50
7 . The result is as follows:

V05I , V15F 2 isy 0 0 0

0 2 isy 0 0

0 0 2 isy 0

0 0 0 2 isy

G ,

V25F 0 2sx 0 0

sz 0 0 0

0 0 0 2I

0 0 I 0

G ,

V35F 0 2sx 0 0

sx 0 0 0

0 0 0 2 isx

0 0 2 isy 0

G ,

V45F 0 0 2sz 0

0 0 0 I

sz 0 0 0

0 2I 0 0

G ,

V55F 0 0 2sx 0

0 0 0 isy

sx 0 0 0

0 isy 0 0

G ,
02231
e

V65F 0 0 0 2I

0 0 2sx 0

0 sz 0 0

I 0 0 0

G ,

V75F 0 0 0 2 isy

0 0 2sz 0

0 sx 0 0

2 isy 0 0 0

G .

Moreover, in general the case thatWiÞ0, i.e., minimum
RSP scheme for states with real components in complex
bert space should be taken into account. We conjecture
even in this case, minimum RSP scheme can only be im
mented when the dimension of the space is 2, 4, or 8.

Now we consider the generalization of RSP scheme of
equatorial case. In this case, the state to be remotely prep
can be written in the form

uC&5 (
a50

n21
1

An
eiuaua&.

Without loss of generality, we setu050. We will show
the RSP scheme for such states is realizable whatever
dimension n is. It is easily seen that$uCa&uuCa&
51/An(b50

n21e(2p i /n)abeiuaub&&%a50
n21 is an orthonormal basis

in then-dimensional case, and that the unitary transformat
Ua : UauC&5uCa& is independent ofuC&. As the first step
to remotely prepareuC&, Alice needs to do a local unitary
transformationUA(uC&) on her particle. Here,UA(uC&) is
defined as

UA~ uC&)5 (
a51

n21

ua&^n2auexp@ i ~ua1un2a!#1u0&^0u.

Thus we have

UA~ uC&) ^ I BuF&AB5 (
a50

n21
1

An
uCa& ^ uCa&.

Here uF&AB is the EPR stateuF&AB5(a50
n211/Anua&

^ ua& of the entangled pair that is priorly shared by Alice a
Bob. After the transformation, Alice can measure her parti
with respect to the basis$uCa&%a50

n21 and tell her result to
Bob. Then Bob can do the unitary transformationUa

21 to get
the stateuC&. This implements the RSP task.

In summary, this paper generalizes Pati’s minimum R
scheme to the case of higher dimension. We have shown
the minimum RSP scheme in real Hilbert space can
implemented only when the dimension is 2, 4, or 8, while t
6-3
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equatorial case can be generalized without restriction on
dimension. However, whether the minimum RSP scheme
the states with real components in complex Hilbert spac
realizable in spaces other than 2, 4, and 8 dimension n
further investigation.
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