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Scaling considerations in ground-state quantum computation
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We study design challenges associated with realizing a ground-state quantum computer. In such a computer,
it is necessary that the energy gap between the ground state and first excited state be sufficiently large to
prevent disruptive excitations. Here, an estimate of this gap is provided as a function of computer size. We then
address the problem of detecting the output of a ground-state quantum computer. It is shown that the expo-
nential detection difficulties that appear to be present at first can be overcome by small design changes.
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[. INTRODUCTION into the 2" basis vectors of the subspace associated Rith
Then, |¥) develops in accordance with a quantum-
Recently, there has been intense interest among researatemputation algorithm if and only if
ers in the possibility of designing quantum computgt$
that calculate using the remarkable properties of quantum Pj|\lf):ujuj,l---L{lAj,OPO|‘P> (N)
mechanicg2-4]. Although the potential power of quantum-
computation algorithms is enticing, there is great difficultyfor j=1,...,N.
associated with actually fabricating a quantum computer in This formal notion makes it possible to propose a ground-
the laboratory. A variety of schemes have been suggestesiate approach to quantum computation. In ground-state
[5-18 and progress has been encouraging, but the feasibilitguantum computation, we do not make a register of qubits
of realizing a useful quantum computer is still unclear. evolve in time by subjecting it to a series of time-dependent
In a recent paper, we proposed a ground-state quantunitamiltonians. Instead, we perform calculations by manufac-
computation approach that could circumvent some of thduring a HamiltoniarH whose ground state satisfies Edj).
main problems suffered by traditional quantum-computer deThis is described precisely in Ref19]. In that paper, an
signs[19]. This approach replaces the progress of a usuakppropriate Hamiltoniahl is found. It is comprised of a sum
time-dependent quantum computation with a single, timeof (i) one-body terms denoted IiHaﬁ(Ua,k) whereU, y in-
independent state. To see how this works, let us suppose thdicates the unitary evolution of qulatat algorithmic stegk
a guantum-computation algorithm consists of the evolutiorof the calculation andii) two-body terms designatekllla'tJ
of M qubits throughN steps defined by"x 2 unitary ma-  (cnoT), wherecNoT represents a controlledeT operation,
tricesd;, j=1,...,N. To define the state d¥l qubits at one  associated with a controlledeT operation of qubib by qu-
step of the algorithm requires”2amplitudes. To describe the bit a at stepj. In [19], a hypothetical physical realization of
M qubits at every step of the algorithm, from before it beginsH is suggested using states localized on quantum dots to
until after it ends, requiresN+ 1) x 2™ amplitudes. If we do comprise thd 2(N+1)]M, dimensional Hilbert space.
not demand that the qubits evolve simultaneously from step This ground-state, time-independent approach has the at-
to step, allowing qubit 1 be at step 2 while qubit 3 is at steptractive characteristic that it can defend against time-
6, then[2(N+1)]™ amplitudes are required to map out the dependent environmental decoherence problems associated
development of the qubits. Let us suppose that we collealith time evolution. However, it does have its own challeng-
these[2(N+1)]™ amplitudes into a statpl) defined on a ing aspects that need to be addressed. Many of these chal-
Hilbert space of dimensioi2(N+1)]M. This state will con- lenges concern the scaling of a ground-state quantum
tain all the information in a time-dependent quantum com-computer—the feasibility of making such a computer larger
putation, but the state itself will be completely time indepen-and larger. In this paper, we address two of the most impor-
dent. Instead of developing through time in accordance withant considerations involved in increasing the size of a
an algorithm, the state will develop through Hilbert space inground-state quantum computer. First, we study how the en-
accordance with the algorithm. ergy gap between the ground state and first excited state of
How can we explicitly describe this development throughthe HamiltonianH will depend onN and M. Clearly, if a
Hilbert space? The projection of|?’) onto some ground-state quantum computer is to function properly the
2M_dimensional subspace will contain thé' 2amplitudes gap must be large enough in energy that the computer will
necessary to describe the state of Mh@ubits when they are reliably remain in its ground stat€Of course, we are assum-
all at step 0 and have undergone no unitary evolution. Let ugg here that the computer can be placed in its ground state
call this projectionPy|¥'). More generally, let us caH’j|\If> to begin with. The problem of cooling a system to the ground
the projection onto the M-dimensional subspace that de- state is the subject of an extensive simulated annealing lit-
scribes the state of thiel qubits when they are at stgpj erature[20] that has been applied to classical ground-state
=0, ...,N. Suppose that we define an operalgp, that car-  computation in cellular automaf@1,22. In implementing a
ries the 2! basis vectors of the subspace associated Rgth quantum ground-state computer, it is essential to address the
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issue of cooling time; one approach might be to turn onwhere k= (1—E/2¢)+\/(1—E/2¢)?—1. Setting the deter-
gradually the tunneling matrix elements in the Hamiltonian.minant (3) to zero vyields eigenenergieE=E,=2¢(1
The cooling strategy is best addressed in connection with a co§7m/2(N+1)]), wheremis an integer between 0 and
specific computer implementation; here we are concerned ireN+ 1. The ground state has enerfy- E,=0, and the first
stead with general properties of the formaligt8].) Second, excited state has energg=E;=2e(1—cogm/2(N+1)])

we investigate the problem of measuring the outcome of a e72/[2(N+1)]? for large N. Thus, the gap decreases as
ground-state quantum computation. In its most naive form, a/(N+1)2. This is true for a single qubit, and also for any
ground-state quantum computer seems very difficult to prob@umber of noninteracting qubits.

as it grows in size. We propose several means of addressing

this difficulty.
B. One controlledNoT gate

Il. GAP Of course, a useful quantum computer must have interac-
ons among qubits, so the behavior of the gap must be ex-

computer must reside in its ground state. This condition is t hmeIzggevg;ir:(;r(]:tt?r?v(\:/tcl)onjbziitrseir?treerz?:?i; T%E)iglﬂ’eggczd%ris
be achieved, not by isolating the computer from the environ- y d 9 g y

ment and waiting for it to decay spontaneously, but by Oli_con'grolliedNOT gate. The full J'Hamiltopian inqludes single
rectly cooling the system through contact with a bath. For théqublt .h (Uj) terms and oneh'(cNoT) interaction term at
system to remain in its ground state once put there, it isstagej. bedin b - h iitoni ih th
necessary that the temperatlgd of the bath be well below ]_We egin by examining the Hajm|ton|an with the
the energy gap between the ground state of the computer at]i]d (CnoT) term Om'tte.d.' W'thQUt theh(cNoT) term, th?
the first excited stateln fact, this is necessary, but not suf- compuEer has two (_j|310|nt regions for each QUb'F' one “up-
ficient. A large numbeg of low-lying excited states would stream” of t_he omitted corltrolledOT gat"e conS|st|ng_ of
reduce the required temperature by a factor af IHowever, stages 0 toj—1 and one *downstream” of the omitted

e expect hig to row roughly Il i, o he g SoTSOISUNCT Gale consiing of slaggeto . Since an
factor should be relatively unimportant. J 9 P

eigenspectrum of a single, noninteracting qubit, the first ex-

Of course, it is not possible to achieve arbitrarily Iowg. ed state in such a region will have an amount of energy of
temperatures, so we need to study the size of the energy g Pder 1/N+1)2 If we neglect such “high-energy” states,

between ground state and first excited state. One migh

worry that the energy gap will decrease quickly as the Com_onIy the(doubly degenerajeyround states of the two regions

oo S .__make important contributions to the electronic state of each
puter grows in size, severely limiting the length of practical ubit. This means that each qubit has four available states,

computations. Here, we address this concern by studying t @qor ; ) ) :
size dependence of the gap of the Hamiltonian described i ading to an effective 16-dimensional Hilbert space for the
wo qubit system.

[19]. We argue that the gap shrinks approximately like X : . . . . .
. It is straightforward to diagonalize the interaction Hamil-
+1)2 -2 : o .
L(N-+1)" and prove the existence of a lower bound thattonlan h!(cNnoT) analytically in this 16<16 basis. The result

4
scales as 1H+1)" is a(fourfold degenerajeground state of the computer with
zero energy, afeightfold degenerajdirst excited state with
energye/(j)(N—j+1), and a(fourfold degenerajesecond
To obtain these quantitative estimates of the gap, we firsgxcited state with energy/(N—j+1)>+¢e/(j)(N—j+1)

consider the case of a single qubit computer. Here, the-¢/(j)2. So, the energy of the gap in the 16-dimensional
Hamiltonian is simplyH=3"_,h!(U,), where[19] Hilbert space scales ag(j)(N—j+1)~1/N2.

What relationship does the gap in this 16-dimensional

hi(U)=e[C/_,C;_;+C/C;—(C/UC;_;+H.c)] (20  Hilbert space have to the exact gap of the system?(fthe-

_ ) ) ) ) fold degenerateground state in this 16-dimensional Hilbert
is associated with the development of the single qubit frongpace s, in fact, the exact ground state in the whole Hilbert
stepi—1 to stepi of the calculation(Note that the energy space. Hence, theightfold degenerajdirst excited state in
scalee and theC operators are independentf N [19]) It the 16-dimensional Hilbert space is actually orthogonal to
's convenient to make a unitary transformation from @1 the exact ground state of the system. It follows that the quan-
operators to new operator$l{_,U;)C;. This changes the ity ¢/(j)(N—j+1) represents a rigorous variational upper
form of the Hamiltonian ttH=3{,hi(1), where everyU;  bound to the exact first excited state energy of the system.
that appears irH has been replaced by thex2 identity The variational upper bound should provide a reasonable
matrix |. To determine the eigenspectrum of this newwe  estimate of the true value of the gap. However, for our pur-
solve the determinantal equation d¢tE)=0. The determi- poses we are perhaps more interested in having a guaranteed
nant is evaluated by deriving and solving a recursion relationower bound to the gap. Such a lower bound would ensure

In order to compute correctly, a ground-state quantumtI

A. Single qubit

on matrices of increasing size. We find that that, when less than a specified amount of energy is avail-

able, the computer will not experience a disruptive excita-

detH—E)= 2N+D k—2+1k 2N 1 tion. As it turns out, it is possible to show that the gap has a
k—1/k k2(N+1) rigorous lower bound ofi/(N+ 1)* for some real positiver.

(3)  The following is an argument by contradiction.
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We know the ground state of the Hamiltonighhas en-
ergy zero. Suppose thht) is some state of the two-particle
system that is orthogonal to the ground statdHofAssume
that the expectation valugs|H| ) satisfies

<¢|H|w><a/(N+l)4EElower- (4)

To evaluate the left-hand side and draw a contradiction, we

split the HamiltonianH into Hy, which consists of only
single-body terms, andd;=h!(cNoOT), which consists of
only interaction terms. Bothl andH, it is straightforward
to show, are positive semidefinite. Consider the formyof
in a basis of eigenstates bf,

|$>:§ Cn,i|¢n,i>v 5

where thei labels the degenerate eigenstates with rikie
eigenenergy. Saying tha#) is orthogonal to thgfourfold
degenerateground state oH essentially means thag) has
no contribution from the four statesp, ;) for which Hg
+H3|#ni)=0. Therefore|) can consist of a superposition

of eigenstates dfl ; with eigenenergies greater than zero and

the 12 zero-energy eigenstatesHbf that are orthogonal to
the (fourfold degenerajeground state of the system.
Further reflection shows thaty) cannot involve exclu-
sively the 12 zero-energy eigenstates Hy because then
()H|¢) would go like 1/(N+1)?, as we showed above,
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>N—2+o 2|V12

(N+1)
lower 2
4N+1)°- ( 2/[2N+1)]2)
M
“NT D7 @

where — u/(N+1)? is less than the most negative value of
(dm=0i|H1l#n-0;)- (The parametep can be chosen so that
it does not increase withl or M.) This last inequality con-
tradicts the assumptio@), however, since

(N+1)2+0 2|\/—2|
1/2]
lower M
4N+1)° ( 2/[2(N+1)]) (N+1)2
1
(N+1)2 €— 2|\/—2I
4(N+1)°-16\"% o |12
X( (N+1)2 ) (6772/4) “) ©)
> Ejower (10)

provided thatx is chosen to be sufficiently small. This con-
tradiction shows that the assumptiof) is not valid. Since

violating the assumptiofd). The state must, therefore, pos- the ground state has energy zero, and any state orthogonal to

sess some contributions from excited eigenstated pf
These states have eigenenergies of at least/[2(N

the ground state has energy at leBgt,.;, we have a lower
boundE,,,e, On the value of the gap.

+1)]?, as we saw in our single qubit analysis, so assumption

(4) limits the contribution from such states ¥, ;|cp;|?
<Ejower/ (€m?/[2(N+1)]?). This limit exists even though
H, is present sincéd, is positive semidefinite and cannot
decrease the expectation value produceddigy Hence we
find that

(YIH|p)= |§J: Ch=0iCn=0j{®n=-0ilHot Hi|dn-0;)

+ Cnlcmj<¢n||HO+Hl|¢mj>
n>0m>0,,

+ > (chiCneoi{bmilHilbno;)
m>0,,j

+ 3oy acilHal fm, ) ©
S ERP) lcn.lz)
TR 3

C. Arbitrary computer

It is straightforward to apply these results to the casklof
qubits interacting via an arbitrary number of controlled¥
gates. First of all the variational upper bound on the gap of
e/(j)(N—j+1) still holds. This is because different
controlledNOT Hamiltoniansh), ,(cNOT) commute with one
another, so we can treat each separately when diagonalizing
in a basis of zero energlj-particle eigenstates di.

The lower bound on the gap of order /A4 1)* also still
holds, which we demonstrate in the following way. The
Hamiltonian consists oHg, that governs the single qubit
development between controllecbT gates and the
controlledNoT gate termdh’ a,p(CNOT) themselves. We begin
by dividing H, into parts Iabeled I-(IO)' b Where the index
j, ab suggests proximity to the controlledsT gate con-
trolled by Hamiltonianh’, b(CNOT). Let (Ho)} b consist of
terms that control the smgle qubit development of qubit
between controlledtoT gate j,ab and the previous
controlledNOT operation experienced by quldt terms that
control the single qubit development of qulzt between
controlledNOT gatej,a,b and the next controlledtoT opera-
tion experienced by qubig, terms that control the single
qubit development of qubib between controlledioT gate
j,a,b and the previous controlledoT operation experienced
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by qubitb, and terms that control the single qubit develop- 0 1
ment of qubitb between controlledioT gatej,a,b and the

next controlledNoT operation experienced by qubit By —_I_Electrodes_l_—
this definition of the Hy), ,, we haveHq=33 4 »(Ho)L

plus extra positive semi-definite one body terms that are near Stage 0

the first or last stages of the computer.
Now, with this division described, we are in a position to
demonstrate the lower bound of orderNA 1)*. Suppose
that someM-particle statey) is orthogonal to th&2M-fold
degenerateground state of the system. It is possible to write Stage 1
[¢) in the form

|w>=; Cril dni), (12) .

where the| ¢, ;) are M-particle eigenstates dfl,. Because
|y) is orthogonal to the ground state of the system, each

term |¢,;) that appears inly) must satisfy Ho)l, Stage N
+hl, p(cNOT)| ¢, 1) # 0 for some controlledkoT gatej, a, b.
Let us call|¢}, ,) the sum of the components, ;| ¢, ;) that
satisfy Ho) L, ,+hl ,(CNOT)| ¢y, 1) #0. If any| ¢, ;) could be- Readout O_O
long in more than ongyy, ), we include it in every possible electron
| ). Then,
l Sensors |
(PIH| )= D (W ol 3(Ho)l y+hl p(eNoT)| o, ) FIG. 1. Additional readout electrons are placed after the final
jap * ’ ’ ’

stage of each qubit. The position of these additional electrons indi-
(12 cates the outcome of the algorithm.

. . o
=1 <¢Ja,b|<!f'a,b>(N+—1)4 (13 How can a successful measurement be guaranteed in the
J.ab case of classical output? For concreteness, consider the quan-
tum dot implementation df19]. In this implementation, clas-
- « _ 1 (14) sical output implies that an electron in the ground state either
T 2(N+1)* (N+D)* reaches the left dot of the final stage and never the right dot
or the right dot of the final stage and never the left dot. In
where we have made use of the lower bous{N+1)*  other words, the ground-state charge density vanishes at half
derived in Sec. I. The last inequality holds because everyf the dots of the final stage. It is, therefore, possible to
component ofy) appears in at least one of the, ). This  obtain the result of the calculatiofwithout disturbing the
result shows that a lower bound1/(N+1)* holds for an  ground state by measuring the electric field produced by

arbitrary number of qubits and controllesbT gates. each electron near the final stage. For example, an additional
readout electron could be placed just after the final stage of
IIl. DETECTION each qubit, as in Fig. 1. Since the qubit electron will only

reach one of its two dots in the final stage, the readout elec-

The task of detecting the result of a ground-state computron will be forced to stay in one of its two possible locations
tation seems daunting at first. It seems that each qubit in thiey the Coulomb interaction. That is, the readout electron will
computer must be measured in the final stilfl, which it be localized to the leftright) if its qubit is in the right(left)
only visits with probability 1/N+1). Since there ar® qu-  at the final stage. The ground state of the entire system, qubit
bits, the probability of making a successful measuremenglectrons and readout electrons included, will be a product of
seems to scale as N¢1)M, which quickly goes to zero as the ground state of the qubit electrons and a classical state of
the computer increases in size. In fact, this assessment is tdloe readout electrons. The outcome of the algorithm can al-
much pessimistic. ways be determined by detecting the position of the readout

If the final state output by a quantum algorithm is classi-electrons, even though the qubit electrons have only a small
cal in form, it is actually possible to obtain a successfulprobability of residing at the final stage.
measurement with certainty. This is very significant, since it Although this readout electron method is guaranteed to
is known how to modify Grover’s algorithm and other im- work for an algorithm for which the final state of the qubits
portant algorithms so that they fall into this categoryis classical, it will not work otherwise since the readout elec-
[8,23,24. Even Shor’s algorithm can be modified to producetrons will become entangled with the qubit electrons and
output that is almost classical in form. spoil Eg.(1). An approach that applies to the general case
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involves the adjusting the Hamiltonian at the final stdge beyond the gate until after a control electron, but always
for each qubita [19]. Suppose that the operatGQYN is re-  subjecting the target qubit to an identity operation and never
placed by (IX)C!  everywhere it appears in the Hamil- & NOT operation. With this gate, the arrival of the qubits at
tonian andC, y by Y(l/)\)Ca N, Where 1X is a small fraction. the final stage could be “synchronized.” Suppose that each
Al algorithms will still work just as before, but we are “tip- qubit controls the entry of the next qubit to a ground-state
ping” the computer toward the final stage so that the qubitgiuantum computer’s final stages, using a controlled identity
reside there more often. Then, it follows that in the grounddate. Then, whenever quit is found in the final stage, all
state of the system, each qubit haimes greater amplitude qubits are in the final stage. This could be useful for detec-
on the final stage than on the previous stages. The probabilifjon schemes, although it would not enhance the overall
of detecting all qubits on the final stage is of order 1/(1Probability of finding the qubits at the final stage of the com-
+N/NA)M, If 1/\ is set to be of order, say {MN, we find ~ PUter.

that the probability of all qubits being at the final stage goes

as approximately 1/(+ 1/M)M, which approaches exp1). V. CONCLUSION
For this very extreme choice of, it only takes two or three ) .
attempts to catch all of the qubits at the final stage. In this paper, we have explored some important chal-

Of course, the change in the Hamiltonian will affect thelenges to constructing a ground-state quantum computer.

gap. If the final operators are scaled by a factarthen the ~ First, we found upper and lower bounds for the energy gap
quantity detd—E) of noninteracting qubits will change to ~ between the computer’s ground state and first excited state.

The bounds provide guidelines to making a computer of a
1 specified size that can be relied upon to remain in its ground
K2(N+1) _ ST state. Next, several schemes were presented for easing qubit
k detection difficulties. These schemes indicate how to design
a ground-state quantum computer so that it will yield output
. (15) with certainty, for some of the most important algorithms, or
at least high probability, for general algorithms. It is hoped
that the analysis of energy gap and detection in this paper
Setting this determinant to zero, we find that the gap of noneomplements our initial proposal and eases the task of de-
interacting qubits still scales roughly as NIA- 1)? for /A signing and fabricating a ground-state quantum computer in
between zero and one. Once controligofF gates are in- the laboratory.
cluded, however, the gap will have a variational upper bound
of order 1/(N+1)(N+\?) and a lower bound OFE gy

k—2+1/k

_Ey— 2(N+1)
defH—-E)=¢€ 1k

+[(1/)\)2—1](k2'\'+1— P%)
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