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Scaling considerations in ground-state quantum computation
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We study design challenges associated with realizing a ground-state quantum computer. In such a computer,
it is necessary that the energy gap between the ground state and first excited state be sufficiently large to
prevent disruptive excitations. Here, an estimate of this gap is provided as a function of computer size. We then
address the problem of detecting the output of a ground-state quantum computer. It is shown that the expo-
nential detection difficulties that appear to be present at first can be overcome by small design changes.
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I. INTRODUCTION

Recently, there has been intense interest among rese
ers in the possibility of designing quantum computers@1#
that calculate using the remarkable properties of quan
mechanics@2–4#. Although the potential power of quantum
computation algorithms is enticing, there is great difficu
associated with actually fabricating a quantum compute
the laboratory. A variety of schemes have been sugge
@5–18# and progress has been encouraging, but the feasib
of realizing a useful quantum computer is still unclear.

In a recent paper, we proposed a ground-state quan
computation approach that could circumvent some of
main problems suffered by traditional quantum-computer
signs @19#. This approach replaces the progress of a us
time-dependent quantum computation with a single, tim
independent state. To see how this works, let us suppose
a quantum-computation algorithm consists of the evolut
of M qubits throughN steps defined by 2M32M unitary ma-
tricesUj , j 51, ...,N. To define the state ofM qubits at one
step of the algorithm requires 2M amplitudes. To describe th
M qubits at every step of the algorithm, from before it beg
until after it ends, requires (N11)32M amplitudes. If we do
not demand that the qubits evolve simultaneously from s
to step, allowing qubit 1 be at step 2 while qubit 3 is at s
6, then@2(N11)#M amplitudes are required to map out th
development of the qubits. Let us suppose that we col
these@2(N11)#M amplitudes into a stateuC& defined on a
Hilbert space of dimension@2(N11)#M. This state will con-
tain all the information in a time-dependent quantum co
putation, but the state itself will be completely time indepe
dent. Instead of developing through time in accordance w
an algorithm, the state will develop through Hilbert space
accordance with the algorithm.

How can we explicitly describe this development throu
Hilbert space? The projection ofuC& onto some
2M-dimensional subspace will contain the 2M amplitudes
necessary to describe the state of theM qubits when they are
all at step 0 and have undergone no unitary evolution. Le
call this projectionP0uC&. More generally, let us callPj uC&
the projection onto the 2M-dimensional subspace that d
scribes the state of theM qubits when they are at stepj, j
50, ...,N. Suppose that we define an operatorAj ,0 that car-
ries the 2M basis vectors of the subspace associated withP0
1050-2947/2002/65~2!/022315~6!/$20.00 65 0223
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into the 2M basis vectors of the subspace associated withPj .
Then, uC& develops in accordance with a quantum
computation algorithm if and only if

Pj uC&5UjUj 21¯U1Aj ,0P0uC& ~1!

for j 51, ...,N.
This formal notion makes it possible to propose a grou

state approach to quantum computation. In ground-s
quantum computation, we do not make a register of qu
evolve in time by subjecting it to a series of time-depend
Hamiltonians. Instead, we perform calculations by manuf
turing a HamiltonianH whose ground state satisfies Eq.~1!.
This is described precisely in Ref.@19#. In that paper, an
appropriate HamiltonianH is found. It is comprised of a sum
of ~i! one-body terms denoted likeha

k(Ua,k) whereUa,k in-
dicates the unitary evolution of qubita at algorithmic stepk
of the calculation and~ii ! two-body terms designatedha,b

j

~CNOT!, whereCNOT represents a controlled-NOT operation,
associated with a controlled-NOT operation of qubitb by qu-
bit a at stepj. In @19#, a hypothetical physical realization o
H is suggested using states localized on quantum dot
comprise the@2(N11)#M, dimensional Hilbert space.

This ground-state, time-independent approach has the
tractive characteristic that it can defend against tim
dependent environmental decoherence problems assoc
with time evolution. However, it does have its own challen
ing aspects that need to be addressed. Many of these
lenges concern the scaling of a ground-state quan
computer—the feasibility of making such a computer larg
and larger. In this paper, we address two of the most imp
tant considerations involved in increasing the size of
ground-state quantum computer. First, we study how the
ergy gap between the ground state and first excited stat
the HamiltonianH will depend onN and M. Clearly, if a
ground-state quantum computer is to function properly
gap must be large enough in energy that the computer
reliably remain in its ground state.~Of course, we are assum
ing here that the computer can be placed in its ground s
to begin with. The problem of cooling a system to the grou
state is the subject of an extensive simulated annealing
erature@20# that has been applied to classical ground-st
computation in cellular automata@21,22#. In implementing a
quantum ground-state computer, it is essential to address
©2002 The American Physical Society15-1
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issue of cooling time; one approach might be to turn
gradually the tunneling matrix elements in the Hamiltonia
The cooling strategy is best addressed in connection wi
specific computer implementation; here we are concerned
stead with general properties of the formalism@19#.! Second,
we investigate the problem of measuring the outcome o
ground-state quantum computation. In its most naive form
ground-state quantum computer seems very difficult to pr
as it grows in size. We propose several means of addres
this difficulty.

II. GAP

In order to compute correctly, a ground-state quant
computer must reside in its ground state. This condition is
be achieved, not by isolating the computer from the envir
ment and waiting for it to decay spontaneously, but by
rectly cooling the system through contact with a bath. For
system to remain in its ground state once put there, i
necessary that the temperaturekBT of the bath be well below
the energy gap between the ground state of the computer
the first excited state.~In fact, this is necessary, but not su
ficient. A large numberg of low-lying excited states would
reduce the required temperature by a factor of lng. However,
we expect thisg to grow roughly linearly inM, so the lng
factor should be relatively unimportant.!

Of course, it is not possible to achieve arbitrarily lo
temperatures, so we need to study the size of the energy
between ground state and first excited state. One m
worry that the energy gap will decrease quickly as the co
puter grows in size, severely limiting the length of practic
computations. Here, we address this concern by studying
size dependence of the gap of the Hamiltonian describe
@19#. We argue that the gap shrinks approximately li
1/(N11)2 and prove the existence of a lower bound th
scales as 1/(N11)4.

A. Single qubit

To obtain these quantitative estimates of the gap, we
consider the case of a single qubit computer. Here,
Hamiltonian is simplyH5S i 51

N hi(Ui), where@19#

hi~U ![e@Ci 21
† Ci 211Ci

†Ci2~Ci
†UCi 211H.c.!# ~2!

is associated with the development of the single qubit fr
step i 21 to stepi of the calculation.~Note that the energy
scalee and theC operators are independent ofM, N @19#.! It
is convenient to make a unitary transformation from theCi

operators to new operators (P j 51
i U j

†)Ci . This changes the
form of the Hamiltonian toH5S i 51

N hi(I ), where everyUi

that appears inH has been replaced by the 232 identity
matrix I. To determine the eigenspectrum of this newH, we
solve the determinantal equation det(H2E)50. The determi-
nant is evaluated by deriving and solving a recursion rela
on matrices of increasing size. We find that

det~H2E!5e2~N11!
k2211/k

k21/k S k2~N11!2
1

k2~N11!D ,

~3!
02231
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where k5(12E/2e)1A(12E/2e)221. Setting the deter-
minant ~3! to zero yields eigenenergiesE5Em[2e„1
2cos@pm/2(N11)#…, wherem is an integer between 0 an
2N11. The ground state has energyE5E050, and the first
excited state has energyE5E152e„12cos@p/2(N11)#…
→ep2/@2(N11)#2 for large N. Thus, the gap decreases
1/(N11)2. This is true for a single qubit, and also for an
number of noninteracting qubits.

B. One controlled-NOT gate

Of course, a useful quantum computer must have inte
tions among qubits, so the behavior of the gap must be
amined when interactions are present. To begin, we add
the case of exactly two qubits interacting through exactly o
controlled-NOT gate. The full Hamiltonian includes singl
qubit hi(Ui) terms and onehj ~CNOT! interaction term at
stagej.

We begin by examining the Hamiltonian with th
hj ~CNOT! term omitted. Without thehj ~CNOT! term, the
computer has two disjoint regions for each qubit, one ‘‘u
stream’’ of the omitted controlled-NOT gate consisting of
stages 0 toj 21 and one ‘‘downstream’’ of the omitted
controlled-NOT gate consisting of stagesj to N. Since an
electron in one of the disjoint regions will possess t
eigenspectrum of a single, noninteracting qubit, the first
cited state in such a region will have an amount of energy
order 1/(N11)2. If we neglect such ‘‘high-energy’’ states
only the~doubly degenerate! ground states of the two region
make important contributions to the electronic state of e
qubit. This means that each qubit has four available sta
leading to an effective 16-dimensional Hilbert space for
two qubit system.

It is straightforward to diagonalize the interaction Ham
tonianhj ~CNOT! analytically in this 16316 basis. The resul
is a ~fourfold degenerate! ground state of the computer wit
zero energy, an~eightfold degenerate! first excited state with
energye/( j )(N2 j 11), and a~fourfold degenerate! second
excited state with energye/(N2 j 11)21e/( j )(N2 j 11)
1e/( j )2. So, the energy of the gap in the 16-dimension
Hilbert space scales ase/( j )(N2 j 11);1/N2.

What relationship does the gap in this 16-dimensio
Hilbert space have to the exact gap of the system? The~four-
fold degenerate! ground state in this 16-dimensional Hilbe
space is, in fact, the exact ground state in the whole Hilb
space. Hence, the~eightfold degenerate! first excited state in
the 16-dimensional Hilbert space is actually orthogonal
the exact ground state of the system. It follows that the qu
tity e/( j )(N2 j 11) represents a rigorous variational upp
bound to the exact first excited state energy of the syste

The variational upper bound should provide a reasona
estimate of the true value of the gap. However, for our p
poses we are perhaps more interested in having a guaran
lower bound to the gap. Such a lower bound would ens
that, when less than a specified amount of energy is av
able, the computer will not experience a disruptive exci
tion. As it turns out, it is possible to show that the gap ha
rigorous lower bound ofa/(N11)4 for some real positivea.
The following is an argument by contradiction.
5-2
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We know the ground state of the HamiltonianH has en-
ergy zero. Suppose thatuc& is some state of the two-particl
system that is orthogonal to the ground state ofH. Assume
that the expectation valuêcuHuc& satisfies

^cuHuc&,a/~N11!4[Elower. ~4!

To evaluate the left-hand side and draw a contradiction,
split the HamiltonianH into H0 , which consists of only
single-body terms, andH15hj ~CNOT!, which consists of
only interaction terms. BothH0 andH1 , it is straightforward
to show, are positive semidefinite. Consider the form ofuc&
in a basis of eigenstates ofH0 ,

uc&5(
n,i

cn,i ufn,i&, ~5!

where thei labels the degenerate eigenstates with thenth
eigenenergy. Saying thatuc& is orthogonal to the~fourfold
degenerate! ground state ofH essentially means thatuc& has
no contribution from the four statesufn,i& for which H0
1H1ufn,i&50. Therefore,uc& can consist of a superpositio
of eigenstates ofH0 with eigenenergies greater than zero a
the 12 zero-energy eigenstates ofH0 that are orthogonal to
the ~fourfold degenerate! ground state of the system.

Further reflection shows thatuc& cannot involve exclu-
sively the 12 zero-energy eigenstates ofH0 because then
^c&Huc& would go like 1/(N11)2, as we showed above
violating the assumption~4!. The state must, therefore, po
sess some contributions from excited eigenstates ofH0 .
These states have eigenenergies of at leastep2/@2(N
11)#2, as we saw in our single qubit analysis, so assump
~4! limits the contribution from such states toSn.0,i ucn,i u2
,Elower/„ep2/@2(N11)#2

…. This limit exists even though
H1 is present sinceH1 is positive semidefinite and canno
decrease the expectation value produced byH0 . Hence we
find that

^cuHuc&5(
i , j

cn50,i* cn50,j^fn50,i uH01H1ufn50,j&

1 (
n.0,m.0,i , j

cn,i* cm, j^fn,i uH01H1ufm, j&

1 (
m.0,i , j

~cm,i* cn50,j^fm,i uH1ufn50,j&

1cn50,i* cm, j^fn50,i uH1ufm, j&! ~6!

.
e

~N11!2 S 12 (
n.0,i

ucn,i u2D
1

ep2

@2~N11!#2 (
n.0,i

ucn,i u2

22U( cn50,iUU ( cm,iU m
2 ~7!
i m.0,i ~N11!

02231
e

n

.
e

~N11!2 1022uA12u

3UA4~N11!2216S Elower

ep2/@2~N11!#2D 1/2U
3

m

~N11!2 , ~8!

where2m/(N11)2 is less than the most negative value
^fm.0,i uH1ufn50,j&. ~The parameterm can be chosen so tha
it does not increase withN or M.! This last inequality con-
tradicts the assumption~4!, however, since

e

~N11!2 1022uA12u

3UA4~N11!2216S Elower

ep2/@2~N11!#2D 1/2U m

~N11!2

5
1

~N11!2 S e22uA12u

3US 4~N11!2216

~N11!2 D 1/2S a

ep2/4D
1/2Um D ~9!

.Elower ~10!

provided thata is chosen to be sufficiently small. This con
tradiction shows that the assumption~4! is not valid. Since
the ground state has energy zero, and any state orthogon
the ground state has energy at leastElower, we have a lower
boundElower on the value of the gap.

C. Arbitrary computer

It is straightforward to apply these results to the case oM
qubits interacting via an arbitrary number of controlled-NOT

gates. First of all the variational upper bound on the gap
e/( j )(N2 j 11) still holds. This is because differen
controlled-NOT Hamiltoniansha,b

j
~CNOT! commute with one

another, so we can treat each separately when diagonal
in a basis of zero energy,M-particle eigenstates ofH0 .

The lower bound on the gap of order 1/(N11)4 also still
holds, which we demonstrate in the following way. Th
Hamiltonian consists ofH0 , that governs the single qub
development between controlled-NOT gates and the
controlled-NOT gate termsha,b

j ~CNOT! themselves. We begin
by dividing H0 into parts labeled (H0)a,b

j where the index
j, a,b suggests proximity to the controlled-NOT gate con-
trolled by Hamiltonianha,b

j ~CNOT!. Let (H0)a,b
j consist of

terms that control the single qubit development of qubia
between controlled-NOT gate j,a,b and the previous
controlled-NOT operation experienced by qubita, terms that
control the single qubit development of qubita between
controlled-NOT gatej,a,b and the next controlled-NOT opera-
tion experienced by qubita, terms that control the single
qubit development of qubitb between controlled-NOT gate
j,a,b and the previous controlled-NOT operation experienced
5-3
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by qubit b, and terms that control the single qubit develo
ment of qubitb between controlled-NOT gate j,a,b and the
next controlled-NOT operation experienced by qubitb. By
this definition of the (H0)a,b

j , we haveH05 1
2 S j ,a,b(H0)a,b

j

plus extra positive semi-definite one body terms that are n
the first or last stages of the computer.

Now, with this division described, we are in a position
demonstrate the lower bound of order 1/(N11)4. Suppose
that someM-particle stateuc& is orthogonal to the~2M-fold
degenerate! ground state of the system. It is possible to wr
uc& in the form

uc&5(
n,i

cn,i ufn,i&, ~11!

where theufn,i& are M-particle eigenstates ofH0 . Because
uc& is orthogonal to the ground state of the system, e
term ufn,i& that appears inuc& must satisfy (H0)a,b

j

1ha,b
j ~CNOT!ufn,i&Þ0 for some controlled-NOT gatej, a, b.

Let us calluca,b
j & the sum of the componentscn,i ufn,i& that

satisfy (H0)a,b
j 1ha,b

j ~CNOT!ufn,i&Þ0. If any ufn,i& could be-
long in more than oneuca,b

j &, we include it in every possible
uca,b

j &. Then,

^cuHuc&> (
j ,a,b

^ca,b
j u 1

2 ~H0!a,b
j 1ha,b

j ~CNOT!uca,b
j &

~12!

> 1
2 (

j ,a,b
^ca,b

j uca,b
j &

a

~N11!4 ~13!

>
a

2~N11!4 ;
1

~N11!4 , ~14!

where we have made use of the lower bounda/(N11)4

derived in Sec. I. The last inequality holds because ev
component ofuc& appears in at least one of theuca,b

j &. This
result shows that a lower bound;1/(N11)4 holds for an
arbitrary number of qubits and controlled-NOT gates.

III. DETECTION

The task of detecting the result of a ground-state com
tation seems daunting at first. It seems that each qubit in
computer must be measured in the final stage@19#, which it
only visits with probability 1/(N11). Since there areM qu-
bits, the probability of making a successful measurem
seems to scale as 1/(N11)M, which quickly goes to zero a
the computer increases in size. In fact, this assessment i
much pessimistic.

If the final state output by a quantum algorithm is clas
cal in form, it is actually possible to obtain a success
measurement with certainty. This is very significant, sinc
is known how to modify Grover’s algorithm and other im
portant algorithms so that they fall into this catego
@8,23,24#. Even Shor’s algorithm can be modified to produ
output that is almost classical in form.
02231
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How can a successful measurement be guaranteed in
case of classical output? For concreteness, consider the q
tum dot implementation of@19#. In this implementation, clas
sical output implies that an electron in the ground state eit
reaches the left dot of the final stage and never the right
or the right dot of the final stage and never the left dot.
other words, the ground-state charge density vanishes at
of the dots of the final stage. It is, therefore, possible
obtain the result of the calculation~without disturbing the
ground state! by measuring the electric field produced b
each electron near the final stage. For example, an additi
readout electron could be placed just after the final stag
each qubit, as in Fig. 1. Since the qubit electron will on
reach one of its two dots in the final stage, the readout e
tron will be forced to stay in one of its two possible locatio
by the Coulomb interaction. That is, the readout electron w
be localized to the left~right! if its qubit is in the right~left!
at the final stage. The ground state of the entire system, q
electrons and readout electrons included, will be a produc
the ground state of the qubit electrons and a classical sta
the readout electrons. The outcome of the algorithm can
ways be determined by detecting the position of the read
electrons, even though the qubit electrons have only a sm
probability of residing at the final stage.

Although this readout electron method is guaranteed
work for an algorithm for which the final state of the qubi
is classical, it will not work otherwise since the readout ele
trons will become entangled with the qubit electrons a
spoil Eq. ~1!. An approach that applies to the general ca

FIG. 1. Additional readout electrons are placed after the fi
stage of each qubit. The position of these additional electrons i
cates the outcome of the algorithm.
5-4
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involves the adjusting the Hamiltonian at the final stageN
for each qubita @19#. Suppose that the operatorCa,N

† is re-
placed by (1/l)Ca,N

† everywhere it appears in the Hami
tonian andCa,N by (1/l)Ca,N , where 1/l is a small fraction.
All algorithms will still work just as before, but we are ‘‘tip
ping’’ the computer toward the final stage so that the qub
reside there more often. Then, it follows that in the grou
state of the system, each qubit hasl times greater amplitude
on the final stage than on the previous stages. The probab
of detecting all qubits on the final stage is of order 1/
1N/l2)M. If 1/l is set to be of order, say 1/AMN, we find
that the probability of all qubits being at the final stage go
as approximately 1/(111/M )M, which approaches exp~21!.
For this very extreme choice ofl, it only takes two or three
attempts to catch all of the qubits at the final stage.

Of course, the change in the Hamiltonian will affect t
gap. If the final operators are scaled by a factor 1/l then the
quantity det(H2E) of noninteracting qubits will change to

det~H2E!5e2~N11!
k2211/k

k21/k Fk2~N11!2
1

k2~N11!

1@~1/l!221#S k2N112
1

k2N11D G . ~15!

Setting this determinant to zero, we find that the gap of n
interacting qubits still scales roughly as 1/(N11)2 for 1/l
between zero and one. Once controlled-NOT gates are in-
cluded, however, the gap will have a variational upper bou
of order 1/(N11)(N1l2) and a lower bound ofElower

5a/(N11)2(N1l2)2. If 1/l51/AMN, then the upper
bound is 1/(NM1N)(N11) and the lower boundElower
5a/(N11)2(NM1N)2.

Another technique for alleviating measurement proble
is to ‘‘synchronize’’ the arrival of the qubits at the final stag
In our controlled-NOT gate, the target electron cannot pr
ceed beyond the gate until the control electron has. A c
trolled ‘‘identity’’ gate could be constructed that would fun
tion similarly, preventing a target electron from proceedi
th

um

ev

02231
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beyond the gate until after a control electron, but alwa
subjecting the target qubit to an identity operation and ne
a NOT operation. With this gate, the arrival of the qubits
the final stage could be ‘‘synchronized.’’ Suppose that ea
qubit controls the entry of the next qubit to a ground-st
quantum computer’s final stages, using a controlled iden
gate. Then, whenever qubitM is found in the final stage, al
qubits are in the final stage. This could be useful for det
tion schemes, although it would not enhance the ove
probability of finding the qubits at the final stage of the co
puter.

IV. CONCLUSION

In this paper, we have explored some important ch
lenges to constructing a ground-state quantum compu
First, we found upper and lower bounds for the energy g
between the computer’s ground state and first excited s
The bounds provide guidelines to making a computer o
specified size that can be relied upon to remain in its gro
state. Next, several schemes were presented for easing
detection difficulties. These schemes indicate how to des
a ground-state quantum computer so that it will yield outp
with certainty, for some of the most important algorithms,
at least high probability, for general algorithms. It is hop
that the analysis of energy gap and detection in this pa
complements our initial proposal and eases the task of
signing and fabricating a ground-state quantum compute
the laboratory.
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