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Quantum memory for photons: Dark-state polaritons
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An ideal and reversible transfer technique for the quantum state between light and metastable collective
states of matter is presented and analyzed in detail. The method is based on the control of photon propagation
in coherently driven three-level atomic media, in which the group velocity is adiabatically reduced to zero.
Form-stable coupled excitations of light and mattelark-state polaritons} associated with the propagation
of quantum fields in electromagnetically induced transparency are identified, their basic properties discussed
and their application for quantum memories for light analyzed.
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[. INTRODUCTION an individual atom. This approach involves a coherent ab-
sorption and emission of single photons by single atoms.
Recent advances in quantum information science have ledowever, the single-atom absorption cross section is very
to many interesting new concepts such as quantum compwsmall, which makes such a process very inefficient. A very
tation, quantum cryptography, and teleportatjda-3]. The elegant solution to this problem is provided by cavity QED
practical implementation of quantum processing protocol§11]. Placing an atom in a hig) resonator effectively en-
requires coherent manipulation of a large number of coupletiances its cross-section by the number of photon round trips
guantum systems, which is an extremely difficult task. Oneduring the ring-down time and thus makes an effective trans-
of the particular challenges for the implementation of thesder possible. Raman adiabatic-passage technifil@&swith
ideas involves physically transporting or communicatingtime-dependent external control fields can be used to imple-
guantum states between different nodes of quantum networksent a directed but reversible transfer of the quantum state
[4]. Quantum optical systems appear to be very attractive foof a photon to the atorfi.e., coherentabsorption. However,
the realization of such networks. On one hand photons ardespite the enormous experimental progress in this [fiedf)
ideal carriers of quantum information: they are fast, robustjt is technically very challenging to achieve the necessary
and readily available. On the other hand atoms represent restrong-coupling regime. Furthermore, the single-atom system
liable and long-lived storage and processing units. Therefores by construction highly susceptible to the loss of atoms and
the challenge is to develop a technique for coherent transféhe speed of operations is limited by the la@dactor.
of quantum information carried by light to atoms and vice On the other hand a photon can be absorbed with unit
versa. In other words it is necessary to have a quanturprobability in an optically thick ensemble of atoms. Nor-
memory that is capable of storing and releasing quantunmally such absorption is accompanied digsipative pro-
states on the level of individual qubits and on demand. Suckesses, which result in decoherence and thus deteriorate the
a device needs to be entirely coherent, and in order tguantum state. Nevertheless it has been shown that such ab-
achieve a unidirectional transférom field to atoms or vice sorption of light leads to a partial mapping of its quantum
versg, an explicit time-dependent control mechanism isproperties to atomic ensemblglst,15. As a consequence of
required. dissipation these methods do not allow to reversibly store the
Classical optical-data storage in the time domain, basedquantum state on the level mfdividual photon wave packets
on the phenomenon of sp[®] and photon ech6], has a  (single qubit$. Rather, a stationary source of identical copies
long history. After the first proposals of stimulated two-levelis required(e.g., a stationary source of squeezed vacuum,
photon echd7] and demonstrations of light-pulse storage inwhich can be considered as a train of identical wave packets
these systemE8] many important developments have takenin a squeezed vacuum state partially map quantum statis-
place in this field. Particularly interesting are techniquedtics from light to matter.
based on Raman photon ecl8% as they combine the long Recently we have proposed a method that combines the
lifetime of ground-state hyperfine or Zeeman coherences foenhancement of the absorption cross section in many-atom
storage with data transfer by light at optical frequen€ies. systems with dissipation-free adiabatic-passage techniques
While these techniques promise to be powerful for high{16-18. It is based on an adiabatic transfer of the quantum
capacity storage oflassicaloptical data, they cannot be di- state of photons teollective atomic excitationasing elec-
rectly applied forquantummemory purposes. The techniques tromagnetically induced transparen@iT) in three-level at-
employ direct or dressed-state optical pumpif@gpd thus oms[19]. Since the technique alleviates most of the stringent
contain dissipative elementand typically require that the requirements of single-atom cavity QED, it could become
number of photons is larger than the number of atoms.  the basis for a fast and reliable quantum network. Recent
The conceptually simplest approach to quantum experimentg20,21] have already demonstrated one of the
memory for light is to “store” the state of a single photon in basic principles of this technique—the dynamic group-
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velocity reduction and adiabatic following in the so-called «) b) |aap

“dark-state” polaritons. The aim of the present and subse- g Q

quent papers is to analyze the physics of the reversible stor ¢

age technique in detail and to discuss its potentials and limi- §

tations. &
Electromagnetically induced transparency can be used tc [b)

make a resonant, opaque medium transparent by means i —

quantum interference. Associated with the transparency is 16,0y [b,1) Ib,2)

large linear d_lsperS|on,_ which has been dem_onstra_ted to lead FIG. 1. (a) Three-level atoms coupled to single quantized mode

to a substantial reduction of the group-velocity of li§B2]. 4 cjassical control field ofiea) Rabi frequency(t). (b) cou-

Since the group-velocity reduction is a linear process, theing of relevant bare eigenstates for at most two photons.

guantum state of a slowed light pulse can be preserved.

Therefore a nonabsorbing medium with a slow group veloCy, o1y sych as its decoherence properties will be the sub-

ity is in fact a temporary “storage” device. However, such aject of subsequent publications.

system has only limited “storage” capabilities. In particular,

the achievable ratio of storage time to pulse length is limited

by the square root of the medium opadi#g] and can prac- . QUANTUM MEMORY FOR A SINGLE-MODE FIELD

tically attain only values of the order 6£100. This limita-

tion originates from the fact that a small group velocity is

associated with a narrow spectral acceptance window of El

[24] and hence larger delay times require larger initial pulse0

length. . . . . in order to motivate the following discussion on propagating
The physics of the state-preserving slow light propagatlorbhOton wave packets.

in _EIT is associated with the_ existence of quasiparticles, Consider a collection oN three-level atoms with two

which we call dark-state polaritort®SP). A dark-state po- eagtaple lower states as shown in Fig. 1 interacting with

lariton is a mixture of electromagnetic and collective atomicy,, single-mode optical fields. The transitida)— |b) of

excitations of spin transitionpin wavg. The mixing anglle each of these atoms is coupled to a quantized radiation mode.

between the two components determines the propagation VRioreover. the transitions froma)—|c) are resonantly

locity and is governed by the atomic density and the Streng“&riven by’a classical control field of Rabi frequer@y The

of an external control field. The key idea of the present apaynamics of this system is described by the interaction
proach is the dynamic rotation of the mixing angle, which Hamiltonian

leads to an adiabatic passage from a pure photonlike to a

The essential aspects of the quantum-state-mapping tech-
ique can be most easily understood for the case of a single
ode of the radiation field as realized, e.g., in a single-mode
ptical cavity. In what follows we will address this case first

pure spin-wave polariton thereby decelerating the initial pho- N N
ton wave packet to a full stop. In this process the quantum V=1 A —hO (e it i “H.c 1
state of the optical field is completely transferred to the at- gizl Tab ® ;1 TacT & @)

oms. During the adiabatic slowing the spectrum of the pulse

becomes narrower in proportion to the group velocity, whichHere "I;w: |)ii(v| is the flip operator of théth atom be-
essentially eliminates the limitations on initial spectral widthyeen state$u) and|v). g is the coupling constant between
or pulse length and very large ratios of storage time to initiakhe atoms and the quantized field mogracuum Rabi fre-
pulse length can be achieved. Reversing the rotation at a latg{ency, which for simplicity is assumed to be equal for all
time regenerates the photon wave packet. Hence the extegioms.

sion of EIT to a dynamic group-velocity reduction via adia-  when all atoms are prepared initially in leyel the only

batic following in polaritons can be used as the basis of atates coupled by the interaction are the totally symmetric
effective quantum memory. Before proceeding we note somejicke-like stateg27]

earlier work on the subject. The polariton picture of Raman

adiabatic passage has first been introduced in [R8&f. Fur- |by=|by,b,, ... by, 2
thermore, Grobe and co-workef&6] pointed out that the

spatial profile of an atomic Raman coherence can be mir-

N
rored into the electromagnetic field by coherent scattering, la)= 1 2 Ib a byy) 3)
—— o 1 Ajy - UN/

whereas time-varying fields can be used to create spatially JIN =1
nonhomogeneous matter excitations.
In the present paper we will present a quantum picture of N
slow-light propagation in EIT in terms of dark-state polari- &)= 1 s [T @)

=l

tons. We will analyze the properties of the polaritons and
discuss their application to reversible, fast, and high-fidelity

N j=1

guantum memories. Limitations and restrictions of the trans- 1 N

fer process from nonadiabatic processes will be discussed aag)= ———— E [T T T
well as effects from the medium boundary and atomic mo- V2N(N—1) i#j=1 .

tion. Other important aspects of the collective quantum 5)
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etc. In particular, if the field is initially in a state with at most a
one photon, the relevant eigenstates of the bare system are —~ 0 N A
the total ground statéb,0), which is not affected by the E(z1) (1) Ezyn o2 >
interaction at all, the ground state with one photon in the b c Q6or)

Z,

field |b,1), as well as the singly excited statesO) and|c,0).
For the case of two excitations, the interaction involves three
more states, etc. The coupling of the singly and doubly ex-
cited systems is shown in Fig(H).

The interaction has families of dark states, i.e., states with
zero adiabatic eigenvalyé1,16,1§. The simplest one is

|D,1)=cos6(t)|b,1)—sind(t)|c,0), (6) ' G
(W—a ) /Y
gVN _ .
tand(t)= ——, (7) FIG. 2. Top: three-level -type medium resonantly coupled to a
Q@ classical field with Rabi frequend(t) and quantum fieldE(z,t).
and, in general, one has Bottom: typical susceptibility spectrum for probe fidicas function
of normalized detuning from resonance for resonant drive field.
n n! Real party’ describes refractive-index contribution and imaginary
|D,n>=k§:O k'(n——k)'(_sm 6)%(cos)" X cK,n—k). part x" absorption.

(®) atomsN, which is a signature of collective coupling. This

The dark states do not contain the excited state and are th{li2kes the proposed method potentially fast and robust.

immune to spontaneous emission. It should also be noted

that although the dark stat¢®,n) are degenerate, they be- Ill. QUANTUM DESCRIPTION OF SLOW-LIGHT
long to exactly decoupled subsystems as long as spontaneous PROPAGATION

emission is disregarded. This means there is no transition . o .
between them even if nonadiabatic corrections are taken into. We now discuss a generalization of the mapping tech-

account. The existence of collective dark states provides gique to propagating fields. The adiabatic transfer of the

very elegant way to transfer the quantum state of the Sirlglequantum state from the radiation mode to collective atomic

mode field to collective atomic excitations. Adiabatically ro- excitations discgssed in the preceding sectioq is strongly re-
tating the mixing angle from 0 to /2 leads to a complete lated to intracavity EIT28]. In order to generalize the tech-

and reversible transfer of the photonic state to a collectivé"'d4€ to_mult|rr_lode_ fields it is usefu_l to discuss f_|r_st the
atomic state if the total number of excitationss less than propagation of light in three-level media under conditions of

the number of atoms. This can be seen very easily from thEIT'
expression for the dark states, E8): If #:0— 7/2 one has
for all n=<N, A. Model

Consider the quasi-one-dimensional problem shown in
Fig. 2. A quantized electromagnetic field with the positive
Thus if the initial quantum state of the single-mode lightfrequency part of the electric componétit™) couples reso-
field is in any mixed state described by a density mapix ~nantly the transition between the ground stdip and the
=3, mPnm|N)(m|, the transfer process generates a quantun?xc'ted statga). v=w,y, is the carrier frequency of the op-

D, n):[b)[n)—1c")|0). ©)

state of collective excitations according to tical field. The upper level) is, furthermore, coupled to the
stable statdc) via a coherent control field with Rabi fre-
qguency(}.
% /Onm|ﬂ><m|‘X>|b><b|ﬁ|0><0|@921 Paml €")(C. The interaction Hamiltonian reads
(10)

V= — S EM) (2.
It should be noted that the quantum-state transfer does not v ‘W; [oaE () +Hal
necessarily constitute a transfer of energy from the quantum
field to the atomic ensemble. Since in the Raman process the _ ~ _ v
coherent “absorption” of a photon from the quantized mode hzj: [oacth(z Dexi(kaz —rgh) 1+ Hal,
is followed by a stimulated emission into the classical con-
trol field, most of the energy is actually deposited in the latter
field. " .

The transfer of quantum states between light and mattevrv.herezj de_notes the position of thigh atom,p denotes the
due to adiabatic following in collective dark states is the keydIIOOIe matrix element between the stafas and|b), and
point of the present work. Before proceeding we also note "
that the transfer rate is proportional to the total number of ‘Tja,ez|aj><,3j| (12)

11)
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defines the atomic flip operatoilg,=ky-€,=(v4/c)cos® is Goo=i0*e 1 _ig&T. . (23)

the projection of the wave vector of the control field to the

propagation axis of the quantum field. For the sake of sim-_= v+’ and y,y’ denote longitudinal decay rates and
plicity we assume here that the carrier frequenciesd v ¥, denotes transversal decay ratds, and F,, are

of the quantum and control fields coincide with the atomic’correlated Langevin noise operators, whose explicit form
resonancew,, and w,., respectively. Motional effects and s not of interest here.

the associated Dop.pler sh.ifts will be dis'cussed later. We in- |t should be noted that we have disregarded dissipative
troduce slowly varying variables according to population-exchange processes due to, e.g., spin-flip colli-

sions and dephasing of the lower-level transition. This is jus-
EH)(z,t)= / hy 3’(2,t)exp{i K(z—ct) . (13 tified since we assume that the interaction time is sufficiently
280V C
. w,uv
(t) 0' (t)ex —i T(z—ct) .

short compared to the characteristic times of these processes.
Both, dissipative population exchange as well as dephasing

(14 will be discussed in detail later on.

. o . . L B. Low-intensity approximation
Here V is some quantization volume, which for simplicity

was chosen to be equal to the interaction volume. In order to solve the propagation problem, we now as-
If the (slowly varying quantum amplitude does not sume that the Rabi frequency of the quantum field is much
change in a length intervalz, which containd\,>1 atoms, Smaller tharf) and that the number density of photons in the
we can introduce continuum atomic variables input pulse is much less than the number density of atoms. In
such a case the atomic equations can be treated perturba-

tively in &. In zeroth order onlyr,,= 1is different from zero

oz, t)__z Z; N, U o(0) (15 and in first order one finds
and make the replacemeBF‘zlﬂ(N/L)fdz, whereN is the ~ I g 9~ o4
number of atoms and is the length of the interaction vol- Tba™ §e gt be: (24)

ume in the propagation direction of the quantized field. This

yields the continuous form of the interaction Hamiltonian \nith this the interaction of the probe pulse with the medium
can be described by the amplitude of the probe electric field

- dz ~ -
V=— f T[ﬁg Nop(z,1)E(zZ,1) & and the collective ground-state spin vanabl,gac
+ 1akz o +H.al. d d N d~
7 Q(z,1)€2N(2) od(z,t) +H.a] (16) +C_> =N N sk I 25
at OF ot
Hereg=gp \v/2heyV is the atom-field coupling constant and
Ak=kl—ky=(wae/c) (cOSI—1). and
The evolution of the Heisenberg operator correspondmg
to the quantum field can be described in the slowly varying .
amplitude approximation by the propagation equation ~ g_ge—iAkz_ J I d~
Ophe= QO allat * Ypa Q* Pl
Jd J ~
+c—)5(z t)=igNopa(z,1). (17)
at iAkz
+e '8 (26)

The atomic evolution is governed by a set of Heisenberg-
Langevin equations
C. Adiabatic limit

— o~ ot~ _ i * A—iAKZ .
aa™ ~ YaTaa~ 19(&'opa—H.a)~i(Q7e Tca—H-2) The propagation equations simplify considerably if we as-

+Fa, (18 sume a sufficiently slow change 6¥, i.e., adiabatic condi-
tions [29,23,3Q. Normalizing the time to a characteristic
bb= YT aat19(ETopa—H.a)+Fy, (199  scaleT viat=t/T and expanding the right-hand sitts) of
Eq. (26) in powers of 1T we find in the lowest nonvanishing
Gee=7 0aati(Q*e 2% —Ha)+F,, (20  order,
&ba: —yba'&ba+igg(5bb—'&aa)+iQeiAkf&chr Fba, ’&bc(zyt): _g_efiAkz_ (27)
(21 Q
Fea=— YeaTcat i Q€4 0 p— 022) +19E0pat Fea, We note that also the noise operafgy, gives no contribu-

(22 tion in the adiabatic limit, sincgF,(t)F(t"))~d(t—t")
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=8(t—t')/T. Thus in the perturbative and adiabatic limit, the denotes the dephasing rate of the transition, it is required
propagation of the quantum light pulse is governed by that 7y< ygcl. A much stronger limitation arises, however,
R from the violation of the adiabatic approximation.
9°N 9 &(z,t) The EIT medium behaves like a nonabsorbing, linear dis-
Q* at Q (28) persive medium only within a certain frequency window
around the two-photon resonan@ee Fig. 2 andi24]). The
) ) S adiabatic approximation made in the last section essentially
D. Slow-light and delay-time limitations assumes that everything happens within this frequency win-
If Q(z,t)=Q(2) is constant in timethe term on the rhs dow. If the pulse becomes too short, or its spectrum too
of the propagation equatioi28) simply leads to a modifica- broad relative to the transparency width, absorption and
tion of the group velocity of the quantum field according to higher-order dispersion need to be taken into account.
The transparency window is defined by the intensity
transmission of the medium. In order to determine its width

ot 0z

J d\
—+c—)5(z,t)= -

vg=vg4(2)= 1+ny(2)’ (29 we consider the susceptibility of an ideal, homogeneous EIT
medium with a resonant drive field. Here one has
2
g°N 3 kcy
ng(z)= =—p\° : (30) n 1026 y
Q(2)? 87 |Q(z)]? =9~ 35— +0(8Y],
ke jap-s—iys ke|”T [ Ot
with p being the atom density andthe resonant wavelength (35
of thea—b transition. The solution of the wave equation is
in this case where §=v— w,. is the detuning of the probe field. If we
assume a homogeneous drive field, we find
~ ~ z
S(Z’t)zg( o1~ [ oz ,>)* 3D T(5,2)= exp{—kzim{ ]} ~exp(— S/Awl}  (36)
vg(zZ

N with
where £(0t’) denotes the field entering the interaction re-

gion atz=0. This solution describes a propagation with a c |02 a2 1
spatially varying velocity 4 . It is apparent that theemporal Awy=|——| =— —, (37)
profile of the pulse is unaffected by the slow down. As a Yl ng Y Va

consequence the integrated electromagnetic energy flux ) . )
through a plane perpendicular to the propagation is the sanle being the propagation length in the medium and

at any position. Furthermore, the spectrum of the pulse re=(3/87%)p\°kl the opacity in the absence of EIT. One rec-
mains unchanged, ognizes that the transparency width decreases with increas-
ing group index. It is instructive to express the transparency
* Ciwr 2 - width in terms of the pulse delay time;=ngl/c for the
S(z.0)= Lche (E @Dz 7)) =S(0w). medium. This yields ’
(32

1
In particular, the spectral width stays constant Aoy=\a P (39)

Awy(2)=80(0). (33) Hence large delay times imply a narrow transparency win-
On the other hand a spatial change of the group velocity‘,jOW' Wh|ch_|n turn requires a long pulse time. When the
either in a stepwise fashion as, e.g., at the entrance of tHyOUP velocity gets too small such that the transparency win-
medium or in a continuous way, e.g., due to a spatially dedow becomes smaller than the spectral width of the pulse,
creasing control field, leads to@mpression of the spatial the adiabatic condition is violated, and the pulse is absorbed.
pulse profile In particular, if the group velocity istatically Hence there is an upper pqqnd for the ratio of achievable
reduced to a valueg, the spatial pulse lengthl is modified delay (storage time to the initial pulse length of a photon
according to wave packet,

v Td -
Al=2Al, (34 —<Va and 7=y (39
p

as compared with a free-space vallk,. The ratiory/7, is the figure of merit for a memory device.

It is instructive to discuss the limitations to the achievableThe larger this ratio the better suited is the system for a
delay (and therefore “storage”time 74 in an EIT medium temporal storage.
with a very small but finite group velocity. A first and obvi-  There is another quantity that is important for the storage
ous limitation is set by the finite lifetime of the dark state, capacity, namely, the ratio of medium lendtho the length
which had been neglected in the preceding sectiony,lf L, of an individual pulse inside the medium. Following simi-
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lar arguments as above one finds that this quantity is als

limited by the square root of the opacity, % and® are superpositions of electromagnet) @nd col-

lective atomic componentsyNoyc), whose admixture can
be controlled througté(t) by changing the strength of the

L o .
L—s \/E, (40 external driving field.
P Introducing a plane-wave decompositiortV(z,t)
whereng>1 was assumed. =3V (1)e'k? and ®(z,t) =3, P (t)e'?, respectively, one

In practice, the achievable opacityof atomic-vapor sys- finds that the mode operators obey the commutation relations
tems is limited to values below $@esulting in upper bounds ) )
for the ratio of time delay to pulse length of the order of 100. R . 1 Ad A
Thus dense EIT media with ultrasmall group velocity are [Wi, Wy 1= S| cOS O+ sin N 2 (T o~ 0 co)
only of limited use as a temporary storage device. The propa- ) " (44)
gation velocity cannot be made zero and nonadiabatic cor-
rections limit the achievable ratio of storage time to the time Y [ 1 o]
length of an individual qubit. [Py, P\, ]= S| SINF 0+ oS N > (ohy—olo)

It should be mentioned that the narrowing of the EIT - !

. ; . . : " (45)
transparency window is also a consideration for effects in-
volving freezing light in a moving medig32] and so-called o 1 _ _
optical black holes based on E[B3]. In the following we [\IIk,(I)l/]: S Sinf cose| 1— N 2 (oly—oll.
will show that EIT can nevertheless be used for memory ]
purposes in a very effective way when combined with (46)

adiabatic-passage techniques. In the linear limit considered here, where the number density

of photons is much smaller than the density of atomf,

~1,0..~0. Thus the new fields possess bosonic commuta-
In the preceding section we have discussed the propag&on relations

tion of a quantum field in an EIT medium under otherwise

statipnary conditiqns, i.e'., with a constant or onl_y_spatially [‘i’k,‘i’l,]m[&’k,‘i)lf]mfsk,kf , (47)

varying control field. Since under these conditions, the

Hamiltonian of the system iime independenta coherent Sy

process that allows for a unidirectional transfer of the quan- [Py, Py, ]=0, (48)

tum state of a photon wave packet to the atomic ensemble ) ] . o

was not possible. We will show now that this limitation can @nd we can associate with them bosonic quasipartigles

be overcome easily by allowing fortame-dependertontrol laritons. Furthermor?, one immediately verifies that all num-

field. This provides an elegant tool to control the propagatiorber states created byl,

of a quantum light pulse. For a spatially homogeneous but

time-dependent control fieldQ)=(t), the propagation 1 .

problem can be solved in a very instructive way in a quasi- Ini) = \/——I(‘I’l)n|0>|b1‘ --by), (49

particle picture. In the following we will introduce these qua- n:

siparticles called dark-state polaritoh7,25 and discuss

their properties, applications, and limitations.

IV. DARK-STATE POLARITONS

where|0) denotes the field vacuum, are dark std&k 16].
The stategn,) do not contain the excited atomic state and
o . ] are thus immune to spontaneous emission. Moreover, they
A. Definition of dark- and bright-state polaritons are eigenstates of the interaction Hamiltonian with eigen-
Let us consider the case of a time-dependent, spatiallyalue zero,
homogeneous, and real control figld=Q(t)=Q(t)*. We

introduce a rotation in the space of physically relevant Vlnk):O. (50)
variables—the electric field and the atomic spin coherence A
Ebc—defining two new quantum field® (z,t) andd(z,t), For these reasons we call the quasiparticlesdark-state

polaritons.” Similarly one finds that the elementary excita-

U =cosd(t)&(z,t) —sind(t) yNop(z,t)el 22, (41)  tions of @ correspond to the bright states in three-level sys-
tems. Consequently these quasiparticles are called “bright-
state polaritons.”

One can transform the equations of motion for the electric
field and the atomic variables into the new field variables. In
the low-intensity approximation one finds

d=sino(t)&(z,t) + cosd(t) \NT(z, )2k (42)
with the mixing angled(t) given by
2

N
tarf (t)= 52—(0=ng(t). (43

J . . J -
—+ccog §—|¥=—pb—sinfcosfdc—P (51)
Jz 0z

ot
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and

sine(a
+y

q):gz_N E

J ~ ~
tan 05) (sinV¥ —cosod)
_siné@

+i——=Fpa,
g\ **

where one has to keep in mind that the mixing anglis a
function of time.

(52

B. Adiabatic limit

Introducing the adiabaticity parameter=(gy/NT) ?
with T being a characteristic time, one can expand the equa
tions of motion in powers ok. In lowest order, i.e., in the
adiabatic limit one finds

$~0. (53
FIG. 3. Propagation of a dark-state polariton with envelope
Consequently exp{—(2/10)%}. The mixing angle is rotated from 0 to/2 and back
according to cot(t)=100(1— 0.5 tanf0.1(t—15)]+ 0.5 tanf0.1(t
g(z,t)zcosg(t)@(z,t), (54) —125)]) as shown in@. The coherent amplitude of the polariton
\P=(\if> is plotted in(b) and the electric fiel&E=(E) and matter
\/ﬁ’&bc: —sin H(t)\if(z,t)e’mkz. (55) componentsoy| = |(oep)| in (c) and(d), respectively. Axes are in

arbitrary units withc=1.

Furthermore,‘if obeys the very simple equation of motion ) )
the conservation of the spatial shape, the quantum state of

. the polariton is not changed during this process.

¥(z,t)=0. (56) Likewise the polariton can be reaccelerated to the vacuum
speed of light; in this process the stored quantum state is
transferred back to the field. This is illustrated in Fig. 3,

C. “Stopping” and reaccelerating photon wave packets where we have shown the coherent amplitude of a dark-state

Equation(56) describes a shape- and quantum-state Iorepolariton, which results from an initial light pulse, as well as
serving propagation with instantaneous velocity- v 4(t) the corresponding field and matter components.

=c cog H(t),

&+ szata
5 cco ()E

R R t D. Simultaneous narrowing of transparency window
\Ir(z,t):\]/< Z_CJ drcog o( T),0> . (57 and pulse spectral width
° As was discussed above, the transparency window of the
EIT medium, i.e., the range of frequencies for which absorp-
. . A tion is negligible, decreases with the group velocity. Since
polariton has purely photonic charactir=¢ and the propa-  the pandwidth of the propagating pulse should always be
gation velocity is that of the vacuum speed of light. In the contained within this range of frequencies to avoid absorp-
opposite limit of a weak drive field)<g“N such that i, the question arises whether this prevents the stopping of

For 6—0, i.e., for a strong external drive fiefd?>g?N, the

0— /2, the polariton becomes spin-wave-likey = the polariton.
—Nop,£2%? and its propagation velocity approaches zero. To answer this question we first note that during the pro-
Thus the following mapping can be realized: cess of adiabatic slowing, ttspatial profile and, in particu-
lar, the length of the wave packeAl) remains unaffected,
B2)oap () ek (58)  aslong as the group velocity is only a functiontofn other
words,
with z' =z+zp=z+ [jd7C cos #(7). This is the essence of Al=Al,. (59)

the transfer technique of quantum states from photon wave

packets propagating at the speed of light to stationary atomic

excitations(stationary spin wavesAdiabatically rotating the At the same time, the amplitude of the electric field gets

mixing angle fromé=0 to 6= 7/2 decelerates the polariton reduced and its temporal profile gets stretched due to the
to a full stop, changing its character from purely electromag+eduction of the group velocity. The opposite happens when
netic to purely atomic. Due to the linearity of Ep6) and  the group velocity is increased. One finds from Ezf),
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coso(t) .
cose(O)g

Ezt)=

z—cfotdrcos.2 0(7),0). (60)

As a consequence the spectrum of the probe-field changes
during propagation. Assuming that céshanges only slow
compared to the field amplitude one finds

S( O’c0§ 0(t)> ' 6D

In particular, the spectral width narrowkroadens accord-
ing to

_ cos 6(t)

Sz w)= cos 6(0)

cog (1)

Awp(t)%Awp(O)m.

(62

When the group velocity of the polariton is reduced in time
due to reduction of the control-field amplitude the EIT trans-
parency window shrinks according to

PHYSICAL REVIEW A 65 022314

-04 -02 0 0.2 04

®/ W,

FIG. 4. Simultaneous narrowing of transmission spectftop)
and pulse spectrurtbottom for time-dependent variation of group

velocity v/c in units of wy=g?N/y. Parameters area

~ cof 6(t)

= Fe(o)Awtr(O). (63

wy (1)

=20, g°N/y?=10.

nance of an idealized, resonantly driven three-level medium

can be written as

However, the spectral width of the wave packet shrinks as
well and the ratio remains finite,

Awy(t) s 6(t) Awy(0)
Awy(t)  sir? 0(0) Awy(0)

(64)

n(w)~ \/1+2—§M. (66)
Wab

Vg

The reflection coefficient for normal incidence from vacuum

As will be discussed later on, for practically relevant casest0 the medium given by

sir? @(t)/sir? 6(0) is always close to unity. Thus absorption
can be prevented in the dynamic light-trapping method as
long as the input pulse spectrum lies within thdial trans-
parency window,

Awpy(0)<Awy(0). (65)

As we have already noted earlier this condition can easily be
fulfilled if an optically dense medium is used. The simulta-
neous reduction in transparency bandwidth and pulse band-
width is illustrated in Fig. 4.

E. Boundary behavior and initial pulse compression

In the above discussion we have analyzed the propagation
of the probe pulse inside the medium. We now turn to the
behavior at the medium boundaries. There are two issues of
interest: (i) reflection from the medium surface afid) the
effects of a possible steplike change of the group velocity
when passing from vacuum or air to the medium.

Under ideal conditions, the refractive index of the EIT
medium is exactly unity on resonance and hence there is no
reflection for the resonant component of the input pulse. If
the spectrum of the input pulse is, furthermore, sufficiently
narrow as compared to the initial transparency window of
EIT, the refractive index is very close to unity over the entire

Rl a)— 1-n(w)|? 5
()= T (o) (67)
is plotted in Fig. 5.
Near resonancR(w) can be approximated by
Aw?
R(O))% 2 (68)

0
( ZFQ waptAw

-05 0 0.5 1 15 2

(@— 0y ) /(0 vy C )

relevant bandwidth and no field component gets reflected. To FIG. 5. Reflection coefficient for normal incidence as function
quantify this we note that the index of refraction near reso-of probe detuning from resonance.
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whereAw=w—w,,. Since typicallyA w,(0)< wabvglc re-
flection can be neglected.

When the group velocity inside the medium is smaller
thanc at the time when the probe pulse enters the medium, d
the pulse gets spatially compressed according to (B4j. :_A(t)q""B(t)CE‘I’
This substantially reduces the requirements on the size of the
medium and enhances the storage capacity. ) 92 . 3

Continuity of the electric-field amplitudg at the entrance +C(t)e ;\P_ D(t)e E\p, (72)
of the medium ¢=0) implies a jump in the polariton am-

7 +cco (1)

i
at 72| ¥ (0

plitude where
. . At +1(9 6 sir? 6 23
P(+0t)= \/:O\If(—o,t)= \/:02’(—01). (69 =] 2t g°N |’ (73
Vg Ug
sing 9%
Hence the density of polaritons increases by a factoy, B(t)= 3N ESIHS 0, (74)
when entering the medium, while their total number is con- 9
served since the pulse length is changed by the inverse fac- .,
tor. = L a)sin 0 cos ¢ -
Boundary effects can also be used for a controlled defor- O={ 2 a9t g°N ' (75)
mation of a stored light pulse. When the polariton leaves
with a different value of cog than when it entered, it will be :
, sin® 6 cod ¢
spatailly compressed/decompres$2d]. D(t)= . ) (76)
g°N
V. LIMITATIONS OF QUANTUM-STATE TRANSFER A(t) describes homogeneous losses due to nonadiabatic tran-

In th di . h di dth | sjtions followed by spontaneous emissi@{t) gives rise to
n the preceding sections we have discussed the control of ¢orection of the polariton propagation velociG(t) re-

propagation of the photon wave packets under the asSUMiiis in a pulse spreading by dissipation of high spatial-

tions of an adiabatic evolution and small probe-field amp”'frequency components, ai(t) leads to a deformation of
tudes. We, furthermore, neglected ground-state decoherenﬁsae polariton '

3nd mot;%na(ch_)éqlolebf(?[Lfects. In the .pre?_ent ;ec(tjlotrw ylve will Since all coefficients depend only on time, the propaga-
IScuss he validity of these approximations in detail. tion equation can be solved by a Fourier transform in space
W (z,t)=[dkW¥ (k,t)e” k2 This yields
A. Nonadiabatic corrections

Let us first discuss the effect of nonadiabatic transitions, q’(k,t)=qf(k,0)exp{ ikftdtr[vgr(t,)Jch(t,)]]

i.e., let us take into account terms in first ordersoin Eqgs. 0

(51) and(52). For the following discussion it is sufficient to ‘

consider the semiclassical limit, where the operator character X exp{ — ik303f dt’D(t’)]

of the variables as well as the Langevin nofsg, can be 0

disregarded. Up te! one obtains ¢
xexpr —f dt'[A(t')+k2c20(t’)]]. (77

sim A(t) vy 0

cos(t) gZ_N\P' (70

. Y -
d=sir? o(t) -6 +
g°N The last term contains all losses due to nonadiabatic correc-
tions. In order to neglect dissipation, the integral in the ex-

On the same level of approximations we can rephicen ponent of this term needs to be small compared to unity.

the right-hand side by- ¢ cog 6aW/éz This gives Taking into accoun®(0)= (=) =0 this results in the two
conditions
: d = sin* f(t)cos 6(t
B ~Sir? 0(t) ——HW — sir 6(t)cosH(t) ——c—W. e [ g omeos A (78)
g°N g°N 9z 0 g°N
(71)
and

Substituting this into Eq(51) yields the lowest-order nona- . Psifo . e
diabatic corrections to the propagation equation of the dark- 7,f dt = yf dt——<1. (79
state polariton, 0 g°N 0o g’N+Q3(1)
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ping) and to the initial pulse bandwidth &%~v8/Awp(O)
and sinceA wy, (0)= Vol g~ Jav/z, for vi<c, Eq.(81) is
simply another way to state:

04 \ ‘\

02 AR Awp(0)<Aw(0). (82

] Hence the present analysis confirms the qualitative condi-
E 08l —— tions for adiabatic following: the initial probe spectrum

06l should be contained within the original transparency win-

0‘4 dow. Once again, this can be satisfied if the medium is opti-

' cally densea>1.

02 , There is also a second conditidi@9), which is well

0 0 50 100 150 2 ] 0 known from adiabatic-passaf29,34] and sets a limit to the

z rotation velocity # of the mixing angle and hence to the
. . deceleration/acceleration of the polariton. Introducing a char-
FIG. 6. Deceleration (top) and reaceleration (bottom  gcteristic time scale of the acceleration/deceleration périod

of a Gaussian light pulse ekp(t—5001/(200Y]  \ve obtain

with cot §(t)=0.363(1—[2/m]arccof5(1— 0.5 tani0.005¢

—2000)]+ 0.5 tanli0.005¢—3200)])]). The parameters are | 0
9°N/y?=25a=625¢c=1. Pulses are shown for=600, 800, -|->a_bsﬁ (83)
1000, 1200, 1400, 1600, 1800, 2000, 2200, and 2400 in the top c c’

figure and fort=2800, 3000, 3200, 3400, 3800, and 4000 in the

bottom figure. One recognizes good agreement between numericalherel ,,=cy/g>N is the absorption length in the absence

solution of the propagation equatiofsolid line) and analytic ap- of EIT. We note that for realistic experimental parameters,

proximation(dashed ling the quantity on the right-hand side is extremely small on all
relevant time scales. Hence, in practice, the rate of change of

The first condition can be brought into a transparent fornthe mixing angle does not significantly affect the adiabatic

when replacing sthé by unity, which results in dynamics.
= cos A(t) vykcz B. Weak-field approximation
yk2c? f dt = <1 (80) , . .
0 g°N g°N The analysis of Sec. IV also involves a perturbation ex-

pansion, valid when the control field is much stronger than

e . . the probe field. It is easy to see that this expansion is justified
for all relevantk. Herez=c/gdtcos’ §(1) is the propagation even when the control-field Rabi frequency is reduced to

depth of the polariton inside the medium, and we have as- _ . PPN
sumed co®(0)=1 and cog(«)=0 for simplicity. Noting %" MakmgAuse of Eq(27) one f|nds.gz(E+E>/|Q|2
that the range of relevant spatial Fourier frequencies is de= (T cb0be) = (0cc)- In other words, the ratio of the average

termined by the inverse of the initial pulse lendth, i.e., intensities of quantum and control field is proportional to the
settingk~L_*, one finds probability of finding an atom in state If the initial number
P density of photons in the quantum field is much less than the
92N number density of atomégr) is always much smaller than
z< c L; or z< \/ELp, (81)  unity. Therefore the mean intensity of the quantum field re-
Y

mains small compared to that of the control field even when
the latter is turned to zero.

wherea=g?Nz/ yc is again the opacity of the medium with-

out EIT. To illustrate this limitation, we have shown in Fig. 6 C. Decay of Raman coherence

the slow down and successive acceleration of a light pulse
obtained from a numerical solution of the full one-
dimensional propagation problem as well as the analytic
approximation following from Eq.(77). Here @>N/
yc)(Lﬁ/zmaX) =2 (Zmax=250). One clearly recognizes a de-

cay of the elementary excitatida long before the decelera- Lantum state of a propagating liaht pulse to a stationar
tion and the associated transfer to the atom systems sets i bropagating ight p Y

The polariton energyy = [dzW(z,t)|? decreases approxi- matter excitation is possible. Introducing pherAlomenoIogicaI
mately exponentially with the propagation distarceof the ~ decay into the equation of the Raman coheremgeresults
pulse center. In the examplg, decays after\z=250 ap- N @ modification of Eq(24) according to
proximately by a factoe™ %32%~0.724. .

Since the spatial pulse length in the medium is related to ~ _ ! iAkz( 9~

In the ideal scenario considered in Sec. IV we disregarded
a@ll processes resulting in a decay of coherences between the
metastable statdsandc. If such a decay at a ratg, is taken
into account, the group velocity in the EIT medium cannot
reach zero. Nevertheless, @mos) complete transfer of the

Oba= = €| F0bet Y00 be| + Fhe- (84)

the initial group velocityvg (at timet=0 before the trap- O*
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For formal consistency a Langevin noise term associated In a Doppler-free configuration propagation effects of the
with the decoherence needed to be introduced as well. Suaontrol field need to be considered. In the case when the
a dephasing trivially modifies the propagation law of theprobe field is weak compared to the control field at all times,

polariton, the latter propagates almost as in free space Qifd,t)
= (t—2z/c). Due to the resulting dependence of the group
- B t . velocity, the trapping mechanism does not exactly preserve
\If(z,t)—exp( —Yof0d75|n29(7)> the shape of the photon wave packet. However, when the

probe pulse enters the medium with a group velocity much
. smaller than the velocity of the control fieldS<c, the re-
+Fy. (89  tardation of the control-field amplitude can be ignored and
Q(t—2z/c)=Q(t). This is a good approximation as long as
As expected, dephasing simply results in a decay of the pdhe time variation of the control field is sufficiently slow

lartion amplitude(\if} but does not prevent light stopping. A such that its spatial variation across the probe pulse length is

more detailed discussion of various realistic decoherenc&Mall- This implies that the characteristic time of change of
mechanisms and their influence on the fidelity of the quantn€ control field should obey>L/c, which is again easily

tum memory will be presented in a subsequent publication.Satisfied. _ _
Before concluding we note that even in the case when no

photon momentum is transferred to atoms, and therefore
atomic motion does not result in altering the phase of the

We have shown above that by adiabatically varying thespin coherence, in practice it is still desirable to suppress the
envelope of the control fiel in time, a light pulse of the motion. This is because the light beams normally have a
probe field can be brought to a full stop. A spatially homo-finite cross section and the atomic coherence is localized in
geneous variation of the group velocity can be realized, fothe longitudinal direction. Motion would tend to spread the
instance, in the case when the control and probe field arlcalized excitation over the entire volume occupied by the
propagating in orthogonal directions. However, in such agas. In this case the information about the pulse shape and
case the spin-wave component of the polariton has a ’Ohasme mode function will be lost after a sufficiently long stor-
which is rapidly oscillating inz, since thenAkzkd—k‘d age interval. That is the reason why techniques involving
=kg(1—cosf)=ky. For an atom at positiom; one would cold trapped atoms and buffer gas were used to effectively
have slow the atomic drifts in recent experimeff0,21].

~ ~ . Wac . Whe
chbC(t)=|chbC(t)|exp[ i sz]exp[ —i sz], (86)

where a transformation from the rotating frame back into th

~ t
X z—cf drcog 6(7),0
0

D. Atomic motion

VI. SUMMARY

In conclusion, we introduced the basic idea of quantum
dnemory for light based on dark-state polaritons and dis-

lab frame was applied. While the second term corresponds ¢ ussed their properties. We have considered the influence of

spatial oscillations with the small beat frequency betweer{ € matljnhreallstlﬁ |mpef:fectr|]0ns orr: t'rappl.ng and re?cceLera—
pump and drive, the first term oscillates with an optical fre-100 @nd have shown that the technique is extremely robust.

guency. As a consequence the polariton state is highly senéﬂ partrl]cular, Vt\;le haxe dfef_m_onstrated that an essential mecha-
tive to variations in the atomic positions, or in other wordsN'SM that enables the eflicient quantum memory operation—

would dephase rapidly due to atomic motion. To retain a higtjfhe adiabatic following .in polaritons—.can take place in spite
fidelity of the quantum memory it would be necessary toof the transparency window narrowing. Subsequent papers

confine the motion of the atoms during the storage time tcy\/iII discuss the influence of other decoherence mechanisms
within a fraction of an optical wavelength, which is a very on phofcon trapping a_md re'grleval and will present the results
stringent condition of detail numerical simulations of the trapping procedure.

To avoid this problem nearly co-propagating beams can
be used, such thatk<ky. In this case almost no photonic
momentum is transferred to the atoms and the two-photon The authors thank S.E. Harris, A. Imamoglu, C. Mewes,
transition frequency would experience only a very smallD. Phillips, M.O. Scully, R. Walsworth, and S. Yelin for
Doppler shift. Such a configuration is therefore robust withmany stimulating discussions. This work was supported by
respect to atomic motion, as electronic and motional degreete National Science Foundation via a grant to ITAMP and
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