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Quantum memory for photons: Dark-state polaritons
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An ideal and reversible transfer technique for the quantum state between light and metastable collective
states of matter is presented and analyzed in detail. The method is based on the control of photon propagation
in coherently driven three-level atomic media, in which the group velocity is adiabatically reduced to zero.
Form-stable coupled excitations of light and matter~‘‘dark-state polaritons’’! associated with the propagation
of quantum fields in electromagnetically induced transparency are identified, their basic properties discussed
and their application for quantum memories for light analyzed.
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I. INTRODUCTION

Recent advances in quantum information science have
to many interesting new concepts such as quantum com
tation, quantum cryptography, and teleportation@1–3#. The
practical implementation of quantum processing protoc
requires coherent manipulation of a large number of coup
quantum systems, which is an extremely difficult task. O
of the particular challenges for the implementation of the
ideas involves physically transporting or communicati
quantum states between different nodes of quantum netw
@4#. Quantum optical systems appear to be very attractive
the realization of such networks. On one hand photons
ideal carriers of quantum information: they are fast, robu
and readily available. On the other hand atoms represen
liable and long-lived storage and processing units. There
the challenge is to develop a technique for coherent tran
of quantum information carried by light to atoms and vi
versa. In other words it is necessary to have a quan
memory that is capable of storing and releasing quan
states on the level of individual qubits and on demand. S
a device needs to be entirely coherent, and in order
achieve a unidirectional transfer~from field to atoms or vice
versa!, an explicit time-dependent control mechanism
required.

Classicaloptical-data storage in the time domain, bas
on the phenomenon of spin@5# and photon echo@6#, has a
long history. After the first proposals of stimulated two-lev
photon echo@7# and demonstrations of light-pulse storage
these systems@8# many important developments have tak
place in this field. Particularly interesting are techniqu
based on Raman photon echos@9# as they combine the long
lifetime of ground-state hyperfine or Zeeman coherences
storage with data transfer by light at optical frequencies@10#.
While these techniques promise to be powerful for hig
capacity storage ofclassicaloptical data, they cannot be d
rectly applied forquantummemory purposes. The techniqu
employ direct or dressed-state optical pumping~and thus
contain dissipative elements! and typically require that the
number of photons is larger than the number of atoms.

The conceptually simplest approach to aquantum
memory for light is to ‘‘store’’ the state of a single photon
1050-2947/2002/65~2!/022314~12!/$20.00 65 0223
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an individual atom. This approach involves a coherent
sorption and emission of single photons by single atom
However, the single-atom absorption cross section is v
small, which makes such a process very inefficient. A v
elegant solution to this problem is provided by cavity QE
@11#. Placing an atom in a high-Q resonator effectively en-
hances its cross-section by the number of photon round t
during the ring-down time and thus makes an effective tra
fer possible. Raman adiabatic-passage techniques@12# with
time-dependent external control fields can be used to im
ment a directed but reversible transfer of the quantum s
of a photon to the atom~i.e., coherentabsorption!. However,
despite the enormous experimental progress in this field@13#,
it is technically very challenging to achieve the necess
strong-coupling regime. Furthermore, the single-atom sys
is by construction highly susceptible to the loss of atoms a
the speed of operations is limited by the largeQ factor.

On the other hand a photon can be absorbed with
probability in an optically thick ensemble of atoms. No
mally such absorption is accompanied bydissipativepro-
cesses, which result in decoherence and thus deteriorat
quantum state. Nevertheless it has been shown that suc
sorption of light leads to a partial mapping of its quantu
properties to atomic ensembles@14,15#. As a consequence o
dissipation these methods do not allow to reversibly store
quantum state on the level ofindividual photon wave packets
~single qubits!. Rather, a stationary source of identical cop
is required~e.g., a stationary source of squeezed vacuu
which can be considered as a train of identical wave pac
in a squeezed vacuum state! to partially map quantum statis
tics from light to matter.

Recently we have proposed a method that combines
enhancement of the absorption cross section in many-a
systems with dissipation-free adiabatic-passage techniq
@16–18#. It is based on an adiabatic transfer of the quant
state of photons tocollective atomic excitationsusing elec-
tromagnetically induced transparency~EIT! in three-level at-
oms@19#. Since the technique alleviates most of the string
requirements of single-atom cavity QED, it could becom
the basis for a fast and reliable quantum network. Rec
experiments@20,21# have already demonstrated one of t
basic principles of this technique—the dynamic grou
©2002 The American Physical Society14-1
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M. FLEISCHHAUER AND M. D. LUKIN PHYSICAL REVIEW A 65 022314
velocity reduction and adiabatic following in the so-call
‘‘dark-state’’ polaritons. The aim of the present and sub
quent papers is to analyze the physics of the reversible s
age technique in detail and to discuss its potentials and l
tations.

Electromagnetically induced transparency can be use
make a resonant, opaque medium transparent by mean
quantum interference. Associated with the transparency
large linear dispersion, which has been demonstrated to
to a substantial reduction of the group-velocity of light@22#.
Since the group-velocity reduction is a linear process,
quantum state of a slowed light pulse can be preserv
Therefore a nonabsorbing medium with a slow group vel
ity is in fact a temporary ‘‘storage’’ device. However, such
system has only limited ‘‘storage’’ capabilities. In particula
the achievable ratio of storage time to pulse length is limi
by the square root of the medium opacity@23# and can prac-
tically attain only values of the order of,100. This limita-
tion originates from the fact that a small group velocity
associated with a narrow spectral acceptance window of
@24# and hence larger delay times require larger initial pu
length.

The physics of the state-preserving slow light propagat
in EIT is associated with the existence of quasiparticl
which we call dark-state polaritons~DSP!. A dark-state po-
lariton is a mixture of electromagnetic and collective atom
excitations of spin transitions~spin wave!. The mixing angle
between the two components determines the propagation
locity and is governed by the atomic density and the stren
of an external control field. The key idea of the present
proach is the dynamic rotation of the mixing angle, whi
leads to an adiabatic passage from a pure photonlike
pure spin-wave polariton thereby decelerating the initial p
ton wave packet to a full stop. In this process the quant
state of the optical field is completely transferred to the
oms. During the adiabatic slowing the spectrum of the pu
becomes narrower in proportion to the group velocity, wh
essentially eliminates the limitations on initial spectral wid
or pulse length and very large ratios of storage time to ini
pulse length can be achieved. Reversing the rotation at a
time regenerates the photon wave packet. Hence the ex
sion of EIT to a dynamic group-velocity reduction via adi
batic following in polaritons can be used as the basis of
effective quantum memory. Before proceeding we note so
earlier work on the subject. The polariton picture of Ram
adiabatic passage has first been introduced in Ref.@25#. Fur-
thermore, Grobe and co-workers@26# pointed out that the
spatial profile of an atomic Raman coherence can be m
rored into the electromagnetic field by coherent scatter
whereas time-varying fields can be used to create spat
nonhomogeneous matter excitations.

In the present paper we will present a quantum picture
slow-light propagation in EIT in terms of dark-state pola
tons. We will analyze the properties of the polaritons a
discuss their application to reversible, fast, and high-fide
quantum memories. Limitations and restrictions of the tra
fer process from nonadiabatic processes will be discusse
well as effects from the medium boundary and atomic m
tion. Other important aspects of the collective quant
02231
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memory such as its decoherence properties will be the s
ject of subsequent publications.

II. QUANTUM MEMORY FOR A SINGLE-MODE FIELD

The essential aspects of the quantum-state-mapping t
nique can be most easily understood for the case of a si
mode of the radiation field as realized, e.g., in a single-m
optical cavity. In what follows we will address this case fir
in order to motivate the following discussion on propagati
photon wave packets.

Consider a collection ofN three-level atoms with two
metastable lower states as shown in Fig. 1 interacting w
two single-mode optical fields. The transitionua&→ub& of
each of these atoms is coupled to a quantized radiation m
Moreover, the transitions fromua&→uc& are resonantly
driven by a classical control field of Rabi frequencyV. The
dynamics of this system is described by the interact
Hamiltonian

V̂5\g(
i 51

N

âsab
i 2\V~ t !e2 int(

i 51

N

sac
i 1H.c. ~1!

Here smn
i 5um& i i ^nu is the flip operator of thei th atom be-

tween statesum& andun&. g is the coupling constant betwee
the atoms and the quantized field mode~vacuum Rabi fre-
quency!, which for simplicity is assumed to be equal for a
atoms.

When all atoms are prepared initially in levelub& the only
states coupled by the interaction are the totally symme
Dicke-like states@27#

ub&5ub1 ,b2 , . . . ,bN&, ~2!

ua&5
1

AN
(
j 51

N

ub1 , . . . ,aj , . . . ,bN&, ~3!

uc&5
1

AN
(
j 51

N

ub1 , . . . ,cj , . . . ,bN&, ~4!

uaa&5
1

A2N~N21!
(

iÞ j 51

N

ub1 , . . . ,ai , . . . ,aj , . . . ,bN&,

~5!

FIG. 1. ~a! Three-level atoms coupled to single quantized mo
and classical control field of~real! Rabi frequencyV(t). ~b! cou-
pling of relevant bare eigenstates for at most two photons.
4-2
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QUANTUM MEMORY FOR PHOTONS: DARK-STATE . . . PHYSICAL REVIEW A 65 022314
etc. In particular, if the field is initially in a state with at mo
one photon, the relevant eigenstates of the bare system
the total ground stateub,0&, which is not affected by the
interaction at all, the ground state with one photon in
field ub,1&, as well as the singly excited statesua,0& anduc,0&.
For the case of two excitations, the interaction involves th
more states, etc. The coupling of the singly and doubly
cited systems is shown in Fig. 1~b!.

The interaction has families of dark states, i.e., states w
zero adiabatic eigenvalue@11,16,18#. The simplest one is

uD,1&5cosu~ t !ub,1&2sinu~ t !uc,0&, ~6!

tanu~ t !5
gAN

V~ t !
, ~7!

and, in general, one has

uD,n&5 (
k50

n A n!

k! ~n2k!!
~2sinu!k~cosu!n2kuck,n2k&.

~8!

The dark states do not contain the excited state and are
immune to spontaneous emission. It should also be no
that although the dark statesuD,n& are degenerate, they be
long to exactly decoupled subsystems as long as spontan
emission is disregarded. This means there is no trans
between them even if nonadiabatic corrections are taken
account. The existence of collective dark states provide
very elegant way to transfer the quantum state of the sin
mode field to collective atomic excitations. Adiabatically r
tating the mixing angleu from 0 to p/2 leads to a complete
and reversible transfer of the photonic state to a collec
atomic state if the total number of excitationsn is less than
the number of atoms. This can be seen very easily from
expression for the dark states, Eq.~8!: If u:0→p/2 one has
for all n<N,

uD,n&:ub&un&→ucn&u0&. ~9!

Thus if the initial quantum state of the single-mode lig
field is in any mixed state described by a density matrixr̂ f
5(n,mrnm un&^mu, the transfer process generates a quan
state of collective excitations according to

(
n,m

rnmun&^mu ^ ub&^bu→u0&^0u ^ (
n,m

rnmucn&^cmu.

~10!

It should be noted that the quantum-state transfer does
necessarily constitute a transfer of energy from the quan
field to the atomic ensemble. Since in the Raman process
coherent ‘‘absorption’’ of a photon from the quantized mo
is followed by a stimulated emission into the classical co
trol field, most of the energy is actually deposited in the lat
field.

The transfer of quantum states between light and ma
due to adiabatic following in collective dark states is the k
point of the present work. Before proceeding we also n
that the transfer rate is proportional to the total number
02231
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atomsN, which is a signature of collective coupling. Th
makes the proposed method potentially fast and robust.

III. QUANTUM DESCRIPTION OF SLOW-LIGHT
PROPAGATION

We now discuss a generalization of the mapping te
nique to propagating fields. The adiabatic transfer of
quantum state from the radiation mode to collective atom
excitations discussed in the preceding section is strongly
lated to intracavity EIT@28#. In order to generalize the tech
nique to multimode fields it is useful to discuss first t
propagation of light in three-level media under conditions
EIT.

A. Model

Consider the quasi-one-dimensional problem shown
Fig. 2. A quantized electromagnetic field with the positi
frequency part of the electric componentÊ(1) couples reso-
nantly the transition between the ground stateub& and the
excited stateua&. n5vab is the carrier frequency of the op
tical field. The upper levelua& is, furthermore, coupled to the
stable stateuc& via a coherent control field with Rabi fre
quencyV.

The interaction Hamiltonian reads

V̂52`(
j

@ŝ ab
j Ê(1)~zj !1H.a.#

2\(
j

@ŝ ac
j V~zj ,t !exp@ i ~kd

i zj2ndt !#1H.a.#,

~11!

wherezj denotes the position of thej th atom,` denotes the
dipole matrix element between the statesua& and ub&, and

ŝ ab
j [ua j&^b j u ~12!

FIG. 2. Top: three-levelL-type medium resonantly coupled to

classical field with Rabi frequencyV(t) and quantum fieldÊ(z,t).

Bottom: typical susceptibility spectrum for probe fieldÊ as function
of normalized detuning from resonance for resonant drive fie
Real partx8 describes refractive-index contribution and imagina
part x9 absorption.
4-3
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M. FLEISCHHAUER AND M. D. LUKIN PHYSICAL REVIEW A 65 022314
defines the atomic flip operators.kd
i 5kWd•eW z5(nd /c)cosq is

the projection of the wave vector of the control field to t
propagation axis of the quantum field. For the sake of s
plicity we assume here that the carrier frequenciesn andnd
of the quantum and control fields coincide with the atom
resonancesvab andvac , respectively. Motional effects an
the associated Doppler shifts will be discussed later. We
troduce slowly varying variables according to

Ê(1)~z,t !5A \n

2«0V
Ê~z,t !expF i

n

c
~z2ct!G , ~13!

ŝ mn
j ~ t !5s̃ mn

j ~ t !expF2 i
vmn

c
~z2ct!G . ~14!

Here V is some quantization volume, which for simplicit
was chosen to be equal to the interaction volume.

If the ~slowly varying! quantum amplitude does no
change in a length intervalDz, which containsNz@1 atoms,
we can introduce continuum atomic variables

s̃mn~z,t !5
1

Nz
(

zj PNz

s̃ mn
j ~ t ! ~15!

and make the replacement( j 51
N →(N/L)*dz, whereN is the

number of atoms andL is the length of the interaction vol
ume in the propagation direction of the quantized field. T
yields the continuous form of the interaction Hamiltonian

V̂52E dz

L
@\gNs̃ab~z,t !Ê~z,t !

1\V~z,t !eiDkzN~z!s̃ac~z,t !1H.a.#. ~16!

Hereg5`An/2\e0V is the atom-field coupling constant an
Dk5kd

i 2kd5(vac /c)(cosq21).
The evolution of the Heisenberg operator correspond

to the quantum field can be described in the slowly vary
amplitude approximation by the propagation equation

S ]

]t
1c

]

]zD Ê~z,t !5 igNs̃ba~z,t !. ~17!

The atomic evolution is governed by a set of Heisenbe
Langevin equations

s8 aa52gas̃aa2 ig~ Ê†s̃ba2H.a.!2 i ~V* e2 iDkzs̃ca2H.a.!

1Fa , ~18!

s8 bb5gs̃aa1 ig~ Ê†s̃ba2H.a.!1Fb , ~19!

s8 cc5g8s̃aa1 i ~V* e2 iDkzs̃ca2H.a.!1Fc , ~20!

s8 ba52gbas̃ba1 igE~ s̃bb2s̃aa!1 iVeiDkzs̃bc1Fba ,
~21!

s8 ca52gcas̃ca1 iVeiDkz~ s̃cc2s̃aa!1 ig Ês̃ba1Fca ,
~22!
02231
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s8 bc5 iV* e2 iDkzs̃ba2 ig Ês̃ac . ~23!

ga5g1g8 and g,g8 denote longitudinal decay rates an
gmn denotes transversal decay rates.Fm and Fmn are
d-correlated Langevin noise operators, whose explicit fo
is not of interest here.

It should be noted that we have disregarded dissipa
population-exchange processes due to, e.g., spin-flip c
sions and dephasing of the lower-level transition. This is j
tified since we assume that the interaction time is sufficien
short compared to the characteristic times of these proces
Both, dissipative population exchange as well as depha
will be discussed in detail later on.

B. Low-intensity approximation

In order to solve the propagation problem, we now a
sume that the Rabi frequency of the quantum field is mu
smaller thanV and that the number density of photons in t
input pulse is much less than the number density of atoms
such a case the atomic equations can be treated pertu
tively in Ê. In zeroth order onlys̃bb51 is different from zero
and in first order one finds

s̃ba52
i

V*
eiDkz

]

]t
s̃bc . ~24!

With this the interaction of the probe pulse with the mediu
can be described by the amplitude of the probe electric fi
Ê and the collective ground-state spin variables̃bc ,

S ]

]t
1c

]

]zD Ê~z,t !5
gN

V*
eiDkz

]

]t
s̃bc ~25!

and

s̃bc52
gÊ
V

e2 iDkz2
i

V F S ]

]t
1gbaD S 2

i

V*

]

]t
s̃bcD

1e2 iDkzFbaG . ~26!

C. Adiabatic limit

The propagation equations simplify considerably if we a
sume a sufficiently slow change ofV, i.e., adiabatic condi-
tions @29,23,30#. Normalizing the time to a characteristi
scaleT via t̃ 5t/T and expanding the right-hand side~rhs! of
Eq. ~26! in powers of 1/T we find in the lowest nonvanishing
order,

s̃bc~z,t !52g
Ê
V

e2 iDkz. ~27!

We note that also the noise operatorFba gives no contribu-
tion in the adiabatic limit, sincêFx(t)Fy(t8)&;d(t2t8)
4-4
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QUANTUM MEMORY FOR PHOTONS: DARK-STATE . . . PHYSICAL REVIEW A 65 022314
5d(t2̃ t̃8)/T. Thus in the perturbative and adiabatic limit, th
propagation of the quantum light pulse is governed by

S ]

]t
1c

]

]zD Ê~z,t !52
g2N

V*

]

]t

Ê~z,t !

V
. ~28!

D. Slow-light and delay-time limitations

If V(z,t)5V(z) is constant in time, the term on the rhs
of the propagation equation~28! simply leads to a modifica
tion of the group velocity of the quantum field according

vg5vg~z!5
c

11ng~z!
, ~29!

ng~z!5
g2N

uV~z!u2
5

3

8p2
rl3

kcg

uV~z!u2
, ~30!

with r being the atom density andl the resonant wavelengt
of the a→b transition. The solution of the wave equation
in this case

Ê~z,t !5 ÊS 0,t2E
0

z

dz8
1

vg~z8!
D , ~31!

where Ê(0,t8) denotes the field entering the interaction r
gion at z50. This solution describes a propagation with
spatially varying velocityvg . It is apparent that thetemporal
profile of the pulse is unaffected by the slow down. As
consequence the integrated electromagnetic energy
through a plane perpendicular to the propagation is the s
at any position. Furthermore, the spectrum of the pulse
mains unchanged,

S~z,v![E
2`

`

dt e2 ivt^Ê†~z,t !Ê~z,t2t!&5S~0,v!.

~32!

In particular, the spectral width stays constant

Dvp~z!5Dvp~0!. ~33!

On the other hand a spatial change of the group veloc
either in a stepwise fashion as, e.g., at the entrance of
medium or in a continuous way, e.g., due to a spatially
creasing control field, leads to acompression of the spatia
pulse profile. In particular, if the group velocity isstatically
reduced to a valuevg , the spatial pulse lengthD l is modified
according to

D l 5
vg

c
D l 0 , ~34!

as compared with a free-space valueD l 0.
It is instructive to discuss the limitations to the achieva

delay ~and therefore ‘‘storage’’! time td in an EIT medium
with a very small but finite group velocity. A first and obv
ous limitation is set by the finite lifetime of the dark stat
which had been neglected in the preceding section. Ifgbc
02231
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denotes the dephasing rate of theb-c transition, it is required
that td<gbc

21 . A much stronger limitation arises, howeve
from the violation of the adiabatic approximation.

The EIT medium behaves like a nonabsorbing, linear d
persive medium only within a certain frequency windo
around the two-photon resonance~see Fig. 2 and@24#!. The
adiabatic approximation made in the last section essent
assumes that everything happens within this frequency w
dow. If the pulse becomes too short, or its spectrum
broad relative to the transparency width, absorption a
higher-order dispersion need to be taken into account.

The transparency window is defined by the intens
transmission of the medium. In order to determine its wid
we consider the susceptibility of an ideal, homogeneous
medium with a resonant drive field. Here one has

x5
ng

kc

uVu2d

uVu22d22 igd
'

ng

kcFd1 id2
g

uVu2
1O~d3!G ,

~35!

whered5n2vac is the detuning of the probe field. If we
assume a homogeneous drive field, we find

T~d,z!5exp$2kz Im@x#%'exp$2d2/Dv tr
2 % ~36!

with

Dv tr5F c

g l

uVu2

ng
G1/2

5
uVu2

g

1

Aa
, ~37!

l being the propagation length in the medium anda
[(3/8p2)rl3kl the opacity in the absence of EIT. One re
ognizes that the transparency width decreases with incr
ing group index. It is instructive to express the transpare
width in terms of the pulse delay timetd5ngl /c for the
medium. This yields

Dv tr5Aa
1

td
. ~38!

Hence large delay times imply a narrow transparency w
dow, which in turn requires a long pulse time. When t
group velocity gets too small such that the transparency w
dow becomes smaller than the spectral width of the pu
the adiabatic condition is violated, and the pulse is absorb
Hence there is an upper bound for the ratio of achieva
delay ~storage! time to the initial pulse length of a photo
wave packet,

td

tp
<Aa and td<gbc

21. ~39!

The ratiotd /tp is the figure of merit for a memory device
The larger this ratio the better suited is the system fo
temporal storage.

There is another quantity that is important for the stora
capacity, namely, the ratio of medium lengthL to the length
Lp of an individual pulse inside the medium. Following sim
4-5
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M. FLEISCHHAUER AND M. D. LUKIN PHYSICAL REVIEW A 65 022314
lar arguments as above one finds that this quantity is
limited by the square root of the opacity,

L

Lp
<Aa, ~40!

whereng@1 was assumed.
In practice, the achievable opacitya of atomic-vapor sys-

tems is limited to values below 104 resulting in upper bounds
for the ratio of time delay to pulse length of the order of 10
Thus dense EIT media with ultrasmall group velocity a
only of limited use as a temporary storage device. The pro
gation velocity cannot be made zero and nonadiabatic
rections limit the achievable ratio of storage time to the ti
length of an individual qubit.

It should be mentioned that the narrowing of the E
transparency window is also a consideration for effects
volving freezing light in a moving media@32# and so-called
optical black holes based on EIT@33#. In the following we
will show that EIT can nevertheless be used for mem
purposes in a very effective way when combined w
adiabatic-passage techniques.

IV. DARK-STATE POLARITONS

In the preceding section we have discussed the prop
tion of a quantum field in an EIT medium under otherwi
stationary conditions, i.e., with a constant or only spatia
varying control field. Since under these conditions,
Hamiltonian of the system istime independent, a coherent
process that allows for a unidirectional transfer of the qu
tum state of a photon wave packet to the atomic ensem
was not possible. We will show now that this limitation ca
be overcome easily by allowing for atime-dependentcontrol
field. This provides an elegant tool to control the propagat
of a quantum light pulse. For a spatially homogeneous
time-dependent control field,V5V(t), the propagation
problem can be solved in a very instructive way in a qua
particle picture. In the following we will introduce these qu
siparticles called dark-state polaritons@17,25# and discuss
their properties, applications, and limitations.

A. Definition of dark- and bright-state polaritons

Let us consider the case of a time-dependent, spat
homogeneous, and real control fieldV5V(t)5V(t)* . We
introduce a rotation in the space of physically releva
variables—the electric fieldÊ and the atomic spin coherenc

s̃bc—defining two new quantum fieldsĈ(z,t) andF̂(z,t),

Ĉ5cosu~ t !Ê~z,t !2sinu~ t !ANs̃bc~z,t !eiDkz, ~41!

F̂5sinu~ t !Ê~z,t !1cosu~ t !ANs̃bc~z,t !eiDkz, ~42!

with the mixing angleu(t) given by

tan2 u~ t !5
g2N

V2~ t !
5ng~ t !. ~43!
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Ĉ andF̂ are superpositions of electromagnetic (Ê) and col-
lective atomic components (ANs̃bc), whose admixture can
be controlled throughu(t) by changing the strength of th
external driving field.

Introducing a plane-wave decompositionĈ(z,t)

5(kĈk(t)e
ikz and F̂(z,t)5(kF̂k(t)e

ikz, respectively, one
finds that the mode operators obey the commutation relat

@Ĉk ,Ĉk8
†

#5dk,k8Fcos2 u1sin2 u
1

N (
j

~ ŝ bb
j 2ŝ cc

j !G ,
~44!

@F̂k ,F̂k8
†

#5dk,k8Fsin2 u1cos2 u
1

N (
j

~ ŝ bb
j 2ŝ cc

j !G ,
~45!

@Ĉk ,F̂k8
†

#5dk,k8 sinu cosuF12
1

N (
j

~ ŝ bb
j 2ŝ cc

j !G .
~46!

In the linear limit considered here, where the number den
of photons is much smaller than the density of atoms,ŝ bb

j

'1,ŝ cc
j '0. Thus the new fields possess bosonic commu

tion relations

@Ĉk ,Ĉk8
†

#'@F̂k ,F̂k8
†

#'dk,k8 , ~47!

@Ĉk ,F̂k8
†

#'0, ~48!

and we can associate with them bosonic quasiparticles~po-
laritons!. Furthermore, one immediately verifies that all num

ber states created byĈk
† ,

unk&5
1

An!
~Ĉk

†!nu0&ub1•••bN&, ~49!

whereu0& denotes the field vacuum, are dark states@31,16#.
The statesunk& do not contain the excited atomic state a
are thus immune to spontaneous emission. Moreover,
are eigenstates of the interaction Hamiltonian with eig
value zero,

V̂unk&50. ~50!

For these reasons we call the quasiparticlesĈ ‘‘dark-state
polaritons.’’ Similarly one finds that the elementary excit

tions of F̂ correspond to the bright states in three-level s
tems. Consequently these quasiparticles are called ‘‘brig
state polaritons.’’

One can transform the equations of motion for the elec
field and the atomic variables into the new field variables.
the low-intensity approximation one finds

F ]

]t
1c cos2 u

]

]zGĈ52 u̇F̂2sinu cosu c
]

]z
F̂ ~51!
4-6
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and

F̂5
sinu

g2N
S ]

]t
1g D S tanu

]

]t D ~sinuĈ2cosuF̂!

1 i
sinu

gAN
Fba , ~52!

where one has to keep in mind that the mixing angleu is a
function of time.

B. Adiabatic limit

Introducing the adiabaticity parameter«[(gANT)21

with T being a characteristic time, one can expand the eq
tions of motion in powers of«. In lowest order, i.e., in the
adiabatic limit one finds

F̂'0. ~53!

Consequently

Ê~z,t !5cosu~ t !Ĉ~z,t !, ~54!

ANs̃bc52sinu~ t !Ĉ~z,t !e2 iDkz. ~55!

Furthermore,Ĉ obeys the very simple equation of motion

F ]

]t
1c cos2 u~ t !

]

]zGĈ~z,t !50. ~56!

C. ‘‘Stopping’’ and reaccelerating photon wave packets

Equation~56! describes a shape- and quantum-state p
serving propagation with instantaneous velocityv5vg(t)
5c cos2 u(t),

Ĉ~z,t !5ĈS z2cE
0

t

dt cos2 u~t!,0D . ~57!

For u→0, i.e., for a strong external drive fieldV2@g2N, the

polariton has purely photonic characterĈ5 Ê and the propa-
gation velocity is that of the vacuum speed of light. In t
opposite limit of a weak drive fieldV2!g2N such that

u→p/2, the polariton becomes spin-wave-like,Ĉ5

2ANs̃bce
iDkz, and its propagation velocity approaches ze

Thus the following mapping can be realized:

Ê~z!⇔s̃bc~z8!eiDkz8 ~58!

with z85z1z05z1*0
` dt c cos2 u(t). This is the essence o

the transfer technique of quantum states from photon w
packets propagating at the speed of light to stationary ato
excitations~stationary spin waves!. Adiabatically rotating the
mixing angle fromu50 to u5p/2 decelerates the polarito
to a full stop, changing its character from purely electrom
netic to purely atomic. Due to the linearity of Eq.~56! and
02231
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the conservation of the spatial shape, the quantum stat
the polariton is not changed during this process.

Likewise the polariton can be reaccelerated to the vacu
speed of light; in this process the stored quantum stat
transferred back to the field. This is illustrated in Fig.
where we have shown the coherent amplitude of a dark-s
polariton, which results from an initial light pulse, as well
the corresponding field and matter components.

D. Simultaneous narrowing of transparency window
and pulse spectral width

As was discussed above, the transparency window of
EIT medium, i.e., the range of frequencies for which abso
tion is negligible, decreases with the group velocity. Sin
the bandwidth of the propagating pulse should always
contained within this range of frequencies to avoid abso
tion, the question arises whether this prevents the stoppin
the polariton.

To answer this question we first note that during the p
cess of adiabatic slowing, thespatial profile and, in particu-
lar, the length of the wave packet (D l ) remains unaffected
as long as the group velocity is only a function oft. In other
words,

D l 5D l 0 . ~59!

At the same time, the amplitude of the electric field ge
reduced and its temporal profile gets stretched due to
reduction of the group velocity. The opposite happens wh
the group velocity is increased. One finds from Eq.~54!,

FIG. 3. Propagation of a dark-state polariton with envelo
exp$2(z/10)2%. The mixing angle is rotated from 0 top/2 and back
according to cotu(t)5100„120.5 tanh@0.1(t215)#10.5 tanh@0.1(t
2125)#… as shown in~a!. The coherent amplitude of the polarito

C5^Ĉ& is plotted in~b! and the electric fieldE5^Ê& and matter

componentsuscbu5u^ŝcb&u in ~c! and~d!, respectively. Axes are in
arbitrary units withc51.
4-7
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Ê~z,t !5
cosu~ t !

cosu~0!
ÊS z2cE

0

t

dt cos2 u~t!,0D . ~60!

As a consequence the spectrum of the probe-field cha
during propagation. Assuming that cosu changes only slow
compared to the field amplitude one finds

S~z,v!5
cos2 u~ t !

cos2 u~0!
SS 0,

v

cos2 u~ t !
D . ~61!

In particular, the spectral width narrows~broadens! accord-
ing to

Dvp~ t !'Dvp~0!
cos2 u~ t !

cos2 u~0!
. ~62!

When the group velocity of the polariton is reduced in tim
due to reduction of the control-field amplitude the EIT tran
parency window shrinks according to

Dv tr~ t !5
cot2 u~ t !

cot2 u~0!
Dv tr~0!. ~63!

However, the spectral width of the wave packet shrinks
well and the ratio remains finite,

Dvp~ t !

Dv tr~ t !
5

sin2 u~ t !

sin2 u~0!

Dvp~0!

Dv tr~0!
. ~64!

As will be discussed later on, for practically relevant cas
sin2 u (t)/sin2 u(0) is always close to unity. Thus absorptio
can be prevented in the dynamic light-trapping method
long as the input pulse spectrum lies within theinitial trans-
parency window,

Dvp~0!!Dv tr~0!. ~65!

As we have already noted earlier this condition can easily
fulfilled if an optically dense medium is used. The simult
neous reduction in transparency bandwidth and pulse b
width is illustrated in Fig. 4.

E. Boundary behavior and initial pulse compression

In the above discussion we have analyzed the propaga
of the probe pulse inside the medium. We now turn to
behavior at the medium boundaries. There are two issue
interest:~i! reflection from the medium surface and~ii ! the
effects of a possible steplike change of the group velo
when passing from vacuum or air to the medium.

Under ideal conditions, the refractive index of the E
medium is exactly unity on resonance and hence there i
reflection for the resonant component of the input pulse
the spectrum of the input pulse is, furthermore, sufficien
narrow as compared to the initial transparency window
EIT, the refractive index is very close to unity over the ent
relevant bandwidth and no field component gets reflected
quantify this we note that the index of refraction near re
02231
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nance of an idealized, resonantly driven three-level med
can be written as

n~v!'A11
2c

vg
0

~v2vab!

vab
. ~66!

The reflection coefficient for normal incidence from vacuu
to the medium given by

R~v!5U12n~v!

11n~v!
U2

~67!

is plotted in Fig. 5.
Near resonanceR(v) can be approximated by

R~v!'
Dv2

S 2
vg

0

c
vab1Dv D 2 , ~68!

FIG. 4. Simultaneous narrowing of transmission spectrum~top!
and pulse spectrum~bottom! for time-dependent variation of grou
velocity v/c in units of v05g2N/g. Parameters area
520, g2N/g2510.

FIG. 5. Reflection coefficient for normal incidence as functi
of probe detuning from resonance.
4-8
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whereDv5v2vab . Since typicallyDvp(0)!vabvg
0/c re-

flection can be neglected.
When the group velocity inside the medium is smal

thanc at the time when the probe pulse enters the medi
the pulse gets spatially compressed according to Eq.~34!.
This substantially reduces the requirements on the size o
medium and enhances the storage capacity.

Continuity of the electric-field amplitudeÊ at the entrance
of the medium (z50) implies a jump in the polariton am
plitude

Ĉ~10,t !5A c

vg
0
Ĉ~20,t !5A c

vg
0
Ê~20,t !. ~69!

Hence the density of polaritons increases by a factorc/vg
when entering the medium, while their total number is co
served since the pulse length is changed by the inverse
tor.

Boundary effects can also be used for a controlled de
mation of a stored light pulse. When the polariton leav
with a different value of cosu than when it entered, it will be
spatailly compressed/decompressed@20#.

V. LIMITATIONS OF QUANTUM-STATE TRANSFER

In the preceding sections we have discussed the contr
propagation of the photon wave packets under the assu
tions of an adiabatic evolution and small probe-field amp
tudes. We, furthermore, neglected ground-state decoher
and motional~Doppler! effects. In the present section we w
discuss the validity of these approximations in detail.

A. Nonadiabatic corrections

Let us first discuss the effect of nonadiabatic transitio
i.e., let us take into account terms in first order of« in Eqs.
~51! and~52!. For the following discussion it is sufficient t
consider the semiclassical limit, where the operator chara
of the variables as well as the Langevin noiseFba can be
disregarded. Up to«1 one obtains

F'sin2 u~ t !
g

g2N
u̇C1

sin3 u~ t !

cosu~ t !

g

g2N
Ċ. ~70!

On the same level of approximations we can replaceĊ on
the right-hand side by2c cos2 u]C/]z. This gives

F'sin2 u~ t !
g

g2N
u̇C2sin3 u~ t !cosu~ t !

g

g2N
c

]

]z
C.

~71!

Substituting this into Eq.~51! yields the lowest-order nona
diabatic corrections to the propagation equation of the da
state polariton,
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F ]

]t
1c cos2 u~ t !

]

]zGC~z,t !

52A~ t !C1B~ t !c
]

]z
C

1C~ t !c2
]2

]z2
C2D~ t !c3

]3

]z3
C, ~72!

where

A~ t !5S g1
1

2

]

]t D S u̇2 sin2 u

g2N
D , ~73!

B~ t !5
sinu

3g2N

]2

]t2
sin3 u, ~74!

C~ t !5S g1
1

2

]

]t D sin4 u cos2 u

g2N
, ~75!

D~ t !5
sin4 u cos4 u

g2N
. ~76!

A(t) describes homogeneous losses due to nonadiabatic
sitions followed by spontaneous emission.B(t) gives rise to
a correction of the polariton propagation velocity,C(t) re-
sults in a pulse spreading by dissipation of high spat
frequency components, andD(t) leads to a deformation o
the polariton.

Since all coefficients depend only on time, the propa
tion equation can be solved by a Fourier transform in sp
C(z,t)5*dkC̃(k,t)e2 ikz. This yields

C̃~k,t !5C̃~k,0!expH ikE
0

t

dt8@vgr~ t8!1cB~ t8!#J
3expH 2 ik3c3E

0

t

dt8D~ t8!J
3expH 2E

0

t

dt8@A~ t8!1k2c2C~ t8!#J . ~77!

The last term contains all losses due to nonadiabatic cor
tions. In order to neglect dissipation, the integral in the e
ponent of this term needs to be small compared to un
Taking into accountu̇(0)5 u̇(`)50 this results in the two
conditions

gk2c2E
0

`

dt
sin4 u~ t !cos2 u~ t !

g2N
!1 ~78!

and

gE
0

`

dt
u̇2 sin2 u

g2N
5gE

0

`

dt
u̇2

g2N1V2~ t !
!1. ~79!
4-9
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The first condition can be brought into a transparent fo
when replacing sin4 u by unity, which results in

gk2c2E
0

`

dt
cos2 u~ t !

g2N
5

gk2cz

g2N
!1 ~80!

for all relevantk. Herez5c*0
`dt cos2 u(t) is the propagation

depth of the polariton inside the medium, and we have
sumed cosu(0)51 and cosu(`)50 for simplicity. Noting
that the range of relevant spatial Fourier frequencies is
termined by the inverse of the initial pulse lengthLp , i.e.,
settingk;Lp

21 , one finds

z!
g2N

gc
Lp

2 or z!AaLp , ~81!

wherea5g2Nz/gc is again the opacity of the medium with
out EIT. To illustrate this limitation, we have shown in Fig.
the slow down and successive acceleration of a light pu
obtained from a numerical solution of the full on
dimensional propagation problem as well as the analyt
approximation following from Eq. ~77!. Here (g2N/
gc)(Lp

2/zmax)52 (zmax5250). One clearly recognizes a d
cay of the elementary excitationE long before the decelera
tion and the associated transfer to the atom systems se
The polariton energyI C[*dzuC(z,t)u2 decreases approxi
mately exponentially with the propagation distanceDz of the
pulse center. In the exampleI C decays afterDz5250 ap-
proximately by a factore20.322'0.724.

Since the spatial pulse length in the medium is related
the initial group velocityvg

0 ~at time t50 before the trap-

FIG. 6. Deceleration ~top! and reaceleration ~bottom!
of a Gaussian light pulse exp@2(t2500)2/(200)2#
with cotu(t)50.363(12@2/p#arccot†5(120.5 tanh@0.005(t
22000)#10.5 tanh@0.005(t23200)#)‡). The parameters are
g2N/g252.5,a5625,c51. Pulses are shown fort5600, 800,
1000, 1200, 1400, 1600, 1800, 2000, 2200, and 2400 in the
figure and fort52800, 3000, 3200, 3400, 3800, and 4000 in t
bottom figure. One recognizes good agreement between nume
solution of the propagation equations~solid line! and analytic ap-
proximation~dashed line!.
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ping! and to the initial pulse bandwidth asLp;vg
0/Dvp(0)

and sinceDv tr(0)5Aa/td'Aavg
0/z, for vg

0!c, Eq. ~81! is
simply another way to state:

Dvp~0!!Dv tr~0!. ~82!

Hence the present analysis confirms the qualitative co
tions for adiabatic following: the initial probe spectru
should be contained within the original transparency w
dow. Once again, this can be satisfied if the medium is o
cally dense,a@1.

There is also a second condition~79!, which is well
known from adiabatic-passage@29,34# and sets a limit to the
rotation velocity u̇ of the mixing angle and hence to th
deceleration/acceleration of the polariton. Introducing a ch
acteristic time scale of the acceleration/deceleration perioT,
we obtain

T.
l abs

c

vg
0

c
, ~83!

wherel abs5cg/g2N is the absorption length in the absen
of EIT. We note that for realistic experimental paramete
the quantity on the right-hand side is extremely small on
relevant time scales. Hence, in practice, the rate of chang
the mixing angle does not significantly affect the adiaba
dynamics.

B. Weak-field approximation

The analysis of Sec. IV also involves a perturbation e
pansion, valid when the control field is much stronger th
the probe field. It is easy to see that this expansion is justi
even when the control-field Rabi frequency is reduced
zero. Making use of Eq.~27! one finds g2^Ê1Ê&/uVu2

5^ŝcbŝbc&5^ŝcc&. In other words, the ratio of the averag
intensities of quantum and control field is proportional to t
probability of finding an atom in statec. If the initial number
density of photons in the quantum field is much less than
number density of atoms,^ŝcc& is always much smaller than
unity. Therefore the mean intensity of the quantum field
mains small compared to that of the control field even wh
the latter is turned to zero.

C. Decay of Raman coherence

In the ideal scenario considered in Sec. IV we disregar
all processes resulting in a decay of coherences between
metastable statesb andc. If such a decay at a rateg0 is taken
into account, the group velocity in the EIT medium cann
reach zero. Nevertheless, an~almost! complete transfer of the
quantum state of a propagating light pulse to a station
matter excitation is possible. Introducing phenomenologi
decay into the equation of the Raman coherenceŝbc results
in a modification of Eq.~24! according to

s̃ba52
i

V*
eiDkzS ]

]t
s̃bc1g0s̃bcD1Fbc . ~84!
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For formal consistency a Langevin noise term associa
with the decoherence needed to be introduced as well. S
a dephasing trivially modifies the propagation law of t
polariton,

Ĉ~z,t !5expS 2g0E
0

t

dt sin2u~t! D
3ĈS z2cE

0

t

dt cos2 u~t!,0D 1F̂C . ~85!

As expected, dephasing simply results in a decay of the
lartion amplitudê Ĉ& but does not prevent light stopping.
more detailed discussion of various realistic decohere
mechanisms and their influence on the fidelity of the qu
tum memory will be presented in a subsequent publicatio

D. Atomic motion

We have shown above that by adiabatically varying
envelope of the control fieldV in time, a light pulse of the
probe field can be brought to a full stop. A spatially hom
geneous variation of the group velocity can be realized,
instance, in the case when the control and probe field
propagating in orthogonal directions. However, in such
case the spin-wave component of the polariton has a ph
which is rapidly oscillating inz, since thenDk5kd2kd

i

5kd(12cosu)5kd . For an atom at positionzj one would
have

ŝ bc
j ~ t !5uŝ bc

j ~ t !uexpH i
vac

c
zj J expH 2 i

vbc

c
zj J , ~86!

where a transformation from the rotating frame back into
lab frame was applied. While the second term correspond
spatial oscillations with the small beat frequency betwe
pump and drive, the first term oscillates with an optical f
quency. As a consequence the polariton state is highly se
tive to variations in the atomic positions, or in other wor
would dephase rapidly due to atomic motion. To retain a h
fidelity of the quantum memory it would be necessary
confine the motion of the atoms during the storage time
within a fraction of an optical wavelength, which is a ve
stringent condition.

To avoid this problem nearly co-propagating beams
be used, such thatDk!kd . In this case almost no photoni
momentum is transferred to the atoms and the two-pho
transition frequency would experience only a very sm
Doppler shift. Such a configuration is therefore robust w
respect to atomic motion, as electronic and motional deg
of freedom are completely decoupled.
.
.
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In a Doppler-free configuration propagation effects of t
control field need to be considered. In the case when
probe field is weak compared to the control field at all tim
the latter propagates almost as in free space andV(z,t)
5V(t2z/c). Due to the resultingz dependence of the grou
velocity, the trapping mechanism does not exactly prese
the shape of the photon wave packet. However, when
probe pulse enters the medium with a group velocity mu
smaller than the velocity of the control field,vg

0!c, the re-
tardation of the control-field amplitude can be ignored a
V(t2z/c)'V(t). This is a good approximation as long a
the time variation of the control field is sufficiently slow
such that its spatial variation across the probe pulse leng
small. This implies that the characteristic time of change
the control field should obeyT@Lp /c, which is again easily
satisfied.

Before concluding we note that even in the case when
photon momentum is transferred to atoms, and there
atomic motion does not result in altering the phase of
spin coherence, in practice it is still desirable to suppress
motion. This is because the light beams normally have
finite cross section and the atomic coherence is localize
the longitudinal direction. Motion would tend to spread t
localized excitation over the entire volume occupied by
gas. In this case the information about the pulse shape
the mode function will be lost after a sufficiently long sto
age interval. That is the reason why techniques involv
cold trapped atoms and buffer gas were used to effectiv
slow the atomic drifts in recent experiments@20,21#.

VI. SUMMARY

In conclusion, we introduced the basic idea of quant
memory for light based on dark-state polaritons and d
cussed their properties. We have considered the influenc
the main realistic imperfections on trapping and reaccele
tion and have shown that the technique is extremely rob
In particular, we have demonstrated that an essential me
nism that enables the efficient quantum memory operatio
the adiabatic following in polaritons—can take place in sp
of the transparency window narrowing. Subsequent pap
will discuss the influence of other decoherence mechani
on photon trapping and retrieval and will present the res
of detail numerical simulations of the trapping procedure
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