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Continuous-variable quantum teleportation through lossy channels

A. V. Chizhov,* L. Knöll, and D.-G. Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

~Received 4 June 2001; revised manuscript received 4 October 2001; published 10 January 2002!

The ultimate limits of continuous-variable single-mode quantum teleportation due to absorption are studied,
with special emphasis on~quasi-! monochromatic optical fields propagating through fibers. It is shown that
even if an infinitely squeezed two-mode squeezed vacuum were used, the amount of information that would be
transferred quantum mechanically over a finite distance is limited and effectively approaches zero on a length
scale that is much shorter than the~classical! absorption length. The state-dependent teleportation fidelity can
be close to unity only for short distances. To realize the largest possibly fidelity, asymmetrical equipment must
be used, where the source of the two-mode squeezed vacuum is nearer to Alice than to Bob and as a conse-
quence the coherent displacement performed by Bob cannot be chosen independently of the transmission
lengths.
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I. INTRODUCTION

Quantum teleportation, in which an unknown quantu
state is teleported from a sending station to a distant rec
ing station, has been one of the exciting manifestations
quantum-state entanglement of bipartite systems. Sche
for both spinlike quantum states@1,2# and continuous-
variable quantum states@3–8# have been proposed, and e
periments have been performed@9–12#. The very idea of
quantum teleportation is to transfer that part of informat
on the~unknown! state which is lost in a single measureme
quantum mechanically by means of appropriately entang
states.

In continuous-variable teleportation the sender~Alice!
and the recipient~Bob! must share a highly entangled state
order to be able to really teleport anarbitrary quantum state.
For teleporting a single-mode quantum state, a two-m
squeezed vacuum~TMSV! is commonly assumed to play th
role of the entangled state. High entanglement then me
high squeezing, which implies an entangled macroscopic~at
least mesoscopic! state. However, entanglement is known
sensitively respond to environment influences, which
avoidably gives rise to entanglement degradation@13–15#
and thus reduces the fidelity of teleportation, as was sho
in Ref. @16#, where the two modes were equally coupled
some heat bath.

The aim of the present paper is to study the ultimate lim
of quantum teleportation that arise from absorption dur
the propagation of the two modes from the source of
TMSV to Alice and Bob, so that they have one each
further manipulation. Fibers are preferably used with reg
to optical fields that are desired to propagate over lon
distances. As we will see, the ratios of the propagation len
to the low-temperature absorption length essentially de
mine the amount of quantum-mechanically transferable
formation. In this way, the fidelity of teleportation becom
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not only state dependent, but also dependent on the pos
of the TMSV source relative to the positions of Alice an
Bob. Thus, the original concept of teleportation of a rea
unknown quantum state to a really distant position becom
questionable.

The paper is organized as follows. Section II presents
basic equations, with special emphasis on the entangled
that is shared by Alice and Bob in practice and Bob’s cho
of the displacement after Alice’s measurement. In Sec. III
theory is applied to the teleportation of squeezed states
number states and a detailed analysis of the various de
dencies are given. Finally, some concluding remarks
given in Sec. IV.

II. BASIC EQUATIONS

In what follows we consider the standard scheme
continuous-variable single-mode teleportation, assuming
entangled state is a~strongly! squeezed TMSV. One mode i
transmitted to Alice~sender! and the other one to Bob~re-
cipient!. Since the transmission, e.g., through fibers is u
avoidably connected with some losses, the state effectiv
shared by Alice and Bob is not the originally generat
TMSV but a mixed state, whose entanglement drastica
decreases with the distance between Alice and Bob@17#.

A. The teleported state

Let us briefly repeat the main stages of teleportation
Win(g) is the Wigner function of the signal-mode quantu
state that is desired to be teleported andWout

E (a,b) is the
Wigner function of the entangled state that is effective
shared by Alice and Bob, the Wigner function of the~three-
mode! overall system then reads

W~g,a,b!5Win~g!Wout
E ~a,b!. ~1!

After combination of the signal mode and Alice’s mode
the entangled two-mode system through a 50%:50%~loss-
less! beam splitter the Wigner function changes to

W~m,n,b!5WinS m2n

A2
D Wout

E S m1n

A2
,b D . ~2!

s-
w
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Measurement of the real part ofm, mR, and the imagi-
nary part ofn, n I , then prepares Bob’s mode in a quantu
state whose Wigner function is given by

W~bumR,n I!5
1

P~mR,n I!
E dnRE dm IWinS m2n

A2
D

3Wout
E S m1n

A2
,b D , ~3!

where

P~mR,n I!5E dnRE dm IE d2bW~m,n,b! ~4!

is the probability density of measuringmR andn I . Introduc-
ing the complex variables

g5~m2n!/A2, g85A2~mR2 in I!, ~5!

we may rewrite Eq.~3! as

W~bug8!5
1

P~g8!
E d2gWin~g!Wout

E ~g8* 2g* ,b! ~6!

@P(mR,n I)/2→P(g8)#.
Depending upon the result of Alice’s measurement, B

now coherently displaces the quantum state of his mod
order to generate a quantum state whose Wigner functio
W@b2D(g8)ug8#. If we are not interested in the one or th
other measurement result, we may average over all meas
ment results to obtain the teleported quantum state on a
age:

Wout~b!5E d2g8P~g8!W@b2D~g8!ug8#

5E d2gWin~g!E d2g8Wout
E @g8* 2g* ,b2D~g8!#.

~7!

B. Available entangled state

Let us assume that the modes of the originally genera
TMSV propagate to Alice and Bob through fibers of~spec-
tral! transmission coefficientsT1(v) and T2(v), respec-
tively. When

Win
E~a,b!5

4

p2
exp@22~ uau21ubu2!coshu2zu

12~e2 iwab1eiwa* b* !sinhu2zu# ~8!

is the Wigner function of the originally generated TMS
(z5uzueiw, squeezing parameter!, then the Wigner function
of the quantum state, which the two modes are prepare
after transmission, takes the form of@13,15,18#
02231
b
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Wout
E ~a,b!5

4

p2Nexp@22~C2uau21C1ubu21S* ab

1Sa* b* !#, ~9!

where (i 51,2)

S5
eiw

N T1T2 sinhu2zu, ~10!

Ci5
1

N @11uTi u2~coshu2zu21!12nth i~12uTi u2!#,

~11!

N5@11uT1u2~coshu2zu21!12nth 1~12uT1u2!#

3@11uT2u2~coshu2zu21!12nth 2~12uT2u2!#

2uT1T2u2sinh2u2zu, ~12!

with nth i5exp@\v/(kBq i)#21%21 being the mean number o
thermal excitations at temperatureq i . It may be useful to
expressuTi u in terms of the ratio of the transmission lengthl i
to the absorption lengthl A i such that

uTi u5exp~2 l i / l A i !. ~13!

It should be pointed out that Eq.~9! together with Eqs.
~10!–~12! directly follows from the general formalism o
quantum-state transformation at absorbing four-port dev
@19,20# for vanishing reflection coefficients. For nonvanis
ing reflection coefficients, the termsnth i(12uTi u2) in Eqs.
~11! and ~12! must be simply replaced withnth i(12uTi u2

2uRi u2).

C. Fidelity

Let us assume that the quantum state to be teleported
pure one,%̂ in5uc in&^c inu. A measure of how close to it is th
~mixed! output quantum state%̂out may be the teleportation
fidelity

F5^c inu%̂outuc in&. ~14!

Using the well-known representation of the density opera
in terms of the coherent displacement operatorD̂(j) @21,22#,

%̂5
1

pE d2jx~j!D̂†~j!, ~15!

with x(j) being the Fourier transform of the Wigner fun
tion, Eq. ~14! can be rewritten as

F5
1

pE d2jx in~j!xout* ~j!. ~16!

Equivalently, the fidelity can be given by the overlap of t
Wigner functions:

F5pE d2bWin~b!Wout~b!. ~17!
0-2
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Perfect teleportation implies unity fidelity; that is perfe
overlap of the Wigner functions of the input and the outp
quantum state. Clearly, losses prevent one from realizing
case, so that the really observed fidelity is always less t
unity. Thus, the task is to choose the scheme-inherent pa
eters such that the fidelity is maximized.

D. Choice of the displacement

An important parameter that must be specified is the
placementb→b2D(g8) @in Eq. ~7!#, which has to be per-
formed by Bob after Alice’s measurement. For this purpo
we substitute Eq.~9! into Eq. ~6! to obtain, on using the
relationC1C22uSu25N 21,

W~bug8!5
1

P~g8!

2

pC2NexpS 2
2

C2N ubu2D E d2g
2C2

p

3expS 22C2Ug82g1
S*

C2
bU2DWin~g!. ~18!

Here we have restricted our attention to optical fields wh
thermal excitation may be disregarded (nth i'0). From Eqs.
~11! and ~12! it follows that, for not too small values of th
~initial! squeezing parameteruzu, the variance of the Gauss
ian in the first line of Eq.~18!, C2N/4, increases withuzu as
e2uzuuT2u2/8, whereas the variance of the Gaussian in the
tegral in the second line, 1/(4C2), rapidly approaches the
~finite! limit ( T2Þ0)

s`5 lim
uzu→`

1

4C2
5

uT1u21uT2u222uT1T2u2

4uT2u2
. ~19!

Thus, Bob’s mode is prepared~after Alice’s measurement!
in a quantum state that is obtained, roughly speaking, fr
the input quantum state by shifting the Wigner function a
cording to g→g81bS* /C2 and smearing it over an are
whose linear extension is given by 2As`. It is therefore
expected that the best that Bob can do is to perform a
placement with

D~g8!5ei w̃lg8, ~20!

wherew̃5w1argT11argT2, and

l5 lim
uzu→`

C2

uSu
5UT2

T1
U. ~21!

Substitution of this expression into Eq.~7! yields

Wout~bei w̃!5
1

2psl2E d2gWin~g!expS 2
ug2b/lu2

2s D ,

~22!

where

s5
N

4l2
~C21l2C122luSu!. ~23!
02231
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Note that limuzu→`s5s` .
Clearly, even for arbitrarily large squeezing, i.e.,uzu→`,

and thus arbitrarily large entanglement, the input quant
state cannot be scanned precisely due to the unavoid
losses, which drastically reduce the amount of informat
that can be transferred nonclassically from Alice to Bob. L
dW be a measure of the~smallest! length scale in phase spac
on which the Wigner function of the signal-mode sta
Win(g), typically changes. Teleportation then requires, ap
from the scaling byl, that the condition

s`!dW
2 ~24!

is satisfied. Otherwise, essential information about the fi
points of the quantum state are lost. For givendW , the con-
dition ~24! can be used in order to determine the ultima
limits of teleportation, such as the maximally possible d
tance between Alice and Bob. In this context, the question
the optimal position of the source of the TMSV arises. Nee
less to say, that all the results are highly state dependen

III. SQUEEZED AND NUMBER STATES

Let us illustrate the problem for squeezed and num
states. Applying the general formulas given in Sec. II
these classes of states, all calculations can be performed
lytically and closed expressions for the fidelity can be d
rived. They will enable us to see the effect of the displa
ment and the position of the TMSV source in more detai

A. Squeezed states

Let us first assume that the unknown single-mode qu
tum state, which is desired to be teleported, is a squee
coherent state. Its Wigner function can be given by

Win~g!5
Nin

p
exp@2Ainugu22Bin~g21g* !

1Cin* g1Cing* #, ~25!

where

Nin52 exp@22ua0u2cosh~2z0!2~a0
21a0*

2!sinh~2z0!#,

~26!

Ain52 cosh~2z0!, ~27!

Bin5sinh~2z0!, ~28!

Cin52@a0 cosh~2z0!1a0* sinh~2z0!#. ~29!

Here,a0 is the coherent amplitude andz0 is the squeezing
parameter, which is chosen to be real. Substituting Eq.~25!
@together with Eqs.~26!–~29!# into Eq. ~22!, we derive~see
the Appendix!

Wout~b!5
Nout

p
exp@2Aoutubu22Bout~b21b* 2!

1Cout* b1Coutb* #, ~30!
0-3
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where

Nout5
2

l2A118s cosh~2z0!116s2
expH 2

2ua0u2@cosh~2z0!14s#1~a0
21a0*

2!sinh~2z0!

118s cosh~2z0!116s2 J , ~31!
a
er

a
n

zin
Eq
e

e
e

tum
n

n
d

-

Aout5
2@cosh~2z0!14s#

l2@118s cosh~2z0!116s2#
, ~32!

Bout5
sinh~2z0!

l2@118s cosh~2z0!116s2#
, ~33!

Cout52
a0@cosh~2z0!14s#1a0* sinh~2z0!

l@118s cosh~2z0!116s2#
~34!

(w̃50). Combining Eqs.~17!, ~25!–~29!, and~30!–~34!, we
arrive at the following expression for the fidelity~see the
Appendix!:

F[F~z0 ,a0!5F~z0!expH 2
~12l!2

2 F ~a01a0* !2e2z0

11l2~114e2z0s!

2
~a02a0* !2

~11l2!e2z014l2s
G J , ~35!

where

F~z0!52@112l21l4~1116s2!

18l2~11l2!scosh~2z0!#21/2 ~36!

is the fidelity for teleporting the squeezed vacuum.
From Eq.~35! it is seen that the dependence ofF on a0

vanishes forl51. Thus, the fidelity of teleportation of
squeezed coherent state can only depend on the coh
amplitude for an asymmetrical equipment~i.e., uT1uÞuT2u).
In this case, the fidelity exponentially decreases with incre
ing coherent amplitude. For stronger squeezing of the sig
mode, the effect is more pronounced for amplitude squee
@first term in the square brackets in the exponential in
~35!# than for phase squeezing~second term in the squar
brackets!.

In the case of a squeezed state, the characteristic scaldW
in the inequality~24! is of the order of magnitude of th
small semiaxis of the squeezing ellipse,

dW;e2uz0u. ~37!

For uT1u'uT2u5uTu, from Eqs.~19! and~37! it then follows
that the condition~24! for high-fidelity teleportation corre-
sponds to

12uTu2!e22uz0u, ~38!

that is,
02231
ent
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l

l A
! ln~12e22uz0u!21/2. ~39!

Thus, for large values of the squeezing parameteruz0u, the
largest teleportation distance that is possible,l T , scales as

l T; l Ae22uz0u. ~40!

B. Number states

Let us now consider the case when the unknown quan
state is anN-photon number state. The input Wigner functio
then reads

Win~g!5~21!N
2

p
exp~22ugu2!LN~4ugu2! ~41!

@LN(x), Laguerre polynomial#. We substitute this expressio
into Eq.~22! and derive the Wigner function of the teleporte
state as

Wout~b!5
2

pl2

~4s21!N

~4s11!N11
expF2

2ubu2

l2~4s11!
G

3LNF2
4ubu2

l2~16s221!
G . ~42!

By combining Eqs.~17!, ~41!, and ~42!, we then obtain the
teleportation fidelity

F[FN52
@l2~4s21!21#N

@l2~4s11!11#N11

3PNH 11
8l2

@l2~4s11!11#@l2~4s21!21#
J

~43!

@PN(x), Legendre polynomial#.
From inspection of Eq.~41! it is clear that the character

istic length scaledW in the inequality~24! may be assumed
to be of the order of magnitude of the~difference of two
neighboring! roots of the Laguerre polynomialLN(x), which
for largeN(N*3) behaves likeN21 @23#, thus

dW;
1

AN
. ~44!

Assuming againuT1u'uT2u5uTu, the condition~24! together
with Eq. ~19! anddW

2 according to Eq.~44! gives
0-4
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FIG. 1. The fidelity of teleportation of a squeezed vacuum state (z050.5) is shown as a function ofuzu and uT2u (uT1u51, w̃50) for
the displacement~a! D(g8)5g8 and ~b! D(g8)5uT2 /T1ug8 @Eqs.~20! and ~21!#.
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12uTu2!
1

N
. ~45!

It ensures that the oscillations of the Wigner function, wh
are typically observed for a number state, are resolved. O
erwise Bob cannot recognize the teleported state as
N-photon number state. Hence, the largest teleportation
tance that is possible scales~for largeN) as

l T;
l A

N
. ~46!

C. Discussion

Whereas for perfect teleportation, i.e.,uT1u5uT2u51, Bob
has to perform a displacementD(g8)5eiwg8 @Eq. ~20! for
l51#, which does not depend on the position of the sou
of the TMSV, the situation drastically changes for nonperf
teleportation. The effect is clearly seen from a comparison
Fig. 1~a! with Fig. 1~b!. In the two figures, the fidelity for
teleporting a squeezed vacuum state is shown as a fun
of the squeezing parameteruzu of the TMSV and the trans
mission coefficientuT2u for the case when the source of th
TMSV is in Alice’s hand, i.e.,uT1u51. Figure 1~a! shows the
result that is obtained forD(g8)5g8. It is seen that when
uT2u is not close to unity, then the fidelity reduces, with i
creasinguzu, below the classical level~realized foruzu50).
In contrast, the displacementD(g8)5ei w̃lg8 with l from
Eq. ~21! ensures that the fidelity exceeds the classical le
@Fig. 1~b!#.
02231
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At this point the question may arise of whether the cho
of l according to Eq.~21! is the best one or not. For ex
ample, from an inspection of Eq.~18! it could possibly be
expected thatl5C2 /uSu also be a good choice. To answ
the question, we note that in the formulas for the telepor
quantum state and the fidelity,l can be regarded as being a
arbitrary ~positive! parameter that must not necessarily
given by Eq.~21!. Hence for a chosen signal state and giv
value of uzu, the value ofl ~and thus the value of the dis
placement! that maximizes the teleportation fidelity can b
determined. Examples of the fidelity~as a function ofuzu)
that can be realized in this way are shown in Fig. 2
teleporting squeezed and number states according to
~35! and~43!, respectively. The figure reveals that for not to
small values ofuzu, that is, in the proper teleportation regim
the state-independentchoice of l according to Eq.~21! is
indeed the best one.

After preparing this paper we have been aware of
article @24# in which it is argued that~even in the limit of
infinite squeezing of the TMSV! the average coherent-sta
teleportation fidelity, which is obtained when integrating E
~35! (z050) over all coherent displacementsa0, is maxi-
mized forl51. This is certainly not correct. To see this, l
us define the average fidelity more rigorously by introduc
an appropriately chosen regularizing function,

F̄5
1

pn̄coh
E d2a0F~a0!e2ua0u2/n̄coh ~47!

@F(a0)[F(z050,a0) with F(z0 ,a0) from Eq. ~35!#, and
look ~for chosenuzu and chosen ‘‘cutoff’’ coherent-photon
e

t

FIG. 2. The fidelity of teleportation of~a! a squeezed vacuum state (z050.88, i.e., n̄'1) and ~b! a single-photon number stat

(N51) is shown as a function ofuzu (uT1u51,uT2u50.9, w̃50). The parameterl in the displacementD(g8)5lg8 is chosen such tha
maximum fidelity is realized. For comparison, the fidelities that are realized forl5uT2 /T1u ~dashed line! and l5C2 /uSu ~dotted line!
are shown.
0-5
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numbern̄coh) for the value ofl that maximizesF̄. Figure 3
shows the optimum displacement as a function ofn̄coh for
various values ofuzu (T151, uT2u50.5). One observes tha
for each value ofn̄coh there exists always a~sufficiently
large! value of uzu such that the optimum value ofl is ex-
actly uT2 /T1u. Thus, when performing the limits in the orde
required by quantum teleportation~first uzu→`, then n̄coh
→`), the optimum displacement is alwayslopt5uT2 /T1u.
Note that this is also valid when in Eq.~47! F(a0) is re-
placed withF(z0 ,a0) for arbitrary z0. By the way, the av-
erage fidelity obtained in@24# is nothing but the fidelity for
teleporting the vacuum, with displacement not properly c
sen, i.e.,F(z0) from Eq. ~35! for z050 andl51.

Figure 4 illustrates the dependence of the teleporta
fidelity on the squeezing parameteruzu of the TMSV and the
transmission coefficientuT2u (uT1u51) for squeezed and
number states. It is seen that with increasing value ofuzu the
fidelity is rapidly saturated below unity, because of abso
tion. Even if the TMSV were infinitely entangled, the fideli
would be noticeably smaller than unity in practice. On
when uT2u is very close to unity, the fidelity substantiall
exceeds the classical level and becomes close to unity.~Note
that the classical level is much smaller for number states t
for squeezed states.! Hence, it seems to be principally impo
sible to realize quantum teleportation over distances that

FIG. 3. The optimum displacement parameter for teleport
coherent states through asymmetrical equipment (T151,
uT2u50.5) is shown as a function of the cutoff coherent-phot

numbern̄coh. The curves correspond to squeezing parametersuzu
53 ~upper curve!, uzu53.3 ~middle curve!, and uzu54 ~lower
curve! of the initial TMSV.
02231
-

n

-

n

re

comparable with those of classical transmission chann
The result is not unexpected, because the scheme is bas
a strongly squeezed TMSV, which corresponds to an
tangled macroscopic~at leastmesoscopic! quantum state.
Clearly, such a state decays very rapidly, so that the po
cies inherent in it cannot be used in practice.

In order to illustrate the ultimate limits in more detail, w
have plotted in Fig. 5, the dependence of the teleporta
fidelity on the transmission lengthl 2 ( l 150) for squeezed
and number states, assuming an infinitely squeezed TMS
is seen that with increasing transmission length the fide
decreases very rapidly, and it approaches the classical l
on a length scale that is much shorter than the absorp
length. In particular, the distance over which a squeezed s
can really be teleported drastically decreases with increa
squeezing. Exactly the same effect is observed for num
states when the number of photons increases. In other wo
for a chosen distance, the amount of information that can
transferred quantum mechanically is limited, so that essen
information about the quantum state that is desired to
teleported may be lost.

It may be interesting to compare the~maximally realiz-
able! teleportation fidelity (uzu→`) with the classical level
(z50). Figure 6 illustrates the dependence of the class
level on the transmission lengthl 2 ( l 150) for the number
statesu0&, . . . ,u3&. For comparison, the average fidelity fo
the set of states is shown. With increasing transmiss
length the average fidelity rapidly approaches the class
level, i.e., the average of the classical levels of the se
states. In particular, it is seen that the long-distance ave
fidelity is substantially determined by the~classical level of
the! vacuum teleportation. Clearly, the vacuum state is
only state that~for the chosen optimum displacement! can be
teleported perfectly, without doing anything.

So far we have considered the extremely asymmetr
equipment where the source of the TMSV is in Alice’s ha
(uT1u51, i.e., l 150). Whereas for perfect teleportation th
source of the TMSV can be placed anywhere, in practice
teleportation fidelity sensitively depends on the position
the source of the TMSV. In Fig. 7, examples of the optim
distancel 1 from Alice to the source of an infinitely squeeze
TMSV ~i.e., the distance for which maximum fidelity is re
alized! is shown, again for squeezed and number states,
function of the distancel 125 l 11 l 2 between Alice and Bob.
It is seen that the optimal position of the source of the TMS
is state dependent, and it is always nearer to Alice than

g

e
FIG. 4. The fidelity of teleportation of~a! a squeezed coherent state (z050.5, a0'0.7, i.e.,n̄'1) and~b! a single-photon number stat

(N51) is shown as a function ofuzu and uT2u (uT1u51, w̃50, l5uT2 /T1u).
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FIG. 5. The fidelity of teleportation of~a! squeezed vacuum states~curve 1:z050.88, i.e.,n̄'1; curve 2:z051.54, i.e.,n̄'5; curve 3:

z051.87, i.e.,n̄'10) and~b! number states~curve 1:N51; curve 2:N55; curve 3:N510) is shown as a function of the transmissio

length l 2 for uzu→` @ l 150, w̃50, l5uT2 /T1u5exp(2l2 /lA 2)#.
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Bob (0< l 1,0.5l 12). With increasing value ofl 12 the value
of l 1 approaches 0.5l 12, and one could thus think that sym
metrical equipment would be the best one. Unfortunat
this is not the case, because the transmission lengths
essentially too large for true quantum teleportation. W
were ~optimally! observed would be the classical level
best.

IV. SUMMARY AND CONCLUSIONS

In continuous-variable single-mode quantum teleportat
it is commonly assumed that Alice and Bob share a stron
squeezed TMSV. We have analyzed this scheme, with spe
emphasis on the absorption losses that are unavoidably a
ciated with the transmission of the two modes over fin
distances, e.g., by means of fibers. In particular, we h
applied the general formulas derived to the problem of te
porting squeezed states and number states, which are ty
examples of nonclassical states.

The results show that the TMSV state as an effectiv
macroscopic~at least mesoscopic! entangled quantum stat
rapidly decays, and thus proper quantum teleportation is o
possible over distances that are much shorter than the~clas-
sical! absorption length. Rapid decay of the TMSV sta
means that there is a strong entanglement degradation w

FIG. 6. The classical level (z50) of teleporting number state
~curve 1:N50; curve 2:N51; curve 3:N52; curve 4:N53) and
the corresponding average fidelity (uzu→`, curve 5) are shown as

functions of the transmission lengthl 2 @ l 150, w̃50, l
5uT2 /T1u5exp(2l2 /lA 2)#.
02231
y,
are
t

n
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ial
so-

e
-
cal

y

ly

ich

dramatically limits the amount of information that can b
transferred quantum mechanically over longer distances.
cause of this limitation, quantum teleportation becomes s
dependent, that is, without additional knowledge of the st
that is desired to be teleported over some finite distance
principally impossible to decide whether the teleported st
is sufficiently close to the original state. Clearly, this cont
dicts the basic idea of quantum teleportation. It is worth n
ing that both the coherent displacement that must be
formed by Bob and the position of the source of the TMS
should not be chosen independently of the fiber lengths
particular, asymmetrical equipment, where the source of
TMSV is placed nearer to Alice than to Bob, is suited f
realizing the largest possible teleportation fidelity and no
symmetrical one.

To overcome the problem of fast entanglement degra
tion of the TMSV, one could think about application of a
propriate purification of Gaussian continuous-variable qu
tum states. Unfortunately a practically realizable purificati
scheme that compensates for the entanglement degrad
of the TMSV has not been known so far. The purificati
protocol proposed in@25# enables one to distill maximally
entangled states from a mixed two-mode entangled Gaus
state, but these states would be far from a TMSV needed
the teleportation scheme under consideration. In fact, the
tilled states live in finite-dimensional Hilbert spaces. Even
they could be used in some modified teleportation sche
the dimension of the Hilbert space should be sufficien
high. However, since the distillation probability expone
tially decreases with the Hilbert-space dimension, one wo
effectively be left with the starting problem.

Throughout this paper we have restricted our attention
~quasi-! monochromatic fields. Using wave packets, the u
mate limits of quantum teleportation are not only determin
by absorption but also by dispersion. Due to dispersion,
two wave packets unavoidably change their forms dur
propagation over longer distances, and the problem of m
mismatching in Alice’s homodyne measurement and Bo
coherent displacement appears. The corresponding qua
efficiencies diminish, and hence the width of the Gauss
with which the Wigner function of the original quantum sta
is convolved is effectively increased. As a result, the telep
tation fidelity is reduced. It can be expected that the eff
sensitively depends on the position of the source of
0-7
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FIG. 7. The optimal distancel 1 from Alice to the position of an infinitely squeezed TMSV, for which maximum teleportation fidelit

realized, is shown as a function of the teleportation distancel 125 l 11 l 2 (w̃50, l5uT2 /T1u5exp@(l12l2)/lA#) for ~a! squeezed states~curve

1: z050.78, a050.5, i.e.,n̄'1; curve 2:z051.44, a051, i.e.,n̄'5; curve 3:z051.63, a052, i.e.,n̄'10) and~b! number states~curve
1: N51; curve 2:N55; curve 3:N510). The insets show the dependence of the fidelity on the position of the source of the TMS
l 12/ l A50.1.
lys

g
23
f

S.

-

n-
TMSV. In order to understand the details, a separate ana
is required, which will be given elsewhere.
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APPENDIX: GAUSSIAN STATES

Let us consider the Gaussian Wigner function

Win~g!5
Nin

p
exp~2Ainugu22Bing* 22Bin* g2

1Cing* 1Cin* g2D in!, ~A1!

where

Nin5AAin
2 24uBinu2, ~A2!

D in5
1

Nin
2 @AinuCinu22~Bin* Cin

2 1BinCin*
2!#. ~A3!

Here, Cin can be chosen freely, andAin and Bin must be
chosen such that the conditionAin.2uBinu is satisfied. Sub-
stituting Eq.~A1! into Eq. ~22! and performing the integra
tion, we again obtain a Gaussian:

Wout~b!5
Nout

p
exp~2Aoutubu22Boutb* 22Bout* b21Coutb*

1Cout* b2Dout! ~A4!

(w̃50), where

Aout5
1

4~ls!2 F2s2
Ain11/~2s!

@Ain1~1/2s!#224uBinu2G , ~A5!

Bout5
1

4~ls!2

Bin

@Ain11/~2s!#224uBinu2
, ~A6!
02231
is

e-

us

Cout5
1

2ls

@Ain11/~2s!#Cin22BinCin*

@Ain11/~2s!#224uBinu2
, ~A7!

andNout andDout are given according to Eqs.~A2! and~A3!,
respectively, with the out quantities in place of the in qua
tities. The result is

Nout5
1

2l2s

Nin

A@Ain11/~2s!#224uBinu2
, ~A8!

Dout5D in2
@Ain11/~2s!#uCinu22~Bin* Cin

2 1BinCin*
2!

@Ain11/~2s!#224uBinu2
.

~A9!

Specifying Ain , Bin , and Cin according to Eqs.~27!–~29!,
Eq. ~A4! @together with Eqs.~A5!–~A9!#, we arrive at Eq.
~30! @together with Eqs.~31!–~34!#.

Using Eqs.~A1! and ~A4!, it is not difficult to prove that

pE d2bWin~b!Wout~b!

5
2Nout

AA224uBu2
expFAuCu22~B* C21BC* 2!

A224uBu2
2DG ,

~A10!

where

A5Ain1Aout, ~A11!

B5Bin1Bout, ~A12!

C5Cin1Cout, ~A13!

D5D in1Dout. ~A14!

The above-mentioned specification ofAin , Bin , and Cin
then leads to Eq.~35! @together with Eq.~36!#.
0-8
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