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Continuous-variable quantum teleportation through lossy channels
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The ultimate limits of continuous-variable single-mode quantum teleportation due to absorption are studied,
with special emphasis ofguasi) monochromatic optical fields propagating through fibers. It is shown that
even if an infinitely squeezed two-mode squeezed vacuum were used, the amount of information that would be
transferred quantum mechanically over a finite distance is limited and effectively approaches zero on a length
scale that is much shorter than tfeassical absorption length. The state-dependent teleportation fidelity can
be close to unity only for short distances. To realize the largest possibly fidelity, asymmetrical equipment must
be used, where the source of the two-mode squeezed vacuum is nearer to Alice than to Bob and as a conse-
guence the coherent displacement performed by Bob cannot be chosen independently of the transmission
lengths.
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[. INTRODUCTION not only state dependent, but also dependent on the position
of the TMSV source relative to the positions of Alice and
Quantum teleportation, in which an unknown quantumBob. Thus, the original concept of teleportation of a really

state is teleported from a sending station to a distant recei\H”k”?W” gra”tum state to a really distant position becomes
guestionable.

ing station, has been one of the exciting manifestations o h . ized as foll Section |l h
guantum-state entanglement of bipartite systems. Schemes € paper Is organized as follows. Section || presents the

for both spinlike quantum statefl,?] and continuous- DasSIC equations, with special emphasis on the entangled state
variable quantum statd8—8| have been proposed, and ex- ﬂﬁ:"siha{ ed by Arc?tangllBoyb In practice antd IBOSb y Cnlot'ﬁe
periments have been perform¢8-12. The very idea of '?h € aisp ac:?rr:je? ?h ert ||ce strrt1_easufremen. nd etC.t ed
quantum teleportation is to transfer that part of information eory Is applied 1o he teleportation of squeezead states an
on the(unknown state which is lost in a single measurementnumber states and a detailed analysis of the various depen-

quantum mechanically by means of appropritely entanglef{S"CieS 2re given. Finall, some concluding remarks are

states.
In contir)u_ous—variable teleportation the send@tice) . II. BASIC EQUATIONS
and the recipientBob) must share a highly entangled state in
order to be able to really teleport anbitrary quantum state. In what follows we consider the standard scheme of

For teleporting a single-mode quantum state, a two-modeontinuous-variable single-mode teleportation, assuming the
squeezed vacuuiiTMSV) is commonly assumed to play the entangled state is @trongly squeezed TMSV. One mode is
role of the entangled state. High entanglement then meartsansmitted to Alice(sendey and the other one to Bolre-

high squeezing, which implies an entangled macrosciic cipieny. Since the transmission, e.g., through fibers is un-
least mesoscopistate. However, entanglement is known to avoidably connected with some losses, the state effectively
sensitively respond to environment influences, which unshared by Alice and Bob is not the originally generated
avoidably gives rise to entanglement degradafit8—19  TMSV but a mixed state, whose entanglement drastically
and thus reduces the fidelity of teleportation, as was showdecreases with the distance between Alice and Bdh

in Ref.[16], where the two modes were equally coupled to

some heat bath. A. The teleported state

The aim of the present paper is to study the ultimate limits | et ys briefly repeat the main stages of teleportation. If
of quantum teleportation that arise from absorption duringy, () is the Wigner function of the signal-mode quantum
the propaggtion of the two modes from the source of theiate that is desired to be teleported aNEut(a'!B) is the
TMSV to Alice and Bob, so that they have one each forwigner function of the entangled state that is effectively

further manipulation. Fibers are preferably used with regardp o eq by Alice and Bob, the Wigner function of thibree-
to optical fields that are desired to propagate over Ionge(nodé overall system the,n reads

distances. As we will see, the ratios of the propagation length
to the low-temperature absorption length essentially deter- W(y,a,B)=Win(7)We(a,B). 2
mine the amount of quantum-mechanically transferable in-

formation. In this way, the fidelity of teleportation becomesAfter combination of the signal mode and Alice’s mode of
the entangled two-mode system through a 50%:50%s-

lesg beam splitter the Wigner function changes to
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Measurement of the real part @of, ugr, and the imagi- 4
nary part ofv, v, then prepares Bob’s mode in a quantum  WE (a,B)= ——exf{ —2(Cy|a|*+Cy|B*+S* aB
state whose Wigner function is given by N

+Sa* B*)], (9)
1 M=V
W(,3|MR:V|):mf dva dp Win 2 where (=1,2)
ele _
VE, M\};V’B)’ - = TaTzsintf2g], (10)
1
where Ci:N[1+|Ti|2(COS”2§|_1)+2nthi(1_|Ti|2)]a

(11)

— 2
Pns)= [ ave d | g @ N=[L+[Tyf2(cos2e] ~ 1)+ 20y (1 [T4f?)]

is the probability density of measuringg and v, . Introduc- X[1+]T,*(cosh2¢|— 1) +2ny o(1—[T2[?)]
ing the complex variables — |T,T,|%sink?|2Z], (12)
=(u=v)IN2, ¥ =\2(ur—in), () with ny,;=exdhw/(kg9;)]— 1} ! being the mean number of
_ thermal excitations at temperatutk® . It may be useful to
we may rewrite Eq(3) as expresgT;| in terms of the ratio of the transmission length
to the absorption length, ; such that
1
W(BlY) =S d*YWin(n)Wou(¥'* = 7*,B8) () | Til=exp(—1i/1}). (13)

P(y")

It should be pointed out that Eq9) together with Egs.

[P(ur,v)2—P(y")]. (100—(12) directly follows from the general formalism of
Depending upon the result of Alice’s measurement, Bolguantum-state transformation at absorbing four-port devices

now coherently displaces the quantum state of his mode ifl9,2Q for vanishing reflection coefficients. For nonvanish-
order to generate a quantum state whose Wigner function isg reflection coefficients, the terms,;(1—|T;|?) in Egs.
W[B—A(y")|y']. If we are not interested in the one or the (11) and (12) must be simply replaced withg,;(1—|T;|?
other measurement result, we may average over all measure-|R;|?).
ment results to obtain the teleported quantum state on aver-

age: C. Fidelity
Let us assume that the quantum state to be teleported is a
Woud B) = f d?y'P(y" )W B—A(¥)]Y'] pure onegin=| i) in|. A measure of how close to it is the
(mixed) output quantum state,,; may be the teleportation
’ ’ ’ fidelit
=f dZVWm(Y)f d>y' We L v'* = v*.B—A(¥)]. Y
(7) F:<¢in|QoutJ bin)- (14)
Using the well-known representation of the density operator
B. Available entangled state in terms of the coherent displacement oper&¢¢) [21,22,
Let us assume that the modes of the originally generated 1
TMSV propagate to Alice and Bob through fibers (spec- 0= _f d2ex()DT(&), (15)
tral) transmission coefficient§;(w) and T,(w), respec- m
tively. When

with x(&) being the Fourier transform of the Wigner func-
4 tion, Eq.(14) can be rewritten as
Wii(a,8)=— exi] —2(|a|?+| B?) cosh2¢| 1
T

, ‘ F=— f d?Exin(E) Xoul £)- (16)
+2(e 'Pap+e'?a* g*)sinf2¢|]  (8)

Equivalently, the fidelity can be given by the overlap of the
is the Wigner function of the originally generated TMSV Wigner functions:
(£=]¢|€'%, squeezing paramejetthen the Wigner function

of the quantum state, which the two modes are prepared in B 2
after transmission, takes the form [df3,15,18 F—Tff d“BWin(B)Woul B)- 17
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Perfect teleportation implies unity fidelity; that is perfect Note that lim,_...oc=o...
overlap of the Wigner functions of the input and the output Clearly, even for arbitrarily large squeezing, i/&],— o,
quantum state. Clearly, losses prevent one from realizing thiand thus arbitrarily large entanglement, the input quantum
case, so that the really observed fidelity is always less thastate cannot be scanned precisely due to the unavoidable
unity. Thus, the task is to choose the scheme-inherent parantesses, which drastically reduce the amount of information

eters such that the fidelity is maximized. that can be transferred nonclassically from Alice to Bob. Let
Sy be a measure of thesmallest length scale in phase space
D. Choice of the displacement on which the Wigner function of the signal-mode state,

An important parameter that must be specified is the disw"‘(y)' typically changes. Teleportation then requires, apart

placementB— - A(y') [in Eq. (7)], which has to be per- from the scaling by, that the condition

formed by Bob after Alice’s measurement. For this purpose, o< 53\/ (24)
we substitute Eq(9) into Eq. (6) to obtain, on using the
relationC,C,— |S|2=N‘1, is satisfied. Otherwise, essential information about the finer
points of the quantum state are lost. For givi&p, the con-
W(Bly') = 1 2 exp( —i|/3|2) f o2 2C; dition (24) can be used in order to determine the ultimate
Y P(y) wCoN C,N Y limits of teleportgﬂon, such as the_ maximally p055|ble_ dis-
tance between Alice and Bob. In this context, the question of
, * |2 the optimal position of the source of the TMSV arises. Need-
><exp( —2Cy ¥ — v+ G,k )Win( v)- (18 |ess to say, that all the results are highly state dependent.
Here we have restricted our attention to optical fields whose Ill. SQUEEZED AND NUMBER STATES

thermal excitation may be disregardet,(~0). From Egs. )
(11) and (12) it follows that, for not too small values of the L€t us illustrate the problem for squeezed and number

(initial) squeezing parameté¢|, the variance of the Gauss- states. Applying the general form_ulas given in Sec. Il to
ian in the first line of Eq(18), C,A\74, increases with¢| as these classes of states, all calculations can be performed ana-

e2l4|T,|2/8, whereas the variance of the Gaussian in the inlytically and closed expressions for the fidelity can be de-

tegral in the second line, 1/@%), rapidly approaches the rived. They will enable us to see the effect of the displace-
(finite) limit (T,%0) ment and the position of the TMSV source in more detail.

. 1 T2+ | To2= 2| T, T2 A. Squeezed states
U°°_|g||'Tm4(:2 - 4|-|-2|2 ) (19 Let us first assume that the unknown single-mode quan-
tum state, which is desired to be teleported, is a squeezed

Thus, Bob’s mode is preparédfter Alice’s measurement coherent state. Its Wigner function can be given by
in a quantum state that is obtained, roughly speaking, from

: e . . N.
the input quantu,m state by shifting the_ W|gner function ac- Wi (y)= iexr{—Amlylz— Bi(v2+ v*)
cording to y— '+ B8S*/C, and smearing it over an area ™
whose linear extension is given byJa... It is therefore * ok
expected that the best that Bob can do is to perform a dis- +Chny*Ciny" ], (25
placement with where
A(y)=e*ry, (20) Nin=2 ex{ — 2| ao|*cost(2£o) — (g + a§ *)sinh(2¢o)],
wherep=¢+argT,+argT,, and (26)
C, [T An=2 2¢o), 2
A= lim é:T—Z (21) n=2 cosiiz4o) @7
|¢|—e 1 Bi,=sinh(2¢,), (28
Substitution of this expression into E) yields Cin=2[ g cost(2¢0) + af sinh(2£0)]. 29
- 1 ly—BIN|? H is the coherent amplitud is th i
W ey _ J 2 W p(_ , ere, ag is the coherent amplitude an is the squeezing
oul &) 2 mo\2 d*yWin(y)ex 20 parameter, which is chosen to be real. Substituting (E8).
22 [together with Egs(26)—(29)] into Eq. (22), we derive(see
(22) the Appendix
where Nyt
N Woul B) = = qu_AoutJBlz_Bout(lgz"_,B*z)
= —(C,+\2C,—2)\|9)). 23
7= e 2GS 29 +Chu+ Coub, 30
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where
\ 2 2| ao|?[cosh2£0) +4a]+ (ad+ af?)sinn2¢,) a1
= ex — 1]
U \2\1+ 80 cosi2¢,) + 1602 1+ 80 cosh2¢,) + 1602
|
2[cosh2{o) +4 | ol —
= [ R o) 0'] ’ (32 I_<|n(1_e 2\§0|) 12 (39
N[1+ 80 cosi2{,) + 1602] A
) Thus, for large values of the squeezing paramglgl;, the
B — sinh(2¢,) (33 largest teleportation distance that is possible, scales as
N1+ 80 cosh2¢,) + 1602] .
IT"" IAe go . (40)
ag[cosi{2Zy)+40]+ af sinh(27,)
Cou=2 ° (34 B. Number states

N[ 1+80 cosh2{,) + 1602]

(¢=0). Combining Eqs(17), (25)—(29), and(30)—(34), we
arrive at the following expression for the fidelitgee the
Appendix:

- - (1-M)?]  (ag+al)?e®o
F=F(fo’“0)—':(§0)ex"{ 2 | 14\%(1+4e%0g)
(ao_a3)2
_ 35
(1+\2)e*o+ 4020 } %

where
F(Lo)=2[1+2N?+\*(1+1602)
+8N2(1+\?)ocosh2Z,)]Y? (36)

is the fidelity for teleporting the squeezed vacuum.
From Eq.(35) it is seen that the dependenceFobn «
vanishes forn=1. Thus, the fidelity of teleportation of a

squeezed coherent state can only depend on the coherent

amplitude for an asymmetrical equipmeie., | T,|#|T,|).

In this case, the fidelity exponentially decreases with increas-
ing coherent amplitude. For stronger squeezing of the signal
mode, the effect is more pronounced for amplitude squeezing
[first term in the square brackets in the exponential in Eq.
(35] than for phase squeezirigecond term in the square

brackets.

Let us now consider the case when the unknown quantum
state is arN-photon number state. The input Wigner function
then reads

2
Win(7)= (- exp —2lyALy(dlyD) (4D

[Ln(X), Laguerre polynomidl We substitute this expression
into Eq.(22) and derive the Wigner function of the teleported

state as
2  (40—2)N 2| 8|2
W — 7
ol B)= 0 (4o + 1)N+1eXp[ A(4o+1)
4 B|?
-—= | 42
NUOa(1602-1) “2

By combining Egs(17), (41), and(42), we then obtain the
teleportation fidelity

. [V(4o—1—1"
T IN2(4o+1)+ 1N

XPN{1

=F,

. 8\2
[N2(4o+1)+1][N%(4o—1)—1]
(43

In the case of a squeezed state, the characteristic 8gale [Py(x), Legendre polynomidl

in the inequality(24) is of the order of magnitude of the
small semiaxis of the squeezing ellipse,
Sw~ e 4ol (37)
For |T,|=~|T,|=|T|, from Egs.(19) and(37) it then follows
that the condition(24) for high-fidelity teleportation corre-
sponds to
1—|T|?<e 2l (38)

that is,

From inspection of Eq(4l) it is clear that the character-
istic length scale,y in the inequality(24) may be assumed
to be of the order of magnitude of tHéifference of two
neighboring roots of the Laguerre polynomialy(x), which
for largeN(N=3) behaves likeN ! [23], thus

1

Assuming againT,|~|T,|=|T|, the condition(24) together
with Eqg. (19) and 5\2,v according to Eq(44) gives

(44)
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FIG. 1. The fidelity of teleportation of a squeezed vacuum stée-0.5) is shown as a function ¢f| and|T,| (|T,/=1, ©=0) for
the displacementa) A(y’)=7v" and(b) A(y')=|T,/T4|y' [Egs.(20) and(21)].

, 1 At this point the question may arise of whether the choice
1-1T| <N (45  of A according to Eq(21) is the best one or not. For ex-
ample, from an inspection of Eq18) it could possibly be
o ] ] __expected thah =C,/|S| also be a good choice. To answer
It ensures that the oscillations of the Wigner function, whichine guestion, we note that in the formulas for the teleported
are .typicaIIy observed for a number state, are resolved. O”’tjuantum state and the fidelity,can be regarded as being an
erwise Bob cannot recognize the teleported state as afypitrary (positive parameter that must not necessarily be
N-photon number state. Hence, the largest teleportation dl%—iven by Eq.(21). Hence for a chosen signal state and given

tance that is possible scaléfsr largeN) as value of|¢|, the value ofx (and thus the value of the dis-
placement that maximizes the teleportation fidelity can be
Ia determined. Examples of the fidelitas a function of ¢|)
'TNN- (46) that can be realized in this way are shown in Fig. 2 for

teleporting squeezed and number states according to Egs.
(35 and(43), respectively. The figure reveals that for not too
C. Discussion small values of{|, that is, in the proper teleportation regime,
Whereas for perfect teleportation, i.E[;|=|T,|=1, Bob fthe statendependenthoice of A according to Eq{(21) is
has to perform a displacementy')=e'¢y’ [Eq. (20) for ~ indeed the best one.
\=1], which does not depend on the position of the source Aftér preparing this paper we have been aware of the
of the TMSYV, the situation drastically changes for nonperfectart.'c.Ie [24] in Wh'Ch it is argued thateven in the limit of
teleportation. The effect is clearly seen from a comparison offinite squeezing of the TMSpthe average coherent-state
Fig. 1(a) with Fig. 1(b). In the two figures, the fidelity for teleportation fidelity, which is obt{;uned when mtggratmg Eq.
teleporting a squeezed vacuum state is shown as a functidf> (£o=0) over all coherent displacemenis, is maxi-
of the squeezing parametgf| of the TMSV and the trans- mized forA=1. This is certainly not correct. To see this, let
mission coefficientT,| for the case when the source of the YS define the average fidelity more rigorougly by introducing
TMSV is in Alice’s hand, i.e.|T;|=1. Figure 1a) shows the 2N @ppropriately chosen regularizing function,
result that is obtained foA(y’)=7v'. It is seen that when 1 -
| T,| is not close to unity, then the fidelity reduces, with in- F=—— f d2agF (ag)e 1 @0l*/neon (47)
creasing| |, below the classical levefealized for|{|=0). TNeon
In contrast, the displacement(y’)=e'*xy’ with X from
Eqg. (21) ensures that the fidelity exceeds the classical levelF(ag)=F({y=0,ap) with F({y,ao) from Eq. (35], and
[Fig. 1(b)]. look (for chosen|¢| and chosen “cutoff” coherent-photon

F F
1 () 1 (®)

Il S |9
FIG. 2. The fidelity of teleportation ofa) a squeezed vacuum staté,€ 0.88, i.e.,ﬁwl) and (b) a single-photon number state

(N=1) is shown as a function d| (|T;|=1|T,/=0.9, =0). The parametex in the displacemena(y’)=\y’ is chosen such that
maximum fidelity is realized. For comparison, the fidelities that are realized $0jT,/T,| (dashed lingand\=C,/|S| (dotted ling
are shown.

022310-5



A. V. CHIZHOV, L. KNOLL, AND D.-G. WELSCH PHYSICAL REVIEW A65 022310

Aopt comparable with those of classical transmission channels.
The result is not unexpected, because the scheme is based on
a strongly squeezed TMSV, which corresponds to an en-
0.8 tangled macroscopic(at leastmesoscopic quantum state.

Clearly, such a state decays very rapidly, so that the poten-
0.6 cies inherent in it cannot be used in practice.
In order to illustrate the ultimate limits in more detail, we

0.4 have plotted in Fig. 5, the dependence of the teleportation
fidelity on the transmission length (I,=0) for squeezed
0.2 and number states, assuming an infinitely squeezed TMSV. It
is seen that with increasing transmission length the fidelity
decreases very rapidly, and it approaches the classical level
on a length scale that is much shorter than the absorption
FIG. 3. The optimum displacement parameter for teleporting!€ngth. In particular, the distance over which a squeezed state
coherent states through asymmetrical equipmer,=(1, can really be teleported drastically decreases with increasing
|T,|=0.5) is shown as a function of the cutoff coherent-photonsqueezing. Exactly the same effect is observed for number
numbern.,,. The curves correspond to squeezing paramétdrs states when the number of photons increases. In other words,
=3 (upper curvg |Z|=3.3 (middle curve, and |{|=4 (lower for a chosen distance, the amount of information that can be
curve of the initial TMSV. transferred quantum mechanically is limited, so that essential
information about the quantum state that is desired to be

numbem,,) for the value ofs that maximizes. Figure 3  (€leported may be lost.

shows the optimum displacement as a functiomgs, for It may be interesting to compare tiimaximally realiz-
L N . .
various values ofz| (T,=1, |T,|=0.5). One observes that able teleportation fidelity [¢|—) with the classical level

; o {=0). Figure 6 illustrates the dependence of the classical
for each value ofng,n there exists always ésufficiently  |evel on the transmission length (I,=0) for the number
large value of || such that the optimum value of is ex-  gtates|0), . . . |3). For comparison, the average fidelity for
actly [T,/T4|. Thus, when performing the limits in the order he set of states is shown. With increasing transmission
required by quantum teleportatiafirst |{|—, thenn,y, length the average fidelity rapidly approaches the classical
—), the optimum displacement is alwaysy,=|T,/T,]. level, i.e., the average of the classical levels of the set of
Note that this is also valid when in EG47) F(ap) is re-  states. In particular, it is seen that the long-distance average
placed withF({q,aq) for arbitrary . By the way, the av- fidelity is substantially determined by tlielassical level of
erage fidelity obtained ifi24] is nothing but the fidelity for the) vacuum teleportation. Clearly, the vacuum state is the
teleporting the vacuum, with displacement not properly cho-only state thatfor the chosen optimum displacemgoan be
sen, i.e.F({p) from Eq.(35) for {;=0 and\=1. teleported perfectly, without doing anything.

Figure 4 illustrates the dependence of the teleportation So far we have considered the extremely asymmetrical
fidelity on the squeezing parametét of the TMSV and the equipment where the source of the TMSV is in Alice’s hand
transmission coefficientT,| (|T;/=1) for squeezed and (|T;|=1, i.e.,|;=0). Whereas for perfect teleportation the
number states. It is seen that with increasing valugjothe  source of the TMSV can be placed anywhere, in practice the
fidelity is rapidly saturated below unity, because of absorpieleportation fidelity sensitively depends on the position of
tion. Even if the TMSV were infinitely entangled, the fidelity the source of the TMSV. In Fig. 7, examples of the optimal
would be noticeably smaller than unity in practice. Only distancd from Alice to the source of an infinitely squeezed
when |T,| is very close to unity, the fidelity substantially TMSV (i.e., the distance for which maximum fidelity is re-
exceeds the classical level and becomes close to UNipge  alized is shown, again for squeezed and number states, as a
that the classical level is much smaller for number states thafunction of the distancé;,=1,+1, between Alice and Bob.
for squeezed statgddence, it seems to be principally impos- It is seen that the optimal position of the source of the TMSV
sible to realize quantum teleportation over distances that arie state dependent, and it is always nearer to Alice than to

n
200 400 600 800 1000 1200 1400 coh

(a) (%)

TS
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ROSENRIaat
S,

OSSOSO S S SRS
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SIS SSississss
OSSOSO S Ess

0.6 SRS

SoPSTSTS
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PSS
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FIG. 4. The fidelity of teleportation af) a squeezed coherent statg€ 0.5, a(~0.7, i.e.,le) and(b) a single-photon number state
(N=1) is shown as a function dt| and|T,| (|T|=1, =0, A=|T,/T4|).
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®

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

b/laz Lflas

FIG. 5. The fidelity of teleportation afa) squeezed vacuum stat@sirve 1:£,=0.88, i.e.,le; curve 2:{,=1.54, i.e.,ﬁ-45; curve 3:
,=1.87, i.e.,n~10) and(b) number stategcurve 1:N=1; curve 2:N=5; curve 3:N=10) is shown as a function of the transmission
lengthl, for || —o [1;=0, =0, \=|T,/T1|=exp(=l,/lx,)].

Bob (0<I,<0.51,,). With increasing value off;, the value dramatically limits the amount of information that can be
of |, approaches 013,, and one could thus think that sym- transferred quantum mechanically over longer distances. Be-
metrical equipment would be the best one. Unfortunatelycause of this limitation, quantum teleportation becomes state
this is not the case, because the transmission lengths agependent, that is, without additional knowledge of the state
essentially too large for true quantum teleportation. Whathat is desired to be teleported over some finite distance it is
were (optimally) observed would be the classical level at principally impossible to decide whether the teleported state
best. is sufficiently close to the original state. Clearly, this contra-
dicts the basic idea of quantum teleportation. It is worth not-
IV. SUMMARY AND CONCLUSIONS ing that both the coherent displacement that must be per-
formed by Bob and the position of the source of the TMSV
_In continuous-variable single-mode quantum teleportationsnoyld not be chosen independently of the fiber lengths. In
it is commonly assumed that Alice and Bob share a strongly icylar, asymmetrical equipment, where the source of the
squeezed TMSV. We have analyzed this scheme, with specigly;sy s placed nearer to Alice than to Bob, is suited for

e'mtpr(]jaSI'StI'?r:f:het absorption '051(5‘;? tht?nt are ugav0|dabl¥ e?tsst%'alizing the largest possible teleportation fidelity and not a
ciated with the transmission of the two modes over finitecy 1 oreal one.

distances, e.g., by means of fibers. In particular, we have To overcome the problem of fast entanalement dearada-
applied the general formulas derived to the problem of tele- P g 9

porting squeezed states and number states, which are typict " of the TMSV, one could think about application of ap-

examples of nonclassical states propriate purification of Gaussian continuous-variable quan-

The results show that the TMSV state as an effectivel)}um states. Unfortunately a practically realizable purification
macroscopidat least mesoscopi@ntangled quantum state scheme that compensates for the entanglement dggradation
rapidly decays, and thus proper quantum teleportation is onl§f the TMSV has not been known so far. The purification
possible over distances that are much shorter tharictas- ~ Protocol proposed ii25] enables one to distill maximally
sica) absorption length. Rapid decay of the TMSV state€ntangled states from a mixed two-mode entangled Gaussian
means that there is a strong entanglement degradation whigate, but these states would be far from a TMSV needed for

the teleportation scheme under consideration. In fact, the dis-

1 tilled states live in finite-dimensional Hilbert spaces. Even if
they could be used in some modified teleportation scheme,
0.8l the dimension of the Hilbert space should be sufficiently

high. However, since the distillation probability exponen-

i tially decreases with the Hilbert-space dimension, one would
F 1 effectively be left with the starting problem.

Throughout this paper we have restricted our attention to
5 5 (quasi) monochromatic fields. Using wave packets, the ulti-

//’\ mate limits of quantum teleportation are not only determined
0.2y /’T_\ by absorption but also by dispersion. Due to dispersion, the
N two wave packets unavoidably change their forms during
0 02 0z G B T propagation over longer distances, and the problem of mode

b/l mismatching in Alice’s homodyne measurement and Bob’s
2/7A2 coherent displacement appears. The corresponding quantum
FIG. 6. The classical levelZ=0) of teleporting number states €fficiencies diminish, and hence the width of the Gaussian
(curve 1:N=0; curve 2:N=1; curve 3:N=2; curve 4N=3) and  With which the Wigner function of the original quantum state
the corresponding average fidelitj’|— %, curve 5) are shown as is convolved is effectively increased. As a result, the telepor-
functions of the transmission lengthl, [I;,=0, =0, A tation fidelity is reduced. It can be expected that the effect
=|T, /T =exp(—ly/ls5)]. sensitively depends on the position of the source of the
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L ° hfha L 0.1 hfha
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® Iaflx Y0 1o/l

FIG. 7. The optimal distancly from Alice to the position of an infinitely squeezed TMSYV, for which maximum teleportation fidelity is
realized, is shown as a function of the teleportation distapgel;+1, (=0, A=|T,/T,|=exd(l;—1,)/1,]) for (a) squeezed statésurve
1: £,=0.78, ap=0.5, i.e.,n~1; curve 2:{,=1.44, ay=1, i.e.,n~5; curve 3:{,=1.63, ay=2, i.e.,n~10) and(b) number stategcurve
1: N=1; curve 2:N=5; curve 3:N=10). The insets show the dependence of the fidelity on the position of the source of the TMSV for
I15/1,=0.1.

TMSV. In order to understand the details, a separate analysis 1 [A,+1/(20)]C;—2B;,C*
is required, which will be given elsewhere. n n non

: (A7)

MT2N0 [Apt1(20)]2—4|By 2
ACKNOWLEDGMENTS

. andN,,;andD are given according to Eq6A2) and(A3),
This work was supported by the Deutsche Forschungsgesc oot ol with the out tities in ol fthe i i
meinschaft, the RFBR-BRFBR Grant No. 00-02-81023,[;226(3'-2/: ?/ésvtljllt is € out quantiies in place ot the In quan

Bel2000_a, and the Heisenberg-Landau Program. One of us
(D.G.W) would like to acknowledge discussions with M. S.
Kim. 1 Nin

Nou= , (A8)
M2\ [A+ 1(20) 7= 4By
APPENDIX: GAUSSIAN STATES
Let us consider the Gaussian Wigner function [Ain+1/(20)]|Cin]2— (BXC2+Bi,C%2)
Do=Din—
N, [Ain+1(20)]2—4|B|?
Win(y)= fexq_AH 7|2_ Biny* - B a ; ; (A9)
+Ciny* +Cihy—Din), (A1)  SpecifyingA;,, Bi,, andC;, according to Eqs(27)—(29),
h Eq. (A4) [together with Eq$A5)—(A9)], we arrive at Eq.
where (30) [together with Eqs(31)—(34)].
Using Eqs.(Al) and(A4), it is not difficult to prove that
Nin= VAZ—4]B, 2 (A2) 9 Eas(AL) and(A4) P
1 2 ]
D=5 [ AulCul®~ (BICH+BLCIAL.  (A3) | W5 Wout
in
Here, C be chosen freely, an#l,, and B th 2N ;{A|C|2_(B*C2+BC*Z)
ere, C;, can be chosen freely, andl, and B;, must be = ex -D|,
chosen such that the conditidg,> 2|B;,| is satisfied. Sub- VAZ-4BJ* A?—4[B|?
stituting Eq.(Al) into Eq.(22) and performing the integra- (A10)
tion, we again obtain a Gaussian:
where
_ Nout 2 %2 * 2 *
Wout(,B)_ qu_AoulJ,B| _Bout:B _Boutﬁ +Coutﬂ
™ A=A+ At (Al1)
+ Czutﬂ -D out) (A4)
B=B,+Bout (A12)
(¢=0), where
C=Cin+ Cout, A13
A+ 10(20) in out ( )
Aou= 5 20— 5 5| (A5)
4(\o) [Aint (1/20)]°— 4|Byy| D=D;,+ Doy. (A14)
Bout 1 Bin (A6)  The above-mentioned specification #§,, Bj,, and Cj,

T AN [Apt 1U20) 17— 4B |2 then leads to Eq35) [together with Eq(36)].
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