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Positioning and clock synchronization through entanglement
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A method is proposed to employ entangled and squeezed light for determining the position of a party and for
synchronizing distant clocks. An accuracy gain over analogous protocols that employ classical resources is
demonstrated and a quantum-cryptographic positioning application is given, which allows only trusted parties
to learn the position of whatever must be localized. The presence of a lossy channel and imperfect photode-
tection is considered. The advantages in using partially entangled states is discussed.
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INTRODUCTION was also shown in Ref4]. A higher robustness against loss
ensues by decreasing the degree of entanglement, at the cost

From the realm of thought experiments, quantum en-of reducing the accuracy gain achievable. Given the loss of
tanglement has recently become exploitable for various apghe available channel, one will have to optimize the states to
plications and almost ready for technological implementae employed. A scheme that is analogous to fault-tolerant
tions in fields such as quantum cryptograpf]. Other — quantum computation is presented. It is possible to protect, at
applications for entanglement and squeezing have been prégast partially, the entanglement from the loss by devising
posed in fields such as interferometric measuren{@itsre- entangled states where the loss of one or more photons al-
quency measuremeni8,4], lithography[5], algorithms[6], lows some information to be retained _from _the p_hoton; that
etc. In this paper a recent propo$d] to exploit entangle- do arrive. An example of such states is derived in detail.
ment and squeezing to enhance the accuracy of position mea-
surements and clock synchronization is thoroughly analyzed. I. POSITIONING THROUGH ENTANGLEMENT

In Sec. | the proposal df7] is briefly reviewed and the
notation that will be employed is presented. The positioning !N this section a brief review of the method proposed in
protocol is derived and its main features are described. IiRef.[7]is given. The positioning problem is defined and the
Sec. IA it is shown that our protocol gives an enhancementormalism that will be used in the rest of the paper is laid
in accuracy by Comparing it with classical procedures thaput In Sec. | A the enhancement in the pOSitioning obtained
employ analogous resources. In Sec. | B its use in a cryptd?y using entangled-squeezed states is given and analyzed, by
graphic context is addressed. In particular, two differentcOmparing it to what one would obtain with classical states
cryptopositioning schemes are derived that prevent nonof equal spectral characteristics. Section IB is devoted to
trusted parties to recover the position of what must be localdiscussing the use of the proposed protocol in a cryptoposi-
ized. The first is essentially a classical protocol, but allowsloning context.
an accuracy enhancement of the localization procedure over For the sake of simplicity, consider the one-dimensional
the unentangled case. The second is a quantum cryptopo$§@se in which one partysay Alice wants to measure her
tioning scheme derived from the quantum cryptographicdistance from the detectors’ positionby sending a light
BB84 protocol[1]. In Sec. Il the analysis of the protocol is Pulse to each of thé detectors that are placed in a known
given in the presence of loss, by considering the possibilitposition. Alice’s position can be obtained by measuring the
that some photons are lost through dissipative processes diulses’ travel time averag® divided by the pulses’ velocity.
ing their travel or at the detection stage. The loss of a singléiven the spectral characteristics of each pulse, its time of
photon in the maximally entangled state makes the resumngrrival t; will have an intrinsic indetermination. The unsur-
state completely useless. On the other hand, the loss of Rgssable limit for classical measurements is given by the
photon in the unentangled case is not so dramatic since irffhot-noise limit: one must at least measure a single photon.
formation on the time of arrival of the pulse may still be The accuracy of the distancemeasurement depends on the
obtained by measuring the times of arrival of the remaining\/arianceAt2 of the statistical variable average time of arrival
photons. However, by comparing the time of arrival informa-(t. This variance can be related to the intrinsic accuraey
tion that can be obtained in the two cases, one sees that oAghievable on the measurement of the single photon time of
still does better by using entangled states in a wide range d¥Tival, which, in turn, will ultimately depend on the pho-
cases. The robustness to loss stems from the fact that tf@n’s bandwidth.
accuracy gain obtained through entanglement is high enough The formalism is now introduced. The probability to de-
to beat the classicdlinentangled caseccuracy even when tect a photon at timéand at positiorx in an ideal photode-
some of the time of arrival data must be discarded. In Sedector with infinite time resolution is given by the formula
[ll, the assumption of using maximally entangled states i48,9]
relaxed. There is a trade-off between the degree of entangle-
ment (or the accuracy gajnand the robustness to noise, as P(t)(EC)(t—x/c)E)(t—x/c)), (1)
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where the ensemble average is the expectation on the quaover the probabilityP (t; ;N;), namely,
tum state of the radiation. All actual photodetectors are of
course nonideal, but the fundamental limit to the error intro-
duced by the nonideal features of photodetectors is given by
the bandwidth of the photodetector rather than the bandwidth
of the detected photofil0]. In addition, this error can, in where the sum is performed on the valueNoffor all i and
principle, be made as small as desired by devoting moréhe integration is performed on all the,. The statistical
resourcegof energy, power, etgto the photodetection pro- error in determining(t)y from the measurement results is
cess. In Eq(1), the signal field at timé is given by given by the variance of. This variance is dependent on the
shape of the probability?y,, which in turn depends on the
guantum state of the impinging light pulses, through @g.

(=2 f dt;  Pu(ticsN)T, (6)
N

B ()= fdwaw)e""‘ EO=E), @

A. Quantum enhancement
where a;(w) is the field annihilator of a quantum of fre-
guencyw at theith detector position. In the continuous Fock K .

where no photons are lost. Thé coherent pulses a “classi-

space formalisniL1] of Eq. (2), the field annihilation opera- cal” Alice would send to the reference detectors are de-

tor is not dimensionless and satisfies the commutation rela:
tion scribed by a state of the radiation field of the form

Consider first the case of unit quantum efficiengy 1,

[ai(@),a](0")]= 8 80— ), () W) a= ®1®|a[¢ ()N}, (7
i 0]
where the Kronecker delta accounts for the independence of
the channels. The electromagnetic field has been quantiz
so thatE()E(*) is given in units of photons per second. For
M different communication channels, each of which may re-
ceive more than one photon, Ed) generalizes to

erew is the pulses’ carrier frequency(w) is their spec-

ral function, |a[\(w)]), is a coherent state of frequenay
and amplitude\(w) directed towards theth detector, andN

is the mean number of photons in each pulse. The pulse
spectrum |#(w)|? has been normalized so that
fdw|¢p(w)|?=1. Upon calculating the ensemble average of

M N
Pu(t: k;Ni)“< 11 11 EC(t E k):>, (4  Eq.(4) with the statg W), using the property
' i=1 k=1 ' '

a(w")®|a[Mo))=No")®|ae[NMw)]), tS)
wheret; \ is the time of arrival of thekth photon in theith @ ©
channel,N; is the number of photons detected in théa
channel, and the detection time is shifted by the detector
position X;: tj y—ti +Xx;/c. The probability Py (t; \;N;) M N,
must be normalized so that, when integrated over all the ti ;N H H la(t W2, (9)
arrival timest; , it gives the probability of detectingy; =1 k=

photons in théth channel. In the case of unit quantum effi-

C|ency n= 1 (When no photons are lost through d|SS|pat|VeWhereg(t) is the Fourier transform of the Spectl’a| function
processes this is also the probability of haviny; photons ~ $(®),
in the channel. In the casg<1 this is not true anymore,
because there is a probability-1y that a photon will be lost

in the channel or at the photodetection stage. A detailed
analysis of this case is given in Sec. Il. In the cases of co-
herent states and of states with definite number of photonSotice that the probability? factorizes, since in the classi-
that will be considered here, this choice of normalizationcal state all the photons are independent. The quantity
allows us to use the formuld) instead of the more compli- |g(t; ,)|* is the probability that thécth photon is received on
cated conditional joint probabilitysee[9], Chap. 14.8of  theith channel at time; ,. Define A7? as the variance of
measuringonly N; photons at times;  and no more in each |g(t; ,)|? (which is independent dfandk since all the pho-

of the M channels. tons have the same spectrurfrom Eq.(9) it follows that

Consider the situation where all the detectors are placed aihe statistical error relative to the mean time of arrigtalis
the same positiow. The probabilityPy(t; «;N;) of Eq. (4)

.Qne obtains the probability density

o()= f do d(w)e™! (10
Vom '

contains all the timing information relative to the transmitted AT
pulses sent by Alice. In particular, the average time of arrival At= VN (11)

(t) needed for the position measurement can be obtained by

taking the average of the quantity with approximate equality foN> 1.

M N; Now compare this result with the one obtained from a
TEiE iz ti, (5) quantum state which combines entanglement and photon-
MiENi& " number squeezing. Define the stafN,) the number-
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squeezed state of frequeneyin which all modes are in the entangled states have to be tailored for different geometric
vacuum state, except for the mode at frequeacyvhich is  dispositions of the detectofZ].

populated by exactlyN photons. The entangled-squeezed In conclusion, the suggested positioning protocol re-

state that allows us to achieve the most enhancement oveuires: (i) to produce and deploy the maximally entangled

the classical case is given by state suited for the given disposition of the reference points,
(if) to measure the time of arrivgl, of thekth photon in the
ith reference point, andii) to collect and compare the re-
) = N _)i---IN . 12 . ’ .
¥ )nw f do $(@)[No)1+[No)u (12 sults in order to have the needed correlation measurement.
By choosing the same spectral functigtw) of the state(7), . o
the spectral characteristics of each of the channels of the B. Quantum cryptographic positioning
state|V)yw (obtained by tracing¥)yy over all the other The accuracy enhancement over classical protocols is not

channels is the same as the classical state. Notice thathe only reason that makes the use of quantum mechanics
|W)nwu is a frequency maximally entangled state: a measureappealing in the positioning problem. In fact, one is also

2
: (13

P (ti s N)e

ment of the frequency of a single one of its photons will havepffered the possibility of employing the ideas of quantum
a random outcome weighted by the probabili#y(»)|?, but  cryptography in this context. In this section two different
will determine the frequency of all the other photons. Sincecryptopositioning protocols based on our scheme will be
the number of photons in each channel is fixdtl and no  given. The aim is for Alice to learn her position in space
photons are lost$=1), the probabilityPy(t; «;N;) is null  relative to Bob(located at the detectors positiprwithout
for N;# N, thanks to its normalization discussed previously.anybody else gainingnyinformation by intercepting neither
For N;=N, inserting|¥ )y in Eq. (4), it follows that the photons nor the classical information Alice and Bob
MoN exchange.
(2 2 t ) The first protocol is essentially equivalent to a classical
9 =l Tk protocol in which Alice sends Bob photons each of which
she delayed by a random amount of time, which she does not

where the propert){ai(w’)]N|Nw>j=5ij5(w—w')\/m|0> disclose. From Bob’s random times of arrival she may re-
was employed|0) being the normalized vacuum stand ~ cover her position without anybody elgéncluding Bob
g(t) is the same as Eq10). Equation(13) shows that the knowing it. In the quantum version given here, however, the
entanglement in frequency translates into the bunching of th@ccuracy for a fixed numbevl of photons is increased over
times of arrival of the photons of different pulses: althoughthe classical version. This protocol allows only Alice to re-
their individual times of arrival are random, the average cover her position: nobody elgecluding Bob will be able
=(LMN)3; &;  of these times is highly peaked. Indeed, to determine where she is. Consider for simplicity the case of
from Eq. (13) it follows that the probability distribution 6f  the statgW)yy with one photon per channeNE& 1), given
is [g(MNT)|2. This immediately implies that the average by
time of arrival(t) is determined to an accuracy

N W= | do gl o)+, 15

YINE (14)

At

where |w)=|1,). The extension to the general case is
whereAr is the same as E@11). This result shows §MN  straightforward. This protocol is simply implemented by al-
accuracy improvement over the classical cd#). The |owing Alice to detect the time of arrival of the photons in
Margolus-Levitin theorem{12] implies that a\\MN im-  one of theM channels. She will send to Bob only the rest
provement in accuracy is the best that can be obtajii@d M —1 photons. When Bob receives and measures them, he
The role of the entanglement and the role of the squeezing iwill use a public channel to broadcast the measurement result
enhancing position measurements are separately addresseddnalice. As will be shown in Sec. Il, the loss of a single
Ref.[7]. It is shown that the/M enhancement derives from photon results in not being able to recowery information
the entanglement between the channels and/M@nhance- on Alice’s position. Thus if an eavesdropper was to intercept
ment from the number squeezing within each channel. the photons Alice sends to Bdkhe eavesdropper need not

Notice that when the stafeV )y is used, the results of even bother: he only has to wait for Bob’s broadgake

the single time-of-arrival measurement are meaningless: it izrould obtain no information. Alice, on the other hand, sim-
necessary to make correlation measurements, i.e., in this caply has to add the random times of arrival that Bob tells her
one must consider theumof the times of arrival of all the to the one she herself has measured. This allows her to find
photons as in the quantity. This implies that the geometry her position, with an uncertaintyt=A 7/(M — 1), since she
of the problem that can be solved depends on the state thahly usedM — 1 photons for the positioning.
can be produced. The statd )y, which is tailored as to The second protocol allows both Alice and Bob to recover
give the least indetermination in the physical quandifyis  their distance without anybody else discovering it. This pro-
appropriate for the geometry of the case considered her¢égcol is analogous to the quantum-cryptographic key ex-
where all the detectors are in the same position and the sushange BB841]. Alice and Bob share copies of the state
of the pulses’ time of arrival is needed. Other maximally|¥),, of which, as before, Alice retains one photon and
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sends Bob the remaininyl —1. For each of the copies, A. Condition on the quantum efficiency

Alice and Bob choose random{gnd independentjyto mea- One can understand the robustness to loss from the fol-
sure either the frequency or the time of arrival af the  lowing intuitive explanatior{the rigorous derivation is given
photons. After that they compare which of the two “observ-in detail latej. For simplicity, consider the case of one pho-
ables” they used on each of threcopies they exchanged: ton per channelN=1), comparing the entangled staf).,
they discard all the cases in which the two observables dgiven in Eq.(15) with its unentangled analogoyse., with

not match, namely, Alice measured the frequency and Bo®ne photon per channegiven by

the time of arrival or vice versa. For all the cases in which M

both of them measured the frequency, they broadcast the V)= ® dei¢,(wi)|wi>i, (16)
measurement results. Since the state is maximally entangled i=1

in frequency, their measurement outconté®ugh random ) ) )
must agree. If this is not the case, they know that there is aNich describesl uncorrelated single-photon pulses each

eavesdropper, who is ruining the states that are transiting;th thel §ame spectr?fl_ f_uncticxyi(w) Ofl qu'_(ls).' Gri]ven thbe
between them. If all the frequency-measurement outcome annels’ quantum efficiency (namely, 7 1S the prob-
do agree, they can be confident that no one is measuring t llity that one photon is logtthe probability that allV

. . . M . .
photon time of transit in the channel. Once they have verifie otons reach Allce is given by™. Repeat|ng>l_t|mes
he whole experiment, a total numb# of photons is sent.

that no eavesdropper was present, Alice can broadcast thﬁ average only a fractiom™ of the experimental runs will

measurement results for half of the copies in which they botl;lmt lose any photon. If Alice is employing the entangled

measured the time of arrival and Bob can broadcast the me@fatesi\lf} of Eq. (15) (i.e., the statéW)y,, with N=1) to
en . €.,

surement results of the other half. From the information theyevaluate the mean time of arrivét), she must only use the

exchange, which is utterly useless for anybody else, botlyaia optained from the experimental runs where all he

Alice and Bob may recover Alice’s position. Of course anpnotons of the state reach the detectors. As will be shown,
eavesdropper might be measuring the frequency of the &the other cases in which some of the photons are lost are
changed photons without being detected, but this will nofyseless. The evaluation of the time-of-arrival accuracy ob-

give him any information on Alice’s position: he may only tained from ther experimental runs through Eq14) will
succeed in ruining Alice and Bob’s exchange. then be

Notice that it is possible to modify this second protocol to
include more complicated scenarios, such as the case in AT
which also other trusted persons may be allowed to learn M M
Alice’s position, or(by suitably tailoring the entanglement of
the exchanged pulsethe case in which some of the trusted where the factor 4/r ™ stems from the statistical indepen-
persons may learn Alice’s positianly when they meet and dence of different experimental runs. On the other hand, if
exchange their data, or the case in which Alice herself is noAAlice employsr copies of the unentanglel photon state
allowed to discover her own position, etc. | W), defined in Eq.(16), all of the »rM photons that in
Finally, it is worth noticing that an implementation of the average reach the detectors may be employed to evaluate the
cryptopositioning schemes described here can be achievdiine of arrival with an accuracy
with the state| V)., for M=2, the practical realization of

(17)

i i AT
which has been recently proposed in Ré4f3]. At(r)= , 18
VnprM
Il. LOSS ANALYSIS IN THE IDEAL CASE where the equality holds forM>1. The condition for

) ) ) achieving a greater accuracy through the staté., than
In this section the problem of the loss is addressed. Theyough| W), is given by

loss of a single photon from a maximally entangled state

(such agW¥),,n) makes it completely useless for positioning, AT AT 1\ UM-1)
since the information is encoded in the entanglement and not \/nr_M>M Jr =n> M (19

in the single photons. On the other hand, the loss of a single

photon from a “classical” statésuch ag¥)) allows us still - This condition is shown in Fig. 1. It is evident that relatively
to recover information on the time of arrival of the remaining |o\y values of quantum efficiency are sufficient for obtain-
photons. Nonetheless, it will be shown that the the gain inng the accuracy-increase feature also for high numbers of
accuracy obtained by using entangled photons vs unerentangled photons.

tangled photons is quite robust against the loss. In Sec. IlA The intuitive reasoning that yields the conditicird) must

the conditions on the channel quantum efficiency that is necbe taken only as a qualitative demonstration, since(E§).
essary to obtain an enhancement in the accuracy is deriveid valid only forrM>1. Now the rigorous condition is de-
First a simple argument is given, then a more rigorous aprived. It turns out to be even more favorable to the entangled
proach is discussed. In Sec. I B the effect of the loss on thease, even though only a small correction to the condition
state is studied in the density-matrix formalism. (19) is required. Equatiort9) shows that, in the case of no
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Better ent.

0.8

0.6

0.4

M FIG. 2. Three-dimensional graph depicting the gain in accuracy
h showi hich val ¢ fici A (M, n) vs the number of photorid and the quantum efficiency.
FIG. 1. Grap showing which values o qu_antum EMCIENLY  The horizontal plane in the figure fot =1 separates the regions
are needed to achieve an accuracy increase with the entangled staig .o it is petter to emploj¥)., (oven and|¥),, (undej. Notice

['¥)en Of M photons over the unentangled stgie),,, of M photons. the VM dependence fon=1, which corresponds to the enhance-
The higher region is where a better accuracy may be obtained usirment discussed in Sec. | A

|¥)en and the lower region is where a better accuracy is obtained
through|¥),,. The continuous line graphs the conditici®). The
histogram is obtained by the more rigorous analysis of(Eg). The
two conditions coincide foM>1.

Again, by comparing this variance with the one obtained
from the entangled cadd7), one finds the condition under
which it is better to use entangled states with respect to un-

. e entangled ones, i.e.,
loss, using an unentangled stat),,, the probability dis-

tribution Py (t4,...,ty) of the time of arrival of theM pho-
tons is just the product of the probability distributions of the A=M
times of arrival of the single photorjg(t)|?. Thus, if each
photon has a probability; of arriving and a probability 1
— n of being lost, then the probability of retaining of the ~ which for M>1 coincides with conditior(19). The condi-

1/2
>1, (23

M) 77Mer(]__ n)Mfm
m/ m1-(1- ™

M
>
m=1

initial M photons is given by the binomial distribution tion (23) is plotted in Fig. 2.
M| 7M(1— )M M , B. Loss dynamical evolution
Pm(tl""’tm):( m) 1-(1—-p)M 5 l9t)l*. (20 In this section the evolution of the states introduced pre-

viously is analyzed in the presence of loss. Also here, for
simplicity, we analyze the casd=1 of one photon per
channel.

It can be showr[14] that a lossy channel of quantum

In this case, the integral d?,,, over all the times of arrival
t1,...,ty is the probability of retainingn of the M photons,

discarding the case in which all the photons are loSt—aniciancy » (which also takes into account the detection ef-

. g M .
event that happens with probability {1)™. In fact, in the  griency) ‘can be described by considering a perfect channel
latter case no information on time of arrival is acquired a”dand inserting a beam splitter of transmissivifyThe second
this is the source of the renormalization factof 14 (1

input portb of the beam splitter is in the vacuum stéeand
— 7)1 in Eq. (20). In particular, forp=1 Eq. (20) coin- put p P e

. . one output port is traced odtefer to Fig. 3.
cides with Eq(9), namely,P(t4,...,ty) =0 form#M. The

! i This allows us to obtain the nonunitary evolution of a
accuracy that may be obtained frg),, is given by the the 555y channel. It can be shown that starting from the unitary
variance of the distribution given in EO), i.e.,

evolution of the beam splitter

M m M—m 11/2
At=| 3 (M>—7’ Ao el A @ b| 10>
m=1 \M/m[1-(1-7)"]
If the experiment is repeated>1 times, in a fraction 1 |\|I> n
—(1— n)M of the photons at least one photon is received and [>>
the accuracy that can be reached in each of these cases is
given by Eq.(21). Thus the overall accuracy for theexperi- a
ments is BS
—_——
YoMy (LM M -
At(r)= 2 ) s (22) FIG. 3. Description of a lossy channel mode through a beam
m=1\M/mM[1-(1-2)"] \/F splitter of transmissivityy equal to the channel quantum efficiency.
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U=exd —arctari\{1— 7}/ n)(ab’—a'b 24

AL arctamid = e 0 [ dodo’ gw)g* @)lop(e], @9
(where the mode definition fat and b is given in Fig. 3, o _ _ _
one obtains the following completely positive map for thewhich is a single-photon wave packet with spectral function

density-matrix evolution in the presence of loss: ¢(w) in theith channel, i.e., the statd6) for M =1. Start-
ing from the state in Eq(28) no post selection is necessary

> (except the obvious case in which Alice does not receive any
o—e'=Tr[Ue®|0),(0|UT]= > VnQV::, (250  photon, since all the terms are composed of the states of the
n=0 form (29), which do retain time-of-arrival information.
_ The same analysis can be extended to the general case of
with the state|)yy, showing that the loss of a single photon

destroys all the timing information.
n/2 a"

_ naTalz_ (26)

Jnt

. ) ) In this section some strategies for battling the effects of
The case of frequency-independent loss is considered. Thee 555 are presented. Instead of using the maximally en-
evolution(25) must be calculated for each mode of the con-iyngjeq states employed so far, one may devise strategies for
tinuum of modes of the entangled and unentangled state§sing partially entangled states that turn out to be more ro-
given, re_spectlvely, byW)e, defined in Eq.(1_5) and [W),, bust to the loss. The use of partially entangled states to pro-
defined in Eq.(16). In the case of the density opera@t,  tect entangled atomic clocks from the effects of decoherence
=|¥)e¥| corresponding to the stafe)en, it is possible  \yas noted in Ref[4]. Here we show that partial entangle-
to show ment can protect against loss while still retaining some of the
quantum enhancement. A simple example to illustrate this is

1-9
V”:(T

Ill. TRADE-OFF ENTANGLEMENT vs LOSS RESISTANCE

M-1

, _ first presented and a more sophisticated case is then analyzed
Cen= 1" Qent m§=:0 71— )M mJ’ do|p(w)]? in deptail. P Y
It is well known (see, for exampld,15]) that when more
X[|w){w|®[0)(0]®---+[0)(0[®---], (27)  than two systems are entangled, a variety of different effects

can occur. Hence, in order to address the relation occurring

where |0X0| is the vacuum state and the term in squarebetween the degree of entanglement of a state and its loss
brackets is the sum of all théﬂ]{ possible combinations @h  resistance, it is useful to start from a simple example. Con-
times the statéw){w| and M —m times the vacuun0)0|.  sider the case of one photon per channi¢(1) where the
The interpretation of Eq27) is that none of the photons is first Q of the M channels are maximally entangled as the
lost and the state is unaffected with a probabif{}, andm  ones in the staté¥),, of Eq. (15) and the othetM —Q
photons are lost and the state is left in a mixturé«®fand  channels are unentangled agin),,, of Eq. (16). The param-
|0) with probability ™)7™(1—#%)""™. Since the second eterQ characterizes the degree of entanglement of this state:
term of the stat€27) contains only density matrices diagonal bigger values ofQ correspond to higher entanglement. Con-
in the |w) representation, it does not contain any informationsider first the case of unit quantum efficiency. It is easy to
on the time-of-arrival measurement. In fact, the probabilityshow through Eq(4) that the accuracy in the determination
Pu defined in Eq.(4) gives a “constant” probability if ap-  of (t) follows as
plied to the statdw)w|. Thus post-selection measurements
are needed in this case: if Alice is expecting the stitg,,, At IM-Q+1
she must throw away all the data coming from events in At= \/_ﬁ Y (30)
which she recorded less than photons. These events are
useless. As shown before, the fragility to loss is only appargor Q=1 (i.e., at least two of thé! channels are entangled
ent, since the accuracy gain over the unentangled case is highe accuracy achievable is greater than the completely unen-
enough so that it is possible to find a wide experimentatangled case, but not as high as the completely entangled
region in which the accuracy enhancement is preserved. case. The loss of performance of this state is balanced by a

On the other hand, the evolution of the unentangled statgreater resistance to the effects of photon losses than the
|W)un defined in Eq(16), 0un=|¥)u{¥|, is given by maximally entangled statf¥),,, for which the loss of a
single photon proves fatal. On the contrary, the loss of pho-

M . .
o/ =S (1 pM-m tons from the partially entangled state still allows us to re-
un” cover information if a suitable post selection is employed.
Namely, one must discard all the times of arrival of the en-
X[01®0,® -+ |0){0|®0,®" -], (28)  tangled photons if one or more of them is lost, but all the

times of arrival of the unentangled photons that do arrive can
where the term in square brackets contains the sum of abe safely retained.
possible combinations ah times the statep; and M —m This simple example shows how one can increase the re-
times the vacuuni0)(0|, and where sistance to loss by reducing the entanglement, however, at
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=1, ... K. Consider for simplicity the case of Gaussian
spectrum, namely®(Q)|? is a Gaussian with varianae)?
and|¢(w,Q)|? is a Gaussian centered aroufidwith vari-
anceA w?. The statdW),,can be obtained from¥ )¢ in the
limit Aw—0. Since|Q)); has the same structure [0F )¢, if
M one photon is lost in thgth group all the time-of-arrival
information of such state must be discarded. Namely, only
the g groups in which no photons have been lost can be still
AL employed for the positioning. In this case, using the state
|¥) in the ensemble average of E@), the probability
density of detecting all thgK photons of theg groups at
timest;, is given by

FIG. 4. Quantum fault tolerance applied to the quantum posi
tioning protocol. Each of th& groups of photongwhich are fre-

. X g K 2
quency entangledis composed ofK frequency maximally en-
tangled photons. Pk(tj)<expg — 12’1 Zl G (2a79) [, (33

eret;  is the time of arrival of théth photon in thejth

much more sophisticated configurations can be introduce roup and

for entangling multiple systemd5], in which the different
systems share a different degree of entanglement with all the \/5
ATy= \/
2Aw

the cost of achieving less accuracy enhancement. Of cour?,I

(G—g)AQZ+ Aw?

other systems. It is expected that also in the general case, a > .
GAQ+Aw

similar trade-off between the degree of entanglement and
resilience to loss holds. Depending on the quantum effi-
ciency of the channel and on the degree of entanglement of¥otice that Eqs(33) and(34) for Aw—0 andG=g repro-

is able to produce, different strategies, involving differentduce the result derived previously in B§) for a Gaussian
data processing or post selections, are possible. A better igPectrum withN=1. Equation(33) shows that even iG

sight on this may be gained by analyzing the following ex-—9 groups are discarded because they lost some photons, the
ample, where a multistructured entanglement is employed. r'emainingg groups still retain some entanglement. In fact,

A procedure analogous to fault-tolerant quantum compusince theQ); are not orthogonal foA w>0, the probability
tation may be introduced in our scheme. Consider again thBgk(t;j,) does not factorize in parts depending on the single
simple case of one photon in each of thechannels K groups. The proportionality constant in E§3) must be cho-
=1). Instead of sending the maximally entangled stétg,,  Sen so that the integral &y(t; ) over all the times gives
of Eq. (15), Alice sends Bob a state in which groupstof the probability that onlygK photons are detected, namely,
photons are maximally entangled afd=M/K groups are
entangled together, as depicted in Fig. 4. If no photon is lost, (7)9(1— )69
then one will not only be able to use the correlations within 1-(1— ¢
all the groups, but also the correlatibatweerthe groups. In

the event of a photon loss, thanks to the structure of thguhere 5 is the probability that all the photons of a group
entanglement employed, not all the information will be lostreach the detectors, and where, analogously as in Sec. Il A,
as would happen when using the sti€)e,. In fact, sup-  the term 11— (1— %*)®] is introduced to take into account
pose that the lost photon comes from ffte group of pho-  the casdto be discardexin which all theG groups have lost
tons: as will be shown, the only data that must be discardegt |east one photon.

is the data relative to thggh group photon times of arrival. If g of the G groups do not lose any photon, one may
All the other times of arrival may be retained and employedestimate the mean time of arrival by calculating the mean
The procedure can also be nested, namely, each ofsthe ygJye of 3;t; 1 /(gK). The accuracy may be estimated by

groups ofK photons may be partitioned in maximally en- ysing the probability33) obtaining
tangled subgroups and so on.

The state represented in Fig. 4 is given by 1 G (G—g)AQ%+ Aw? 12
At= 2KAw| &1 9(GAQ%+Aw?) Py - (39

(34)

G

Po=| g

(35

|‘P>GEJ dQ ®(Q)[Q)4]Q)z - |Q)g, (31

As before—see Eq22—whenr>1 experimental runs are

where performed, the accurackt(r) that can be achieved is ob-
tained from Eq(36) by dividing At by the sgué':lre root of the

B number of usable runs, namehf,1—(1— »")>].
|Q>J:f do d(o. M) w)j1]w)jz o) (32 In order to compare this result to what one would obtain

in the unentangled case or in the maximally entangled case,

is the state of thgth group ofK photons described by the one must employ the staté¥)., and | V), with the same

one-photon frequency statw); for j=1,...G and | single-photon spectral characteristics of the photons of
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FIG. 6. The upper white region is where the maximally en-
tangled state W), achieves a better accuracy than the group-
entangled statf?') and than the unentangled st&ie),,, (in brief,
en>G>un). The striped region is wher&>en>un, the light-
gray region is wheréG>un>en, and the dark-gray region is
whereun>G>en. The parameters for this plot at€=2 and
Aw?/AQ?=2.

CONCLUSION

In this paper, a scheme that employs entanglement and
squeezing to achieve a higher accuracy and cryptographic
capabilities in position measurement has been analyzed in
detail. The positioning quantum-cryptographic protocol de-

pScribed allows only trusted parti¢and no one elseto dis-

FIG. 5. Robustness to loss of the sté#d). Upper graph: The
upper part of the graph shows for which values of the quantu . ! o oo
efficiency 7 and of the total number of photond one does better COVer their relative posmons_. The senS|.t|V|Fy to the Iqss hag
by using the statéW)g (with K=4 andAw?/AQ?=2) as com- Dbeen addressed by presenting a quantitative analysis of dif-
pared to the unentangled stati),,,. The dotted line is the same as ferent strategies to contrast it. One finds that, even though
in Fig. 1 and shows the region where it is better to use maximallythe system is, in principle, very sensitive to the loss of a
entangled state§¥)., as compared to unentangled orjds),,.  Single photon, there are many situations where it may still be
Lower graph: The same information as the previous graph is give@mployed with an accuracy enhancement over the analogous
plotted vs the number of photon grou@s but showing also the classical schemes. It has been shown that relaxing the re-
accuracy gain over the unentangled case. quirements of having maximally entangled states in fre-
guency, one can achieve greater resistance to losses.

An interesting feature, which has been analyzed else-
i i ) 5 3 where[16], is also present in our proposal. Namely, it is
Gaussian spectrum with variandao®+AQ% namely,A7  possible to exploit the robustness of the frequency entangle-
=1/(2JA0"+AQ07). An example of the comparison be- ment when the pulses travel through dispersive mgtiia
tween the performance ¢#),, and|¥)g when using such  This may be used to achieve positioning and clock synchro-
a coding scheme is given in Fig. 5, where the groupmization of distant parties without being affected by the in-

entangled state¥)g is shown to achieve a better accuracy termediate dispersion that would distort any timing signal the
than a nonentangled stat#),,. Notice that the accuracy parties exchange.

enhancement feature can be retained also for low quantum

| W) . This can be achieved by using )., and|¥),, a

efficiency even when a high numb&t of particles is in-
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