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Positioning and clock synchronization through entanglement
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A method is proposed to employ entangled and squeezed light for determining the position of a party and for
synchronizing distant clocks. An accuracy gain over analogous protocols that employ classical resources is
demonstrated and a quantum-cryptographic positioning application is given, which allows only trusted parties
to learn the position of whatever must be localized. The presence of a lossy channel and imperfect photode-
tection is considered. The advantages in using partially entangled states is discussed.
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INTRODUCTION

From the realm of thought experiments, quantum
tanglement has recently become exploitable for various
plications and almost ready for technological implemen
tions in fields such as quantum cryptography@1#. Other
applications for entanglement and squeezing have been
posed in fields such as interferometric measurements@2#, fre-
quency measurements@3,4#, lithography@5#, algorithms@6#,
etc. In this paper a recent proposal@7# to exploit entangle-
ment and squeezing to enhance the accuracy of position m
surements and clock synchronization is thoroughly analyz

In Sec. I the proposal of@7# is briefly reviewed and the
notation that will be employed is presented. The position
protocol is derived and its main features are described
Sec. I A it is shown that our protocol gives an enhancem
in accuracy by comparing it with classical procedures t
employ analogous resources. In Sec. I B its use in a cry
graphic context is addressed. In particular, two differ
cryptopositioning schemes are derived that prevent n
trusted parties to recover the position of what must be lo
ized. The first is essentially a classical protocol, but allo
an accuracy enhancement of the localization procedure
the unentangled case. The second is a quantum crypto
tioning scheme derived from the quantum cryptograp
BB84 protocol@1#. In Sec. II the analysis of the protocol
given in the presence of loss, by considering the possib
that some photons are lost through dissipative processes
ing their travel or at the detection stage. The loss of a sin
photon in the maximally entangled state makes the resul
state completely useless. On the other hand, the loss
photon in the unentangled case is not so dramatic since
formation on the time of arrival of the pulse may still b
obtained by measuring the times of arrival of the remain
photons. However, by comparing the time of arrival inform
tion that can be obtained in the two cases, one sees tha
still does better by using entangled states in a wide rang
cases. The robustness to loss stems from the fact tha
accuracy gain obtained through entanglement is high eno
to beat the classical~unentangled case! accuracy even when
some of the time of arrival data must be discarded. In S
III, the assumption of using maximally entangled states
relaxed. There is a trade-off between the degree of entan
ment ~or the accuracy gain! and the robustness to noise,
1050-2947/2002/65~2!/022309~9!/$20.00 65 0223
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was also shown in Ref.@4#. A higher robustness against los
ensues by decreasing the degree of entanglement, at the
of reducing the accuracy gain achievable. Given the loss
the available channel, one will have to optimize the state
be employed. A scheme that is analogous to fault-toler
quantum computation is presented. It is possible to protec
least partially, the entanglement from the loss by devis
entangled states where the loss of one or more photon
lows some information to be retained from the photons t
do arrive. An example of such states is derived in detail.

I. POSITIONING THROUGH ENTANGLEMENT

In this section a brief review of the method proposed
Ref. @7# is given. The positioning problem is defined and t
formalism that will be used in the rest of the paper is la
out. In Sec. I A the enhancement in the positioning obtain
by using entangled-squeezed states is given and analyze
comparing it to what one would obtain with classical sta
of equal spectral characteristics. Section I B is devoted
discussing the use of the proposed protocol in a cryptop
tioning context.

For the sake of simplicity, consider the one-dimensio
case in which one party~say Alice! wants to measure he
distance from the detectors’ positionx by sending a light
pulse to each of theM detectors that are placed in a know
position. Alice’s position can be obtained by measuring
pulses’ travel time averagêt& divided by the pulses’ velocity.
Given the spectral characteristics of each pulse, its time
arrival t i will have an intrinsic indetermination. The unsu
passable limit for classical measurements is given by
shot-noise limit: one must at least measure a single pho
The accuracy of the distancex measurement depends on th
varianceDt2 of the statistical variable average time of arriv
^t&. This variance can be related to the intrinsic accuracyDt2

achievable on the measurement of the single photon tim
arrival, which, in turn, will ultimately depend on the pho
ton’s bandwidth.

The formalism is now introduced. The probability to d
tect a photon at timet and at positionx in an ideal photode-
tector with infinite time resolution is given by the formu
@8,9#

P~ t !}^E~2 !~ t2x/c!E~1 !~ t2x/c!&, ~1!
©2002 The American Physical Society09-1
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where the ensemble average is the expectation on the q
tum state of the radiation. All actual photodetectors are
course nonideal, but the fundamental limit to the error int
duced by the nonideal features of photodetectors is given
the bandwidth of the photodetector rather than the bandw
of the detected photon@10#. In addition, this error can, in
principle, be made as small as desired by devoting m
resources~of energy, power, etc.! to the photodetection pro
cess. In Eq.~1!, the signal field at timet is given by

Ei
~2 !~ t ![E dv ai

†~v!eivt, Ei
~1 ![~Ei

~2 !!†, ~2!

where ai(v) is the field annihilator of a quantum of fre
quencyv at thei th detector position. In the continuous Foc
space formalism@11# of Eq. ~2!, the field annihilation opera
tor is not dimensionless and satisfies the commutation r
tion

@ai~v!,aj
†~v8!#5d i j d~v2v8!, ~3!

where the Kronecker delta accounts for the independenc
the channels. The electromagnetic field has been quan
so thatE(2)E(1) is given in units of photons per second. F
M different communication channels, each of which may
ceive more than one photon, Eq.~1! generalizes to

PM~ t i ,k ;Ni !}K :)
i 51

M

)
k51

Ni

Ei
~2 !~ t i ,k!Ei

~1 !~ t i ,k!:L , ~4!

wheret i ,k is the time of arrival of thekth photon in thei th
channel,Ni is the number of photons detected in thei th
channel, and the detection time is shifted by the detect
position xi : t i ,k→t i ,k1xi /c. The probability PM(t i ,k ;Ni)
must be normalized so that, when integrated over all
arrival times t i ,k , it gives the probability of detectingNi
photons in thei th channel. In the case of unit quantum ef
ciency h51 ~when no photons are lost through dissipati
processes!, this is also the probability of havingNi photons
in the channel. In the caseh,1 this is not true anymore
because there is a probability 12h that a photon will be lost
in the channel or at the photodetection stage. A deta
analysis of this case is given in Sec. II. In the cases of
herent states and of states with definite number of pho
that will be considered here, this choice of normalizati
allows us to use the formula~4! instead of the more compli
cated conditional joint probability~see@9#, Chap. 14.8! of
measuringonly Ni photons at timest i ,k and no more in each
of the M channels.

Consider the situation where all the detectors are place
the same positionx. The probabilityPM(t i ,k ;Ni) of Eq. ~4!
contains all the timing information relative to the transmitt
pulses sent by Alice. In particular, the average time of arri
^t& needed for the position measurement can be obtaine
taking the average of the quantity

T[
1

M (
i 51

M
1

Ni
(
k51

Ni

t i ,k ~5!
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over the probabilityPM(t i ,k ;Ni), namely,

^t&5(
Ni

E dti ,kPM~ t i ,k ;Ni !T, ~6!

where the sum is performed on the values ofNi for all i and
the integration is performed on all thet i ,k . The statistical
error in determining^t& from the measurement results
given by the variance ofT. This variance is dependent on th
shape of the probabilityPM , which in turn depends on the
quantum state of the impinging light pulses, through Eq.~4!.

A. Quantum enhancement

Consider first the case of unit quantum efficiencyh51,
where no photons are lost. TheM coherent pulses a ‘‘classi
cal’’ Alice would send to the reference detectors are d
scribed by a state of the radiation field of the form

uC&cl5 ^

i 51

M

^

v

ua@f~v!AN#& i , ~7!

wherev is the pulses’ carrier frequency,f~v! is their spec-
tral function, ua@l~v!#&, is a coherent state of frequencyv
and amplitudel~v! directed towards thei th detector, andN
is the mean number of photons in each pulse. The pu
spectrum uf(v)u2 has been normalized so tha
*dvuf(v)u251. Upon calculating the ensemble average
Eq. ~4! with the stateuC&cl using the property

a~v8! ^

v

ua@l~v!#&5l~v8! ^

v

ua@l~v!#&, ~8!

one obtains the probability density

PM~ t i ,k ;Ni !})
i 51

M

)
k51

Ni

ug~ t i ,k!u2, ~9!

whereg(t) is the Fourier transform of the spectral functio
f~v!,

g~ t !5
1

A2p
E dv f~v!e2 ivt. ~10!

Notice that the probabilityPM factorizes, since in the class
cal state all the photons are independent. The quan
ug(t i ,k)u2 is the probability that thekth photon is received on
the i th channel at timet i ,k . Define Dt2 as the variance of
ug(t i ,k)u2 ~which is independent ofi andk since all the pho-
tons have the same spectrum!. From Eq.~9! it follows that
the statistical error relative to the mean time of arrival^t& is

Dt*
Dt

AMN
~11!

with approximate equality forN@1.
Now compare this result with the one obtained from

quantum state which combines entanglement and pho
number squeezing. Define the stateuNv& the number-
9-2
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squeezed state of frequencyv in which all modes are in the
vacuum state, except for the mode at frequencyv, which is
populated by exactlyN photons. The entangled-squeez
state that allows us to achieve the most enhancement
the classical case is given by

uC&NM5E dv f~v!uNv&1¯uNv&M . ~12!

By choosing the same spectral functionf~v! of the state~7!,
the spectral characteristics of each of the channels of
stateuC&NM ~obtained by tracinguC&NM over all the other
channels! is the same as the classical state. Notice t
uC&NM is a frequency maximally entangled state: a measu
ment of the frequency of a single one of its photons will ha
a random outcome weighted by the probabilityuf(v)u2, but
will determine the frequency of all the other photons. Sin
the number of photons in each channel is fixed~N! and no
photons are lost (h51), the probabilityPM(t i ,k ;Ni) is null
for NiÞN, thanks to its normalization discussed previous
For Ni5N, insertinguC&NM in Eq. ~4!, it follows that

PM~ t i ,k ;N!}UgS (
i 51

M

(
k51

N

ti ,kDU2

, ~13!

where the property@ai(v8)#NuNv& j5d i j d(v2v8)AN! u0&
was employed~u0& being the normalized vacuum state! and
g(t) is the same as Eq.~10!. Equation~13! shows that the
entanglement in frequency translates into the bunching of
times of arrival of the photons of different pulses: althou
their individual times of arrival are random, the averageT
5(1/MN)S i ,kt i ,k of these times is highly peaked. Indee
from Eq. ~13! it follows that the probability distribution ofT
is ug(MNT)u2. This immediately implies that the averag
time of arrival ^t& is determined to an accuracy

Dt5
Dt

MN
, ~14!

whereDt is the same as Eq.~11!. This result shows aAMN
accuracy improvement over the classical case~11!. The
Margolus-Levitin theorem@12# implies that aAMN im-
provement in accuracy is the best that can be obtained@7#.
The role of the entanglement and the role of the squeezin
enhancing position measurements are separately address
Ref. @7#. It is shown that theAM enhancement derives from
the entanglement between the channels and theAN enhance-
ment from the number squeezing within each channel.

Notice that when the stateuC&NM is used, the results o
the single time-of-arrival measurement are meaningless:
necessary to make correlation measurements, i.e., in this
one must consider thesumof the times of arrival of all the
photons as in the quantityT. This implies that the geometr
of the problem that can be solved depends on the state
can be produced. The stateuC&NM , which is tailored as to
give the least indetermination in the physical quantityT, is
appropriate for the geometry of the case considered h
where all the detectors are in the same position and the
of the pulses’ time of arrival is needed. Other maxima
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entangled states have to be tailored for different geome
dispositions of the detectors@7#.

In conclusion, the suggested positioning protocol
quires: ~i! to produce and deploy the maximally entangl
state suited for the given disposition of the reference poi
~ii ! to measure the time of arrivalt i ,k of thekth photon in the
i th reference point, and~iii ! to collect and compare the re
sults in order to have the needed correlation measureme

B. Quantum cryptographic positioning

The accuracy enhancement over classical protocols is
the only reason that makes the use of quantum mecha
appealing in the positioning problem. In fact, one is a
offered the possibility of employing the ideas of quantu
cryptography in this context. In this section two differe
cryptopositioning protocols based on our scheme will
given. The aim is for Alice to learn her position in spa
relative to Bob~located at the detectors position!, without
anybody else gainingany information by intercepting neithe
the photons nor the classical information Alice and B
exchange.

The first protocol is essentially equivalent to a classi
protocol in which Alice sends Bob photons each of whi
she delayed by a random amount of time, which she does
disclose. From Bob’s random times of arrival she may
cover her position without anybody else~including Bob!
knowing it. In the quantum version given here, however,
accuracy for a fixed numberM of photons is increased ove
the classical version. This protocol allows only Alice to r
cover her position: nobody else~including Bob! will be able
to determine where she is. Consider for simplicity the case
the stateuC&NM with one photon per channel (N51), given
by

uC&en[E dv f~v!uv&1¯uv&M , ~15!

where uv&[u1v&. The extension to the general case
straightforward. This protocol is simply implemented by a
lowing Alice to detect the time of arrival of the photons
one of theM channels. She will send to Bob only the re
M21 photons. When Bob receives and measures them
will use a public channel to broadcast the measurement re
to Alice. As will be shown in Sec. II, the loss of a sing
photon results in not being able to recoverany information
on Alice’s position. Thus if an eavesdropper was to interc
the photons Alice sends to Bob~the eavesdropper need n
even bother: he only has to wait for Bob’s broadcast!, he
would obtain no information. Alice, on the other hand, sim
ply has to add the random times of arrival that Bob tells h
to the one she herself has measured. This allows her to
her position, with an uncertaintyDt5Dt/(M21), since she
only usedM21 photons for the positioning.

The second protocol allows both Alice and Bob to recov
their distance without anybody else discovering it. This p
tocol is analogous to the quantum-cryptographic key
change BB84@1#. Alice and Bob sharer copies of the state
uC&en of which, as before, Alice retains one photon a
9-3
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VITTORIO GIOVANNETTI, SETH LLOYD, AND LORENZO MACCONE PHYSICAL REVIEW A65 022309
sends Bob the remainingM21. For each of ther copies,
Alice and Bob choose randomly~and independently! to mea-
sure either the frequency or the time of arrival ofall the
photons. After that they compare which of the two ‘‘obser
ables’’ they used on each of ther copies they exchanged
they discard all the cases in which the two observables
not match, namely, Alice measured the frequency and B
the time of arrival or vice versa. For all the cases in wh
both of them measured the frequency, they broadcast
measurement results. Since the state is maximally entan
in frequency, their measurement outcomes~though random!
must agree. If this is not the case, they know that there is
eavesdropper, who is ruining the states that are trans
between them. If all the frequency-measurement outco
do agree, they can be confident that no one is measuring
photon time of transit in the channel. Once they have verifi
that no eavesdropper was present, Alice can broadcas
measurement results for half of the copies in which they b
measured the time of arrival and Bob can broadcast the m
surement results of the other half. From the information th
exchange, which is utterly useless for anybody else, b
Alice and Bob may recover Alice’s position. Of course
eavesdropper might be measuring the frequency of the
changed photons without being detected, but this will
give him any information on Alice’s position: he may on
succeed in ruining Alice and Bob’s exchange.

Notice that it is possible to modify this second protocol
include more complicated scenarios, such as the cas
which also other trusted persons may be allowed to le
Alice’s position, or~by suitably tailoring the entanglement o
the exchanged pulses! the case in which some of the truste
persons may learn Alice’s positiononly when they meet and
exchange their data, or the case in which Alice herself is
allowed to discover her own position, etc.

Finally, it is worth noticing that an implementation of th
cryptopositioning schemes described here can be achi
with the stateuC&en for M52, the practical realization o
which has been recently proposed in Ref.@13#.

II. LOSS ANALYSIS IN THE IDEAL CASE

In this section the problem of the loss is addressed.
loss of a single photon from a maximally entangled st
~such asuC&MN! makes it completely useless for positionin
since the information is encoded in the entanglement and
in the single photons. On the other hand, the loss of a sin
photon from a ‘‘classical’’ state~such asuC&cl! allows us still
to recover information on the time of arrival of the remaini
photons. Nonetheless, it will be shown that the the gain
accuracy obtained by using entangled photons vs un
tangled photons is quite robust against the loss. In Sec.
the conditions on the channel quantum efficiency that is n
essary to obtain an enhancement in the accuracy is der
First a simple argument is given, then a more rigorous
proach is discussed. In Sec. II B the effect of the loss on
state is studied in the density-matrix formalism.
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A. Condition on the quantum efficiency

One can understand the robustness to loss from the
lowing intuitive explanation~the rigorous derivation is given
in detail later!. For simplicity, consider the case of one ph
ton per channel (N51), comparing the entangled stateuC&en
given in Eq.~15! with its unentangled analogous~i.e., with
one photon per channel! given by

uC&un5 ^

i 51

M E dv if~v i !uv i& i , ~16!

which describesM uncorrelated single-photon pulses ea
with the same spectral functionf~v! of Eq. ~15!. Given the
channels’ quantum efficiencyh ~namely, 12h is the prob-
ability that one photon is lost!, the probability that allM
photons reach Alice is given byhM. Repeatingr @1 times
the whole experiment, a total numberrM of photons is sent.
In average only a fractionhM of the experimental runs will
not lose any photon. If Alice is employing the entangl
statesuC&en of Eq. ~15! ~i.e., the stateuC&NM with N51! to
evaluate the mean time of arrival^t&, she must only use the
data obtained from the experimental runs where all theM
photons of the state reach the detectors. As will be sho
the other cases in which some of the photons are lost
useless. The evaluation of the time-of-arrival accuracy
tained from ther experimental runs through Eq.~14! will
then be

Dt~r !5
Dt

MArhM
, ~17!

where the factor 1/ArhM stems from the statistical indepen
dence of different experimental runs. On the other hand
Alice employsr copies of the unentangledM photon state
uC&un defined in Eq.~16!, all of the hrM photons that in
average reach the detectors may be employed to evaluat
time of arrival with an accuracy

Dt~r !*
Dt

AhrM
, ~18!

where the equality holds forrM @1. The condition for
achieving a greater accuracy through the stateuC&en than
throughuC&un is given by

Dt

AhrM
.

Dt

MArhM
⇒ h.S 1

M D 1/~M21!

. ~19!

This condition is shown in Fig. 1. It is evident that relative
low values of quantum efficiencyh are sufficient for obtain-
ing the accuracy-increase feature also for high numbers
entangled photons.

The intuitive reasoning that yields the condition~19! must
be taken only as a qualitative demonstration, since Eq.~18!
is valid only for rM @1. Now the rigorous condition is de
rived. It turns out to be even more favorable to the entang
case, even though only a small correction to the condit
~19! is required. Equation~9! shows that, in the case of n
9-4



he

a

n

n
e

ed
r
un-

re-
for

ef-
nel

a
ary

s

si
ne

acy

s

e-

am
y.
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loss, using an unentangled stateuC&un, the probability dis-
tribution PM(t1 ,...,tM) of the time of arrival of theM pho-
tons is just the product of the probability distributions of t
times of arrival of the single photonsug(t)u2. Thus, if each
photon has a probabilityh of arriving and a probability 1
2h of being lost, then the probability of retainingm of the
initial M photons is given by the binomial distribution

Pm~ t1 ,...,tm!5S M
mD hm~12h!M2m

12~12h!M )
i 51

M

ug~ t i !u2. ~20!

In this case, the integral ofPm over all the times of arrival
t1 ,...,tm is the probability of retainingm of the M photons,
discarding the case in which all the photons are lost—
event that happens with probability (12h)M. In fact, in the
latter case no information on time of arrival is acquired a
this is the source of the renormalization factor 1/@12(1
2h)M# in Eq. ~20!. In particular, forh51 Eq. ~20! coin-
cides with Eq.~9!, namely,Pm(t1 ,...,tm)50 for mÞM . The
accuracy that may be obtained fromuC&un is given by the the
variance of the distribution given in Eq.~20!, i.e.,

Dt5F (
m51

M S M
mD hm~12h!M2m

m@12~12h!M#G
1/2

Dt. ~21!

If the experiment is repeatedr @1 times, in a fraction 1
2(12h)M of the photons at least one photon is received a
the accuracy that can be reached in each of these cas
given by Eq.~21!. Thus the overall accuracy for ther experi-
ments is

Dt~r !5F (
m51

M S M
mD hm~12h!M2m

m@12~12h!M#2G1/2
Dt

Ar
. ~22!

FIG. 1. Graph showing which values of quantum efficiencyh
are needed to achieve an accuracy increase with the entangled
uC&en of M photons over the unentangled stateuC&un of M photons.
The higher region is where a better accuracy may be obtained u
uC&en and the lower region is where a better accuracy is obtai
throughuC&un. The continuous line graphs the condition~19!. The
histogram is obtained by the more rigorous analysis of Eq.~23!. The
two conditions coincide forM@1.
02230
n
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Again, by comparing this variance with the one obtain
from the entangled case~17!, one finds the condition unde
which it is better to use entangled states with respect to
entangled ones, i.e.,

L[MF (
m51

M S M
mD hM1m~12h!M2m

m@12~12h!M#2 G1/2

.1, ~23!

which for M@1 coincides with condition~19!. The condi-
tion ~23! is plotted in Fig. 2.

B. Loss dynamical evolution

In this section the evolution of the states introduced p
viously is analyzed in the presence of loss. Also here,
simplicity, we analyze the caseN51 of one photon per
channel.

It can be shown@14# that a lossy channel of quantum
efficiencyh ~which also takes into account the detection
ficiency! can be described by considering a perfect chan
and inserting a beam splitter of transmissivityh. The second
input portb of the beam splitter is in the vacuum stateu0& and
one output port is traced out~refer to Fig. 3!.

This allows us to obtain the nonunitary evolution of
lossy channel. It can be shown that starting from the unit
evolution of the beam splitter

tate

ng
d

FIG. 2. Three-dimensional graph depicting the gain in accur
L(M ,h) vs the number of photonsM and the quantum efficiencyh.
The horizontal plane in the figure forL51 separates the region
where it is better to employuC&en ~over! anduC&un ~under!. Notice
the AM dependence forh51, which corresponds to the enhanc
ment discussed in Sec. I A.

FIG. 3. Description of a lossy channel mode through a be
splitter of transmissivityh equal to the channel quantum efficienc
9-5
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U5exp@2arctan~A$12h%/h!~ab†2a†b!# ~24!

~where the mode definition fora and b is given in Fig. 3!,
one obtains the following completely positive map for t
density-matrix evolution in the presence of loss:

%→%85Trb@U% ^ u0&b^0uU†#5 (
n50

`

Vn%Vn
† , ~25!

with

Vn5S 12h

h D n/2 an

An!
ha†a/2. ~26!

The case of frequency-independent loss is considered.
evolution~25! must be calculated for each mode of the co
tinuum of modes of the entangled and unentangled st
given, respectively, byuC&en defined in Eq.~15! and uC&un
defined in Eq.~16!. In the case of the density operator%en
5uC&en̂ Cu corresponding to the stateuC&en, it is possible
to show

%en8 5hM%en1 (
m50

M21

hm~12h!M2mE dvuf~v!u2

3@ uv&^vu ^ u0&^0u ^¯1u0&^0u ^¯#, ~27!

where u0&^0u is the vacuum state and the term in squa
brackets is the sum of all the (m

M) possible combinations ofm
times the stateuv&^vu and M2m times the vacuumu0&^0u.
The interpretation of Eq.~27! is that none of the photons i
lost and the state is unaffected with a probabilityhM, andm
photons are lost and the state is left in a mixture ofuv& and
u0& with probability (m

M)hm(12h)M2m. Since the second
term of the state~27! contains only density matrices diagon
in the uv& representation, it does not contain any informati
on the time-of-arrival measurement. In fact, the probabi
PM defined in Eq.~4! gives a ‘‘constant’’ probability if ap-
plied to the stateuv&^vu. Thus post-selection measuremen
are needed in this case: if Alice is expecting the stateuC&en,
she must throw away all the data coming from events
which she recorded less thanM photons. These events a
useless. As shown before, the fragility to loss is only app
ent, since the accuracy gain over the unentangled case is
enough so that it is possible to find a wide experimen
region in which the accuracy enhancement is preserved.

On the other hand, the evolution of the unentangled s
uC&un defined in Eq.~16!, %un5uC&un̂ Cu, is given by

%un8 5 (
m50

M

hm~12h!M2m

3@%1^ %2^¯1u0&^0u ^ %2^¯#, ~28!

where the term in square brackets contains the sum o
possible combinations ofm times the states% i and M2m
times the vacuumu0&^0u, and where
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% i5E dv dv8f~v!f* ~v8!uv& i^v8u, ~29!

which is a single-photon wave packet with spectral funct
f(v) in the i th channel, i.e., the state~16! for M51. Start-
ing from the state in Eq.~28! no post selection is necessa
~except the obvious case in which Alice does not receive
photon!, since all the terms are composed of the states of
form ~29!, which do retain time-of-arrival information.

The same analysis can be extended to the general ca
the stateuC&NM , showing that the loss of a single photo
destroys all the timing information.

III. TRADE-OFF ENTANGLEMENT vs LOSS RESISTANCE

In this section some strategies for battling the effects
the loss are presented. Instead of using the maximally
tangled states employed so far, one may devise strategie
using partially entangled states that turn out to be more
bust to the loss. The use of partially entangled states to
tect entangled atomic clocks from the effects of decohere
was noted in Ref.@4#. Here we show that partial entangle
ment can protect against loss while still retaining some of
quantum enhancement. A simple example to illustrate thi
first presented and a more sophisticated case is then ana
in detail.

It is well known ~see, for example,@15#! that when more
than two systems are entangled, a variety of different effe
can occur. Hence, in order to address the relation occur
between the degree of entanglement of a state and its
resistance, it is useful to start from a simple example. C
sider the case of one photon per channel (N51) where the
first Q of the M channels are maximally entangled as t
ones in the stateuC&en of Eq. ~15! and the otherM2Q
channels are unentangled as inuC&un of Eq. ~16!. The param-
eterQ characterizes the degree of entanglement of this st
bigger values ofQ correspond to higher entanglement. Co
sider first the case of unit quantum efficiency. It is easy
show through Eq.~4! that the accuracy in the determinatio
of ^t& follows as

Dt5
Dt

AM
AM2Q11

M
. ~30!

For Q.1 ~i.e., at least two of theM channels are entangled!,
the accuracy achievable is greater than the completely u
tangled case, but not as high as the completely entan
case. The loss of performance of this state is balanced
greater resistance to the effects of photon losses than
maximally entangled stateuC&en, for which the loss of a
single photon proves fatal. On the contrary, the loss of p
tons from the partially entangled state still allows us to
cover information if a suitable post selection is employe
Namely, one must discard all the times of arrival of the e
tangled photons if one or more of them is lost, but all t
times of arrival of the unentangled photons that do arrive
be safely retained.

This simple example shows how one can increase the
sistance to loss by reducing the entanglement, howeve
9-6
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the cost of achieving less accuracy enhancement. Of co
much more sophisticated configurations can be introdu
for entangling multiple systems@15#, in which the different
systems share a different degree of entanglement with al
other systems. It is expected that also in the general ca
similar trade-off between the degree of entanglement
resilience to loss holds. Depending on the quantum e
ciency of the channel and on the degree of entanglement
is able to produce, different strategies, involving differe
data processing or post selections, are possible. A bette
sight on this may be gained by analyzing the following e
ample, where a multistructured entanglement is employe

A procedure analogous to fault-tolerant quantum com
tation may be introduced in our scheme. Consider again
simple case of one photon in each of theM channels (N
51). Instead of sending the maximally entangled stateuC&en
of Eq. ~15!, Alice sends Bob a state in which groups ofK
photons are maximally entangled andG5M /K groups are
entangled together, as depicted in Fig. 4. If no photon is l
then one will not only be able to use the correlations with
all the groups, but also the correlationbetweenthe groups. In
the event of a photon loss, thanks to the structure of
entanglement employed, not all the information will be lo
as would happen when using the stateuC&en. In fact, sup-
pose that the lost photon comes from thej th group of pho-
tons: as will be shown, the only data that must be discar
is the data relative to thej th group photon times of arrival
All the other times of arrival may be retained and employ
The procedure can also be nested, namely, each of thG
groups ofK photons may be partitioned in maximally e
tangled subgroups and so on.

The state represented in Fig. 4 is given by

uC&G[E dV F~V!uV&1uV&2¯uV&G , ~31!

where

uV& j[E dv f~v,V!uv& j 1uv& j 2¯uv& jK ~32!

is the state of thej th group ofK photons described by th
one-photon frequency stateuv& j l for j 51, . . . ,G and l

FIG. 4. Quantum fault tolerance applied to the quantum po
tioning protocol. Each of theG groups of photons~which are fre-
quency entangled! is composed ofK frequency maximally en-
tangled photons.
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51, . . . ,K. Consider for simplicity the case of Gaussia
spectrum, namely,uF(V)u2 is a Gaussian with varianceDV2

and uf(v,V)u2 is a Gaussian centered aroundV with vari-
anceDv2. The stateuC&en can be obtained fromuC&G in the
limit Dv→0. SinceuV& j has the same structure ofuC&en, if
one photon is lost in thej th group all the time-of-arrival
information of such state must be discarded. Namely, o
the g groups in which no photons have been lost can be
employed for the positioning. In this case, using the st
uC&G in the ensemble average of Eq.~4!, the probability
density of detecting all thegK photons of theg groups at
times t j ,l is given by

PgK~ t j ,l !}expF2S (
j 51

g

(
l 51

K

t j ,l D 2Y ~2Dtg
2!G , ~33!

where t j ,l is the time of arrival of thel th photon in thej th
group and

Dtg5
Ag

2Dv
A~G2g!DV21Dv2

GDV21Dv2 . ~34!

Notice that Eqs.~33! and ~34! for Dv→0 andG5g repro-
duce the result derived previously in Eq.~9! for a Gaussian
spectrum withN51. Equation~33! shows that even ifG
2g groups are discarded because they lost some photons
remainingg groups still retain some entanglement. In fa
since theuV& j are not orthogonal forDv.0, the probability
PgK(t j ,l) does not factorize in parts depending on the sin
groups. The proportionality constant in Eq.~33! must be cho-
sen so that the integral ofPgK(t j ,l) over all the times gives
the probability that onlygK photons are detected, namely,

Pg[S G
g D ~hK!g~12hK!G2g

12~12hK!G , ~35!

wherehK is the probability that all the photons of a grou
reach the detectors, and where, analogously as in Sec.
the term 1/@12(12hK)G# is introduced to take into accoun
the case~to be discarded! in which all theG groups have lost
at least one photon.

If g of the G groups do not lose any photon, one m
estimate the mean time of arrival by calculating the me
value of S j l t j ,l /(gK). The accuracy may be estimated b
using the probability~33! obtaining

Dt5
1

2KDv F (
g51

G
~G2g!DV21Dv2

g~GDV21Dv2!
PgG1/2

. ~36!

As before—see Eq.~22!—when r @1 experimental runs are
performed, the accuracyDt(r ) that can be achieved is ob
tained from Eq.~36! by dividing Dt by the square root of the
number of usable runs, namely,r @12(12hK)G#.

In order to compare this result to what one would obta
in the unentangled case or in the maximally entangled c
one must employ the statesuC&en and uC&un with the same
single-photon spectral characteristics of the photons

i-
9-7



-

p
cy

tu

e

and
phic
d in
e-

as
dif-

ugh
f a
be
ous
re-

re-

lse-
is
gle-

ro-
in-
the

O

tum

s
all

ive

n-
p-

VITTORIO GIOVANNETTI, SETH LLOYD, AND LORENZO MACCONE PHYSICAL REVIEW A65 022309
uC&G . This can be achieved by using inuC&en and uC&un a
Gaussian spectrum with varianceDv21DV2: namely,Dt
51/(2ADv21DV2). An example of the comparison be
tween the performance ofuC&un and uC&G when using such
a coding scheme is given in Fig. 5, where the grou
entangled stateuC&G is shown to achieve a better accura
than a nonentangled stateuC&un. Notice that the accuracy
enhancement feature can be retained also for low quan
efficiency even when a high numberM of particles is in-
volved. A comparison between the accuracy enhancem
obtainable with the statesuC&en, uC&un, anduC&G is shown
in Fig. 6.

FIG. 5. Robustness to loss of the state~31!. Upper graph: The
upper part of the graph shows for which values of the quan
efficiencyh and of the total number of photonsM one does better
by using the stateuC&G ~with K54 andDv2/DV252! as com-
pared to the unentangled stateuC&un. The dotted line is the same a
in Fig. 1 and shows the region where it is better to use maxim
entangled statesuC&en as compared to unentangled onesuC&un.
Lower graph: The same information as the previous graph is g
plotted vs the number of photon groupsG, but showing also the
accuracy gain over the unentangled case.
ev
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CONCLUSION

In this paper, a scheme that employs entanglement
squeezing to achieve a higher accuracy and cryptogra
capabilities in position measurement has been analyze
detail. The positioning quantum-cryptographic protocol d
scribed allows only trusted parties~and no one else! to dis-
cover their relative positions. The sensitivity to the loss h
been addressed by presenting a quantitative analysis of
ferent strategies to contrast it. One finds that, even tho
the system is, in principle, very sensitive to the loss o
single photon, there are many situations where it may still
employed with an accuracy enhancement over the analog
classical schemes. It has been shown that relaxing the
quirements of having maximally entangled states in f
quency, one can achieve greater resistance to losses.

An interesting feature, which has been analyzed e
where @16#, is also present in our proposal. Namely, it
possible to exploit the robustness of the frequency entan
ment when the pulses travel through dispersive media@17#.
This may be used to achieve positioning and clock synch
nization of distant parties without being affected by the
termediate dispersion that would distort any timing signal
parties exchange.
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FIG. 6. The upper white region is where the maximally e
tangled stateuC&en achieves a better accuracy than the grou
entangled stateuC&G and than the unentangled stateuC&un ~in brief,
en.G.un!. The striped region is whereG.en.un, the light-
gray region is whereG.un.en, and the dark-gray region is
where un.G.en. The parameters for this plot areK52 and
Dv2/DV252.
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