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Quantum mechanics gives stability to a Nash equilibrium
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We consider a slightly modified version of the rock-scissors-pédR&P game from the point of view of
evolutionary stability. In its classical version the game has a mixed Nash equililfN&nnot stable against
mutants appearing in small numbers. We find a quantized version of the RSP game for which the classical
mixed NE becomes stable.
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. INTRODUCTION playingv. Strategyu is an ESS if for any alternative strategy

] . v, the following two requirements are satisfied:
Long played as a children’s pastime, or as an odd-man-out

selection process, the rock-scissors-pafit8P game is a Plu,u]=P[v,u], (2
game for two players typically played using the players’ ]
hands. The two players opposing each other, tap their fist, ignd in the cas€[u,u]=P[v,u],
their open palms three timdsaying rock, scissors, paper
and then show one of three possible gestures. The rock wins PLuv]>Plv,v] ®
against the scissofsrushes itbut loses against the papés  Requirement(?2) is in fact the Nash condition and says that
wrapped into it. The scissors wins against the pagarts i)  no single individual can gain by unilaterally changing his/her
but loses against the rodls crushed by it The paper wins  strategy fromu to v. An ESS is in fact a stable Nash equi-
against the rockwraps iy but loses against the scissdis  |ibrium (NE) in a symmetric game and its stability is against
cut by it). a small group of mutante,3].

In a slightly modified version of the RSP game both play- A straight analysis of the modified RSP game of matrix
ers get a small premiune for a draw. This game can be (1) shows that playing each of the three different pure strat-

represented by the following payoff matrix: egies with a fixed equilibrial probabilityt constitutes a
mixed NE. However it is not an ESS becausé negative
R S P [3].
R —¢ 1 -1 In an earlier papef4] we showed that in the quantized

S -1 - 1| (1) yersion_ of certain asymmetric games between two pla_lyers, it
is possible to make appear or disappear an ESS that is a pure
P 1 -1 -—e strategy NE by controlling the initial state used to play the
game. Because a classical game is embedded in its quantized
where —1<e<0. The matrix of the usual game is obtained form, therefore, it is possible that a pure strategy NE remains
whene is zero in the matrix1). intact in both classical and certain quantized forms of the
One cannot win if one’s opponent knew which strategysame game but is an ESS in only one form. Later we pre-
was going to be picked. For example, picking rock consissented an examplgs] of a symmetric game between two
tently, all the opponent needs to do is pick paper and helayers for which a pure-strategy NE is an ESS in the clas-
would win. Players find soon that in case predicting oppo-sical version of the game but not so in a quantized form even
nent’s strategy is not possible, the best strategy is to pickvhen it remains NE in both versions. This is more relevant
rock, scissors, or paper at random. In other words, the playesecause the idea of an ESS was originally defined for sym-
selects rock, scissors, or paper with a probability.dh case  metric contests. We also showg@] that mixed strategy
opponent’s strategy is predictable, picking a strategy at ranESSs can be related to entanglement and can be affected by
dom with a probability ofy is not the best thing to do unless quantization for three-player games. However this is not the
the opponent is doing the sarfif. case for two-player games when the quantum state is in a
We explore evolutionarily stable strategiesSS$ in a  simpler form proposed by Marinatto and WelistW) [7] in
quantized RSP game in its modified form. Originally definedtheir scheme to quantize a two-player game in the normal
by Smith and Pricd2] as a behavioral phenotype, an ESSform.
cannot be invaded by a mutant strategy when a population is MW [7] expanded on the scheme proposed by Eisert,
playing it. A mutant strategy does things in different waysWwilkens, and Lewensteif8] for the game of prisoner’s di-
than most of a population does. Smith and Price consideredlamma. They showed that the dilemma does not exist in a
symmetric game where the players are anonymous. Lejuantum version of the game. The motivation of MW was to
P[u,v] be the payoff to a player playingagainst the player remove the need of an unentangling gate in the scheme of
Eisertet al.[9,10]. In our effort to extend the ideas of evo-
lutionary game theory toward quantum games we found
*Email address: qubit@ish.paknet.com.pk MW'’s scheme more suitable for the following reasons.
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(@) In the usual setup of a symmetric bimatrix evolution- The final density matrix after Bob too has played his strategy
ary game, two pure strategies are assumed such that playess
can play a mixed strategy by their probabilistic combination.
In a similar way, players in MW'’s scheme can play a mixed AB
strategy b_y applying the two _u_nitary operators in their pos- pr=(1—q—qy)l BPQ' EJFQCBPQCEJF qlDBpi/;D’é, (6)
session with classical probabilities that are both non-zero.

(b) The usual definition of “fitness” of a mixed strategy in ;g density matrix can be written as
evolutionary gameg$l] can be given a straight-forward ex-
tension in MW'’s schem@4]. It is done when in the quantum e
o out of o o that & player uses Only, — (1 —p—p,)(1-q—aqu{l e lapl 215}

(c) The theory of ESSs in evolutionary game theory is +p(1—q—01){Ca® I gpinCh® 1 5} + p1(1—q—10y)
developed mostly for situations when players are anonymous
and possess a discrete number of pure strategies. We find that X{D,®I Bme;&® | TB}+ (1-p—py)af{la® CBmeL
the ESS idea can be extended towards quantum settings more + f N
easily in MW’s scheme than in the scheme of Eisatral. ®Cg}+PACA® CppinCa® Ca} + P1a{Da® CpinDa

involving a continuum of the pure strategies that players N 1_p_ TeD i
have as an option to play. The idea of an ESS as a stable ®Ca} (1P~ P1)Ax{la® Depinl a® D} + Pei{Ca

equilibrium is confronted with problems when players have ®@DgpinCA® DL} +p101{DA® DgpinD A\@ DL} 7
an access to a continuum of pure stratedids.

In this paper we want to extend our previous results re
garding effects of quantization on evolutionary stability for a
modified version of .the RSP game. This game is d|fferenw32>' and|33). Setting the initial quantum state to the follow-
because now classically each player possesses three Py general form:
strategies instead of two. A classical mixed NE exists that is '
not an ESS. Our motivation is to explore the possibility that
the classical mixed NE becomes zr:n ESS f(F))r someyinitial |in) = €1l 11) + €12 12) €19 13) + €21  21) + €5/ 22)
quantum state. We show that such a quantum state not only +323) + 39| 31) + €55/ 32) + 34 33) (8)
exists but is also easy to find.

The basis vectors of initial quantum state with three pure
classical strategies at&l), |12), |13), |21), |22), |23), |31),

with normalization
Il. QUANTIZED RSP GAME

Using simpler notationR~ 1,5~2,P~3, we quantize this |42+ |C152+|C132+]|Cot| 2+ |Cag 2+ ]| Cog 2+ | Caq| 2+ ]| Cad?
game via MW’s schemg7]. We allow the two players to be
in possession of three unitary operattr<, andD defined
as

+]cad?=1 9
and writing payoff operators for Alice and Bob B&|
I[1)=[1), C[1)=[3), DI[1)=[2),
||2>:|2>, C|2>=|2>, D|2>=|1>, (PA,B)oper.:(avﬂ)11|11><11|+(a1:8)12|12><12|
+(a@,8)13d13)(13 + (@, B)1/21)(2]]
+(a@,8)2222)(22 + (@, B) 3 23)(23

113)=13), C[3)=[1), DI3)=[3),
whereC'=C=C™!, D'=D=D"1, andl is identity opera-

tor. We also start with a general payoff matrix for two play- +(@,B)31l31)(31+ (@, )32 32)(32]
ers, Alice and Bob, each having three strategies,
g 9 + (@, )3d33)(33; (10
1 2 3
1 ' ’ ' the payoffs to Alice or Bob can be obtained by taking a trace
(@11,811) (@12,B12) (@13,B13 | 2 B
2 (a1.B2) (22,820 (az3B2) of [(Pa.g)oper] pr, i-€.[7],
3 (as1,B3) (asz,B3) (assfB3)
. . A,B
where «;; , Bj; are payoffs to Alice and Bob, respectively, Pas=tr{(Pag)opert P1}- (12)

where Alice pays and Bob playg and 1<i,j=<3. Suppose
Alice and Bob apply operatoS, D, andl with probabilities
p, P1, (1—p—p1) G, 91, and (1-gq—q), respectively. Let
us represent the initial state of the gamedyy. After Alice -
plays her strategy, the state changes to Pa=20Y", (12

Payoff to Alice, for example, can be written as

pin=(1=p=p)l apinl A+ PCaPinCA+P1DAPiDA- (5)  whereT is for transpose and the matricés O, andY are
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O=[(1-p—py)(1—9—qy) p(l1-9g—q;) pi(l-g-qy) ((A-p—p)d pg pg
(1=p—p1d:s P4 P01l

Y=[ay @ a3 ax axn axn az azp  agl,

Meul® lewd® led® leal® lead® lead® leadl® lesd® [esd®T
leal® [esd® lead® lcad® feod® lead® fewl® leid® lcad?
lc2d?® le2d® ead® fewl® [e1d® [cad® ead® ead®  [eagl?
lcd?® lead® lenl® fed® [e2d® [c2d® lead?® ead® feayl?

Q= lcad® lcad® leal® lcad® lcad® leadl® leid® leid® leud® . (13

lcad® lcad® lcadl® leid® leid® leudl® lead® lcsd® [cadl?

lcid® feul® led® [ead® leal® lcad® fesd® eal® Icsd®
lcad?® leadl® Jead® [eod® [eal® [c2d?® ead® eadl® fegg?

.|‘322|2 leul® e [cid? [eqd?® [cigd® Jead®  [cal? |033|2.

JP
ap p=q=p* (p*_p)+_ p=q=p* (p;_c_pl) =0.

an exchange of strategies by Alice and Bob also exchanges p

their respective payoffs, the game is said to be symmetric. Py =0y =p% 1 Py =0y =p¥

The idea of evolutionary stability in mathematical biology is (15)

generally considered in symmetric contests. In a symmetric o

contest, payoff to a player is then defined by his strategy ani/Sing substitutions

not by his identity. Payoffs in a classical mixed strategy IC1y2—|Cayl2=A ICoyl2—|cya2=A"

game can be obtained from Ed.1) when the initial state is PR ot

|y =]11) and the game is symmetric whes = 8;; in the |Cl3|2_ |C33|2:A2' |022|2_ |C12|2:A 2 (16

matrix (4). Similarly the quantum game played using the |c1al®—csal*=A3, [Cogl®—[c1g*=A"35

general quantum state of E) becomes symmetric when

|cij|?=|c;i|? for all constants:;; in the initial quantum state

of Eq. (8). This condition should hold along with the require- »p

menta;; = B;; on the matrix(4). The payoff to Alice or Bob, P

i.e.,P,, Pg then not need a subscript and we can use &nly
We now come to the question of evolutionary stability in

this quantized version of the RSP game. +pT (A= Ax){(a11+ azp) — (@t azy)}

This payoff is for the general matrix given in E@). In case { IP

we get

p=q=pr =P (A1=A){(a11+ ags) — (@13t azy)}
P1=01=P,

—Ai(a1—agr) —Ax(ai3— ags)
Ill. EVOLUTIONARY STABILITY IN THE QUANTIZED
RSP GAME —Az(a—azp) (17

We define a strategy by a pair of numbesd;) when JP B , ,
players are playing the quantized RSP game. It is understoodyp| P=a=p* ~ P* (A= ApD{(@11+ azs) — (a3t @1)}
that the identity operator is then, applied with probability 1 P1=01=P,
—p—p;- Similar to the requirements in Eq®) and(3), the AT AT _
conditions for making a strategypt ,p*) an ESS can now +p1 (A= AD{(ar1t azp) = (@12F @z1)}

be written[2,3] as +Aj(an—axtAj(a,—az))

*Y (nE pk - +AZ - . 18
(1) P{(p*.p}).(p*.p})}>P{(p.p0).(P*.P)}, slea” aza) 18
For the matrix(1) the above equations can be written as
(2) if P{(p*,p1).(p*,pT)}=P{(p,ps),(p*,pT)} P .
(9—p1 piqu**zAl{—ZGP*—(:g'f'f)pl +(1+E)}
thenP{(p*,p}).(p.p0)}>P{(p.p0).(P.P1)}. (19 PR
+A{2ep* +(1—€)} +Az{(3+€)p] —2},
Suppose (*,p7) is a mixed NE, then (19
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JP forms a mixed NE because the conditions given by 8)
apg| p-a-p* =A{—p*(3—€)+2epT +(1—¢€)} hold true for it. However the payoff difference of EQ2) is
' py=0d;=p] now given below when-1<e<0 andx, y#0,
—A{2ep] —(1+e)}+A5{(3—€)p* -2} P{(p*,p1).(p.p1)} = P{(P,p1).(P.P1)}
(20) =—€{(x+y)?+ (x2+y?)}>0. (27)
Also the payoff difference in the second condition of an ESSrTherefore, the mixed Nash equilibriupt = p¥ =1 not ex-
given in Eq.(14) reduces to isting as an ESS in the classical form of this modified RSP
- game becomes an ESS when the game is quantized and
P{p*.p1).(p.p1)} —P{(P.P1),(P.P1)} played using the initial entangled quantum state given by Eq.
PNV (34— (14 (26).
(p* =PI~ As{2ep+ (3t e)p—(1+€)} Note that from Eq(11) the payoff sum to Alice and Bob
+A{2ep+(1—e€)}+A5{(3+€)p1—2}] P,+Pg can be obtained for both the classical mixed-
. ) strategy game(i.e., |¢in)=|11)) and the quantum game
+(p1 —p)[—A{(3—€)p,—2ep1—1—¢€)} played using the quantum state of Eg6). For the matrix

(1) we write these sums aPg+ Pg)y and (Pa+ Pg)q, for
classical mixed-strategy and quantum games, respectively,
and find

—Ax{2ep;—(1+ )} +Asz{(3—e)p—2}]. (21)

With the substitutiong* —p=x andp} —p,=Y, the above
payoff difference is (PatPg)a=—2€{(1=p—p1)(1~q—ds)+p1qs+pa}

P{(p*.p}),(p,P1)} — P{(p,P1),(P,P1)} | @8
=Ax{2ex+ (34 €)y} — Ap(2ex?) — Agxy(3+€) an
— Afy{2ey—(3— X} +A)(2ey?) —Axy(3— ) (22) (PatPelav=—{z(PatPe)at e} @9

In case e=0 both the classical and quantum games are
clearly zero sum. For our slightly modified version of the
oP P RSP game we have-1<e<0 and both versions of the

_ = I = ame become nonzero sum.
Jp| p=a=p* 0, dp,| P=a=p* 0. (23 9
P1=0;=P] P1=0;=P7

provided

IV. DISCUSSION

Th*e c*ondltlons_ in Eq(23) togethgr define the rmxed NE Game-theoretical modeling of interactions between living
(p*,p1). Consider now the rr210d|fled RSP game in classicaly qanisms in the natural world has been developed mostly
form obtained by settingc,,|°=1 and all the rest of the ring the last three decades. Use of matrix games is quite
constants to zero. The Eq23) now become common in areas such as theoretical and mathematical biol-
ogy. The RSP game that we investigate in the present paper
is also played in nature like many other games. Lizards in the
coast range of California play this game using three alterna-
(—e+3)p* —2epi +(e—1)=0, (24 tive male strategies locked in an ecological never-ending
k1 . . process from which there seems little escape. On the other
and p* =p1 =3 is obtained as a mixed NE for the whole hang, the recently developed quantum game theory has been

—2ep* —(e+3)p] +(e+1)=0,

range—1<e<0. From Eq.(22) we get shown to find applications in quantum informatigh2].
- Though there is no evidence yet, the possibility of quantum
P{(p*,p1).(p,p1)} = P{(pP,p1),(p,P1)} games being played at molecular level was hinted by Dawk-
=26(x2+y2+xy) ins [13]. Trying to find the relevance of ideas from popula-

tion biology in quantum settings is something that we call an
=e{(x+Yy)?+ (x>+y?)}=<0. (250 inspiration from Dawkins’s ideas.
The possibility of quantum mechanics playing a more di-
In the classical form of the RSP game, therefore, the mixedect role in life than binding together atoms has attracted
NE p*=pj =3 is a NE but not an ESS because the secondnuch attentiorf14,15. Quantum mechanics “fast tracking”

condition of ESS given in Eq14) does not hold. a chemical soup to states that are biological and complex is
Define now a new initial state as follows: an idea about which physicists from many areas have ex-
pressed opinions and the debate still continues. Supersym-

[in)=2{112)+]21) +[13)+|31)} (26)  metry in particle physics giving a unified description of fer-

_ _ _ mions and bosons has also been suggested to provide an
and use it to play the game instead of the classical gamexplanation of coding assignments in genetic cfii. Pa-

obtained from|#;,)=|11). The strategyp* =p; =3 still  tel's idea of quantum dynamics having a role in the DNA
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replication is another interesting suggestidrY]. Quantum evolutionary point of view is an example where “stability”
game theory{18,18 can also have possibly interesting con- comes to a classical NE when players revert to quantum
tributions to make towards attempts to understand the role ditrategies. The “stability” is with respect to an invasion by
quantum mechanics in life. mutants appearing in small numbers. This stability of NE
Mathematical biologists have successfully developedtoming out of quantization can have a relevance in all the
mathematical models of evolution, especially, after attentionnree situations indicated above.
was diverted to game-theoretical models of evolutj8h
and the idea of an ESS became central in evolutionary game
theory: The central idea of evolut_ion, ie., 'survival of the V. CONCLUSION
fittest is formulated as a mathematical algorithm known as a
replicator dynamic. We suggest that recent progress in quan- We explored evolutionary stability in a modified rock-
tum game theory allows evolutionary ideas to enter and havscissors-paper quantum game. We showed that a mixed-
a role in situations generally believed to lie in the domain ofstrategy NE, not an ESS in the classical version of the game,
guantum mechanics. This combination of evolutionary ideagan be made an ESS when the two players play instead a
in quantum settings is interesting from several perspectiveguantum game by using a selected form of the initial quan-
Quantum considerations in the evolution of genetic code antum state on which they apply unitary operators in their pos-
genetic algorithms in which replicators receive their payoffssession. Quantum mechanics, thus, gives stability to a clas-
via guantum strategies are two cag@kwhere evolutionary sical mixed NE against invasion by mutants. Stability against
ideas can be incorporated in quantum gamelike situationgnutants for a mixed classical NE can be made to disappear
Another possible relevance is the competing chemical readn certain types of three-player symmetric games when play-
tions in life molecules treated as players in a game. A win-ers decide to resort to quantum strategj€3. Stability
ning chemical reaction corresponding to life hints a role ofagainst mutants in pairwise contests coming as a result of
guantum mechanics because quantum strategies have begmantum strategies have been shown a possibility for pure
recently shown to be more effective than their classical counstrategies in certain types of symmetric ganék Our re-
terparts[7, 8]. sults imply that the selected method of quantizafighcan
The population approach borrowed from evolutionarybring stability against mutants to a classical mixed NE in
game theory with its central idea of an ESS combined withpairwise symmetric contests when the classically available
recent developments in quantum game theory provides a nemumber of pure strategies to a player is increased to three
approach to certain questions relating to role of quantunfrom two. A behavior of mixed NE different from pure NE is
mechanics in life. The analysis of the RSP game from thelso observed in relation to quantization.
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