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Quantum mechanics gives stability to a Nash equilibrium
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~Received 18 April 2001; published 4 January 2002!

We consider a slightly modified version of the rock-scissors-paper~RSP! game from the point of view of
evolutionary stability. In its classical version the game has a mixed Nash equilibrium~NE! not stable against
mutants appearing in small numbers. We find a quantized version of the RSP game for which the classical
mixed NE becomes stable.
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I. INTRODUCTION

Long played as a children’s pastime, or as an odd-man
selection process, the rock-scissors-paper~RSP! game is a
game for two players typically played using the playe
hands. The two players opposing each other, tap their fis
their open palms three times~saying rock, scissors, pape!
and then show one of three possible gestures. The rock
against the scissors~crushes it! but loses against the paper~is
wrapped into it!. The scissors wins against the paper~cuts it!
but loses against the rock~is crushed by it!. The paper wins
against the rock~wraps it! but loses against the scissors~is
cut by it!.

In a slightly modified version of the RSP game both pla
ers get a small premiume for a draw. This game can b
represented by the following payoff matrix:

S R S P

R 2e 1 21

S 21 2e 1

P 1 21 2e

D , ~1!

where21,e,0. The matrix of the usual game is obtaine
whene is zero in the matrix~1!.

One cannot win if one’s opponent knew which strate
was going to be picked. For example, picking rock cons
tently, all the opponent needs to do is pick paper and
would win. Players find soon that in case predicting opp
nent’s strategy is not possible, the best strategy is to p
rock, scissors, or paper at random. In other words, the pla
selects rock, scissors, or paper with a probability of1

3. In case
opponent’s strategy is predictable, picking a strategy at r
dom with a probability of13 is not the best thing to do unles
the opponent is doing the same@1#.

We explore evolutionarily stable strategies~ESSs! in a
quantized RSP game in its modified form. Originally defin
by Smith and Price@2# as a behavioral phenotype, an ES
cannot be invaded by a mutant strategy when a populatio
playing it. A mutant strategy does things in different wa
than most of a population does. Smith and Price consider
symmetric game where the players are anonymous.
P@u,v# be the payoff to a player playingu against the player
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playingv. Strategyu is an ESS if for any alternative strateg
v, the following two requirements are satisfied:

P@u,u#>P@v,u#, ~2!

and in the caseP@u,u#5P@v,u#,

P@u,v#.P@v,v#. ~3!

Requirement~2! is in fact the Nash condition and says th
no single individual can gain by unilaterally changing his/h
strategy fromu to v. An ESS is in fact a stable Nash equ
librium ~NE! in a symmetric game and its stability is again
a small group of mutants@2,3#.

A straight analysis of the modified RSP game of mat
~1! shows that playing each of the three different pure st
egies with a fixed equilibrial probability1

3 constitutes a
mixed NE. However it is not an ESS becausee is negative
@3#.

In an earlier paper@4# we showed that in the quantize
version of certain asymmetric games between two player
is possible to make appear or disappear an ESS that is a
strategy NE by controlling the initial state used to play t
game. Because a classical game is embedded in its quan
form, therefore, it is possible that a pure strategy NE rema
intact in both classical and certain quantized forms of
same game but is an ESS in only one form. Later we p
sented an example@5# of a symmetric game between tw
players for which a pure-strategy NE is an ESS in the cl
sical version of the game but not so in a quantized form e
when it remains NE in both versions. This is more releva
because the idea of an ESS was originally defined for s
metric contests. We also showed@6# that mixed strategy
ESSs can be related to entanglement and can be affecte
quantization for three-player games. However this is not
case for two-player games when the quantum state is
simpler form proposed by Marinatto and Weber~MW! @7# in
their scheme to quantize a two-player game in the nor
form.

MW @7# expanded on the scheme proposed by Eis
Wilkens, and Lewenstein@8# for the game of prisoner’s di-
lemma. They showed that the dilemma does not exist i
quantum version of the game. The motivation of MW was
remove the need of an unentangling gate in the schem
Eisertet al. @9,10#. In our effort to extend the ideas of evo
lutionary game theory toward quantum games we fou
MW’s scheme more suitable for the following reasons.
©2002 The American Physical Society06-1



n-
y
n

ed
os
.

n
-

o

is
o
t

m

er
ab
ve

re
r a
en
p
t
a

itia
on

y-

y,

gy

ure

-

ce

A. IQBAL AND A. H. TOOR PHYSICAL REVIEW A 65 022306
~a! In the usual setup of a symmetric bimatrix evolutio
ary game, two pure strategies are assumed such that pla
can play a mixed strategy by their probabilistic combinatio
In a similar way, players in MW’s scheme can play a mix
strategy by applying the two unitary operators in their p
session with classical probabilities that are both non-zero

~b! The usual definition of ‘‘fitness’’ of a mixed strategy i
evolutionary games@1# can be given a straight-forward ex
tension in MW’s scheme@4#. It is done when in the quantum
game, playing a pure strategy means that a player uses
one unitary operator out of the two.

~c! The theory of ESSs in evolutionary game theory
developed mostly for situations when players are anonym
and possess a discrete number of pure strategies. We find
the ESS idea can be extended towards quantum settings
easily in MW’s scheme than in the scheme of Eisertet al.
involving a continuum of the pure strategies that play
have as an option to play. The idea of an ESS as a st
equilibrium is confronted with problems when players ha
an access to a continuum of pure strategies@11#.

In this paper we want to extend our previous results
garding effects of quantization on evolutionary stability fo
modified version of the RSP game. This game is differ
because now classically each player possesses three
strategies instead of two. A classical mixed NE exists tha
not an ESS. Our motivation is to explore the possibility th
the classical mixed NE becomes an ESS for some in
quantum state. We show that such a quantum state not
exists but is also easy to find.

II. QUANTIZED RSP GAME

Using simpler notation,R;1,S;2,P;3, we quantize this
game via MW’s scheme@7#. We allow the two players to be
in possession of three unitary operatorsI, C, andD defined
as

l u1&5u1&, Cu1&5u3&, Du1&5u2&,

I u2&5u2&, Cu2&5u2&, Du2&5u1&,

I u3&5u3&, Cu3&5u1&, Du3&5u3&,

whereC†5C5C21, D†5D5D21, andI is identity opera-
tor. We also start with a general payoff matrix for two pla
ers, Alice and Bob, each having three strategies,

F 1 2 3

1 ~a11,b11! ~a12,b12! ~a13,b13!

2 ~a21,b21! ~a22,b22! ~a23,b23!

3 ~a31,b31! ~a32,b32! ~a33,b33!

G , ~4!

where a i j , b i j are payoffs to Alice and Bob, respectivel
where Alice paysi and Bob playsj and 1< i , j <3. Suppose
Alice and Bob apply operatorsC, D, andI with probabilities
p, p1 , (12p2p1) q, q1 , and (12q2q1), respectively. Let
us represent the initial state of the game byr in . After Alice
plays her strategy, the state changes to

r in
A5~12p2p1!I Ar inI A

†1pCAr inCA
†1p1DAr inDA

† . ~5!
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The final density matrix after Bob too has played his strate
is

r f

A,B

5~ I 2q2q1!I Br in
AI B

†1qCBr in
ACB

†1q1DBr in
ADB

† . ~6!

This density matrix can be written as

r f

A,B

5~12p2p1!~12q2q1!$I A^ I Br inI A
†

^ I B
†%

1p~12q2q1!$CA^ I Br inCA
†

^ I B
†%1p1~12q2q1!

3$DA^ I Br inDA
†

^ I B
†%1~12p2p1!q$I A^ CBr inI A

†

^ CB
†%1pq$CA^ CBr inCA

†
^ CB

†%1p1q$DA^ CBr inDA
†

^ CB
†%1~12p2p1!q1$I A^ DBr inI A

†
^ DB

†%1pq1$CA

^ DBr inCA
†

^ DB
†%1p1q1$DA^ DBr inDA

†
^ DB

†%. ~7!

The basis vectors of initial quantum state with three p
classical strategies areu11&, u12&, u13&, u21&, u22&, u23&, u31&,
u32&, andu33&. Setting the initial quantum state to the follow
ing general form:

uc in&5c11u11&1c12u12&1c13u13&1c21u21&1c22u22&

1c23u23&1c31u31&1c32u32&1c33u33& ~8!

with normalization

uc11u21uc12u21uc13u21uc21u21uc22u21uc23u21uc31u21uc32u2

1uc33u251 ~9!

and writing payoff operators for Alice and Bob as@7#

~PA,B!oper.5~a,b!11u11&^11u1~a,b!12u12&^12u

1~a,b!13u13&^13u1~a,b!21u21&^21u

1~a,b!22u22&^22u1~a,b!23u23&^23u

1~a,b!31u31&^31u1~a,b!32u32&^32u

1~a,b!33u33&^33u; ~10!

the payoffs to Alice or Bob can be obtained by taking a tra

of @(PA,B)oper.# r
A,B

f , i.e. @7#,

PA,B5tr$~PA,B!oper.% r
A,B

f%. ~11!

Payoff to Alice, for example, can be written as

PA5FVYT, ~12!

whereT is for transpose and the matricesF, V, andY are
6-2
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F5@~12p2p1!~12q2q1! p~12q2q1! p1~12q2q1! ~12p2p1!q pq p1q

~12p2p1!q1 pq1 p1q1#,

Y5@a11 a12 a13 a21 a22 a23 a31 a32 a33#,

V53
uc11u2 uc12u2 uc13u2 uc21u2 uc22u2 uc23u2 uc31u2 uc32u2 uc33u2

uc31u2 uc32u2 uc33u2 uc21u2 uc22u2 uc23u2 uc11u2 uc12u2 uc13u2

uc21u2 uc22u2 uc23u2 uc11u2 uc12u2 uc13u2 uc31u2 uc32u2 uc33u2

uc13u2 uc12u2 uc11u2 uc23u2 uc22u2 uc21u2 uc33u2 uc32u2 uc31u2

uc33u2 uc32u2 uc31u2 uc23u2 uc22u2 uc21u2 uc13u2 uc12u2 uc11u2

uc23u2 uc22u2 uc21u2 uc13u2 uc12u2 uc11u2 uc33u2 uc32u2 uc31u2

uc12u2 uc11u2 uc13u2 uc22u2 uc21u2 uc23u2 uc32u2 uc31u2 uc33u2

uc32u2 uc31u2 uc33u2 uc22u2 uc21u2 uc23u2 uc12u2 uc11u2 uc13u2

uc22u2 uc21u2 uc23u2 uc12u2 uc11u2 uc13u2 uc32u2 uc31u2 uc33u2

4 . ~13!
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This payoff is for the general matrix given in Eq.~4!. In case
an exchange of strategies by Alice and Bob also exchan
their respective payoffs, the game is said to be symme
The idea of evolutionary stability in mathematical biology
generally considered in symmetric contests. In a symme
contest, payoff to a player is then defined by his strategy
not by his identity. Payoffs in a classical mixed strate
game can be obtained from Eq.~11! when the initial state is
uc in&5u11& and the game is symmetric whena i j 5b j i in the
matrix ~4!. Similarly the quantum game played using t
general quantum state of Eq.~8! becomes symmetric whe
uci j u25ucji u2 for all constantsci j in the initial quantum state
of Eq. ~8!. This condition should hold along with the requir
menta i j 5b j i on the matrix~4!. The payoff to Alice or Bob,
i.e., PA , PB then not need a subscript and we can use onlyP.

We now come to the question of evolutionary stability
this quantized version of the RSP game.

III. EVOLUTIONARY STABILITY IN THE QUANTIZED
RSP GAME

We define a strategy by a pair of numbers (p,p1) when
players are playing the quantized RSP game. It is unders
that the identity operator is then, applied with probability
2p2p1 . Similar to the requirements in Eqs.~2! and~3!, the
conditions for making a strategy (p* ,p1* ) an ESS can now
be written@2,3# as

~1! P$~p* ,p1* !,~p* ,p1* !%.P$~p,p1!,~p* ,p1* !%,

~2! if P$~p* ,p1* !,~p* ,p1* !%5P$~p,p1!,~p* ,p1* !%

thenP$~p* ,p1* !,~p,p1!%.P$~p,p1!,~p,p1!%. ~14!

Suppose (p* ,p1* ) is a mixed NE, then
02230
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H ]P

]pU p5q5p*
p15q15p

1*

~p* 2p!1
]P

]p1
U p5q5p*

p15q15p
1*

(p1* 2p1)J >0.

~15!

Using substitutions

uc11u22uc31u25D1, uc21u22uc11u25D81

uc13u22uc33u25D2, uc22u22uc12u25D82

uc12u22uc32u25D3, uc23u22uc13u25D83

~16!

we get

]P

]pU p5q5p*
p15q15p

2
*

5p* ~D12D2!$~a111a33!2~a131a31!%

1p1* ~D12D3!$~a111a32!2~a121a31!%

2D1~a112a31!2D2~a132a33!

2D3~a122a32! ~17!

]P

]pU p5q5p*
p15q15p

1
*

5p* ~D382D18!$~a111a23!2~a131a21!%

1p1* ~D282D18!$~a111a22!2~a121a21!%

1D18~a112a211D28~a122a22!

1D38~a132a23!. ~18!

For the matrix~1! the above equations can be written as

]P

]p1
U p5q5p*

p15q15p
1*

5D1$22ep* 2~31e!p1* 1~11e!%

1D2$2ep* 1~12e!%1D3$~31e!p1* 22%,

~19!
6-3
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]P

]p1
U p5q5p*

p15q15p
1*

5D18$2p* ~32e!12ep1* 1~12e!%

2D28$2ep1* 2~11e!%1D38$~32e!p* 22%

~20!

Also the payoff difference in the second condition of an E
given in Eq.~14! reduces to

P$p* ,p1* !,~p,p1!} 2P$~p,p1!,~p,p1!%

5~p* 2p!@2D1$2ep1~31e!p12~11e!%

1D2$2ep1~12e!%1D3$~31e!p122%#

1~p1* 2p1!@2D18$~32e!p,22ep1212e!%

2D28$2ep12~11e!%1D38$~32e!p22%]. ~21!

With the substitutionsp* 2p5x andp1* 2p15y, the above
payoff difference is

P$~p* ,p1* !,~p,p1!%2P$~p,p1!,~p,p1!%

5D1x$2ex1~31e!y%2D2~2ex2!2D3xy~31e!

2D18y$2ey2~32e!x%1D28~2ey2!2D38xy~32e! ~22!

provided

]P

]pU p5q5p*
p15q15p

1*

50,
]P

]p1
U p5q5p*

p15q15p
1*

50. ~23!

The conditions in Eq.~23! together define the mixed NE
(p* ,p1* ). Consider now the modified RSP game in classi
form obtained by settinguc11u251 and all the rest of the
constants to zero. The Eqs.~23! now become

22ep* 2~e13!p1* 1~e11!50,

~2e13!p* 22ep1* 1~e21!50, ~24!

and p* 5p1* 5 1
3 is obtained as a mixed NE for the who

range21,e,0. From Eq.~22! we get

P$~p* ,p1* !,~p,p1!%2P$~p,p1!,~p,p1!%

52e~x21y21xy!

5e$~x1y!21~x21y2!%<0. ~25!

In the classical form of the RSP game, therefore, the mi
NE p* 5p1* 5 1

3 is a NE but not an ESS because the seco
condition of ESS given in Eq.~14! does not hold.

Define now a new initial state as follows:

uc in&5 1
2 $u12&1u21&1u13&1u31&% ~26!

and use it to play the game instead of the classical ga
obtained from uc in&5u11&. The strategyp* 5p1* 5 1

3 still
02230
l
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forms a mixed NE because the conditions given by Eq.~23!
hold true for it. However the payoff difference of Eq.~22! is
now given below when21,e,0 andx, yÞ0,

P$~p* ,p1* !,~p,p1!%2P$~p,p1!,~p,p1!%

52e$~x1y!21~x21y2!%.0. ~27!

Therefore, the mixed Nash equilibriump* 5p1* 5 1
3 not ex-

isting as an ESS in the classical form of this modified R
game becomes an ESS when the game is quantized
played using the initial entangled quantum state given by
~26!.

Note that from Eq.~11! the payoff sum to Alice and Bob
PA1PB can be obtained for both the classical mixe
strategy game~i.e., uc in&5u11&! and the quantum gam
played using the quantum state of Eq.~26!. For the matrix
~1! we write these sums as (PA1PB)cl and (PA1PB)qu for
classical mixed-strategy and quantum games, respectiv
and find

~PA1PB!cl522e$~12p2p1!~12q2q1!1p1q11pq%
~28!

and

~PA1PB!qu52$ 1
2 ~PA1PB!cl1e%. ~29!

In case e50 both the classical and quantum games
clearly zero sum. For our slightly modified version of th
RSP game we have21,e,0 and both versions of the
game become nonzero sum.

IV. DISCUSSION

Game-theoretical modeling of interactions between livi
organisms in the natural world has been developed mo
during the last three decades. Use of matrix games is q
common in areas such as theoretical and mathematical
ogy. The RSP game that we investigate in the present p
is also played in nature like many other games. Lizards in
coast range of California play this game using three alter
tive male strategies locked in an ecological never-end
process from which there seems little escape. On the o
hand, the recently developed quantum game theory has
shown to find applications in quantum information@12#.
Though there is no evidence yet, the possibility of quant
games being played at molecular level was hinted by Da
ins @13#. Trying to find the relevance of ideas from popul
tion biology in quantum settings is something that we call
inspiration from Dawkins’s ideas.

The possibility of quantum mechanics playing a more
rect role in life than binding together atoms has attrac
much attention@14,15#. Quantum mechanics ‘‘fast tracking
a chemical soup to states that are biological and comple
an idea about which physicists from many areas have
pressed opinions and the debate still continues. Supers
metry in particle physics giving a unified description of fe
mions and bosons has also been suggested to provid
explanation of coding assignments in genetic code@16#. Pa-
tel’s idea of quantum dynamics having a role in the DN
6-4
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replication is another interesting suggestion@17#. Quantum
game theory@18,18# can also have possibly interesting co
tributions to make towards attempts to understand the rol
quantum mechanics in life.

Mathematical biologists have successfully develop
mathematical models of evolution, especially, after attent
was diverted to game-theoretical models of evolution@3#,
and the idea of an ESS became central in evolutionary g
theory. The central idea of evolution, i.e., survival of t
fittest is formulated as a mathematical algorithm known a
replicator dynamic. We suggest that recent progress in qu
tum game theory allows evolutionary ideas to enter and h
a role in situations generally believed to lie in the domain
quantum mechanics. This combination of evolutionary id
in quantum settings is interesting from several perspecti
Quantum considerations in the evolution of genetic code
genetic algorithms in which replicators receive their payo
via quantum strategies are two cases@6# where evolutionary
ideas can be incorporated in quantum gamelike situatio
Another possible relevance is the competing chemical re
tions in life molecules treated as players in a game. A w
ning chemical reaction corresponding to life hints a role
quantum mechanics because quantum strategies have
recently shown to be more effective than their classical co
terparts@7, 8#.

The population approach borrowed from evolutiona
game theory with its central idea of an ESS combined w
recent developments in quantum game theory provides a
approach to certain questions relating to role of quant
mechanics in life. The analysis of the RSP game from
02230
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evolutionary point of view is an example where ‘‘stability
comes to a classical NE when players revert to quan
strategies. The ‘‘stability’’ is with respect to an invasion b
mutants appearing in small numbers. This stability of N
coming out of quantization can have a relevance in all
three situations indicated above.

V. CONCLUSION

We explored evolutionary stability in a modified rock
scissors-paper quantum game. We showed that a mi
strategy NE, not an ESS in the classical version of the ga
can be made an ESS when the two players play instea
quantum game by using a selected form of the initial qu
tum state on which they apply unitary operators in their p
session. Quantum mechanics, thus, gives stability to a c
sical mixed NE against invasion by mutants. Stability agai
mutants for a mixed classical NE can be made to disapp
in certain types of three-player symmetric games when p
ers decide to resort to quantum strategies@6#. Stability
against mutants in pairwise contests coming as a resu
quantum strategies have been shown a possibility for p
strategies in certain types of symmetric games@4#. Our re-
sults imply that the selected method of quantization@7# can
bring stability against mutants to a classical mixed NE
pairwise symmetric contests when the classically availa
number of pure strategies to a player is increased to th
from two. A behavior of mixed NE different from pure NE i
also observed in relation to quantization.
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