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Quantum probabilities as Bayesian probabilities
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In the Bayesian approach to probability theory, probability quantifies a degree of belief for a single trial,
without anya priori connection to limiting frequencies. In this paper, we show that, despite being prescribed
by a fundamental law, probabilities for individual quantum systems can be understood within the Bayesian
approach. We argue that the distinction between classical and quantum probabilities lies not in their definition,
but in the nature of the information they encode. In the classical worékimalinformation about a physical
system isccompletdan the sense of providing definite answers for all possible questions that can be asked of the
system. In the quantum worlanaximal information is not complete and cannot be completésing this
distinction, we show that any Bayesian probability assignment in quantum mechanics must have the form of
the quantum probability rule, that maximal information about a quantum system leads to a unique quantum-
state assignment, and that quantum theory provides a stronger connection between probability and measured
frequency than can be justified classically. Finally, we give a Bayesian formulation of quantum-state tomog-

raphy.
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[. INTRODUCTION edge.” An immediate consequence of this premise is that all
the probabilities derived from a quantum state, even a pure
There are excellent reasons for interpreting quantunguantum state, depend on a state of knowledge; they are
states as states of knowledff. A classic argument goes subjective oBayesiarprobabilities. In this paper, we outline
back to Einsteirf2]. Take two spatially separated systefs a general framework for interpreting all quantum probabili-
andB prepared in some entangled quantum sfaftf). By  ties as subjective.
performing the measurement of one or another of two ob- If two scientists have different states of knowledge about
servables on system alone, one carimmediatelywrite ~ a system, they will assign different quantum states, and
down a new state for systeBr—either a state drawn from a hence they will assign different probabilities to the outcomes
set{| ¢P)} or a setf| %)}, depending upon which observable of some measurements. This _situation is commonly encoun-
is measured. Since this holds no matter how far apart the twifed in quantum cryptographic protocg#, where the dif-
systems are, Einstein concluded that quantum states canrg{€Nt Players, possibly including an eavesdropper, have dif-
be “real states of affairs.” For whatever the real, objectiveferent. information ab_out the quantum systems_j[hey are
state of affairs aB is, it should not depend upon the mea- h_andllng. In a I_BayeS|an framework, the probabilities as-
surements made & If one accepts this conclusion, one is S|gn.ed.by the different player.s are "?1" t_reated on an equal
forced to admit that the new stateither al ¢iB> or a|77iB>) footing; they are all equally valid. Subjective probability has,

_ ; therefore, noa priori connection to measured frequencies
represents partial knowledge about systBmin making a 54 applies naturally to single quantum systems.

measurement oA, one learns something aboBt the state The Bayesian approach has been very successful in statis-
itself cannot be construed to be more than a reflection of thgcg [5—7], observational astrononj$], artificial intelligence
new knowledge. [9], and classical statistical mechanjd]. It seems to be

The physical basis of Einstein's argument has recentlthe general opinion, however, that the Bayesian interpreta-
become amenable to experimental testing. Zbinetesl. [3]  tion is not suitable for quantum-mechanical probabilities.
have reported an experiment with entangled photons iThe probabilities that come from a pure state are intrinsic
which the detectors aA and B are in relative motion. The and unavoidable. How can they not be objective properties
experimental data rule out a certain class of realistic collapsahen they are prescribed by physical law? How can Baye-
models, i.e., models in which the real state of affairBat sian quantum-state assignments be anything but arbitrary?
changes as a result of the measureme®t dthey also puta Has not the tight connection between probability and mea-
lower bound of 10 times the speed of light on the speed of sured frequencies been verified in countless experiments?
any hypothetical quantum influence of the measuremeAt at What is an experimenter doing in quantum-state tomography
on the real state of affairs & [11,12 if not determining the unknown objective quantum

We accept the conclusion of Einstein’s argument and starftate of a system?
from the premise that “quantum states are states of knowl- In this paper, we give answers to these questions. These

answers turn out to be simple and straightforward. We begin
with a brief introduction to Bayesian probability theory,
*Permanent address: Department of Physics and Astronomy, Unbased on the so-called Dutch-book argun{di®,14], which
versity of New Mexico, Albuguerque, NM 87131-1156. derives the rules of probability theory from the re-
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qguirement of consistent betting behavior. We use Gleason’siolates one of these rules can be shown to be inconsistent in

theorem[15] to show that any subjective quantum probabil-the above sense. This is the so-call@atch-book argument

ity assignment must have the form of the standard quanturfil3,14]. We stress that it does not invoke expectation values

probability rule. We then use a version of the Dutch-bookor averages in repeated bets; the bettor who violates the

argument to show that if a scientist hasiximal information  probability rules suffers a sure loss in a single instance of the

about a quantum system, he must assign a unique pure stabetting situation.

Our next step is to show that in the case of maximal infor- For instance, to show thgi(A\/B)=p(A)+p(B) if A

mation, there is a conceptually simple connection betweeandB are mutually exclusive, assume that the bettor assigns

(subjective probability and(measureglfrequency, which is  probabilitiesp,, pg, andpc to the three outcomes, B, and

tighter than can be justified classically. Finally, we considerC=A\/B. This means he will accept the following three

quantum-state tomography, where an experimenter is said teets: a bet omA with payoff x,, which means the stake is

be determining the “unknown quantum state” of a systemp,x,; a bet onB with payoff xg and thus with stak@gxg ;

from the results of repeated measurements on many copies afd a bet or€ with payoffxc and thus with stakpcxc . The

the system. An “unknown quantum state” is an oxymoron if net amount the bettor receives is

guantum states are states of knowledge, and we show how it

can be eliminated from the description of tomography by Xa(1—pPa) —XgPs+Xc(1—pe) if A/\=B,

using a quantum version of the de Finetti representation .

theorem for exchangeable sequenfEs,17. We conclude R={ ~XaPa*Xg(1=ps)+Xc(1=pc) if ~AAB,

with a brief summary and an outlook. —XaPaA—XgPe— XcPc if =A/\-B.
(o

Il. BAYESIAN PROBABILITY AND THE DUTCH BOOK The outcomeA/\B does not occur sincA andB are mutu-

Bayesian probabilities are degrees of belief or uncertaintglly exclusive. The bookie can choose valugs xg, andxc
[6], which are given an operational definition in decisionthat lead toR<0 in all three cases unless
theory [5], i.e., the theory of how to decide in the face of
uncertainty. The Bayesian approach captures naturally the 1-pa —pe 1-pc
notion that probabilities can change when new information is _ _ _ _ _
obtained. The fundamental Bayesian probability assignment 0=de Pa- 17Ps 17Pc|=patps—pc. (2
is to a single system or a single realization of an experiment. —Pa P —Pc
Bayesian probabilities are defined without any reference to
the limiting frequency of outcomes in repeated experimentsThe probability assignment is thus inconsistent unless
Bayesian probability theory does allow one to mégmba-  p(A\/B)=pc=pa+Ps.-
bilistic) predictions of frequencies, and frequencies in past In our experience physicists find it difficult first to accept
experiments provide valuable information for updating theand then to embrace the notion that subjective probabilities
probabilities assigned to future trials. Despite this connecreceive theironly operational significance from decision
tion, probabilities and frequencies are strictly separate contheory, the simplest example of which is the Dutch-book
cepts. argument in which probabilities ardefinedto be betting
The simplest operational definition of Bayesian probabili-odds. In the Dutch-book approach the structure of probability
ties is in terms of consistent betting behavior, which is decitheory follows solely from the requirement of consistent bet-
sion theory in a nutshell. Consider a bookie who offers a beting behavior. There is no other input to the theory. For ex-
on the occurrence of outconfiein some situation. The bettor ample, normalization of the probabilities for exclusive and
pays in an amourntx—the stake—up front. The bookie pays exhaustive alternatives is not an independent assumption, so
out an amounk—the payoff—if E occurs and nothing oth- obvious that it needs no justification. Instead normalization
erwise. Conventionally this is said to be a bebdtsof (1  follows from probability rules(ii) and (iv) above and thus
—p)/p to 1. For the bettor to assign a probabilfyto out-  receives its sole justification from the requirement of consis-
comeE means that he is willing to accept a bet at these oddsent betting behavior.
with an arbitrary payoffx determined by the bookie. The  The only case in which consistency alone leads to a par-
payoff can be positive or negative, meaning that the bettor isicular numerical probability is the case of certaintyneeaxi-
willing to accept either side of the bet. We call a probability mal information If the bettor is certain that the outconie
assignment to the outcomes of a betting situatrmronsis-  will occur, the probability assignmept<1 means he is will-
tentif it forces the bettor to accept bets in which he incurs aing to take the side of the bookie in a bet Bnreceiving an
sure loss; i.e., he loses for every possible outcome. A probamountpx up front and paying out if E occurs, leading to
ability assignment will be calledonsistentf it is not incon-  a certain loss ok(1—p)>0. Consistency thus requires that
sistent in this sense. the bettor assign probabilitp=1. More generally, consis-
Remarkably, consistency alone implies that the bettotency requires a particular probability assignment only in the
must obey the standard probability rules in his probabilitycase of maximal information, which classically always
assignment(i) p=0, (i) p(A\/B)=p(A)+p(B) if AandB  meansp=1 or 0.
are mutually exclusive(iii) p(A/AB)=p(A|B)p(B), and The quantum situation is radically different, since in
(iv) p(A)=1 if Ais certain. Any probability assignment that quantum theory maximal information is not complé¢ie].
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This notwithstanding, we show that consistency still requires 1IV. MAXIMAL INFORMATION AND UNIQUE STATE
particular probability assignments in the case of maximal ASSIGNMENT

information and, what is more, that these probabilities are Our concermn now is to show that if a scientist has maxi-
numerically equal to expected limiting frequencies. The keys

to these results are Gleason’s theorem and a quantum variarll?f”lI information about a quantum system, Dutch-book con-

of the Dutch-book argument of the previous paragraph. sistency for_ces him to _assign a unique pure state. Maximal
information in the classical case means knowing the outcome

of all questions with certainty. Gleason’s theorem forbids
[Il. GLEASON'S THEOREM AND THE QUANTUM such all-encompassing certainty in quantum theory. Maximal
PROBABILITY RULE information in quantum theory instead corresponds to know-

In order to derive the quantum probability rule, we make'') the answer to a maximal number of questitrs, mea-

the following assumptions about a quantum system that i§,urements described by one-dimensional orthogonal projec-

described by D-dimensional Hilbert space. ors). Suppose then that a scientist is certain about the

(i) Each set of orthogonal one-dimensional projectorsqumome of all questions that share one particular projector

fle= (. k=1,...D (the vectors|y;) make up an IT=|4){y|. The scientist is certain that the outcome corre-

orthonormal basjs corresponds to the complete set of mu- sponding to this projector will occur in response to any of
. P P . these questions, so Dutch-book consistency requires that its
tually exclusive outcomes of some measurement, i.e., an-

swers to some question that can be posed to the systefroPability bep=1. Now letp be the state assigned to the
Throughout this paper, what we mean by a “quantum quesSYStem- In the language of GAIeaisons theorem, we have
tion” is a measurement described by such a complete set dfif|p|#)=1. This implies thatp=II=|)(y|. Gleason’s

orthogonal one-dimensional projectors. theorem further implies that the scientist cannot be certain
(ii) The probabilities assigned to the outcomes are consisbout the outcome of any other questions, so this is the case
tent in the Dutch-book sense given above. where he has maximal information. Maximal information

(iii ) The probability assignment isoncontextua]20], i.e.,  thus leads to the assignment of a unique pure state.
the probability for obtaining the outcome corresponding to a Given the assumptions of Gleason’s theorem, if a scientist

projectorﬁ depends only ol itself. not on the other vec- Nas maximal information, any state assignment that is differ-

tors in the orthogonal set defining a particular measuremen€nt from the unique pure state derived in the preceding para-
, - graph is inconsistent in the Dutch-book sense, i.e., it leads to
As a consequence, it can be denopd).

A a sure loss for a bet on the outcome of a measurement on a
_ Condition(ii) implies that, for each set of orthogonal one- gjngie system that includes the unique pure state among the
dimensional projectors, outcomes. The Hilbert-space structure of quantum questions
5 plus noncontextuality alone puts this tight constraint on
z A probability assignments.
& p(IL)=1. 3 We emphasize that the uniqueness of the quantum-state
assignment holds even though no measurement allows an
experimenter to decide with certainty between two nonor-
thogonal pure-state assignments. Though maximal informa-
; . ; . . tion leads to a unique pure state, the state assignment cannot
requirement of consistent bettmg pehawor. Exceptin the SP%e verified by addressing questions to the system. Finding
cial c_ase _Of a two-d|mens_|0nal Hllber_t space, conditjain out the state assignment requires consulting the assigner or
then implies that there exists a density opergta@uch that  the records he leaves behind. This property is another reason
for every projectodI=|){ ], for regarding quantum states as states of knowledge.
In both the classical and the quantum case, consistency
- ~n ~ enforces a particular probability assignment if and only if
PN =tr(p ID=(¥lp|¥). @) there is maxFi)maI inforrﬁation. Inythe cI%ssicaI case, maxi);nal
o information corresponds to certainty, i.e., the trivial probabil-
This is Gleason's theoreri15]. It means that, under the as- jty assignment 1 or 0, so classically maximal information is
sumptions ofi) the Hilbert-space structure of quantum ques-complete In quantum mechanics, maximal information leads
tions, (i) Dutch-book consistency, andii) probabilities o a unique pure state assignmé(y|, which is equiva-
reflecting the Hilbert-space structure, any subjective probient to prescribinggenerally nontrivial probabilities for all
ability assignment must have the fof#), which is the stan-  ossible measurements. In quantum mechamieimal in-

dard quantum rule for probabilities. Hence Bayesian “de-formation is not complete and cannot be completed
grees of belief” are restricted by the laws of nature, and any

subjective state of knowledge about a quantum system can

be summarized in a density operaﬁorSince one of the chief

challenges of Bayesianism is the search for methods to trans-
late information into probability assignment§leason’s Up to this point, we have not mentioned repeated experi-
theorem can be regarded as the greatest triumph of Bayesiaments or long-run frequencies. Both the Dutch-book argu-
reasoning ment and Gleason’s theorem are formulated for single sys-

Of course, this is simply the normalization condition, but in
the Bayesian view, normalization is enforced only by the

V. SUBJECTIVE PROBABILITY AND MEASURED
FREQUENCY
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tems. There is no justification, at this point, for identifying state assignment comes the IID for the outcomes of any re-
the probabilities derived from Gleason’s theorem with limit- peated measurement. Together with elementary combinator-
ing frequencies. To make the connection between the aboves, this gives the strict connection between probabilities and
results and repeated measurements, an additional assumptibequencies displayed in the laws of large numbers. In this
is needed, namely that the Hilbert spaceNoftopies of a sense, the equality between probability and limiting fre-
guantum system is given by tiefold tensor product of the quency holds only in quantum mechanics.

single-system Hilbert space. In doing so, we are assuming

that theN copies of the quantum system are labeled by some/|. UNKNOWN QUANTUM STATES AND THE QUANTUM
additional degree of freedom that renders irrelevant the sym- de FINETTI REPRESENTATION

metries required for identical particles. ) )

aboutN copies of a quantum system, specifically the samdnany copies of a quantum system igjimantum-state tomog-
maximal information about each system. Applying Gleason'g@Phy[11,13. The data gathered from the measurements are
theorem and the Dutch-book argument of Sec. IV to theS@id to determine the “unknown quantum state” of the sys-

tensor-product Hilbert space leads to a unique pure produciém. But what can an unknown quantum state mean? If a
. ~(N)_ T ~ ~ guantum state is a state of knowledge, then it must be known
state assignment™N =11® - - - ®II, wherell=|y){|. Sup-

that ted i ¢ 4 using t somebody. If the Bayesian interpretation of quantum
pose that repeated measurements are performed using babilities is to be taken seriously, there must be a way to

single-system projectorﬁk=|¢//k)<¢k|, k=1,...D. The eliminate the “unknown quantum state” from the descrip-
probability of obtaining the sequence of outcomestion.
Ky, ... Ky is given by The key to this excision is to identify the salient feature of

the state of knowledge that applies when an experimenter
performs quantum-state tomography. That salient feature is
that the experimenter can contemplate examining an arbi-
) trarily large number of systems, all of which are equivalent
from his perspective. This means tligtthe density operator

where p™ for N systems should beymmetrici.e., invariant under
all permutations of theN systems, andii) this symmetry
pk=tr(f[ ﬁk) = (gnd )2 (6)  should hold for all values df, with the consistency require-

ment thatp®™) arises from tracing out one of the systems in

This means that the outcomes of repeated measurements @& 4. A sequence of density operators that satisfies these
independent and identically distributétiD). The probabil- two properties is said to bexchangeableby analogy with

p(ky, ... k) =tr(pMIl @+ @1l ) =Py Py,

ity for outcomek to occurn, times, wherek=1, ... D and de Finetti's definition[13] of exchangeable multitrial prob-
>n=N, is given by the multinomial distribution, abilities.
The quantum de Finetti representation theorel6,17]
N! ng o establishes that for any exchangeable sequence of density
PNy, ....Np)=————P;" " Pp (7 ~(N) - - :
ny!---np! operatorsp'™ can be writteruniquelyin the form

which peaks for larg&l atn,=Np,, k=1, ... D. The prob-
ability of observing f(equenciesk/N close top, converges ;,(N):f dpp(p)p®---®p, )
to 1 asN tends to infinity.

In the classical case an IID assignment is often the start-
ing point of a probabilistic argument. Yet in Bayesian prob-where the tensor product includBisterms, the integral runs
ability theory, an 1ID can never be strictly justified except in over the space of density operators, and the “generating
the case of maximal information, which in the classical casdunction” p(p) can be thought of as a normalized “probabil-
implies certainty and hence trivial probabilities. The reasority density on density operators.” An exchangeable density
is that the only way to be sure all the trials are identical inoperator captures what an experimenter knows about the sys-
the classical case is to know everything about them, whichhems he intends to examine. It is a primary quantum-state
implies that the results of all trials can be predicted withassignment for multiple copies, with no mention of unknown
certainty[19]. In contrast, to ensure that all systems are thequantum states. The content of the quantum de Finetti repre-
same in quantum mechanics, it is sufficient to have the maxisentation is that the exchangeable state assignment can nev-
mal but incomplete information that leads to a unique pureertheless be thought of in terms of unknown density opera-
state. Thus the quantum IID assignméntis a consequence tors; ignorance of which density operator is described by the
of Dutch-book consistency and the Hilbert-space structure ofenerating function.
guantum mechanics. Exchangeability permits us to describe what is going on

To summarize, in quantum mechanics maximal informa-in quantum-state tomography. Suppose two scientists make
tion leads to nontrivial IID assignments. Maximal informa- different exchangeable state assignments and then jointly
tion means that the pure product-state assignment is thepllect data from repeated measurements. Suppose further
unique consistent state assignment. From the pure produdhat the measurements are “tomographically complete,” i.e.,
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the measurement probabilities for any density operator arthat uses quantum states to escape the constraints imposed on
sufficient to determine that density operator. The two scieninformation processing in a realistic/deterministic world. The
tists can use the dafa from an initial set of measurements rewards in quantum information science are great: teleporta-
to update their state assignments for further systemgion of quantum states, distribution of secret keys for encod-
In the limit of a large number of initial measurements,iNg messages securely, and computations done more effi-
they will come to agreement on a particular product stateiently on a quantum computer than on any classical
Po®pp® - - - for further systems, wherey, is determined by machine. The key to these rewards is that a quantum world is

the dataThis is what quantum-state tomoaraohv is all about less constrained than a classical one. As quantum informa-
U q mograpny ‘tion science harnesses the greater range of possibilities avail-
The updating can be cast as an application of Bayes rule t

. . T 8ble in the guantum world, we believe it is imperative to
updating the generatln“g function in light of the”d_[ﬂa]. The understand and elucidate the fundamental principles underly-
only requirement for “coming to agreement” is that both

R N ing quantum mechanics. In this paper, we show how to in-
scientists should have allowed for the possibilityf by terpret quantum states consistently as states of knowledge,
giving it nonzero support in their initial generating functions. reflecting what we know about a quantum system. This is
just one step in a broader program to try to disentangle the
VII. SUMMARY AND OUTLOOK subjective and objective aspects of the quantum wiﬂﬂ]
We leave the last word to Edwin T. Jayri@d], who inspired
We promised simple answers, and it is hard to imagineus to pursue the Bayesian view: “Today we are beginning to
simpler ones. The physical law that prescribes quantunnealize how much of all physical science is really omifor-
probabilities is indeed fundamental, but the reason is that it isnation organized in a particular way. But we are far from
a fundamental rule of inferencea—law of thought—for  unravelling the knotty question: “To what extent does this
Bayesian probabilities. It follows from requiring Dutch-book information reside in us, and to what extent is it a property of
consistency for probability assignments that are faithful toNature?’. .. Our present QM formalism is a peculiar mix-
the Hilbert-space structure of quantum questions. Theseire describing in part laws of Nature, in part incomplete
same desiderata require a particular pure-state assignmedmiman information about Nature—all scrambled up together
when a scientist has maximal information, and becauséy Bohr into an omelette that nobody has seen how to un-
maximal information is not complete, they give a strict con-scramble. Yet we think the unscrambling is a prerequisite for
nection between observed frequencies and pure-state quaamy further advance in basic physical theor. .”
tum probabilities. The notion of an “unknown quantum
state,” irreconcilable with the idea of quantum states as
states of knowledge, can be banished from quantum-state
tomography using the quantum de Finetti representation. C.M.C. was supported in part by the U.S. Office of Naval
Quantum information sciencg22] is an emerging field Research Grant No. NO0014-93-1-0116.
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