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Quantum probabilities as Bayesian probabilities
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In the Bayesian approach to probability theory, probability quantifies a degree of belief for a single trial,
without anya priori connection to limiting frequencies. In this paper, we show that, despite being prescribed
by a fundamental law, probabilities for individual quantum systems can be understood within the Bayesian
approach. We argue that the distinction between classical and quantum probabilities lies not in their definition,
but in the nature of the information they encode. In the classical world,maximalinformation about a physical
system iscompletein the sense of providing definite answers for all possible questions that can be asked of the
system. In the quantum world,maximal information is not complete and cannot be completed. Using this
distinction, we show that any Bayesian probability assignment in quantum mechanics must have the form of
the quantum probability rule, that maximal information about a quantum system leads to a unique quantum-
state assignment, and that quantum theory provides a stronger connection between probability and measured
frequency than can be justified classically. Finally, we give a Bayesian formulation of quantum-state tomog-
raphy.
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I. INTRODUCTION

There are excellent reasons for interpreting quant
states as states of knowledge@1#. A classic argument goe
back to Einstein@2#. Take two spatially separated systemsA
andB prepared in some entangled quantum stateucAB&. By
performing the measurement of one or another of two
servables on systemA alone, one canimmediatelywrite
down a new state for systemB—either a state drawn from
set$uf i

B&% or a set$uh i
B&%, depending upon which observab

is measured. Since this holds no matter how far apart the
systems are, Einstein concluded that quantum states ca
be ‘‘real states of affairs.’’ For whatever the real, objecti
state of affairs atB is, it should not depend upon the me
surements made atA. If one accepts this conclusion, one
forced to admit that the new state~either auf i

B& or a uh i
B&)

represents partial knowledge about systemB. In making a
measurement onA, one learns something aboutB; the state
itself cannot be construed to be more than a reflection of
new knowledge.

The physical basis of Einstein’s argument has rece
become amenable to experimental testing. Zbindenet al. @3#
have reported an experiment with entangled photons
which the detectors atA and B are in relative motion. The
experimental data rule out a certain class of realistic colla
models, i.e., models in which the real state of affairs aB
changes as a result of the measurement atA. They also put a
lower bound of 107 times the speed of light on the speed
any hypothetical quantum influence of the measurementA
on the real state of affairs atB.

We accept the conclusion of Einstein’s argument and s
from the premise that ‘‘quantum states are states of kno
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edge.’’ An immediate consequence of this premise is that
the probabilities derived from a quantum state, even a p
quantum state, depend on a state of knowledge; they
subjective orBayesianprobabilities. In this paper, we outlin
a general framework for interpreting all quantum probab
ties as subjective.

If two scientists have different states of knowledge ab
a system, they will assign different quantum states, a
hence they will assign different probabilities to the outcom
of some measurements. This situation is commonly enco
tered in quantum cryptographic protocols@4#, where the dif-
ferent players, possibly including an eavesdropper, have
ferent information about the quantum systems they
handling. In a Bayesian framework, the probabilities a
signed by the different players are all treated on an eq
footing; they are all equally valid. Subjective probability ha
therefore, noa priori connection to measured frequenci
and applies naturally to single quantum systems.

The Bayesian approach has been very successful in st
tics @5–7#, observational astronomy@8#, artificial intelligence
@9#, and classical statistical mechanics@10#. It seems to be
the general opinion, however, that the Bayesian interpr
tion is not suitable for quantum-mechanical probabilitie
The probabilities that come from a pure state are intrin
and unavoidable. How can they not be objective proper
when they are prescribed by physical law? How can Ba
sian quantum-state assignments be anything but arbitr
Has not the tight connection between probability and m
sured frequencies been verified in countless experime
What is an experimenter doing in quantum-state tomogra
@11,12# if not determining the unknown objective quantu
state of a system?

In this paper, we give answers to these questions. Th
answers turn out to be simple and straightforward. We be
with a brief introduction to Bayesian probability theor
based on the so-called Dutch-book argument@13,14#, which
derives the rules of probability theory from the r

ni-
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CAVES, FUCHS, AND SCHACK PHYSICAL REVIEW A65 022305
quirement of consistent betting behavior. We use Gleas
theorem@15# to show that any subjective quantum probab
ity assignment must have the form of the standard quan
probability rule. We then use a version of the Dutch-bo
argument to show that if a scientist hasmaximal information
about a quantum system, he must assign a unique pure
Our next step is to show that in the case of maximal inf
mation, there is a conceptually simple connection betw
~subjective! probability and~measured! frequency, which is
tighter than can be justified classically. Finally, we consid
quantum-state tomography, where an experimenter is sa
be determining the ‘‘unknown quantum state’’ of a syste
from the results of repeated measurements on many copi
the system. An ‘‘unknown quantum state’’ is an oxymoron
quantum states are states of knowledge, and we show ho
can be eliminated from the description of tomography
using a quantum version of the de Finetti representa
theorem for exchangeable sequences@16,17#. We conclude
with a brief summary and an outlook.

II. BAYESIAN PROBABILITY AND THE DUTCH BOOK

Bayesian probabilities are degrees of belief or uncerta
@6#, which are given an operational definition in decisi
theory @5#, i.e., the theory of how to decide in the face
uncertainty. The Bayesian approach captures naturally
notion that probabilities can change when new information
obtained. The fundamental Bayesian probability assignm
is to a single system or a single realization of an experim
Bayesian probabilities are defined without any reference
the limiting frequency of outcomes in repeated experime
Bayesian probability theory does allow one to make~proba-
bilistic! predictions of frequencies, and frequencies in p
experiments provide valuable information for updating t
probabilities assigned to future trials. Despite this conn
tion, probabilities and frequencies are strictly separate c
cepts.

The simplest operational definition of Bayesian probab
ties is in terms of consistent betting behavior, which is de
sion theory in a nutshell. Consider a bookie who offers a
on the occurrence of outcomeE in some situation. The betto
pays in an amountpx—thestake—up front. The bookie pays
out an amountx—the payoff—if E occurs and nothing oth
erwise. Conventionally this is said to be a bet atoddsof (1
2p)/p to 1. For the bettor to assign a probabilityp to out-
comeE means that he is willing to accept a bet at these o
with an arbitrary payoffx determined by the bookie. Th
payoff can be positive or negative, meaning that the betto
willing to accept either side of the bet. We call a probabil
assignment to the outcomes of a betting situationinconsis-
tent if it forces the bettor to accept bets in which he incurs
sure loss; i.e., he loses for every possible outcome. A p
ability assignment will be calledconsistentif it is not incon-
sistent in this sense.

Remarkably, consistency alone implies that the be
must obey the standard probability rules in his probabi
assignment:~i! p>0, ~ii ! p(A~B)5p(A)1p(B) if A andB
are mutually exclusive,~iii ! p(A`B)5p(AuB)p(B), and
~iv! p(A)51 if A is certain. Any probability assignment tha
02230
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violates one of these rules can be shown to be inconsiste
the above sense. This is the so-calledDutch-book argument
@13,14#. We stress that it does not invoke expectation valu
or averages in repeated bets; the bettor who violates
probability rules suffers a sure loss in a single instance of
betting situation.

For instance, to show thatp(A~B)5p(A)1p(B) if A
andB are mutually exclusive, assume that the bettor assi
probabilitiespA , pB , andpC to the three outcomesA, B, and
C5A~B. This means he will accept the following thre
bets: a bet onA with payoff xA , which means the stake i
pAxA ; a bet onB with payoff xB and thus with stakepBxB ;
and a bet onC with payoffxC and thus with stakepCxC . The
net amount the bettor receives is

R5H xA~12pA!2xBpB1xC~12pC! if A`¬B,

2xApA1xB~12pB!1xC~12pC! if ¬A`B,

2xApA2xBpB2xCpC if ¬A`¬B.
~1!

The outcomeA`B does not occur sinceA andB are mutu-
ally exclusive. The bookie can choose valuesxA , xB , andxC
that lead toR,0 in all three cases unless

05detS 12pA 2pB 12pC

2pA 12pB 12pC

2pA 2pB 2pC

D 5pA1pB2pC . ~2!

The probability assignment is thus inconsistent unl
p(A~B)5pC5pA1pB .

In our experience physicists find it difficult first to acce
and then to embrace the notion that subjective probabili
receive their only operational significance from decisio
theory, the simplest example of which is the Dutch-bo
argument in which probabilities aredefined to be betting
odds. In the Dutch-book approach the structure of probab
theory follows solely from the requirement of consistent b
ting behavior. There is no other input to the theory. For e
ample, normalization of the probabilities for exclusive a
exhaustive alternatives is not an independent assumption
obvious that it needs no justification. Instead normalizat
follows from probability rules~ii ! and ~iv! above and thus
receives its sole justification from the requirement of cons
tent betting behavior.

The only case in which consistency alone leads to a p
ticular numerical probability is the case of certainty, ormaxi-
mal information. If the bettor is certain that the outcomeE
will occur, the probability assignmentp,1 means he is will-
ing to take the side of the bookie in a bet onE, receiving an
amountpx up front and paying outx if E occurs, leading to
a certain loss ofx(12p).0. Consistency thus requires th
the bettor assign probabilityp51. More generally, consis
tency requires a particular probability assignment only in
case of maximal information, which classically alwa
meansp51 or 0.

The quantum situation is radically different, since
quantum theory maximal information is not complete@18#.
5-2
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QUANTUM PROBABILITIES AS BAYESIAN PROBABILITIES PHYSICAL REVIEW A65 022305
This notwithstanding, we show that consistency still requi
particular probability assignments in the case of maxim
information and, what is more, that these probabilities
numerically equal to expected limiting frequencies. The ke
to these results are Gleason’s theorem and a quantum va
of the Dutch-book argument of the previous paragraph.

III. GLEASON’S THEOREM AND THE QUANTUM
PROBABILITY RULE

In order to derive the quantum probability rule, we ma
the following assumptions about a quantum system tha
described by aD-dimensional Hilbert space.

~i! Each set of orthogonal one-dimensional projecto

P̂k5uck&^cku, k51, . . . ,D ~the vectorsuck& make up an
orthonormal basis!, corresponds to the complete set of m
tually exclusive outcomes of some measurement, i.e.,
swers to some question that can be posed to the sys
Throughout this paper, what we mean by a ‘‘quantum qu
tion’’ is a measurement described by such a complete se
orthogonal one-dimensional projectors.

~ii ! The probabilities assigned to the outcomes are con
tent in the Dutch-book sense given above.

~iii ! The probability assignment isnoncontextual@20#, i.e.,
the probability for obtaining the outcome corresponding t

projectorP̂ depends only onP̂ itself, not on the other vec
tors in the orthogonal set defining a particular measurem

As a consequence, it can be denotedp(P̂).
Condition~ii ! implies that, for each set of orthogonal on

dimensional projectors,

(
k51

D

p~P̂k!51. ~3!

Of course, this is simply the normalization condition, but
the Bayesian view, normalization is enforced only by t
requirement of consistent betting behavior. Except in the s
cial case of a two-dimensional Hilbert space, condition~iii !
then implies that there exists a density operatorr̂ such that

for every projectorP̂5uc&^cu,

p~P̂!5tr~ r̂ P̂!5^cur̂uc&. ~4!

This is Gleason’s theorem@15#. It means that, under the as
sumptions of~i! the Hilbert-space structure of quantum que
tions, ~ii ! Dutch-book consistency, and~iii ! probabilities
reflecting the Hilbert-space structure, any subjective pr
ability assignment must have the form~4!, which is the stan-
dard quantum rule for probabilities. Hence Bayesian ‘‘d
grees of belief’’ are restricted by the laws of nature, and a
subjective state of knowledge about a quantum system
be summarized in a density operatorr̂. Since one of the chie
challenges of Bayesianism is the search for methods to tr
late information into probability assignments,Gleason’s
theorem can be regarded as the greatest triumph of Baye
reasoning.
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IV. MAXIMAL INFORMATION AND UNIQUE STATE
ASSIGNMENT

Our concern now is to show that if a scientist has ma
mal information about a quantum system, Dutch-book c
sistency forces him to assign a unique pure state. Maxi
information in the classical case means knowing the outco
of all questions with certainty. Gleason’s theorem forbi
such all-encompassing certainty in quantum theory. Maxim
information in quantum theory instead corresponds to kno
ing the answer to a maximal number of questions~i.e., mea-
surements described by one-dimensional orthogonal pro
tors!. Suppose then that a scientist is certain about
outcome of all questions that share one particular proje

P̂5uc&^cu. The scientist is certain that the outcome cor
sponding to this projector will occur in response to any
these questions, so Dutch-book consistency requires tha
probability bep51. Now let r̂ be the state assigned to th
system. In the language of Gleason’s theorem, we h

^cur̂uc&51. This implies that r̂5P̂5uc&^cu. Gleason’s
theorem further implies that the scientist cannot be cer
about the outcome of any other questions, so this is the c
where he has maximal information. Maximal informatio
thus leads to the assignment of a unique pure state.

Given the assumptions of Gleason’s theorem, if a scien
has maximal information, any state assignment that is dif
ent from the unique pure state derived in the preceding p
graph is inconsistent in the Dutch-book sense, i.e., it lead
a sure loss for a bet on the outcome of a measurement
single system that includes the unique pure state among
outcomes. The Hilbert-space structure of quantum quest
plus noncontextuality alone puts this tight constraint
probability assignments.

We emphasize that the uniqueness of the quantum-s
assignment holds even though no measurement allows
experimenter to decide with certainty between two non
thogonal pure-state assignments. Though maximal infor
tion leads to a unique pure state, the state assignment ca
be verified by addressing questions to the system. Find
out the state assignment requires consulting the assigne
the records he leaves behind. This property is another rea
for regarding quantum states as states of knowledge.

In both the classical and the quantum case, consiste
enforces a particular probability assignment if and only
there is maximal information. In the classical case, maxim
information corresponds to certainty, i.e., the trivial probab
ity assignment 1 or 0, so classically maximal information
complete. In quantum mechanics, maximal information lea
to a unique pure state assignmentuc&^cu, which is equiva-
lent to prescribing~generally nontrivial! probabilities for all
possible measurements. In quantum mechanics,maximal in-
formation is not complete and cannot be completed.

V. SUBJECTIVE PROBABILITY AND MEASURED
FREQUENCY

Up to this point, we have not mentioned repeated exp
ments or long-run frequencies. Both the Dutch-book ar
ment and Gleason’s theorem are formulated for single s
5-3
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CAVES, FUCHS, AND SCHACK PHYSICAL REVIEW A65 022305
tems. There is no justification, at this point, for identifyin
the probabilities derived from Gleason’s theorem with lim
ing frequencies. To make the connection between the ab
results and repeated measurements, an additional assum
is needed, namely that the Hilbert space ofN copies of a
quantum system is given by theN-fold tensor product of the
single-system Hilbert space. In doing so, we are assum
that theN copies of the quantum system are labeled by so
additional degree of freedom that renders irrelevant the s
metries required for identical particles.

Now assume that a scientist has maximal informat
aboutN copies of a quantum system, specifically the sa
maximal information about each system. Applying Gleaso
theorem and the Dutch-book argument of Sec. IV to
tensor-product Hilbert space leads to a unique pure prod

state assignmentr̂ (N)5P̂^ •••^ P̂, whereP̂5uc&^cu. Sup-
pose that repeated measurements are performed usin

single-system projectorsP̂k5uck&^cku, k51, . . . ,D. The
probability of obtaining the sequence of outcom
k1 , . . . ,kN is given by

p~k1 , . . . ,kN!5tr~ r̂ (N)P̂k1
^ •••^ P̂kN

!5pk1
•••pkN

,
~5!

where

pk5tr~P̂ P̂k!5 z^ckuc& z2. ~6!

This means that the outcomes of repeated measuremen
independent and identically distributed~IID !. The probabil-
ity for outcomek to occurnk times, wherek51, . . . ,D and
(knk5N, is given by the multinomial distribution,

p~n1 , . . . ,nD!5
N!

n1! •••nD!
p1

n1
•••pD

nD , ~7!

which peaks for largeN at nk.Npk , k51, . . . ,D. The prob-
ability of observing frequenciesnk /N close topk converges
to 1 asN tends to infinity.

In the classical case an IID assignment is often the st
ing point of a probabilistic argument. Yet in Bayesian pro
ability theory, an IID can never be strictly justified except
the case of maximal information, which in the classical ca
implies certainty and hence trivial probabilities. The reas
is that the only way to be sure all the trials are identical
the classical case is to know everything about them, wh
implies that the results of all trials can be predicted w
certainty@19#. In contrast, to ensure that all systems are
same in quantum mechanics, it is sufficient to have the m
mal but incomplete information that leads to a unique p
state. Thus the quantum IID assignment~7! is a consequence
of Dutch-book consistency and the Hilbert-space structur
quantum mechanics.

To summarize, in quantum mechanics maximal inform
tion leads to nontrivial IID assignments. Maximal inform
tion means that the pure product-state assignment is
unique consistent state assignment. From the pure prod
02230
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state assignment comes the IID for the outcomes of any
peated measurement. Together with elementary combina
ics, this gives the strict connection between probabilities a
frequencies displayed in the laws of large numbers. In t
sense, the equality between probability and limiting fr
quency holds only in quantum mechanics.

VI. UNKNOWN QUANTUM STATES AND THE QUANTUM
de FINETTI REPRESENTATION

An important practical use of repeated measurements
many copies of a quantum system is inquantum-state tomog
raphy @11,12#. The data gathered from the measurements
said to determine the ‘‘unknown quantum state’’ of the sy
tem. But what can an unknown quantum state mean?
quantum state is a state of knowledge, then it must be kno
by somebody. If the Bayesian interpretation of quantu
probabilities is to be taken seriously, there must be a wa
eliminate the ‘‘unknown quantum state’’ from the descri
tion.

The key to this excision is to identify the salient feature
the state of knowledge that applies when an experime
performs quantum-state tomography. That salient featur
that the experimenter can contemplate examining an a
trarily large number of systems, all of which are equivale
from his perspective. This means that~i! the density operator
r̂ (N) for N systems should besymmetric, i.e., invariant under
all permutations of theN systems, and~ii ! this symmetry
should hold for all values ofN, with the consistency require
ment thatr̂ (N) arises from tracing out one of the systems
r̂ (N11). A sequence of density operators that satisfies th
two properties is said to beexchangeable, by analogy with
de Finetti’s definition@13# of exchangeable multitrial prob
abilities.

The quantum de Finetti representation theorem@16,17#
establishes that for any exchangeable sequence of de
operators,r̂ (N) can be writtenuniquelyin the form

r̂ (N)5E dr p~r!r ^ •••^ r, ~8!

where the tensor product includesN terms, the integral runs
over the space of density operators, and the ‘‘genera
function’’ p(r) can be thought of as a normalized ‘‘probab
ity density on density operators.’’ An exchangeable dens
operator captures what an experimenter knows about the
tems he intends to examine. It is a primary quantum-s
assignment for multiple copies, with no mention of unknow
quantum states. The content of the quantum de Finetti re
sentation is that the exchangeable state assignment can
ertheless be thought of in terms of unknown density ope
tors; ignorance of which density operator is described by
generating function.

Exchangeability permits us to describe what is going
in quantum-state tomography. Suppose two scientists m
different exchangeable state assignments and then jo
collect data from repeated measurements. Suppose fu
that the measurements are ‘‘tomographically complete,’’ i
5-4
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QUANTUM PROBABILITIES AS BAYESIAN PROBABILITIES PHYSICAL REVIEW A65 022305
the measurement probabilities for any density operator
sufficient to determine that density operator. The two sci
tists can use the dataD from an initial set of measuremen
to update their state assignments for further syste
In the limit of a large number of initial measuremen
they will come to agreement on a particular product st
r̂D ^ r̂D ^ ••• for further systems, wherer̂D is determined by
the data.This is what quantum-state tomography is all abo
The updating can be cast as an application of Bayes rul
updating the generating function in light of the data@21#. The
only requirement for ‘‘coming to agreement’’ is that bo
scientists should have allowed for the possibility ofr̂D by
giving it nonzero support in their initial generating function

VII. SUMMARY AND OUTLOOK

We promised simple answers, and it is hard to imag
simpler ones. The physical law that prescribes quan
probabilities is indeed fundamental, but the reason is that
a fundamental rule of inference—a law of thought—for
Bayesian probabilities. It follows from requiring Dutch-boo
consistency for probability assignments that are faithful
the Hilbert-space structure of quantum questions. Th
same desiderata require a particular pure-state assign
when a scientist has maximal information, and beca
maximal information is not complete, they give a strict co
nection between observed frequencies and pure-state q
tum probabilities. The notion of an ‘‘unknown quantu
state,’’ irreconcilable with the idea of quantum states
states of knowledge, can be banished from quantum-s
tomography using the quantum de Finetti representation

Quantum information science@22# is an emerging field
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that uses quantum states to escape the constraints impos
information processing in a realistic/deterministic world. T
rewards in quantum information science are great: telepo
tion of quantum states, distribution of secret keys for enc
ing messages securely, and computations done more
ciently on a quantum computer than on any classi
machine. The key to these rewards is that a quantum wor
less constrained than a classical one. As quantum infor
tion science harnesses the greater range of possibilities a
able in the quantum world, we believe it is imperative
understand and elucidate the fundamental principles unde
ing quantum mechanics. In this paper, we show how to
terpret quantum states consistently as states of knowle
reflecting what we know about a quantum system. This
just one step in a broader program to try to disentangle
subjective and objective aspects of the quantum world@23#.
We leave the last word to Edwin T. Jaynes@24#, who inspired
us to pursue the Bayesian view: ‘‘Today we are beginning
realize how much of all physical science is really onlyinfor-
mation, organized in a particular way. But we are far fro
unravelling the knotty question: ‘‘To what extent does th
information reside in us, and to what extent is it a property
Nature?’’ . . . Our present QM formalism is a peculiar mix
ture describing in part laws of Nature, in part incomple
human information about Nature—all scrambled up toget
by Bohr into an omelette that nobody has seen how to
scramble. Yet we think the unscrambling is a prerequisite
any further advance in basic physical theory . . . .’’
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