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Distinguishing n Hamiltonians on C" by a single measurement
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If an experimentalist wants to decide which oneropossible Hamiltonians acting on andimensional
Hilbert space is present, he can conjugate the time evolution by an appropriate sequence of known unitary
transformations in such a way that the different Hamiltonians result in mutual orthogonal final states. We
present a general scheme providing an approximation for such a sequence.
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Controlling simple quantum systems has become a largenly if their density matrices have disjoint support. Led by
field of research during the last decade. Experimental anthis simple statement concerning the distinguishability of
theoretical investigations deal with the preparation of certairstates we focus on the question of distinguishing between
quantum states, the implementation of unitary transformapossible HamiltoniangH,, ... H.} of a quantum system
tions, and the design of measurement procedures for diffeen the Hilbert spacé{:=C" and show that they are always
ent quantum observables. Whereas the problem of distirperfectly distinguishable provided they do not only differ by
guishing quantunstatesby optimal measurements is a large anadditiveconstant and it is not necessary to have more than
field of researchsee, e.g.[1]), discussions about optimal one copy of the considered system. We assume that the ex-
estimation of unknown quantumvolutionsare comparably perimentalist is allowed to prepare the initial state, to per-
rare. In quantum process tomographH@—4] either many form definite unitary transformations interrupting the un-
identical copies of the same system are subjected to the coknown natural evolution, and to perform an arbitrary
sidered evolution or one system is subjected to the sam@easurement at the end. The assumption about the restricted
evolution many times with a measurement after each timeet of possibilities is more natural than it might seem at first
period. If one is allowed to use only a restricted numiderf ~ sight. Take the following model of a measurement interaction
copies, e.g.N=1, the unknown evolution cannot be identi- (compare[9]): on the joint Hilbert space of the measured
fied perfectly and one can only try to obtain maximal infor- system and the measurement apparatus, we assume to have
mation about if5,6]. If the set of possible dynamical evolu- the Hamiltonian
tions can be restricted by prior knowledge, there can exist
schemes to decide which evolution has been applied to the
system without any error probability. This has been shown
for specific Hamiltonian evolutions if7]. In [8] it was
shown than possible Hamiltonian evolutions without further where P;); is the family of spectral projections of the mea-
restrictions can be distinguished hy—1 measurements sured observable arid; are different self-adjoint operators
since each of the measurements distinguishes between twooving the pointer of the measurement apparatus condi-
alternatives. In this paper we assume to have only one copjoned on the state of the measured system. Assume that we
of the system and we want to distinguish the Hamiltonianglo not have any direct access to the measured system and
without coupling it to a large Hilbert space. Furthermore,that we are not able to change the interaction at all. The only
only one measurement is allowed. way to use the interaction for a measurement procedure con-

The problem of estimating an unknown Hamiltonian cansists in initializing the measuring device, waititige., imple-
arise in various contexts: Assume we want to use a singlenentinge '®!), and interrupting this evolution several times
guantum system in order to detect classical fields, e.g., a spioy implementing local unitary transformations on the mea-
particle as detector for a magnetic field. We expose the testurement apparatus in order to get mutual orthogonal pointer
particle to the field for a certain time period and estimate thestates for different Hamiltoniangi;. Our considerations
field strength by measuring the particle’s quantum state. Asshow that this is always possiblgf H;—tr(H;)+H;
sume the experimentalist is allowed to perform arbitrary uni-—tr(H;) for i # j] and give a general rule for such a quantum
tary transformations on the test particle, expose the particlalgorithm.
to the field again, repeat this several times and perform a The algorithm consists of quite a large number of steps;
single measurement at the end. What is the best procedusince we are working in the Lie algebra instead of the Lie
for estimating the field? If the set of possible values for thegroup our scheme requires arbitrarily many unitary transfor-
field strength is larger than, a single measurement of the mations(close to the identityin order to obtain the correct
test particle can only allowstimationsof the field. By basic  result with arbitrary reliability. We are convinced that there
quantum mechanics, it is well known that a setstdtesis  exist much simpler algorithms for particular setsndflamil-
perfectly distinguishable by a single measurement if andonians. Whether or not there are general rules requiring only

a few steps is unclear. Developing short procedures for the
general case might result in computationally hard word prob-
*Electronic address: janzing@ira.uka.de lems in the Lie group SIJ, whereas our classical precompu-

G:=Z P]®H],
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tation consists only in solving linear equations for the pricewith a=x,y,z can be inverted as followse.g., [15,16]).
of obtaining only approximative solutions. Choose unitary operatorsl, and U, such thatU ,o,U"
First we present an example mHamiltonians that can be =g, for a=x,y. The first term of Eq(1) is invariant with
distinguished easily: Sét;:=jD with D:=diag(1,2...,n).  respect to a rotatiot) ,®U,. Hence one obtains
By waiting for timet=27/n, we have implemented the uni-
tary transformationse™ /272", Take the initial vector ) (U@UHUJeUh+(UyeU)HUJeU) = —H.
:=(1,1, ...,1¥. Then the states "27®/"| ;) are orthogonal _ _ .
for different values off since they are the discrete Fourier More general inversion schemes have been considered re-
transforms of the canonical basis vector<8fIn the rest of ~ cently (e.g.,[13,14). _ _
the paper we show that the general problem can be reduced The possibility of implementing™™" even for negative
to this example. For doing so we start by developing soméS decisive for using Lie algebraic tools in the sequel: Met
technical tools. be the Lie algebra of traceless self-adjoint operators acting
By waiting for timet, we have implemented the transfor- 0N H.
mation e M for the unknown Hamiltonian H By using the well-known formula
e{H,, ... H,}. We show that there is a procedure simulat-
ing €' for arbitrarys: Choose a finite subgroug of SU,
acting irreducibly orH. Then

iHt

lim (eiH/meiA/me—iH/me—iA/m)mz= e [HAL

m—oe

we can design an algorithm simulating the unitary

UHUT
Uzeg ef[H,A]s

is an Operator Commuting with evewe g and is therefore a for arbitrarySe R,AE A with an arbitrary small error. In the
multiple of the identity operator by Schur’s Lemrtthis fact ~Same way we conclude the following more generally.

is used in decoupling techniqugs0,11). Without loss of ~ Lemma 1 Let F,G:A—A be arbitrary(not necessarily
generality we assume eveH; to be traceless. Then one has linean functions. Assume there exist for evesy R proce-
SucgUH Ut=0 and hence,, coqUH Ut=—H. We ob- dures for simulating the unitary transformations

tain o iF(H)s
; iHt/my jTym_ o—iHt
rLITw(HUEQ\{l}UeI myhm=e=t, and
_ e id(H)s
SetG:={1U,, ... ,U;}. Then for largem we have approxi-
mately an implementation @™ as follows: with an arbitrary small error for the unknown Hamiltonian
begin He{H, ... H,}. Then there are procedures simulating
eld(H), F(H)]s
for k=1 tomdo
fors=1 tol do and
el F(H) Als

implementU

for everyA e A and everyse R with an arbitrary small error.
Obviously, for everyA e A we can find an algorithm per-
implementU{ forming i[H,AJz:ad(H)(A)_. Hence V\Il(e can find for_ every
ke N an algorithm performingad(H)]*(A). We obtain the
end. following result that can be found in a more general formu-
Note that for a strongly restricted set of Hamiltonians, thislation in control theory{18].
method for inverting an unknown evolution has already been Corollary. Let 7:.A— A be an arbitrary function. Assume
used in usual nuclear magnetic resonai@ spin-echo ex- that for every required accuracy and everyRR there exists
periments. The Hamiltonian considered there is the Pauli ma& procedure such that
trix o, multiplied by an unknown factox. Conjugating the
time evolution by the unitary transformatior simulates the €
inverse evolution. In contrast to the general scheme ex- . .
plained above, this is a precise implementation of the invers implemented. Then Lemma 1 provides a scheme for

evolution and not just an approximation. Moreover, a Spin_lmplementlng

wait the timet/m

—iF(H)s

spin interaction, e.g., the so-called dipolar coupling exp{—ip[adF(H)](A)},
H:= ®0. —30.8 1 wherep is an arbitrary real polynomial andle A.
% Ta 0™ 20280 @ Furthermore, we will need the following observation.
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Lemma 2Let Hom(A4,.4) be the ring ofR linear maps on [Uq exp{—iF(H)c s/k}Ulu,
the vector spaced. Let S be a group of unitaries with the
property that the representation x exp{—i F(H)c,s/k}U . ..Uy,

x exp{— i F(H)cpns/k}U 1K,
m.:S—Hom( A, A)
whereU; are the unitaries and; are the coefficients corre-

with 7(U)(A):=UAUT acts irreducibly on the complexifi- SPonding taC in the sense of Lemma 2 aikds large enough
cation of A. to keep the error small.

Then every map irC e Hom(A,.A) can be written as Now we are able to construct our algorithm: Choose an
operatorG e A with exactly two different eigenvalues called
a and 8. ChooseL e Hom(A, A) in such a way that’(H;)
=\;G with \;>0 and\;#\;. This is possible due to basic
linear algebra. The map a@]:=i[G,.] has the eigenvalues
*i(a—p) and 0. The spectrum of the map agG) is
hence given by the values \ji(a—),0. Choose a real

| polynomial p such thatp(=\jifa—B])==ji[a—B] and

p(0)=0. Due to the functional calculus for the diagonaliz-

able operator adg) this implies

LA)=2 ¢U;AU]
J

with positive numbers; .

Proof. The mapsw(U) are orthogonal maps on the rea
vector spaced. They act irreducibly on4d by assumption.
The smallest algebra containing them is the full matrix alge
bra, since every complex finite-dimensional algebra, which is p(\i[adG)])=jad G).
closed under conjugation, is a direct sum of full matrix alge- !
bras[19]. Hence it is possible to write the real m#pas a By definingC:=ad(G)(A) for arbitraryA e A\{0} we obtain
complex linear combination of products of maps in .

{m(U)}ys. Sincew is a group representation, one can re- p(adr;G))(A)=|C. @
write such a sum as linear combinations of mai)). Each

mapw(U) is real, hence all the coefficients can be chosen to Now choose a mag < Hom(A, A) such that

be real too. Furthermore, they can be taken positive due to Z(C)=D2m/n.
the inverting scheme explained above becauw®) can only
act irreducibly onA if Sacts irreducibly orC:". We obtainZ(p(ad(£(H)))(A))=jD2x/n.

The condition of Lemma 2 is satisfied, in particular, for ~ The classical precomputation for our algorithm can be
the full special unitary group: The complex spade-iA is  sketched as follows.
the simple Lie algebra of the special linear group. Its adjoint (1) Choose an elemef@ e A with a two-valued spectrum
representation ad is therefore irreducif®@)]. It follows that  and find a linear mayt such thatC(H;) =\;G with different
ad is an irreducible representation.éfon the complex space values\;.
A+iA. Since A is the Lie algebra of the group §U the (2) Find a set of unitary transformations, , . .. U, and
latter acts irreducibly omd +i.A too. Finite subgroups satis- g set of positive numbers such thatC(B)zchjUjBUjT for
fying the condition of Lemma 2 are studied in full detail in everyBe A. This is possible due to Lemma 2.
[17]. (3) Choose a polynomigb such thatp(= \;i(a—g))=

A straightforward implication of Lemma 2 is that if an +j andp(0)=0, if @, are the eigenvalues @.
experimentalist is able to implement all the transformations
of such a groupS, then he can convert any given Hamil-
tonian into an arbitrary one in the sense of the averag
Hamiltonian theory: the real Hamiltonian k4, but the sys-
tem is made to evolve as if it was subjected to the Hamil-£(B)=X;d;V;BV] .
tonian £(H). Furthermore, it follows that he can make the ~Now we sketch the required sequence of quantum opera-
system evolve according t6(H) without knowingH for  tions as follows.
every linear mapC. Note that the sum of the positive coef- (1) Prepare the initial statey):=(1/y/n)(1, ... ,1)

(4) Choose an arbitrary operatére A\{0} and a map’

guch thatZ(p(ad(G))[A])=D2=/n. Find a set of unitary
operatorsVy, ...,V and positive numbersl; such that

ficients for the mapsr(U) give the time overhead of simu-  (2) Call a subroutine performing the evolutian '/° 2"
lating £(H) if H is present. if the HamiltonianH; is present.
We conclude the following. (3) Measure in the basis defined by the discrete Fourier

Lemma 3Let 7 A— A be arbitrary. If there is a scheme transforms of the canonical basis vectors'dt If the result

implementing e~ '*(")s for the unknown HamiltonianH is thejth basis state, then the Hamiltoni&j is present.
e{H, ... ,H,} then The subroutine called in stef®) is recursively defined:
The implementation of

e £t e IP2mN=ex —iL(p(adL(H)))(A)]
is based on Lemma 2 by calling a subroutine simulating

for arbitrary £Le Hom(A4,.4) can be implemented with an
arbitrary small error by exd —ip(ad£(H;)))(A)s]
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for smalls several times. The implementation of the latter isseveral timegLemma 3.

based on the corollary to Lemma 2 by calling a subroutine

for implementing

e iL(H)s
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