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Distinguishing n Hamiltonians on C n by a single measurement

D. Janzing* and Th. Beth
Institut für Algorithmen und Kognitive Systeme, Am Fasanengarten 3a, D-76 131 Karlsruhe, Germany
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If an experimentalist wants to decide which one ofn possible Hamiltonians acting on ann-dimensional
Hilbert space is present, he can conjugate the time evolution by an appropriate sequence of known unitary
transformations in such a way that the different Hamiltonians result in mutual orthogonal final states. We
present a general scheme providing an approximation for such a sequence.
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Controlling simple quantum systems has become a la
field of research during the last decade. Experimental
theoretical investigations deal with the preparation of cert
quantum states, the implementation of unitary transform
tions, and the design of measurement procedures for di
ent quantum observables. Whereas the problem of dis
guishing quantumstatesby optimal measurements is a larg
field of research~see, e.g.,@1#!, discussions about optima
estimation of unknown quantumevolutionsare comparably
rare. In quantum process tomography@2–4# either many
identical copies of the same system are subjected to the
sidered evolution or one system is subjected to the s
evolution many times with a measurement after each t
period. If one is allowed to use only a restricted numberN of
copies, e.g.,N51, the unknown evolution cannot be iden
fied perfectly and one can only try to obtain maximal info
mation about it@5,6#. If the set of possible dynamical evolu
tions can be restricted by prior knowledge, there can e
schemes to decide which evolution has been applied to
system without any error probability. This has been sho
for specific Hamiltonian evolutions in@7#. In @8# it was
shown thatn possible Hamiltonian evolutions without furthe
restrictions can be distinguished byn21 measurements
since each of the measurements distinguishes between
alternatives. In this paper we assume to have only one c
of the system and we want to distinguish the Hamiltonia
without coupling it to a large Hilbert space. Furthermo
only one measurement is allowed.

The problem of estimating an unknown Hamiltonian c
arise in various contexts: Assume we want to use a sin
quantum system in order to detect classical fields, e.g., a
particle as detector for a magnetic field. We expose the
particle to the field for a certain time period and estimate
field strength by measuring the particle’s quantum state.
sume the experimentalist is allowed to perform arbitrary u
tary transformations on the test particle, expose the par
to the field again, repeat this several times and perform
single measurement at the end. What is the best proce
for estimating the field? If the set of possible values for
field strength is larger thann, a single measurement of th
test particle can only allowestimationsof the field. By basic
quantum mechanics, it is well known that a set ofstatesis
perfectly distinguishable by a single measurement if a
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only if their density matrices have disjoint support. Led
this simple statement concerning the distinguishability
states, we focus on the question of distinguishing betweenn
possible Hamiltonians$H1 , . . . ,Hn% of a quantum system
on the Hilbert spaceHªCn and show that they are alway
perfectly distinguishable provided they do not only differ b
anadditiveconstant and it is not necessary to have more t
one copy of the considered system. We assume that the
perimentalist is allowed to prepare the initial state, to p
form definite unitary transformations interrupting the u
known natural evolution, and to perform an arbitra
measurement at the end. The assumption about the restr
set of possibilities is more natural than it might seem at fi
sight. Take the following model of a measurement interact
~compare@9#!: on the joint Hilbert space of the measure
system and the measurement apparatus, we assume to
the Hamiltonian

Gª(
j

Pj ^ H j ,

where (Pj ) j is the family of spectral projections of the me
sured observable andH j are different self-adjoint operator
moving the pointer of the measurement apparatus co
tioned on the state of the measured system. Assume tha
do not have any direct access to the measured system
that we are not able to change the interaction at all. The o
way to use the interaction for a measurement procedure
sists in initializing the measuring device, waiting~i.e., imple-
mentinge2 iGt), and interrupting this evolution several time
by implementing local unitary transformations on the me
surement apparatus in order to get mutual orthogonal poi
states for different HamiltoniansH j . Our considerations
show that this is always possible@if H j2tr(H j )ÞHi
2tr(Hi) for iÞ j # and give a general rule for such a quantu
algorithm.

The algorithm consists of quite a large number of ste
since we are working in the Lie algebra instead of the L
group our scheme requires arbitrarily many unitary transf
mations~close to the identity! in order to obtain the correc
result with arbitrary reliability. We are convinced that the
exist much simpler algorithms for particular sets ofn Hamil-
tonians. Whether or not there are general rules requiring o
a few steps is unclear. Developing short procedures for
general case might result in computationally hard word pr
lems in the Lie group SUn , whereas our classical precomp
©2002 The American Physical Society03-1
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tation consists only in solving linear equations for the pr
of obtaining only approximative solutions.

First we present an example ofn Hamiltonians that can be
distinguished easily: SetH jª jD with Dªdiag(1,2, . . . ,n).
By waiting for timet52p/n, we have implemented the un
tary transformationse2 i j 2pD/n. Take the initial vectoruc&
ª(1,1, . . . ,1)T. Then the statese2 i j 2pD/nuc& are orthogonal
for different values ofj since they are the discrete Fouri
transforms of the canonical basis vectors ofCn. In the rest of
the paper we show that the general problem can be red
to this example. For doing so we start by developing so
technical tools.

By waiting for time t, we have implemented the transfo
mation e2 iHt for the unknown Hamiltonian H
P$H1 , . . . ,Hn%. We show that there is a procedure simul
ing eiHs for arbitrary s: Choose a finite subgroupG of SUn
acting irreducibly onH. Then

(
UPG

UHU†

is an operator commuting with everyUPG and is therefore a
multiple of the identity operator by Schur’s Lemma~this fact
is used in decoupling techniques@10,11#!. Without loss of
generality we assume everyH j to be traceless. Then one ha
(UPGUHU†50 and hence(UPG\$1%UHU†52H. We ob-
tain

lim
m→`

~PUPG\$1%UeiHt /mU†)m5e2 iHt .

SetGª$1,U1 , . . . ,Ul%. Then for largem we have approxi-
mately an implementation ofeiHt as follows:

begin

for k51 to m do

for s51 to l do

implementUs

wait the timet/m

implementUs
†

end.
Note that for a strongly restricted set of Hamiltonians, t

method for inverting an unknown evolution has already be
used in usual nuclear magnetic resonance@12# spin-echo ex-
periments. The Hamiltonian considered there is the Pauli
trix sz multiplied by an unknown factorl. Conjugating the
time evolution by the unitary transformationsx simulates the
inverse evolution. In contrast to the general scheme
plained above, this is a precise implementation of the inve
evolution and not just an approximation. Moreover, a sp
spin interaction, e.g., the so-called dipolar coupling

Hª(
a

sa ^ sa23sz^ sz ~1!
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with a5x,y,z can be inverted as follows~e.g., @15,16#!.
Choose unitary operatorsUx and Uy such thatUaszUa

†

5sa for a5x,y. The first term of Eq.~1! is invariant with
respect to a rotationUa ^ Ua . Hence one obtains

~Ux^ Ux!H~Ux
†

^ Ux
†!1~Uy^ Uy!H~Uy

†
^ Uy

†!52H.

More general inversion schemes have been considered
cently ~e.g.,@13,14#!.

The possibility of implementinge2 iHt even for negativet
is decisive for using Lie algebraic tools in the sequel: LetA
be the Lie algebra of traceless self-adjoint operators ac
on H.

By using the well-known formula

lim
m→`

~eiH /meiA/me2 iH /me2 iA/m!m2
5e2[H,A] ,

we can design an algorithm simulating the unitary

e2[H,A]s

for arbitrarysPR,APA with an arbitrary small error. In the
same way we conclude the following more generally.

Lemma 1. Let F,G:A→A be arbitrary~not necessarily
linear! functions. Assume there exist for everysPR proce-
dures for simulating the unitary transformations

e2 iF(H)s

and

e2 iG(H)s

with an arbitrary small error for the unknown Hamiltonia
HP$H1 , . . . ,Hn%. Then there are procedures simulating

e[G(H),F(H)]s

and

e[F(H),A]s

for everyAPA and everysPR with an arbitrary small error.
Obviously, for everyAPA we can find an algorithm per

forming i @H,A#5:ad(H)(A). Hence we can find for every
kPN an algorithm performing@ad(H)#k(A). We obtain the
following result that can be found in a more general form
lation in control theory@18#.

Corollary. Let F:A→A be an arbitrary function. Assum
that for every required accuracy and everysPR there exists
a procedure such that

e2 iF(H)s

is implemented. Then Lemma 1 provides a scheme
implementing

exp$2 ip@ad„F~H !…#~A!%,

wherep is an arbitrary real polynomial andAPA.
Furthermore, we will need the following observation.
3-2
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Lemma 2. Let Hom(A,A) be the ring ofR linear maps on
the vector spaceA. Let S be a group of unitaries with the
property that the representation

p:S→Hom~A,A!

with p(U)(A)ªUAU† acts irreducibly on the complexifi
cation ofA.

Then every map inLPHom(A,A) can be written as

L~A!5(
j

cjU jAUj
†

with positive numberscj .
Proof. The mapsp(U) are orthogonal maps on the re

vector spaceA. They act irreducibly onA by assumption.
The smallest algebra containing them is the full matrix al
bra, since every complex finite-dimensional algebra, whic
closed under conjugation, is a direct sum of full matrix alg
bras@19#. Hence it is possible to write the real mapL as a
complex linear combination of products of maps
$p(U)%UPS . Sincep is a group representation, one can r
write such a sum as linear combinations of mapsp(U). Each
mapp(U) is real, hence all the coefficients can be chosen
be real too. Furthermore, they can be taken positive du
the inverting scheme explained above becausep(S) can only
act irreducibly onA if S acts irreducibly onC n.

The condition of Lemma 2 is satisfied, in particular, f
the full special unitary group: The complex spaceA1 iA is
the simple Lie algebra of the special linear group. Its adjo
representation ad is therefore irreducible@20#. It follows that
ad is an irreducible representation ofA on the complex space
A1 iA. SinceA is the Lie algebra of the group SUn , the
latter acts irreducibly onA1 iA too. Finite subgroups satis
fying the condition of Lemma 2 are studied in full detail
@17#.

A straightforward implication of Lemma 2 is that if a
experimentalist is able to implement all the transformatio
of such a groupS, then he can convert any given Ham
tonian into an arbitrary one in the sense of the aver
Hamiltonian theory: the real Hamiltonian isH, but the sys-
tem is made to evolve as if it was subjected to the Ham
tonian L(H). Furthermore, it follows that he can make th
system evolve according toL(H) without knowing H for
every linear mapL. Note that the sum of the positive coe
ficients for the mapsp(U) give the time overhead of simu
lating L(H) if H is present.

We conclude the following.
Lemma 3. Let F:A→A be arbitrary. If there is a schem

implementing e2 iF(H)s for the unknown HamiltonianH
P$H1 , . . . ,Hn% then

e2 iL„F(H)…s

for arbitrary LPHom(A,A) can be implemented with a
arbitrary small error by
02230
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@U1 exp$2 iF~H !c1s/k%U1
†U2

3exp$2 iF~H !c2s/k%U2
† . . . Um

3exp$2 iF~H !cms/k%Um
† ] k,

whereU j are the unitaries andcj are the coefficients corre
sponding toL in the sense of Lemma 2 andk is large enough
to keep the error small.

Now we are able to construct our algorithm: Choose
operatorGPA with exactly two different eigenvalues calle
a andb. ChooseLPHom(A,A) in such a way thatL(H j )
5l jG with l j.0 andl iÞl j . This is possible due to basi
linear algebra. The map ad(G)ª i @G,.# has the eigenvalue
6 i (a2b) and 0. The spectrum of the map ad(l jG) is
hence given by the values6l j i (a2b),0. Choose a rea
polynomial p such thatp(6l j i @a2b#)56 j i @a2b# and
p(0)50. Due to the functional calculus for the diagonali
able operator ad(G) this implies

p„l j@ad~G!#…5 j ad~G!.

By definingCªad(G)(A) for arbitraryAPA\$0% we obtain

p„ad~l jG!…~A!5 jC. ~2!

Now choose a mapL̃PHom(A,A) such that

L̃~C!5D2p/n.

We obtainL̃„p(ad„L(H)…)(A)…5 jD2p/n.
The classical precomputation for our algorithm can

sketched as follows.
~1! Choose an elementGPA with a two-valued spectrum

and find a linear mapL such thatL(H j )5l jG with different
valuesl j .

~2! Find a set of unitary transformationsU1 , . . . ,Ul and
a set of positive numberscj such thatL(B)5( j cjU jBUj

† for
everyBPA. This is possible due to Lemma 2.

~3! Choose a polynomialp such thatp„6l j i (a2b)…5
6 j andp(0)50, if a,b are the eigenvalues ofG.

~4! Choose an arbitrary operatorAPA\$0% and a mapL̃
such thatL̃(p„ad(G)…@A#)5D2p/n. Find a set of unitary
operatorsV1 , . . . ,Vm and positive numbersdj such that
L̃(B)5( jdjVjBVj

† .
Now we sketch the required sequence of quantum op

tions as follows.
~1! Prepare the initial stateuc&ª(1/An)(1, . . . ,1)T.
~2! Call a subroutine performing the evolutione2 i jD 2p/n

if the HamiltonianH j is present.
~3! Measure in the basis defined by the discrete Fou

transforms of the canonical basis vectors ofC n. If the result
is the j th basis state, then the HamiltonianH j is present.

The subroutine called in step~2! is recursively defined:
The implementation of

e2 i jD 2p/n5exp@2 i L̃„p~ad„L~H j !…!~A!…#

is based on Lemma 2 by calling a subroutine simulating

exp@2 ip~ad„L~H j !…!~A!s#
3-3
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for smalls several times. The implementation of the latter
based on the corollary to Lemma 2 by calling a subrout
for implementing

e2 iL(H j )s
02230
e
several times~Lemma 3!.
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