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Quantum anticentrifugal force
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In a two-dimensional world, a free quantum particle of vanishing angular momentum experiences an attrac-
tive force. This force originates from a modification of the classical centrifugal force due to the wave nature of
the particle. For positive energies the quantum anticentrifugal force manifests itself in a bunching of the nodes
of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound
state in a two-dimensionad-function potential. In a counterintuitive way, the attractive force pushes the
particle away from the location of thé&function potential. As a consequence, the particle is localized in a
band-shaped domain around the origin.
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[. INTRODUCTION one unit of angular momentum manifests itself in the bunch-
ing or antibunching of the nodes of the radial wave function.
“If this is the best of all possible worlds, what are the This phenomenon of attraction is unique to two dimensions.
others like?” exclaims Candidl] in Voltaire’s philosophi- In Sec. V, we address the question of a bound state of a
cal novel when he sees the devastating results of the eartfifree” particle. Indeed, the attraction due to the quantum
quake in Lisbon. Almost 150 years after Voltaire, Einsteinanticentrifugal force is not enough to create a bound state.
pondered the question “How much freedom had God Wheno\n additional Weakly b|nd|ng pOtentiaL SUCh aﬁ'dunction
he created the world?” In the same spirit P. Ehrenféss] potential, is necessary. We conclude in Sec. VI by presenting
raised the problem “Why is the space we live in three-Some ideas for experimental realizations of these consider-
dimensional?” Since then many phenomena where dimenations.
sionality of space plays a crucial role have been discovered.
They manifest themselves in quantum dots and wires in I. AN UNUSUAL BOUND STATE
solid-state physics, phase transitions in statistical physics or
in the Kaluza-Klein or string theories of particle physics. In  Our analysis rests on the observation that the function
the present paper, we point out a wave effect that is unique t,6]
two-space dimensions and that can, in principle, be observed
in the recent two-dimensional trapping experiments using 1
wires [4]: A point particle subjected to a potential that is DA (x,y)=—=k Ko(kyx*+y?) (1)
solely confined to the coordinate origin binds locally in one \/;
and three dimensions but in two dimensions binds in a do-
main like a hollow pipe. The deeper reason for this surprisdefined in terms of the zeroth modified Bessel function
ing effect lies in the quantum anticentrifugal potential: In and the wave numbes satisfies the Helmholtz equation
two dimensions the centrifugal potential corresponding to
vanishing angular momentum is attractive rather than repul- [A@—Kk2]dP(x,y)=0 )
sive.
In the present paper, we focus on the manifestations of thgyerywhere except at=y=0. Here,A® denotes the La-
quantum anticentrifugal potential in the energy eigenstates qfjacian in two dimensions.
a free particle in two dimensions. The problem of time-" \yhen we recall the dispersion relation
dependent phenomena originating from this potential will be
addressed in future publications. 2
: ; , (1K)
The paper is organized as follows: In Sec. I, we observe E=—|E|=— - 3
that a localized wave function satisfies the time-independent 2M
Schralinger equation of a free particle. The reason for the
localization stands out most clearly in the Salinger equa- of a free particle with masM and negative energf, the
tion for the radial wave function, discussed in Sec. lll. In- Helmholtz equation is equivalent to the corresponding time-
deed, for vanishing angular momentum an attractive potenindependent Schdinger equation.
tial arises from the wave nature of the particle and The wave function®® shown in Fig. 1 enjoys some
determines the decay of the radial wave function. In Sec. I\Vrather unusual properties: Due to the modified Bessel func-
we identify the origin of the corresponding attractive force astion Kg, it diverges[7] logarithmically at the origin whereas
interference of waves. Moreover, we show that the attractiomt large distances it decreases exponentially. Despite this di-
or repulsion of the potentials corresponding to vanishing overgence, the wave function is still square integrable,
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FIG. 1. The wave function®‘®(r) represented in two-
dimensional space is logarithmically divergent at the origin but de-

cays exponentially for positions away from the origin. In the inset v
we show a cut along the& axis that brings out the logarithmic
divergence ofb@(r) at the origin. FIG. 2. The radial probabilityV®)(r) vanishes at the origin and

decays for large distances, with a maximum close to the origin. In
the inset we show a cut along theaxis that brings out the cusp of

o0 0 0 2 k2
f dxf dy|¢(2)(x,y)|2=f drf r dqﬁ;KS(kr) W)(r) at the origin.
o Jw o Jo

for the radial wave function

2| deeKio=1.
jo ° ud(r)=Jre me®d@)(r cose,r sing). (4)

_Indeed, the area elemedlt(/dy= rdrdd brings in an ad-  Here we have introduced the effective potential
ditional power ofr = (x2+y?)? and regularizes the logarith-

mic divergence at the origin. 52 mP—1/4
For the same reason, the probability V(= _— —
2M 2
W(rydr=2k?K2(kr)rdr
in two dimensions. The radial wave equation E4).follows
to find the particle betweenandr +dr vanishes at the ori- from the Helmholtz equation Eq2) with the help of the
gin, as shown in Fig. 2. Moreover, since the modified Bessetlispersion relation Eq.3).
function K, decays for large distances, the radial probability ~The first term inv{?), proportional tom?, is the potential

displays a maximum close to the origin. that describes the familiar centrifugal force. Less familiar is
the negative correction term 1/4 that comes from the re-
IIl. QUANTUM ANTICENTRIFUGAL POTENTIAL duction of space from three to two dimensions. It gives rise

to a centripetal force, which from this point on we shall call
What is the deeper reason for this localizat{@9] of a a quantum anticentrifugal force to emphasize that its binding
i dower arises from quantum mechanics. Indeed, for particles

free particle? No classical potential prevents the particle i :
from diffusing away. One part of the answer to this appar-WIth non_vamshmg angylar momentqnné&O) the potential
ently paradoxical situation, a bound state of a free particleIS repulswg, as shown in t.he bottqm inset of F'g' s. Howgver,
lies in the Schidinger equation the repulsiveness associated with the classical centrifugal

force, that is then® term, is softened by the correction term

—1/4.
2
@ + y[E—V(z)(r)] u@d(ry=0 The effect of this contribution stands out most clearly for
dr?  #2 m m a particle with zero angular momentum, thatns+0. Here
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A 2
% V(r)= PIYIEL (6)
1.01 -

1 A g G B @ @ @ = whereL is the angular momentum vector. Indeed, in three
0.99 u dimensions the “quantum square” of angular momentum
’ . readsL?=#%2I(1+1). In two dimensions, it seems to take the

g1 less familiar formL2=#2(m2— 1/4)=#2(m—1/2) (m+1/2).
A However, this picture is misleading. Whereas the quantum

3 6 9n squarel (I+1) is solely a consequence of the angular mo-
FIG. 3. Node bunching and antibunching of energy eigenfuncMe€ntum algebra, the correction teril/4 in two dimensions
tions of a free particle in a two-dimensional space. The centrifuga0€s not result from the angular motion, but from the radial
potential corresponding to a nonvanishing angular momentum i§n0ti0n. It can be traced back to the radial derivatives in the
repulsive (bottom inset and the two linearly independent eigen- Laplacian
functions are determined by the Bessel functign(solid line) and

the Neumann functiorY,; (dotted ling. In contrast, the potential 5 P2 19 1 92
corresponding to a vanishing angular momentum is attractoe Al )=—2 + Toor + Y (7)
inse) and the two eigenfunctions are proportionalgp(solid line) ar r*ad¢

and Y, (dotted ling. The repulsive and attractive potentials give ) )

rise to an antibunching and bunching of the nodes of the energfXPressed in polar coordinates.

eigenfunction, respectively. As a measuyg(n)=m/A(n) of This feature suggests that the quantum anticentrifugal
bunching or antibunching, we use the inverse of the differencdorce is a metric force. It originates from the use of curvilin-
A,(n) of neighboring zeros of thenth Bessel functiord,,, or Neu-  ear coordinates, that is, the description of the wave in cylin-
mann functionY,, in units of the free-space separatian Filled  drical coordinates.

squares or triangles represani(n) for J; or Y, in the repulsive

centrifugal potential. Open squares or triangles repregg(m) for IV. NODE BUNCHING AND ANTIBUNCHING

Jo or Y in the attractive potential. The zeroso§ andY, lie closer

to the origin than those af, andJ;. Consequently, the bunching or How can we gain some insight into the physical origin of
antibunching effect is more evident in the Neumann function tharthe quantum anticentrifugal potenth? One strategy is to

in the Bessel function. The physics of the nonrelativistic free parfirst consider the familiar case of a free particle of positive
ticle does not contain an intrinsic unit of Iength When we define aenergy and compare and contrast the wave functions of an
dimeqsionless Iengtb_skr, Whergk is_the wave number, the di- gttractive potential ©i=0) and a repulsive potentialn(
mensionless energy eigenvalue is unity. >0). Then we extend these considerations to negative ener-

i . . i ) gies and emphasize the uniqueness of two dimensions.
the effective potential shown in the top inset of Fig. 3 be-

comes attractive. Hence, this quantum anticentrifugal poten- .
A. Positive energy

tial
For E>0 the two linear independent solutions of the two-
K2 1 dimensional Helmholtz equation are the ordinary Bessel
VQ(r)EVSZ)(r) = oM p functionsJ,, and the Neumann functiong,,. For the attrac-
r

tive potentialVq the independent solutions are proportional
to J, or Yo, Whereas for the repulsive potenth{?), corre-
sponding tam=1, we findJ; andY;. The different nature of

. the potentials—attractive vs repulsive—manifests itself in

h ¢ Striki h terintuiti ‘ £ thi tnthe wave functions through the distribution of nodes deter-
€ Most striking way the cournterntuiiive nature of tis at,jneq by the zero$, , or yn, , of the Bessel functiod,, or

traction. H.owever, we emphasize that, despite the name, ﬂ}ﬁe Neumann functiolY,,. A measure for the distribution of
attraction is not related to the angular but to the radial mo-

nodes is the normalized density

is the reason for the decay of the wave function in @g.at
large distances.

tion.

To illustrate this statement we compare the effective po- T
tential V{2) in two dimensions to the effective potential Im(N)= A (tS)

VO (r)= ﬁ_z I(1+1) 5 of the zeros of the Bessel functions. Here,
2M 2
An(M=jmn+1=Imn 9

in three dimensions. Herédenotes the quantum number of ) ) )
angular momentum. denotes the separation of neighboring zerodpfind

Both potentials seem to be quantum translations of the
classical centrifugal potential An(N=Ymn+1~Ymn (10
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denotes the same quantity f#f,. We have normalized the Stokes line going from negative to positive arguments. In-

separation to the free-space separationf the zeros. deed, for large negative values we can approximate the Airy
In J, and Y, the separatiom\y(n) between neighboring function by two counterpropagating waves, whereas for large

zeros decreases for decreasimgn agreement with the in- positive values we only find a single decaying exponential.

tuitive picture that the particle accelerates towards the origin.

In Fig. 3, we represent by open squares and triangles the C. Higher dimensions

normalized densitgo(n) of the zeros o, andYy, respec- This phenomenon of attraction is unique to two dimen-

tively, clearly demonstrating node bunching. : : e
._sions[11]. Indeed, for a free particle of vanishing angular
In the language of cold atoms the energy wave function ! : ) 2
) ; . 9l . momentum theN-dimensional (hypepspherical Schrdinger
Uy’ has a negative scattering length, indicating an attractive, :
. - ; quation[12]
potential. In the case of cold atoms the origin of this attrac-
tion is a physical interaction. In contrast, the attractive quan- d2
tum anticentrifugal potential is not due to a classical interac-
tion but arises from the wave equation.

In contrast, inJ; and Y the separatiod\(n) of neigh- _ _ ) ) _
boring zeros increases asdecreases, corresponding to afor the radial variabler=(x;+---+x3)"? contains the
deceleration of the particle running up the potential well.quantum potentig13]

Again, in the language of cold atoms this case corresponds to
a positive scattering length. The filled squares and triangles
of Fig. 3, corresponding to the normalized dengjtyn) of
zeros ofJ; andY, respectively, reflect the phenomenon of
nO(\j/\?haerr]gbiLs"lﬁzlggtt.raction coming from? The answer is: In—FOr N=1 andN=3 the quantum potential vanishes. For
terference of waves. When we intgerfere .infinitel man ianehigher dimension&(=3 it is repulsive. Only foN=2 this

' y yp otential becomes attractive. Therefore, the anticentrifugal

waves of |d¢nt|cql amplltudgs and wave number.s, and allo orce effect is a consequence of the dimensionality of space.
all propagation directions with equal weight, the interference

pattern is that of the Bessel functidg. This surprising fea-
ture is just the physical interpretation of the Sommerfeld V. BOUND STATE OF A “FREE” PARTICLE
integral representation

2M
+?[E—vgN)] ut™M(r)=0

ar?

£ (N—1)(N-23)

These considerations suggest that in two dimensions there
exists a bound state of a free particle with the wave function
1 2 X . . .

Jo(kf)=—f dgelkrsine given by Eq.(1). However, we emphasize that the wave
2mJo numberk and thus the enerdy are free parameters. There is
no length scale in the problem. What fixes the energy of this
of the Bessel function. bound state? The logarithmic singularity®f?) at the origin

The particle represented by the wave function containingndicates that there the wave function does not satisfy the
Jo feels the quantum anticentrifugal force. Each plane waveime-independent Schdinger equation. Indeed, the wave
contributing to the Bessel-interference pattern does not fedlinction (1) satisfies the equatioi4],
any force. The interference of all plane waves acts as an
effective force. Attraction from interference. [A@— kz]q)(Z)(;) _ U06(2)(F)

B. Negative energy with an additionals-function potentia[15] of strengthU,. A

So far, we have focused on the case of positive energie§ionlinear relation betweek and U, determines[16] the
An interesting selection of solutions occurs when we makeeigenenergy of the bound state. _
the transition from positive to negative energies. Due to the Hence, we are not really dealing with a free particle, but
sign change of the energy and the quadratic dispersion relatith a particle in the presence ofcfunction potential. Not-
tion of the free particle, the wave number becomes purelyvithstanding the problemgl6,17) associated with the defi-
imaginary. Consequently, the ordinary Bessel functidps  Nition of a é-function potential in two and higher dimen-
andY, turn into the modified Bessel functions, andK,. sions, itis well km_)wn that under appropriate condmons such
However, based on physical arguments, no solutions of neg&otentials entertain bound statei$,17. Indeed, in one di-
tive energy exist fom=1. Nevertheless, fan=0, we have mension the strengttl, of the potential has to be negative
the two solutiond, andK,. Since the modified Bessel func- and the corresponding probability distribution
tion 14 increases exponentially for large distances, whereas
K, decreases, the boundary conditions imposed by the quan- WY(x)dx=|®M)(x)|2dx= (yke™ ) 2dx=ke 2KXldx
tum anticentrifugal potential selekt, and thus the solution
Eqg. (1). displays a maximum at the location of the potential.

The reduction from two equally contributing waves to a  In three dimensions the parametgs has to be positive in
single one as we cross the zero-energy line is reminiscent arder for thes-function potential to support a bound state. As
the behavior of the Airy function when we crog0] the  in one dimension, the probability distribution
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kK 1 2 numbers giving rise to modified Bessel functions. This is
W(3)(r)drz|cI>(3)(r)|247-rr2dr:( \/2——ek’) Agr2dr analogous to axicons used in classical optics.
mr This phenomenon of binding a particle with the help of
=2k e 2krgr the quantum anticentrifugal force could have interesting ap-
plications in the context of waveguides. Needless to say, all
is an exponential and exhibits a maximum at the origin.  the conclusions hold for electromagnetic fields when we can
The reason for this common feature is quite intriguing. Inignore polarization. Here the maximum of the intensity does
one dimension it is simply due to the fact that the wavenot lie in the waveguide, that is, thfunction potential, but
function ®)(x) has a maximum at=0. In three dimen- rather outside.
sions the situation is more subtle. Here the radial wave func- The newly emerging field of cold atoms offers interesting
tion ®®)(r) contains a ¥/ singularity, creating a i singu-  possibilities for experimentally verifying the existence of the
larity in the probability density. However, the volume quantum anticentrifugal force. Here we do not go into the
element 4rr2dr of a spherical shell in three dimensions can-details of such an experiment, but only give an idea. The
cels the singularity in the probability and only the exponen-interaction between two cold atoms is usually modeled by a
tial at the origin survives. 6 function. We can use this feature to create #iunction
In two dimensions the situation is drastically different. potential necessary for the wave functid®) defined in Eq.
Independent of the sign dfi, there always exists a single (1) to be an eigenstate of the self-adjoint extension of the
bound state, with wave functioh®, Eq. (1). Moreover, the  kinetic-energy operator. The cylindrical symmetry we
area element 2r dr of a ring prevails over the logarithmic achieve by using a dilute atomic beam guided by a laser
singularity contained ifk,. This creates a node at the origin. beam. In order not to affect the atom to be trapped, we have
As a consequence, the maximum of the probability distributo work with two different atomic elements. In the sense of a
tion gets pushed away from the center of attraction. Born-Oppenheimer approximation the atom feels a time-
In this sense, the intuitive picture of a repulsive centrifu-averageds-function potential.
gal force reappears: The maximum of the probability is notat We conclude by emphasizing that this phenomenon of
the origin, but in a ring surrounding it. The quantum anticen-attraction in a free particle crucially depends on the fact that
trifugal potential keeps the packet together. we have restricted the space to two dimensions. For positive
This behavior is reminiscent of the probability distribu- energies the special case of vanishing angular momentum
tion of the electron in the hydrogen atom, irsatate. Here, selects the origin as a special point of the two-dimensional
the wave function is an exponential and displays a maximunplane. In the case of negative energies withs-unction
at the origin. The volume element42dr of a three- potential the origin becomes a singular point, much in the
dimensional spherical shell creates a node at the origin ansbirit of the singularity provided by the magnetic-flux line in
thus a maximum at the Bohr radius. However, there is ahe Aharonov-Bohm effect. These facts demonstrate that in
fundamental difference to our situation: The exponential detwo dimensions a single point matters: It changes the topol-
cay of the wave function in the atom is enforced by a clas-ogy. In contrast, in three dimensions a single point is less
sical potential, namely, the Coulomb potential. In contrastjmportant.
for the free particle in two dimensions it is the quantum
anticentrifugal potential that demands the decay.
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