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Quantum anticentrifugal force

M. A. Cirone,1 K. Rza̧żewski,2 W. P. Schleich,1 F. Straub,1 and J. A. Wheeler3

1Abteilung für Quantenphysik, Universita¨t Ulm, D-89069 Ulm, Germany
2Center for Theoretical Physics, Polish Academy of Sciences, and College of Science, Al. Lotniko´w 32/46, 02-668 Warsaw, Poland

3 Department of Physics and Astronomy, Princeton University, Princeton, New Jersey 08544
~Received 2 August 2001; published 21 December 2001!

In a two-dimensional world, a free quantum particle of vanishing angular momentum experiences an attrac-
tive force. This force originates from a modification of the classical centrifugal force due to the wave nature of
the particle. For positive energies the quantum anticentrifugal force manifests itself in a bunching of the nodes
of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound
state in a two-dimensionald-function potential. In a counterintuitive way, the attractive force pushes the
particle away from the location of thed-function potential. As a consequence, the particle is localized in a
band-shaped domain around the origin.
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I. INTRODUCTION

‘‘If this is the best of all possible worlds, what are th
others like?’’ exclaims Candide@1# in Voltaire’s philosophi-
cal novel when he sees the devastating results of the e
quake in Lisbon. Almost 150 years after Voltaire, Einste
pondered the question ‘‘How much freedom had God wh
he created the world?’’ In the same spirit P. Ehrenfest@2,3#
raised the problem ‘‘Why is the space we live in thre
dimensional?’’ Since then many phenomena where dim
sionality of space plays a crucial role have been discove
They manifest themselves in quantum dots and wires
solid-state physics, phase transitions in statistical physic
in the Kaluza-Klein or string theories of particle physics.
the present paper, we point out a wave effect that is uniqu
two-space dimensions and that can, in principle, be obse
in the recent two-dimensional trapping experiments us
wires @4#: A point particle subjected to a potential that
solely confined to the coordinate origin binds locally in o
and three dimensions but in two dimensions binds in a
main like a hollow pipe. The deeper reason for this surp
ing effect lies in the quantum anticentrifugal potential:
two dimensions the centrifugal potential corresponding
vanishing angular momentum is attractive rather than re
sive.

In the present paper, we focus on the manifestations of
quantum anticentrifugal potential in the energy eigenstate
a free particle in two dimensions. The problem of tim
dependent phenomena originating from this potential will
addressed in future publications.

The paper is organized as follows: In Sec. II, we obse
that a localized wave function satisfies the time-independ
Schrödinger equation of a free particle. The reason for
localization stands out most clearly in the Schro¨dinger equa-
tion for the radial wave function, discussed in Sec. III. I
deed, for vanishing angular momentum an attractive po
tial arises from the wave nature of the particle a
determines the decay of the radial wave function. In Sec.
we identify the origin of the corresponding attractive force
interference of waves. Moreover, we show that the attrac
or repulsion of the potentials corresponding to vanishing
1050-2947/2001/65~2!/022101~6!/$20.00 65 0221
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one unit of angular momentum manifests itself in the bun
ing or antibunching of the nodes of the radial wave functio
This phenomenon of attraction is unique to two dimensio
In Sec. V, we address the question of a bound state o
‘‘free’’ particle. Indeed, the attraction due to the quantu
anticentrifugal force is not enough to create a bound st
An additional weakly binding potential, such as ad-function
potential, is necessary. We conclude in Sec. VI by presen
some ideas for experimental realizations of these consi
ations.

II. AN UNUSUAL BOUND STATE

Our analysis rests on the observation that the funct
@5,6#

F (2)~x,y![
1

Ap
k K0~kAx21y2! ~1!

defined in terms of the zeroth modified Bessel functionK0
and the wave numberk satisfies the Helmholtz equation

@D (2)2k2#F (2)~x,y!50 ~2!

everywhere except atx5y50. Here,D (2) denotes the La-
placian in two dimensions.

When we recall the dispersion relation

E52uEu52
~\k!2

2M
~3!

of a free particle with massM and negative energyE, the
Helmholtz equation is equivalent to the corresponding tim
independent Schro¨dinger equation.

The wave functionF (2) shown in Fig. 1 enjoys some
rather unusual properties: Due to the modified Bessel fu
tion K0, it diverges@7# logarithmically at the origin wherea
at large distances it decreases exponentially. Despite this
vergence, the wave function is still square integrable,
©2001 The American Physical Society01-1
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E
2`

`

dxE
2`

`

dyuF (2)~x,y!u25E
0

`

drE
0

2p

r df
k2

p
K0

2~kr !

52E
0

`

dj jK0
2~j!51.

Indeed, the area elementdx dy5rdr df brings in an ad-
ditional power ofr[(x21y2)1/2 and regularizes the logarith
mic divergence at the origin.

For the same reason, the probability

W(2)~r !dr[2k2K0
2~kr !r dr

to find the particle betweenr and r 1dr vanishes at the ori-
gin, as shown in Fig. 2. Moreover, since the modified Bes
functionK0 decays for large distances, the radial probabi
displays a maximum close to the origin.

III. QUANTUM ANTICENTRIFUGAL POTENTIAL

What is the deeper reason for this localization@8,9# of a
free particle? No classical potential prevents the part
from diffusing away. One part of the answer to this app
ently paradoxical situation, a bound state of a free parti
lies in the Schro¨dinger equation

H d2

dr2
1

2M

\2
@E2Vm

(2)~r !#J um
(2)~r !50

FIG. 1. The wave functionF (2)(r ) represented in two-
dimensional space is logarithmically divergent at the origin but
cays exponentially for positions away from the origin. In the in
we show a cut along thex axis that brings out the logarithmi
divergence ofF (2)(r ) at the origin.
02210
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for the radial wave function

um
(2)~r ![Are2 imfF (2)~r cosf,r sinf!. ~4!

Here we have introduced the effective potential

Vm
(2)~r ![

\2

2M

m221/4

r 2

in two dimensions. The radial wave equation Eq.~4! follows
from the Helmholtz equation Eq.~2! with the help of the
dispersion relation Eq.~3!.

The first term inVm
(2) , proportional tom2, is the potential

that describes the familiar centrifugal force. Less familiar
the negative correction term21/4 that comes from the re
duction of space from three to two dimensions. It gives r
to a centripetal force, which from this point on we shall c
a quantum anticentrifugal force to emphasize that its bind
power arises from quantum mechanics. Indeed, for parti
with nonvanishing angular momentum (mÞ0) the potential
is repulsive, as shown in the bottom inset of Fig. 3. Howev
the repulsiveness associated with the classical centrifu
force, that is them2 term, is softened by the correction ter
21/4.

The effect of this contribution stands out most clearly f
a particle with zero angular momentum, that is,m50. Here

-
t

FIG. 2. The radial probabilityW(2)(r ) vanishes at the origin and
decays for large distances, with a maximum close to the origin
the inset we show a cut along thex axis that brings out the cusp o
W(2)(r ) at the origin.
1-2
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QUANTUM ANTICENTRIFUGAL FORCE PHYSICAL REVIEW A65 022101
the effective potential shown in the top inset of Fig. 3 b
comes attractive. Hence, this quantum anticentrifugal po
tial

VQ~r ![V0
(2)~r !52

\2

2M

1

4r 2

is the reason for the decay of the wave function in Eq.~1! at
large distances.

We have chosen this name for the potential to bring ou
the most striking way the counterintuitive nature of this
traction. However, we emphasize that, despite the name
attraction is not related to the angular but to the radial m
tion.

To illustrate this statement we compare the effective
tential Vm

(2) in two dimensions to the effective potential

Vl
(3)~r ![

\2

2M

l ~ l 11!

r 2
~5!

in three dimensions. Here,l denotes the quantum number
angular momentum.

Both potentials seem to be quantum translations of
classical centrifugal potential

FIG. 3. Node bunching and antibunching of energy eigenfu
tions of a free particle in a two-dimensional space. The centrifu
potential corresponding to a nonvanishing angular momentum
repulsive ~bottom inset! and the two linearly independent eige
functions are determined by the Bessel functionJ1 ~solid line! and
the Neumann functionY1 ~dotted line!. In contrast, the potentia
corresponding to a vanishing angular momentum is attractive~top
inset! and the two eigenfunctions are proportional toJ0 ~solid line!
and Y0 ~dotted line!. The repulsive and attractive potentials giv
rise to an antibunching and bunching of the nodes of the ene
eigenfunction, respectively. As a measuregm(n)[p/Dm(n) of
bunching or antibunching, we use the inverse of the differe
Dm(n) of neighboring zeros of themth Bessel functionJm or Neu-
mann functionYm in units of the free-space separationp. Filled
squares or triangles representg1(n) for J1 or Y1 in the repulsive
centrifugal potential. Open squares or triangles representg0(n) for
J0 or Y0 in the attractive potential. The zeros ofY0 andY1 lie closer
to the origin than those ofJ0 andJ1. Consequently, the bunching o
antibunching effect is more evident in the Neumann function th
in the Bessel function. The physics of the nonrelativistic free p
ticle does not contain an intrinsic unit of length. When we defin
dimensionless lengthr[kr, wherek is the wave number, the di
mensionless energy eigenvalue is unity.
02210
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Vcl~r ![
LW 2

2Mr 2
, ~6!

whereLW is the angular momentum vector. Indeed, in thr
dimensions the ‘‘quantum square’’ of angular momentu
readsLW 25\2l ( l 11). In two dimensions, it seems to take th
less familiar formLW 25\2(m221/4)5\2(m21/2)(m11/2).

However, this picture is misleading. Whereas the quant
squarel ( l 11) is solely a consequence of the angular m
mentum algebra, the correction term21/4 in two dimensions
does not result from the angular motion, but from the rad
motion. It can be traced back to the radial derivatives in
Laplacian

D (2)5
]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]f2
, ~7!

expressed in polar coordinates.
This feature suggests that the quantum anticentrifu

force is a metric force. It originates from the use of curvili
ear coordinates, that is, the description of the wave in cy
drical coordinates.

IV. NODE BUNCHING AND ANTIBUNCHING

How can we gain some insight into the physical origin
the quantum anticentrifugal potentialVQ? One strategy is to
first consider the familiar case of a free particle of positi
energy and compare and contrast the wave functions o
attractive potential (m50) and a repulsive potential (m
.0). Then we extend these considerations to negative e
gies and emphasize the uniqueness of two dimensions.

A. Positive energy

For E.0 the two linear independent solutions of the tw
dimensional Helmholtz equation are the ordinary Bes
functionsJm and the Neumann functionsYm . For the attrac-
tive potentialVQ the independent solutions are proportion
to J0 or Y0, whereas for the repulsive potentialV1

(2) , corre-
sponding tom51, we findJ1 andY1. The different nature of
the potentials—attractive vs repulsive—manifests itself
the wave functions through the distribution of nodes det
mined by the zerosj m,n or ym,n of the Bessel functionJm or
the Neumann functionYm . A measure for the distribution o
nodes is the normalized density

gm~n![
p

Dm~n!
~8!

of the zeros of the Bessel functions. Here,

Dm~n![ j m,n112 j m,n ~9!

denotes the separation of neighboring zeros ofJm and

Dm~n![ym,n112ym,n ~10!
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denotes the same quantity forYm . We have normalized the
separation to the free-space separationp of the zeros.

In J0 and Y0 the separationD0(n) between neighboring
zeros decreases for decreasingn, in agreement with the in-
tuitive picture that the particle accelerates towards the ori
In Fig. 3, we represent by open squares and triangles
normalized densityg0(n) of the zeros ofJ0 andY0, respec-
tively, clearly demonstrating node bunching.

In the language of cold atoms the energy wave funct
u0

(2) has a negative scattering length, indicating an attrac
potential. In the case of cold atoms the origin of this attr
tion is a physical interaction. In contrast, the attractive qu
tum anticentrifugal potential is not due to a classical inter
tion but arises from the wave equation.

In contrast, inJ1 andY1 the separationD1(n) of neigh-
boring zeros increases asn decreases, corresponding to
deceleration of the particle running up the potential we
Again, in the language of cold atoms this case correspond
a positive scattering length. The filled squares and triang
of Fig. 3, corresponding to the normalized densityg1(n) of
zeros ofJ1 andY1, respectively, reflect the phenomenon
node antibunching.

Where is the attraction coming from? The answer is:
terference of waves. When we interfere infinitely many pla
waves of identical amplitudes and wave numbers, and al
all propagation directions with equal weight, the interferen
pattern is that of the Bessel functionJ0. This surprising fea-
ture is just the physical interpretation of the Sommerf
integral representation

J0~k r !5
1

2pE0

2p

du eik r sin u

of the Bessel function.
The particle represented by the wave function contain

J0 feels the quantum anticentrifugal force. Each plane w
contributing to the Bessel-interference pattern does not
any force. The interference of all plane waves acts as
effective force. Attraction from interference.

B. Negative energy

So far, we have focused on the case of positive energ
An interesting selection of solutions occurs when we ma
the transition from positive to negative energies. Due to
sign change of the energy and the quadratic dispersion
tion of the free particle, the wave number becomes pur
imaginary. Consequently, the ordinary Bessel functionsJm
andYm turn into the modified Bessel functionsI m andKm .
However, based on physical arguments, no solutions of n
tive energy exist form>1. Nevertheless, form50, we have
the two solutionsI 0 andK0. Since the modified Bessel func
tion I 0 increases exponentially for large distances, wher
K0 decreases, the boundary conditions imposed by the q
tum anticentrifugal potential selectK0 and thus the solution
Eq. ~1!.

The reduction from two equally contributing waves to
single one as we cross the zero-energy line is reminiscen
the behavior of the Airy function when we cross@10# the
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Stokes line going from negative to positive arguments.
deed, for large negative values we can approximate the A
function by two counterpropagating waves, whereas for la
positive values we only find a single decaying exponenti

C. Higher dimensions

This phenomenon of attraction is unique to two dime
sions @11#. Indeed, for a free particle of vanishing angul
momentum theN-dimensional,~hyper!spherical Schro¨dinger
equation@12#

H d2

dr2
1

2M

\2
@E2V0

(N)#J u(N)~r !50

for the radial variabler[(x1
21•••1xN

2 )1/2 contains the
quantum potential@13#

V0
(N)~r ![

\2

2M

~N21!~N23!

4r 2
.

For N51 and N53 the quantum potential vanishes. F
higher dimensionsN>3 it is repulsive. Only forN52 this
potential becomes attractive. Therefore, the anticentrifu
force effect is a consequence of the dimensionality of spa

V. BOUND STATE OF A ‘‘FREE’’ PARTICLE

These considerations suggest that in two dimensions t
exists a bound state of a free particle with the wave funct
given by Eq. ~1!. However, we emphasize that the wa
numberk and thus the energyE are free parameters. There
no length scale in the problem. What fixes the energy of t
bound state? The logarithmic singularity ofF (2) at the origin
indicates that there the wave function does not satisfy
time-independent Schro¨dinger equation. Indeed, the wav
function ~1! satisfies the equation@14#,

@D (2)2k2#F (2)~rW !5U0d (2)~rW !

with an additionald-function potential@15# of strengthU0. A
nonlinear relation betweenk and U0 determines@16# the
eigenenergy of the bound state.

Hence, we are not really dealing with a free particle, b
with a particle in the presence of ad-function potential. Not-
withstanding the problems@16,17# associated with the defi
nition of a d-function potential in two and higher dimen
sions, it is well known that under appropriate conditions su
potentials entertain bound states@16,17#. Indeed, in one di-
mension the strengthU0 of the potential has to be negativ
and the corresponding probability distribution

W(1)~x!dx[uF (1)~x!u2dx5~Ake2kuxu!2dx5ke22kuxudx

displays a maximum at the location of the potential.
In three dimensions the parameterU0 has to be positive in

order for thed-function potential to support a bound state. A
in one dimension, the probability distribution
1-4
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QUANTUM ANTICENTRIFUGAL FORCE PHYSICAL REVIEW A65 022101
W(3)~r !dr[uF (3)~r !u24pr 2dr5SA k

2p

1

r
e2krD 2

4pr 2dr

52k e22krdr

is an exponential and exhibits a maximum at the origin.
The reason for this common feature is quite intriguing.

one dimension it is simply due to the fact that the wa
function F (1)(x) has a maximum atx50. In three dimen-
sions the situation is more subtle. Here the radial wave fu
tion F (3)(r ) contains a 1/r singularity, creating a 1/r 2 singu-
larity in the probability density. However, the volum
element 4pr 2dr of a spherical shell in three dimensions ca
cels the singularity in the probability and only the expone
tial at the origin survives.

In two dimensions the situation is drastically differen
Independent of the sign ofU0 there always exists a singl
bound state, with wave functionF (2), Eq. ~1!. Moreover, the
area element 2pr dr of a ring prevails over the logarithmi
singularity contained inK0. This creates a node at the origi
As a consequence, the maximum of the probability distri
tion gets pushed away from the center of attraction.

In this sense, the intuitive picture of a repulsive centri
gal force reappears: The maximum of the probability is no
the origin, but in a ring surrounding it. The quantum antice
trifugal potential keeps the packet together.

This behavior is reminiscent of the probability distrib
tion of the electron in the hydrogen atom, in as state. Here,
the wave function is an exponential and displays a maxim
at the origin. The volume element 4pr 2dr of a three-
dimensional spherical shell creates a node at the origin
thus a maximum at the Bohr radius. However, there i
fundamental difference to our situation: The exponential
cay of the wave function in the atom is enforced by a cl
sical potential, namely, the Coulomb potential. In contra
for the free particle in two dimensions it is the quantu
anticentrifugal potential that demands the decay.

VI. CONCLUSIONS

There is an interesting connection between the ene
eigenstates of a free particle in two dimensions a
diffraction-free beams@18#, that is Bessel beams@19# in clas-
sical optics. Here, the ordinary Bessel functionJ0 describes
the wave field with a purely real wave number correspond
to positive energy. However, the present effect correspo
to negative energies and relies on purely imaginary w
l

R
.
-

02210
c-

-
-

-

-
t
-

m

nd
a
-
-
t,

y
d

g
ds
e

numbers giving rise to modified Bessel functions. This
analogous to axicons used in classical optics.

This phenomenon of binding a particle with the help
the quantum anticentrifugal force could have interesting
plications in the context of waveguides. Needless to say
the conclusions hold for electromagnetic fields when we
ignore polarization. Here the maximum of the intensity do
not lie in the waveguide, that is, thed-function potential, but
rather outside.

The newly emerging field of cold atoms offers interesti
possibilities for experimentally verifying the existence of t
quantum anticentrifugal force. Here we do not go into t
details of such an experiment, but only give an idea. T
interaction between two cold atoms is usually modeled b
d function. We can use this feature to create thed-function
potential necessary for the wave functionF (2) defined in Eq.
~1! to be an eigenstate of the self-adjoint extension of
kinetic-energy operator. The cylindrical symmetry w
achieve by using a dilute atomic beam guided by a la
beam. In order not to affect the atom to be trapped, we h
to work with two different atomic elements. In the sense o
Born-Oppenheimer approximation the atom feels a tim
averagedd-function potential.

We conclude by emphasizing that this phenomenon
attraction in a free particle crucially depends on the fact t
we have restricted the space to two dimensions. For pos
energies the special case of vanishing angular momen
selects the origin as a special point of the two-dimensio
plane. In the case of negative energies with ad-function
potential the origin becomes a singular point, much in
spirit of the singularity provided by the magnetic-flux line
the Aharonov-Bohm effect. These facts demonstrate tha
two dimensions a single point matters: It changes the top
ogy. In contrast, in three dimensions a single point is l
important.
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betz, D. Meschede, M. M. Nieto, G. Raithel, J. Ruostekos
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ens, Found. Phys.28, 549 ~1998!; W. Becker, S. Long, and
J.K. McIver, Phys. Rev. A50, 1540~1994!.
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