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Mean-field instability of trapped dilute boson-fermion mixtures
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The influence of boson-boson and boson-fermion interactions on the stability of a binary mixture of bosonic
and fermionic atoms is investigated. The density profiles of the trapped mixture are obtained from direct
numerical solution of a modified Gross-Pitaevskii equation that is self-consistently coupled to the mean field
generated by the interaction with the fermionic species, the fermions which in turn feel the mean field created
by the bosons are treated in the Thomas-Fermi approximation. We study the effects of different combinations
of signs of the boson-boson and the boson-fermion scattering lengths and determine explicit expressions for
critical particle numbers as a function of these scattering lengths.
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Recent experimental successes in the trapping and coolirtgrs and the external trapping potentidlg(X) and Ug(X)
of mixtures of bosonic and fermionic atorfts—3| constitute  for the bosonic and the fermionic species with massgs
a new branch in the field of trapped ultracold gases. Similaandmg, respectively.
to the purely bosonic gases boson-fermion mixtures offer Due to the large average distance, the atom-atom interac-
unique possibilities to study fundamental quantum phenomtion can in general be described by an effective contact in-
ena. Moreover they appear as a promising candidate to reakeraction for all partial wave$7,8]. In a binary boson-
ize a BCS transition to a superfluid phase of the fermionidermion mixture one has to distinguish three interaction
componen{4]. One of the most appealing features of thesetypes: boson-boson interactions, boson-fermion interactions,
systems is that the strength of the interaction between thand fermion-fermion interactions. Tisavave interaction be-
atoms can be tuned in a wide range by utilizing a Feshbactween two bosons is described by the third term of @,
resonanceé5]. whereag is the swave scattering length. Since we consider

For the sympathetic cooling of a Fermi gas in binarya pure Bose-Einstein condensate at zero temperature only the
boson-fermion mixtures the collapse caused by attractive ins-wave term is needed. Higher even partial waves are negli-
teractions is responsible for a severe limitation of the lowesgible. For the interaction between a bosonic and a fermionic
achievable temperatufé,2]. The occurrence of a mean-field atom, s- and p-wave terms contribute. The operator of the
instability when the density or particle number exceeds a-wave boson-fermion contact interaction forms the last term
critical value was already studied experimentally for purelyof the Hamiltonian(1), where agg is the corresponding
bosonic system§6]. In this communication we investigate s-wave scattering length anthge=2mgmg/(mg+mg) is
the interplay between boson-boson and boson-fermion intetwice the reduced mass of the pair. Since $tveave interac-
actions and the implications for the stability of the mixture. tion dominates in many cases of interest, e.g., thié’Li

In order to describe the properties of the binary bosonmixture, we will neglect thep-wave interaction for this dis-
fermion mixture at zero temperature we first construct thecussion. For identical fermionswave contact interactions
energy functional in a mean-field approximation. The many-are prohibited by the Pauli principle. The first nonvanishing
body state¥) of the mixed boson-fermion system is a direct contribution results from the-wave interaction, which will
product of a symmetritNg-body statg W) for the bosonic  also be neglected in the following. Howeverwave inter-
species and an antisymmetid--body state|W) for the actions can have significant influence on the structure and
fermions. The Hamiltonian of the interacting mixture reads stability of the fermionic component as we discussed earlier

[7,9].
The expectation value of the Hamiltonidh) calculated

Ng [ =2 Ng+Np [ =2 : _ :
B R : R with the many-body stateV ) =|¥g)® | W), defines the en-
szl 2—mB+UB(Xi) +i=NEB+1 2_mF+UF(Xi) ergy density of the mixture
Ng Ng Ng+Ng R
+ > 4mag B+, X Amase S¥(r), E:<\If|H|\P>:j d*x€ng e ](X). 2
iS721 Mg Vs g mge .

(1)  The energy densit¥] ng,ng] is decomposed into a purely
bosonic part B), a fermionic part F), and the interaction
part between the two speciéBF)

wherefi=1. The first line contains the kinetic-energy opera-

& ng,ne]= &[Nl + E[Ne]+ el Ne , NE] ()]

*Electronic address: r.roth@gsi.de For the calculation ofg[ng] we assume that the bosons
"Electronic address: h.feldmeier@gsi.de are in a pure Bose-Einstein condensate, i.e.,NReboson
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state| W) is given by a direct product of identical single lem by a simple iterative procedur) the boson density is
particle states¢g). This immediately leads to the standard initialized with the Gaussian profile of the noninteracting

Gross-Pitaevskii energy density0] Bose gas withNg particles.(b) The fermion density is cal-
1 ora culated using Eq(8) with ur adjusted such that the integral
o\ = = Vi = e > X) gi the desired particle numheg. (c) A single
< —U + Vnl2 )12+ 2(%), overng(X) gives p E g
elNe](X)=Ue()ng(X) 2mB| ng (X)| Mg n5(X) imaginary time step is performed using the mean field ac-

4 cording to the boson and fermion densities obtained in the
previous two steps. The resultimg(X) is normalized tdNg

_ and used as initialization for the next iteration cycle.

density. , _ With these tools we investigate the instability of the

. For the evaluation of the parts of the energy density thah,gon-fermion mixture against collapse induced by attractive
involve the fermionic species we employ the Thomas-Fermposon-hoson or fermion-boson interactions. In order to keep
approximation. It was shown that this is an excellent apyhe giscussion simple we restrict ourselves to spherical sym-
proximation for the particle numbers considered here.  neric systems with equal numbers of bosons and fermions
The fermionic part of the energy density in the Thomas—NB:NF_ We assume equal masses for the two spegies

whereng(X) = ®3(X) = Ng(X| ¢g)? is the ground-state boson

Fermi approximation reads’] =mg=mg=mgr and identical parabolic trapping potentials
5/3,_ 413 Ug(X)=Ug(x)=x%/(2m/%). The oscillator length I
EE[NE](X) =Ur(X)ne(X) + anﬁ(i)_ (55 =(mw)~*? serves as fundamental length unit for the nu-
F merical treatment. A more general treatment including asym-

The interaction between the bosonic and the fermionic Sper_netrlc boson-fermion mixtures in deformed traps will be

cies yields the contribution pres_ented in a sybsequent Paper. .
First we consider the case of repulsive boson-boson and

Tage attractive boson-fermion interactionag=0, agg<<0). Here
Ng(X)Ne(X). (6) the attractive interaction between the species induces a

F mean-field collapse if the densities or particle numbers ex-

ceed a critical value. The upper row of Fig. 1 shows the

The functional minimization of the total energ®) under ) ) X s ST
the constraint of given numbers of bosons and fermions leadd€NSity profiles ofmetastable configurations withlg=Ng
=10* particles for three different values of the boson-

to the density profiles of the trapped gas. The constraints are . ) ;

implemented by introducing the chemical potentjalsand ~ €rmion scattering lengtag and fixedag// = 0.001 (cor-

we and minimizing the transformed energy responds tag~ 20agp, for a typical trap with/’=1 um).
Due to the Pauli principle the fermionic density distribution

is much more spread out and has a significantly lower central

FZJ d*x[E[Ng ,NE](X) — ueng(X) — wene(X)]. (7)  density than the bosonic distribution with the same particle
number[notice the different scales farg(X) and ng(X) in

Variation with respect to the fermion densm¥()'(’) immedi- Flg 1] Attractive boson-fermion interactions generate an at-

ately leads to an equation for the density distribution tractive mean field _for bosons p_roportional to the density of
the fermions and vice versa. This causes an increase of both

.4
Eeel N, Ne](X)=

\/2m§ 4rrage 32 densities in the overlap region as can be seen in Hig. 1
Ne(X) = 3.2 mE—Ug(X)— —— ns(i)} . (8  With increasing strength of the boson-fermion attraction the

fermion density grows substantially. As shown in Figc)1
From the functional variation of the energy) with respect the fermion density can easily be increased by a factor of 3

to the bosonic density we obtain a Euler-Lagrange differenOmpared to the noninteracting case. _
tial equation for®g(X) = \ng(X) If the strength of the boson-fermion interaction exceeds a

critical value then the mixture collapses towards high densi-
5 ties. In this case the attractive mean field is not stabilized by
2, > - . . . . . .
<I>B(X)}<DB(X) the positive kinetic-energy contribution or the repulsive
boson-boson interaction any more, i.e., the gas can lower its
= ug®p(X). 9) energy by contracting and increasing the density in the cen-
tral region. This phenomenon was investigated in detail for
This is a modified Gross-Pitaevskii equation that includes thgurely bosonid13,14] and purely fermionid7,9] systems.
mean-field contribution generated by the interaction with theTo our knowledge the collapse of boson-fermion mixtures
fermionic species. was studied only inchoately using parametrized density pro-
The simultaneous solution of the coupled E@.and(9)  files [15].
gives the density profiles of the two species. We solve the We can determine the critical boson-fermion scattering
nonlinear differential equatiof®) with an efficient quantum lengthagg for which the collapse occurs with a rather simple
diffusion algorithm using a fast Fourier transformatid®]. = numerical procedure. The quantum diffusion algorithm used
The ground-state solution is extracted by successive applicae obtain the solution of the Gross-Pitaevskii equati®n
tion of the time evolution operator for a small imaginary diverges if the mean-field instability occurs, i.e., the change
time step. We accomplish the solution of the coupled probef the boson density in the trap center increases for succes-
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FIG. 1. Radial density profiles of a boson-fermion mixture withb=Ng= 10 000 for different interaction strengths. The boson density
ng(X) is given by the solid linéleft scalg and the fermion densitg(X) by the dashed lin€right scal¢. The upper row shows examples
with increasing boson-fermion attraction and fixag/~'=0.001. The lower row depicts examples with increasing boson-fermion repulsion
andag//=—0.00004.

sive imaginary time steps. Thus by observing the converthe above example, the critical particle number grows from
gence behavior of the central density during the imaginaryN.~ 1000 to 11000 if a weak boson-boson repulsion with
time evolution we can decide whether the mixture is stableag//'=0.001 is included.
or collapses. For ag>0 one can estimate the critical particle number
To obtain a simple measure for the stability we proceed irusing the Thomas-Fermi approximation for both bosons and
two steps: First we determine numerically the critical boson{fermions. With some additional approximations this leads to
fermion scattering length for a set of particle numbBlks  an analytic expression fdt, [15,16. The gray-dotted curve
=Ng=500, ...,16 and boson-boson scattering lengthsin Fig. 2 shows a comparison of this estimate with our cal-
ag//=0,...0.003. Then we fit a parametrization which culation forag//'=0.001. For large particle numbers both
connects the particle number with the two scattering lengthsalculations are in nice agreement. Ro;<10*, however,
to this data set. This leads to an expression for the criticalhe Thomas-Fermi approximation for the bosonic species
particle numberN,, as function of the scattering lengths

ag//=0 andagg//<0: [T ' AN ' g
[ ]
s L0863 008ag//)" oF fol T
or (3p,3pF,/ )= [age/ /028 lage /5% !
(10 - y
. . . . z
Any mixture with Ng=Ng>N,, is unstable against mean- S
field induced collapse. &4
Figure 2 depicts the critical particle number as function of
the boson-fermion scattering lengdla - for different values 3

of the boson-boson scattering lengtla . The thick lines
show the critical particle number obtained from E§0) for
repulsive boson-boson interactions. Notice that the values of
ag// used in the plot are typically one order of magnitude
smaller than the range shown fagg//; this emphasizes the

strong influence of the boson-boson |nteract|or). ) FIG. 2. Logarithm of the critical particle number as function of
We observe that a moderate boson-fermion attractiony,e poson-fermion scattering lengtly -/~ for different values of

causes a severe limitation of the particle number of thghe poson-boson scattering length. The solid line corresponds to
(metgstable mixture. Forag//'=0 and agr//'=—0.01, a,/,/=0. Thick lines show repulsive boson-boson interactions:
which corresponds t@gg~ —2008gen, for /=1um, the  a;/,=0.0001 (thick dash dottelJ 0.0003 (thick dasheyi and
mixture is stable only up tdlg=Ng~1000. The inclusion of  0.001 (thick dotted. Thin lines correspond to boson-boson attrac-
a repulsive boson-boson interaction leads to a significant staion: ag//'=—0.0001 (thin dash dotte)J —0.0003 (thin dashey
bilization, i.e., an increase of the critical particle number. Forand —0.001 (thin dotted.
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loses its validity and leads to unphysical values Xgy. may have interesting implications for the mean-field instabil-

As a second class of systems we consider mixtures wheri® of the bosons: The fermionic shell compresses the boson
both, the boson-fermion and the boson-boson interaction af€re, i.€., increases the maximum boson density as it is
attractive @g<0,age<0). Compared to the previous class clearly seen in Fig. &). This could promote the mean-_fleld
the attractive boson-boson interaction enhances the attractif!laPse in the presence of attractive boson-boson interac-
mean field generated by the boson-fermion interaction an§ONS @nd lower the critical particle number.

abets the instability. The critical particle numbers are signifi- , 1€ dependence &, on the scattering lengths, which is
cantly reduced. obtained from the direct numerical solution of the coupled

We obtain a relation between the scattering lengthand problem, is forag<0 andagr=0 very well described by the

. . . arametrization
agr and the critical particle number in the same way as be-p

fore. The resulting parametrization of the critical particle .. 0575 0.098 agg//)%4°
number forag<0 andagr<0 reads Ne(ag,apr, /)= lag//| lag/ /|7 (12
0.575 The thin curves forage//>0 in Fig. 2 show this depen-

Ne(ag,app//) = lag!/|+ 1.40age 1/ |25 1D gence. Obviously the influence of the repulsive boson-
fermion interaction on the critical particle number is mar-

Foragr=0 we recover the well-known relation between the ginal. The critical particle number reduces slighthaifr//
critical particle number anfhg| for a pure Bose gg€0,13, s increased. This can be attributed to the compression of the
which was basically confirmed by recent experimelith boson core mentioned before. Although the boson-fermion
The additional term in the denominator describes the modiinteraction has a strong influence on the density profiles, its
fication of N, in the presence of an attractive boson-fermioninfluence on the critical particle number is negligible.
interaction. In the limiting casag =0 this relation coincides In summary we have investigated the mean-field instabil-
with the corresponding limit of Eq10). ity of binary boson-fermion mixtures with equal particle

The thin curves in Fig. 2 show the behavior of the criticalnumbers. We solved the coupled Gross-Pitaevskii equation
particle number foag//'<0. The presence of the attractive numerically and obtained the critical particle number as a
boson-boson interaction reduces the critical particle numbefunction of the boson-boson and the boson-fermion scatter-
for age<O significantly. With increasing strength of the ing lengths. We have shown that the boson-boson and the
boson-boson attraction the influence of the boson-fermiooson-fermion interaction have very different effects on the
attraction is largely reduced. collapse: In the presence of attractive boson-fermion interac-

Finally we consider mixtures with attractive boson-bosontions (age<<0) the system is stabilized by weak repulsive
and repulsive boson-fermion interactiorsg&0,agr=0).  and destabilized by weak attractive boson-boson interactions.
The SLi/"Li mixture used in the experiment of Truscettal.  In contrast repulsive boson-fermion interactiores;{>0)
[1] belongs to this class of interactions. The lower row ofcannot stabilize the mixture against collapse due to attractive
Fig. 1 shows the density profiles for three different values otboson-boson interactions. With regard to the recent experi-
age=0. Already for a very weak boson-fermion repulsion ments using mixtures ofLi (F=3/2m:=3/2) and’Li (F
the two species separate spatidbge Fig. le)], the bosons =2mg=2) [1,2] this implies that the collapse due to the
occupy the central region of the trdposon corg and the attractive boson-boson interaction is influenced only margin-
fermions constitute a shell around[t1,16. This structure ally by the boson-fermion repulsion.
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