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Mean-field instability of trapped dilute boson-fermion mixtures
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The influence of boson-boson and boson-fermion interactions on the stability of a binary mixture of bosonic
and fermionic atoms is investigated. The density profiles of the trapped mixture are obtained from direct
numerical solution of a modified Gross-Pitaevskii equation that is self-consistently coupled to the mean field
generated by the interaction with the fermionic species, the fermions which in turn feel the mean field created
by the bosons are treated in the Thomas-Fermi approximation. We study the effects of different combinations
of signs of the boson-boson and the boson-fermion scattering lengths and determine explicit expressions for
critical particle numbers as a function of these scattering lengths.
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Recent experimental successes in the trapping and coo
of mixtures of bosonic and fermionic atoms@1–3# constitute
a new branch in the field of trapped ultracold gases. Sim
to the purely bosonic gases boson-fermion mixtures o
unique possibilities to study fundamental quantum pheno
ena. Moreover they appear as a promising candidate to
ize a BCS transition to a superfluid phase of the fermio
component@4#. One of the most appealing features of the
systems is that the strength of the interaction between
atoms can be tuned in a wide range by utilizing a Feshb
resonance@5#.

For the sympathetic cooling of a Fermi gas in bina
boson-fermion mixtures the collapse caused by attractive
teractions is responsible for a severe limitation of the low
achievable temperature@1,2#. The occurrence of a mean-fiel
instability when the density or particle number exceed
critical value was already studied experimentally for pur
bosonic systems@6#. In this communication we investigat
the interplay between boson-boson and boson-fermion in
actions and the implications for the stability of the mixtur

In order to describe the properties of the binary bos
fermion mixture at zero temperature we first construct
energy functional in a mean-field approximation. The ma
body stateuC& of the mixed boson-fermion system is a dire
product of a symmetricNB-body stateuCB& for the bosonic
species and an antisymmetricNF-body stateuCF& for the
fermions. The Hamiltonian of the interacting mixture read

H5(
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where\51. The first line contains the kinetic-energy oper
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tors and the external trapping potentialsUB(xW ) and UF(xW )
for the bosonic and the fermionic species with massesmB
andmF , respectively.

Due to the large average distance, the atom-atom inte
tion can in general be described by an effective contact
teraction for all partial waves@7,8#. In a binary boson-
fermion mixture one has to distinguish three interacti
types: boson-boson interactions, boson-fermion interactio
and fermion-fermion interactions. Thes-wave interaction be-
tween two bosons is described by the third term of Eq.~1!,
whereaB is thes-wave scattering length. Since we consid
a pure Bose-Einstein condensate at zero temperature onl
s-wave term is needed. Higher even partial waves are ne
gible. For the interaction between a bosonic and a fermio
atom, s- and p-wave terms contribute. The operator of th
s-wave boson-fermion contact interaction forms the last te
of the Hamiltonian ~1!, where aBF is the corresponding
s-wave scattering length andmBF52mBmF /(mB1mF) is
twice the reduced mass of the pair. Since thes-wave interac-
tion dominates in many cases of interest, e.g., the6Li/ 7Li
mixture, we will neglect thep-wave interaction for this dis-
cussion. For identical fermionss-wave contact interactions
are prohibited by the Pauli principle. The first nonvanishi
contribution results from thep-wave interaction, which will
also be neglected in the following. However,p-wave inter-
actions can have significant influence on the structure
stability of the fermionic component as we discussed ear
@7,9#.

The expectation value of the Hamiltonian~1! calculated
with the many-body stateuC&5uCB& ^ uCF&, defines the en-
ergy density of the mixture

E5^CuHuC&5E d3xE@nB ,xF#~xW !. ~2!

The energy densityE@nB ,nF# is decomposed into a purel
bosonic part (B), a fermionic part (F), and the interaction
part between the two species~BF!

E@nB ,nF#5EB@nB#1EF@nF#1EBF@nB ,nF#. ~3!

For the calculation ofEB@nB# we assume that the boson
are in a pure Bose-Einstein condensate, i.e., theNB-boson
©2002 The American Physical Society03-1
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state uCB& is given by a direct product of identical sing
particle statesufB&. This immediately leads to the standa
Gross-Pitaevskii energy density@10#

EB@nB#~xW !5UB~xW !nB~xW !1
1

2mB
u¹W nB

1/2~xW !u21
2paB

mB
nB

2~xW !,

~4!

wherenB(xW )5FB
2(xW )5NB^xW ufB&2 is the ground-state boso

density.
For the evaluation of the parts of the energy density t

involve the fermionic species we employ the Thomas-Fe
approximation. It was shown that this is an excellent a
proximation for the particle numbers considered here@11#.
The fermionic part of the energy density in the Thoma
Fermi approximation reads@7#

EF@nF#~xW !5UF~xW !nF~xW !1
35/3p4/3

5321/3mF
nF

5/3~xW !. ~5!

The interaction between the bosonic and the fermionic s
cies yields the contribution

EBF@nB ,nF#~xW !5
4paBF

mBF
nB~xW !nF~xW !. ~6!

The functional minimization of the total energy~2! under
the constraint of given numbers of bosons and fermions le
to the density profiles of the trapped gas. The constraints
implemented by introducing the chemical potentialsmB and
mF and minimizing the transformed energy

F5E d3x@E@nB ,nF#~xW !2mBnB~xW !2mFnF~xW !#. ~7!

Variation with respect to the fermion densitynF(xW ) immedi-
ately leads to an equation for the density distribution

nF~xW !5
A2mF

3

3p2 FmF2UF~xW !2
4paBF

mBF
nB~xW !G3/2

. ~8!

From the functional variation of the energy~7! with respect
to the bosonic density we obtain a Euler-Lagrange differ
tial equation forFB(xW )5AnB(xW )

F2
1

2mB
¹W 21UB~xW !1

4paBF

mBF
nF~xW !1

4paB

mB
FB

2~xW !GFB~xW !

5mBFB~xW !. ~9!

This is a modified Gross-Pitaevskii equation that includes
mean-field contribution generated by the interaction with
fermionic species.

The simultaneous solution of the coupled Eqs.~8! and~9!
gives the density profiles of the two species. We solve
nonlinear differential equation~9! with an efficient quantum
diffusion algorithm using a fast Fourier transformation@12#.
The ground-state solution is extracted by successive app
tion of the time evolution operator for a small imagina
time step. We accomplish the solution of the coupled pr
02160
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lem by a simple iterative procedure:~a! the boson density is
initialized with the Gaussian profile of the noninteractin
Bose gas withNB particles.~b! The fermion density is cal-
culated using Eq.~8! with mF adjusted such that the integra
overnF(xW ) gives the desired particle numberNF. ~c! A single
imaginary time step is performed using the mean field
cording to the boson and fermion densities obtained in
previous two steps. The resultingnB(xW ) is normalized toNB
and used as initialization for the next iteration cycle.

With these tools we investigate the instability of th
boson-fermion mixture against collapse induced by attrac
boson-boson or fermion-boson interactions. In order to k
the discussion simple we restrict ourselves to spherical s
metric systems with equal numbers of bosons and fermi
NB5NF . We assume equal masses for the two speciem
5mB5mF5mBF and identical parabolic trapping potentia
UB(x)5UF(x)5x2/(2ml 4). The oscillator length l
5(mv)21/2 serves as fundamental length unit for the n
merical treatment. A more general treatment including asy
metric boson-fermion mixtures in deformed traps will b
presented in a subsequent paper.

First we consider the case of repulsive boson-boson
attractive boson-fermion interactions (aB>0, aBF,0). Here
the attractive interaction between the species induce
mean-field collapse if the densities or particle numbers
ceed a critical value. The upper row of Fig. 1 shows t
density profiles of~meta!stable configurations withNB5NF
5104 particles for three different values of the boso
fermion scattering lengthaBF and fixedaB /l 50.001 ~cor-
responds toaB'20aBohr for a typical trap withl 51 mm!.
Due to the Pauli principle the fermionic density distributio
is much more spread out and has a significantly lower cen
density than the bosonic distribution with the same parti
number@notice the different scales fornB(xW ) and nF(xW ) in
Fig. 1#. Attractive boson-fermion interactions generate an
tractive mean field for bosons proportional to the density
the fermions and vice versa. This causes an increase of
densities in the overlap region as can be seen in Fig. 1~b!.
With increasing strength of the boson-fermion attraction
fermion density grows substantially. As shown in Fig. 1~c!
the fermion density can easily be increased by a factor o
compared to the noninteracting case.

If the strength of the boson-fermion interaction exceed
critical value then the mixture collapses towards high den
ties. In this case the attractive mean field is not stabilized
the positive kinetic-energy contribution or the repulsi
boson-boson interaction any more, i.e., the gas can lowe
energy by contracting and increasing the density in the c
tral region. This phenomenon was investigated in detail
purely bosonic@13,14# and purely fermionic@7,9# systems.
To our knowledge the collapse of boson-fermion mixtur
was studied only inchoately using parametrized density p
files @15#.

We can determine the critical boson-fermion scatter
lengthaBF for which the collapse occurs with a rather simp
numerical procedure. The quantum diffusion algorithm us
to obtain the solution of the Gross-Pitaevskii equation~9!
diverges if the mean-field instability occurs, i.e., the chan
of the boson density in the trap center increases for suc
3-2
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FIG. 1. Radial density profiles of a boson-fermion mixture withNF5NB510 000 for different interaction strengths. The boson dens
nB(xW ) is given by the solid line~left scale! and the fermion densitynF(xW ) by the dashed line~right scale!. The upper row shows example
with increasing boson-fermion attraction and fixedaB /l 50.001. The lower row depicts examples with increasing boson-fermion repu
andaB /l 520.00004.
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c-
sive imaginary time steps. Thus by observing the conv
gence behavior of the central density during the imagin
time evolution we can decide whether the mixture is sta
or collapses.

To obtain a simple measure for the stability we proceed
two steps: First we determine numerically the critical bos
fermion scattering length for a set of particle numbersNF
5NB5500, . . . ,106 and boson-boson scattering lengt
aB /l 50, . . . ,0.003. Then we fit a parametrization whic
connects the particle number with the two scattering leng
to this data set. This leads to an expression for the crit
particle numberNcr as function of the scattering length
aB /l >0 andaBF /l ,0:

Ncr
1/6~aB ,aBF ,l !5

0.863

uaBF /l u0.2811
0.087~aB /l !1.91

uaBF /l u3.49 .

~10!

Any mixture with NB5NF.Ncr is unstable against mean
field induced collapse.

Figure 2 depicts the critical particle number as function
the boson-fermion scattering lengthaBF for different values
of the boson-boson scattering lengthaB . The thick lines
show the critical particle number obtained from Eq.~10! for
repulsive boson-boson interactions. Notice that the value
aB /l used in the plot are typically one order of magnitu
smaller than the range shown foraBF /l ; this emphasizes the
strong influence of the boson-boson interaction.

We observe that a moderate boson-fermion attrac
causes a severe limitation of the particle number of
~meta!stable mixture. ForaB /l 50 and aBF /l 520.01,
which corresponds toaBF'2200aBohr for l 51 mm, the
mixture is stable only up toNB5NF'1000. The inclusion of
a repulsive boson-boson interaction leads to a significant
bilization, i.e., an increase of the critical particle number. F
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the above example, the critical particle number grows fr
Ncr'1000 to 11 000 if a weak boson-boson repulsion w
aB /l 50.001 is included.

For aB.0 one can estimate the critical particle numb
using the Thomas-Fermi approximation for both bosons
fermions. With some additional approximations this leads
an analytic expression forNcr @15,16#. The gray-dotted curve
in Fig. 2 shows a comparison of this estimate with our c
culation for aB /l 50.001. For large particle numbers bo
calculations are in nice agreement. ForNcr,104, however,
the Thomas-Fermi approximation for the bosonic spec

FIG. 2. Logarithm of the critical particle number as function
the boson-fermion scattering lengthaBF /l for different values of
the boson-boson scattering length. The solid line correspond
aB /l 50. Thick lines show repulsive boson-boson interactio
aB /l 50.0001 ~thick dash dotted!, 0.0003 ~thick dashed!, and
0.001 ~thick dotted!. Thin lines correspond to boson-boson attra
tion: aB /l 520.0001 ~thin dash dotted!, 20.0003 ~thin dashed!,
and20.001~thin dotted!.
3-3
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loses its validity and leads to unphysical values forNcr .
As a second class of systems we consider mixtures w

both, the boson-fermion and the boson-boson interaction
attractive (aB,0, aBF,0). Compared to the previous clas
the attractive boson-boson interaction enhances the attra
mean field generated by the boson-fermion interaction
abets the instability. The critical particle numbers are sign
cantly reduced.

We obtain a relation between the scattering lengthsaB and
aBF and the critical particle number in the same way as
fore. The resulting parametrization of the critical partic
number foraB,0 andaBF,0 reads

Ncr~aB ,aBF /l !5
0.575

uaB /l u11.42uaBF /l u1.69. ~11!

For aBF50 we recover the well-known relation between t
critical particle number anduaBu for a pure Bose gas@10,13#,
which was basically confirmed by recent experiments@6#.
The additional term in the denominator describes the mo
fication ofNcr in the presence of an attractive boson-fermi
interaction. In the limiting caseaB50 this relation coincides
with the corresponding limit of Eq.~10!.

The thin curves in Fig. 2 show the behavior of the critic
particle number foraB /l ,0. The presence of the attractiv
boson-boson interaction reduces the critical particle num
for aBF,0 significantly. With increasing strength of th
boson-boson attraction the influence of the boson-ferm
attraction is largely reduced.

Finally we consider mixtures with attractive boson-bos
and repulsive boson-fermion interactions (aB,0, aBF>0).
The 6Li/ 7Li mixture used in the experiment of Truscottet al.
@1# belongs to this class of interactions. The lower row
Fig. 1 shows the density profiles for three different values
aBF>0. Already for a very weak boson-fermion repulsio
the two species separate spatially@see Fig. 1~e!#, the bosons
occupy the central region of the trap~boson core! and the
fermions constitute a shell around it@11,16#. This structure
r-
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may have interesting implications for the mean-field instab
ity of the bosons: The fermionic shell compresses the bo
core, i.e., increases the maximum boson density as i
clearly seen in Fig. 1~f!. This could promote the mean-fiel
collapse in the presence of attractive boson-boson inte
tions and lower the critical particle number.

The dependence ofNcr on the scattering lengths, which i
obtained from the direct numerical solution of the coupl
problem, is foraB,0 andaBF>0 very well described by the
parametrization

Ncr~aB ,aBF ,l !5
0.575

uaB /l u
2

0.098~aBF /l !0.49

uaB /l u1.18 . ~12!

The thin curves foraBF /l .0 in Fig. 2 show this depen
dence. Obviously the influence of the repulsive boso
fermion interaction on the critical particle number is ma
ginal. The critical particle number reduces slightly ifaBF /l
is increased. This can be attributed to the compression of
boson core mentioned before. Although the boson-ferm
interaction has a strong influence on the density profiles
influence on the critical particle number is negligible.

In summary we have investigated the mean-field insta
ity of binary boson-fermion mixtures with equal partic
numbers. We solved the coupled Gross-Pitaevskii equa
numerically and obtained the critical particle number as
function of the boson-boson and the boson-fermion scat
ing lengths. We have shown that the boson-boson and
boson-fermion interaction have very different effects on
collapse: In the presence of attractive boson-fermion inte
tions (aBF,0) the system is stabilized by weak repulsi
and destabilized by weak attractive boson-boson interacti
In contrast repulsive boson-fermion interactions (aBF.0)
cannot stabilize the mixture against collapse due to attrac
boson-boson interactions. With regard to the recent exp
ments using mixtures of6Li ( F53/2,mF53/2) and7Li ( F
52,mF52) @1,2# this implies that the collapse due to th
attractive boson-boson interaction is influenced only marg
ally by the boson-fermion repulsion.
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