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A self-consistent theory of a cylindrically shaped Bose-Einstein condefB&€) periodically modulated
by a laser beam is presented. We show, both analytically and numerically, that modulational instability/stability
is the mechanism by which wave functions of soliton type can be generated in a cylindrically shaped BEC
subject to a one-dimensional optical lattice. The theory explains why bright solitons can exist in a BEC with
positive scattering length and why condensates with negative scattering length can be stable and give rise to
dark solitary pulses.
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There has been increasing interest in the study of Boseae construct approximate ground-state solutions of the origi-
Einstein condensaté8ECS in the presence of periodic po- nal 3D by means of a multiple-scale expansion, starting from
tentials, such as the one induced by detuned standing wav#e exact eigenfunctions of the underlying linear Sdimger
of light (optical lattice$ [1]. Switching on an optical lattice equation with potentials that are parabolic in the transverse
in a continuous BEC induces fragmentation of the originaldirection and periodic in the longitudinal oriperiodic cy-
wave function into local wave functions centered around thdindrical trap. We show that at the lowest orders in the ex-
minima of the potential, leading to a crystal-like structure ofpansion the condensate evolves according to an effective 1D
mutually interacting BECs. In analogy with the usual theoryNLS with the dispersive term depending on the effective
of crystals, one can think to control the dynamics of this newmass of the Bloch states of the underlying linear problem.
state of matter by properly choosing the parameters of th&Extended states close to the borders of the Brillouin zone, are
lattice. This gives, for example, the possibility to observethen shown to be unstabléstable against small spatial
macroscopic quantum-interference phenomena with emighodulationgmodulational instability depending on the sign
sion of coherent pulses of atonfBloch oscillations, as re-  of the dispersion in the effective 1D NLS. The stability prop-
cently reported in Ref[2] for vertical BEC arrays in the erties of these states is shown to be the basic mechanism by
gravitational field. Understanding the properties of the BECWhich bright(dark solitons are created in BEC with positive
in optical lattices is, therefore, of fundamental importance(negative scattering lengths. Numerical simulations of the
for developing novel applications of quantum mechanicdongitudinal BEC dynamics confirm the predictions of our
such as atom lasers and atom interferometers. For smdfieory. The possibility to observe the modulational instability
overlapping between local wave functions, a tight-bindingPhenomena in real BEC is discussed at the end of the paper.
model can be developed. This was done, for the one- As is well known[10], the condensate wave function is
dimensional1D) case, in Ref[3], where it was shown that described by the Gross-Pitaevskii equati@PB
the mean-field equation for the condensate wave function
reduces to the so called discrete nonlinear Sdinger equa- oW (r,t) 52
tion [4]. The tight-binding approximation, however, putting ihT= - ﬁA+V(r)+go|‘P(I’,t)|2 W(r,t),
restrictions on the shape of the wave functi@e., on the
number of atoms in the condensitas well as on the poten-
tial profile, is applicable only to particular experimental set-
tings. From this point of view it is desirable to develop aWith go=4m%%as/m, mis the atomic mass, and, is the
theory of BEC in optical lattices that does not rely on thisS'wave scattering length of atoms that can be either positive
approximation. Studies in this direction were made in term®r negative. We consider a trap potential of the fovifr)
of a 1D nonlinear Schidinger equatiofNLS) with trigono- = 3mv?rf +V, cos(z), which model a cylindrically shaped
metric[5] or elliptical potential§6]. Bright and dark solitons BEC periodically modulated along the axis (the results,
in BEC in optical lattices, analog to the gap-soliton of pho-however, will not depend on the form of periodic potential
tonic crystalg 7], were also shown to exi$8,9]. used, and can be easily generalized to arbitapgriodic

The aim of this paper is to investigate, both analyticallypotentialy. Herer=(r, ,z), V, is the potential deepness,
and numerically, modulational-instability phenomena of ex-the trap frequency in the transverse direction, amtk2he
tended states at the border of the Brillouin zone. To this engberiod of the modulation. We assume periodic boundary con-

ditions ¥ (r, ,z,t)=V(r, ,z+L,t), with L denoting the

length of the cylinder. The change of variables 2t/v,
*Electronic address: konotop@cii.fc.ul.pt r—agl, ‘I"—>(N/ag)1/2¢, with ag=[%/(mv)]*?, allows us
TElectronic address: salerno@sa.infn.it to rewrite Eq.(1) in the dimensionless form
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A(r,t) P Py i
; =/ + 2 e — i
I ot [‘C X|lﬂ(r,t)| ]w(rvt)! (2) I 0"t0 ‘sz I &tl 207200»,21! (7)
wherexy=8wNag/ay, andL=L, + L, with whose solution can be searched for in the form

Li=—A +r2, Li=—3%197°+2A cogkz) (3) B
) ¢2:2 E Bn,m,ﬁ(q,)d"ﬁq’gnme Iw(Q)tO- (8)

(here A, denotes the two-dimensional Laplacidn:ag/« M (m,a")#(To,q)
andA =Vyv/h). In these units the wave function results nor- o ) L
malized to 1, i.e., Substituting Eq.(8) in Eqg. (7) and projecting along the
eigenfunctions of operatof8) with i#N,, we find that
L
f erJ dZ| ¢|2:11 4 oA F’ﬁ’ﬁo _
0 v J Bigogmee 0, (9

_ _a_zl'ﬁsﬁ’ﬁo wo(q) — wnomoﬁ(q

with L=L/ay denoting the normalized length of the cylinder. _

In the following we shalll restrict to the small amplitude limit \jth - (q)= — 2[5 (2)(d/d2) ¢ (z)dz The solvabil-
0 q oq

(x|¥|?<1) and construct a solution of E(R) perturbatively, o + _
starting from the solution of the linear problem. These Iast}tr)énio\?v?wlité%nv\?; Eg'e(a;gzjz(?ziﬁstl)witz(zé/j Zi)vto'
= 14£2, y =4 1-

can be written as products of eigenfunctions of the operatorg . that thev=v(q)=iT = (q) can be interpreted as the
- ~ 7 Nohg

in Eq. (3
4@ group velocity of the wave packet in tlzedirection. Finally,
Ezﬁbﬁq(z)zé"ﬁqd’fﬁq(z)r L &nm(r)=enménm(ro). at the third order i, we get
d d 9 92
ﬁ—ﬁlpg:—iﬂ—iﬁ—Z i
t, gty T dzp0z,
pr: 2

For the considered potentialj;ﬁq(z) are solutions of the :

Mathieu equation, whil&,(r,) are eigenfunctions of the dtg
two-dimensional harmonic oscillatdin and m denote the
principal and the angular quantum numbers of the harmonic
oscillator, whilefi andq denote the band index and the wave
vector inside the first Brillouin zone of the 1D lattice, respec-
tively). We look for solutions of Eq(2) of the form Requiring orthogonalityto avoid secular termdetween the
right-hand side of this equation and the kernel of the operator
T\ i3l oty— L, and taking into account the expressiong/gfand
VES |—| (T + a?y+---), (5) i, derived above, we find that E¢L0) reduces to the fol-
X lowing NLS equation

)¢1+x|¢f1|2¢1. (10

—_—+ 22—
075 '~ 92002,

with o a small parameter whose physical meaning will be

clarified later(the prefactor is unimportant and introduced —i
just for convenience Since we are interested in the ground

state we take as the leading-order term in Es).a small

modulation of the linear ground-state wave functiom, ( Where D=D(q)=1+ 3.7 |7 (9)|*/(@(q) — @ msi(a))
=0,my=0/,=1) of the form is the effective group velocity dispersion induced by the pe-

_ riodic potential, and
‘r/fle(Zat)(ﬁ’ﬁoq(ZO) gnomo(rL)eilwnomoﬁo(q)toa (6)

5A+ oA D(92A+~ Al?A=0 11

. . - Lt
With @n,,my 7o(0) =0, m,* Eigg=(). The modulating X=s9rx) 5~ JO |o(2)|*dz, (12
amplitudeA(z,t) is considered to be a function of a set of
independent spatial and temporal variables of the farm is the effective nonlinearitfhere we integrated on radial

E.(Zl’zz’“r; Zn--) With Z”:Unz.' andt=(ty,tz,...tn,-.)  yariables and used the ground-state wave function of the 2D
with t,=o"t, respectively. To simplify the notation we in- pamonic oscillator The above expressions ofandD, in
troduce the shortcut SymbOISOESno’mo’ E(q)EgﬁO,q' terms of eigenfunctions of the linear operatircan be sim-
$q(2)= 3, (2), and in the modulation amplitudé, we plified by expressing them in terms of the energy spectrum of
show only the dependence on the most “rapid” variables.the noninteracting linear system. This can be done in the
The time and coordinate derivatives in HA) are then ex- same manner as in the theory of optical gap soli{afjsTo
panded asl/dt=% ,_q0%ldt, and dldz== ,_qo%dl iz, . this end, we take two close Bloch solutions of the 1D linear
Substituting the above expansions in E2). and collecting  problem, of the forme,(z) =exp(d2)u;(2), which differ

all the terms of the same order in we obtain at the first only by a smalléqg, so thatu 4. 54(z) can be considered as
order:idyy I dto— Ly =0, which is evidently satisfied by, ~ a perturbation of u; 4(z) generated by the operator
given by Eq.(6). At the second order i, the following — —2i8q((d/dz)+iq)+(5q)2. This perturbation produces a
equation is obtained: shift A=&; 4+ 59— &n g IN €Nergy, which can be expanded in

n.q
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a Taylor series in5g. On the other handA can also be
computed from perturbation theory. A comparison of the cor-
responding expressions leads to=dw(q)/dq and D
=3d%w(q)/dqg?, i.e.,v and D are, respectively, the slope
(velocity) and the curvaturéinverse effective magof the
energy bandBloch statesof the underlying linear problem.
From the physical point of view the above results have a
number of consequences. First, the group velocity induced
by the periodicity at the boundaries of zone dominate the
dispersion inherent to NLS. For example, if we td&e 2.0
and A=0.5, we have that the edges of the first gap [, 1. Modulational instability in Eq(2) with £~ L, for pa-
[EM,&2)] are ateéM~0.47, and&@~1.47. The effective  rameter value§=1.0,k=2.0, andA =0.5. The initial condition is
dispersion at these points és;~ —6.13, andw5~10.14, re-  an approximated eigenfunction, taken as a sine function, of the first

Spectively(herew}’zdzw/dq2|q:qj). Thus even in the case band of the linear system at the edfé)~0.47 of the Brillouin

the group velocity dispersion does not change sign it beZ0n€: Quantities plotted are dimensionless.

comes much larger than the NLS dispersion. Second, fo(Elose to cosd). In the following we shall use these approxi-

fixed nonllr_1ear|ty and In presence of the per_lodlc pOtem"f"l'mate states as initial conditions for investigating modula-
the dynamics will crucially depend on the sign Bf This : NS . . X

. : tional stability since they are, in real experiments, easier to
sign can be controlled by changing the wave number of the enerate
mr']té?]l;;aetr?é ‘2? gign?jiiér;iigogtez;gzl Cpl)géir?gt;r:.elgsgasbg;t In Fig. 1 a numerical simulation of the 1D problem with
b 9 initial condition close to the state at the bottom of the gap, is

the Brillouin zone can then appear. To understand this, let uaepicted. We see that, as expected from our analysis, modu-

assu.rge aﬁs'tgle ica;tetnngflls nfgﬂl>r?. 'r? DF\)(?L%HI) atr;]d lational instability develops and, in spite of the fact that we
consider the sloch state. , Tor whic =0 N have positive scatteringy=1), bright solitons are created
presence Of. a repulsllve Interatomic |ntergct|w1>(0), the _in agreement with our analysithe number of solitons com-
energy of this state will be shifted upward in the gap where 'ting out from the instability can be estimated 12, . /(27),

cannot eX|§t. One can expect then.the state.to bepome uWherekmax is the wave number of the most unstable linear
stable against small spatial modulatignsodulational insta- mode[11]]. We remark that although the theory is valid for

bility) so that new excitations must arise. Equatafh) pre- i . o . . .
dicts that out of the instability bright solitons should appearsmall amplitude excitations, the numerical simulations show

~ that the obtained results extend also above this limite
Ereigﬁy(égﬁ)fggﬁ;r?,siﬂ?ti[())néoo(r[l);2)60E3;r§/1)ifhv3: tsefsglgs that in Fig. 1xy=1). An intuitive explanation for this is that
initial state the Bloch state at the bottom of the second ban mall-amplitude solitons once formed can only become more

2) _ NG . . nd more localized as the nonlinearity is increased. The
.g( ' whgrep D™>0, one expects modglatlonal stability modulational instability at higher nonlinearity should, there-
instead(in this case the nonlinearity is pulling the energy of%

. ; .fore, produce solitons that are more localized and of large
the state further up in the second band where it can stil P 9

; . mplitude. This is precisely what is observed in Fig. 1. In
exisf. This extended stable state can be_ then used as ba_c ontrast to this, we find that an initial condition correspond-
ground to construct the dark soliton solution expected in th|§ng to a Bloch state close to the top of the gap, remains
case from Eq(11) (see bglow.-Ob\.noust, for negative scat- modulationally stable also in the presence of nonlinearity.
tering lengths the opposite situation will occur, i.e., modula-

) . I~ . . This is reported in Fig. 2 for an initial profile of cosine type.
tional instability will appear at the top of the gdleading to i : :
bright solitons and stability at the bottonfleading to dark It is interesting to note that one can use this state to construct

solitong. From this it is clear that the stability properties of the stable dark soliton predicted by H1). To this end we

S k
the Bloch states at the edge of the Brillouin zone, plays eEa ©

crucial role for the existence of bright and dark solitons in
BEC in optical lattices both for positive and negative scat-
tering lengths.

These predictions can be easily checked by direct numeri-
cal integration. In this regard we remark that instabilities
along thez direction mainly depend on the spectrum of the
operatorZ, (the transverse distribution of the condensate af-
fects only the absolute value of the coefficignt so that we
can perform numerical simulations in the framework of a 1D
NLS equation obtained from E€R) with £~ L,. Moreover,
we note that the Bloch stat®athieu function at the top of
the first bandbottom of the gaj is an odd function of that FIG. 2. Same as in Fig. 1 but for the eigenfunction at the top of
can be approximated by s#)(while the one at the bottom of the gap&®~1.47 approximated with a cosine function. Quantities
the second ban@op of the gapis an even function ofvery  plotted are dimensionless.
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wave function(4) and from the expansio(b), we have that

wL20?/| x|~ 1 from which, after restoring physical units, we
geta?=8Nasa,/L?. If we consider the case of a condensate
with N~10* atoms of®’Rb (ag~5.5nm) with a radial size
ap~17um, and lengthL~300xm [12], we have thaio?
~0.08, this being reasonably small to justify our expansion
(smaller values can be achieved by considering longer, thin-
ner, cylinders and smaller values Nj. It is worth noting
here that the effective reduction of the dimensionality of the
problem can lead to a reductidhy a factor much less than
unity) of the nonlinear coefficient, as recently reported in
Ref.[13].

As to the initial state, we remark that it could be generated
as initial condition a modulated Bloch state of the formfrom a uniform cylinder by modulating it along treaxis
tanhz)cosf), where the cosine function, taken as back-with a sine or cosine wave of light with twice the wavelength
ground, approximates the Mathieu eigenfunction at the edgef the lattice. Another possibility is to use an initial uniform
&2 while the tanh modulation is used to make the profilecondensate and accelerate the lattice until the state reaches
close to the expected dark state. the edge of the ban(t is enough to be close to the edge for

In Fig. 3 the corresponding numerical simulation is re-the instability to develop Finally we mention that, although
ported, from which we see that a dark soliton is indeed genthe expansion has been provided for a cylindrically shaped
erated, in perfect agreement with our analy#fie energy of  BEC, a number of effects discussed is relevant to a cigar-
this state is in the gap close to the bottom of the secondpaped BEQi.e., including parabolic confining potential in
band. It is interesting to note that for negative scatteringhe girection of periodicity This is the case when the effect
lengths this leads to the existence of dark soliton in BEC '”(instability, bright or static dark solitgrobserved has a scale

otpt;cal tlattrt]lce;(ltrs this fc?r?e one muzt ulfe thedSt?blihBI%ChE:uch less than the length of the condensate. We hope that
state at the bottom of the gap as background for the darg, . phenomena of modulational instability discussed in this

FIG. 3. Same as in Fig. 1 but for a dark-soliton initial condition.
Quantities plotted are dimensionless.

solution. : . )
In order to check the self-consistency of the theory wePaprer will be soon observed in real BEC experiments.
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