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Modulational instability in Bose-Einstein condensates in optical lattices
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A self-consistent theory of a cylindrically shaped Bose-Einstein condensate~BEC! periodically modulated
by a laser beam is presented. We show, both analytically and numerically, that modulational instability/stability
is the mechanism by which wave functions of soliton type can be generated in a cylindrically shaped BEC
subject to a one-dimensional optical lattice. The theory explains why bright solitons can exist in a BEC with
positive scattering length and why condensates with negative scattering length can be stable and give rise to
dark solitary pulses.
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There has been increasing interest in the study of Bo
Einstein condensates~BECs! in the presence of periodic po
tentials, such as the one induced by detuned standing w
of light ~optical lattices! @1#. Switching on an optical lattice
in a continuous BEC induces fragmentation of the origi
wave function into local wave functions centered around
minima of the potential, leading to a crystal-like structure
mutually interacting BECs. In analogy with the usual theo
of crystals, one can think to control the dynamics of this n
state of matter by properly choosing the parameters of
lattice. This gives, for example, the possibility to obser
macroscopic quantum-interference phenomena with em
sion of coherent pulses of atoms~Bloch oscillations!, as re-
cently reported in Ref.@2# for vertical BEC arrays in the
gravitational field. Understanding the properties of the B
in optical lattices is, therefore, of fundamental importan
for developing novel applications of quantum mechan
such as atom lasers and atom interferometers. For s
overlapping between local wave functions, a tight-bindi
model can be developed. This was done, for the o
dimensional~1D! case, in Ref.@3#, where it was shown tha
the mean-field equation for the condensate wave func
reduces to the so called discrete nonlinear Schro¨dinger equa-
tion @4#. The tight-binding approximation, however, puttin
restrictions on the shape of the wave function~i.e., on the
number of atoms in the condensate!, as well as on the poten
tial profile, is applicable only to particular experimental s
tings. From this point of view it is desirable to develop
theory of BEC in optical lattices that does not rely on th
approximation. Studies in this direction were made in ter
of a 1D nonlinear Schro¨dinger equation~NLS! with trigono-
metric@5# or elliptical potentials@6#. Bright and dark solitons
in BEC in optical lattices, analog to the gap-soliton of ph
tonic crystals@7#, were also shown to exist@8,9#.

The aim of this paper is to investigate, both analytica
and numerically, modulational-instability phenomena of e
tended states at the border of the Brillouin zone. To this
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we construct approximate ground-state solutions of the or
nal 3D by means of a multiple-scale expansion, starting fr
the exact eigenfunctions of the underlying linear Schro¨dinger
equation with potentials that are parabolic in the transve
direction and periodic in the longitudinal one~periodic cy-
lindrical trap!. We show that at the lowest orders in the e
pansion the condensate evolves according to an effective
NLS with the dispersive term depending on the effect
mass of the Bloch states of the underlying linear proble
Extended states close to the borders of the Brillouin zone,
then shown to be unstable~stable! against small spatia
modulations~modulational instability! depending on the sign
of the dispersion in the effective 1D NLS. The stability pro
erties of these states is shown to be the basic mechanism
which bright~dark! solitons are created in BEC with positiv
~negative! scattering lengths. Numerical simulations of th
longitudinal BEC dynamics confirm the predictions of o
theory. The possibility to observe the modulational instabil
phenomena in real BEC is discussed at the end of the pa

As is well known @10#, the condensate wave function
described by the Gross-Pitaevskii equation~GPE!

i\
]C~r ,t !

]t
5F2

\2

2m
D1V~r !1g0uC~r ,t !u2GC~r ,t !,

~1!

with g054p\2as /m, m is the atomic mass, andas is the
s-wave scattering length of atoms that can be either posi
or negative. We consider a trap potential of the formV(r )
5 1

2 mn2r'
2 1V0 cos(kz), which model a cylindrically shaped

BEC periodically modulated along thez axis ~the results,
however, will not depend on the form of periodic potent
used, and can be easily generalized to arbitraryz-periodic
potentials!. Here r[(r' ,z), V0 is the potential deepness,n
the trap frequency in the transverse direction, and 2p/k the
period of the modulation. We assume periodic boundary c
ditions C(r' ,z,t)5C(r' ,z1L,t), with L denoting the
length of the cylinder. The change of variablest°2t/n,
r°a0r , C°(N/a0

3)1/2c, with a05@\/(mn)#1/2, allows us
to rewrite Eq.~1! in the dimensionless form
©2002 The American Physical Society02-1
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i
]c~r ,t !

]t
5@L1xuc~r ,t !u2#c~r ,t !, ~2!

wherex58pNas /a0 , andL[L'1Lz with

L'52D'1r'
2 , Ls52]2/]z212L cos~kz! ~3!

~hereD' denotes the two-dimensional Laplacian,k5a0 /k
andL5V0n/\!. In these units the wave function results no
malized to 1, i.e.,

E dr'E
0

L̃
dzucu251, ~4!

with L̃[L/a0 denoting the normalized length of the cylinde
In the following we shall restrict to the small amplitude lim
(xucu2!1) and construct a solution of Eq.~2! perturbatively,
starting from the solution of the linear problem. These l
can be written as products of eigenfunctions of the opera
in Eq. ~3!

Lzf ñq~z!5Eñqf ñq~z!, L'jnm~r'!5«nmjnm~r'!.

For the considered potential,f ñq
(z) are solutions of the

Mathieu equation, whilejnm(r') are eigenfunctions of the
two-dimensional harmonic oscillator~n and m denote the
principal and the angular quantum numbers of the harmo
oscillator, whileñ andq denote the band index and the wa
vector inside the first Brillouin zone of the 1D lattice, respe
tively!. We look for solutions of Eq.~2! of the form

c5S L̃

uxu D
1/2

~sc11s2c21¯ !, ~5!

with s a small parameter whose physical meaning will
clarified later ~the prefactor is unimportant and introduce
just for convenience!. Since we are interested in the groun
state we take as the leading-order term in Eq.~5! a small
modulation of the linear ground-state wave function (n0
50,m050,ñ051) of the form

c15A~z,t!f ñ0q~z0!jn0m0
~r'!e2 ivn0m0ñ0

~q!t0, ~6!

with vn0 ,m0 ,ñ0
(q)5«n0 ,m0

1Eñ0q[v(q). The modulating

amplitudeA(z,t) is considered to be a function of a set
independent spatial and temporal variables of the formz
[(z1 ,z2 ,...,zn ,...) with zn5snz, and t[(t1 ,t2 ,...,tn ,...)
with tn5snt, respectively. To simplify the notation we in
troduce the shortcut symbols«0[«n0 ,m0

, E(q)[Eñ0,q
,

fq(z)[f ñ0 ,q(z), and in the modulation amplitudeA, we
show only the dependence on the most ‘‘rapid’’ variabl
The time and coordinate derivatives in Eq.~2! are then ex-
panded as]/]t5(a50sa]/]ta and ]/]z5(a50sa]/]za .
Substituting the above expansions in Eq.~2! and collecting
all the terms of the same order ins, we obtain at the first
order:i ]c1 /]t02Lc150, which is evidently satisfied byc1
given by Eq.~6!. At the second order ins, the following
equation is obtained:
02160
t
rs

ic

-

.

i
]c2

]t0
2Lc252 i

]c1

]t1
22

]2c1

]z0]z1
, ~7!

whose solution can be searched for in the form

c25(
n,m

(
~ ñ,q8!Þ~ ñ0 ,q!

Bn,m,ñ~q8!f ñq8jnme2 iv~q!t0. ~8!

Substituting Eq.~8! in Eq. ~7! and projecting along the
eigenfunctions of operators~3! with ñÞñ0 , we find that

c25
]A

]z1
(

ñÞñ0

G ññ0

v0~q!2vn0m0ñ~q!
f ñq

jn0m0
e2 iv~q!t0, ~9!

with G ññ0
(q)522*0

L̃f̄ ñq
(z)(d/dz)f ñoq

(z)dz. The solvabil-

ity condition of Eq.~7! reads as (]A/]t1)1v(]A/]z1)50,
from which we see thatA[A(z;z2 ,t2), with z5z12vt1 .
Note that thev[v(q)5 iG ñ0ñ0

(q) can be interpreted as th
group velocity of the wave packet in thez direction. Finally,
at the third order ins, we get

i
]c3

]t0
2Lc352 i

]c1

]t2
2 i

]c2

]t1
22

]2c2

]z0]z1

2S ]2

]z1
2 12

]2

]z0]z2
Dc11xuc1u2c1 . ~10!

Requiring orthogonality~to avoid secular terms! between the
right-hand side of this equation and the kernel of the opera
i ]/]t02L, and taking into account the expressions ofc1 and
c2 derived above, we find that Eq.~10! reduces to the fol-
lowing NLS equation

2 i S ]A

]t2
1v

]A

]z2
D2D

]2A

]z2 1x̃uAu2A50, ~11!

where D[D(q)511S ñÞñ0
uG ññ0

(q)u2/(v(q)2vn0m0ñ(q))
is the effective group velocity dispersion induced by the p
riodic potential, and

x̃5sgn~x!
L̃

2p E
0

L̃
uf0~z!u4dz, ~12!

is the effective nonlinearity~here we integrated on radia
variables and used the ground-state wave function of the
harmonic oscillator!. The above expressions ofv and D, in
terms of eigenfunctions of the linear operatorL, can be sim-
plified by expressing them in terms of the energy spectrum
the noninteracting linear system. This can be done in
same manner as in the theory of optical gap solitons@7#. To
this end, we take two close Bloch solutions of the 1D line
problem, of the formfq(z)5exp(iqz)uñ,q(z), which differ
only by a smalldq, so thatuñ,q1dq(z) can be considered a
a perturbation of uñ,q(z) generated by the operato
22idq((d/dz)1 iq)1(dq)2. This perturbation produces
shift D5Eñ,q1dq2Eñ,q in energy, which can be expanded
2-2
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a Taylor series indq. On the other hand,D can also be
computed from perturbation theory. A comparison of the c
responding expressions leads tov5dv(q)/dq and D
5 1

2 d2v(q)/dq2, i.e., v and D are, respectively, the slop
~velocity! and the curvature~inverse effective mass! of the
energy band~Bloch states! of the underlying linear problem

From the physical point of view the above results hav
number of consequences. First, the group velocity indu
by the periodicity at the boundaries of zone dominate
dispersion inherent to NLS. For example, if we takek52.0
and L50.5, we have that the edges of the first g
@E(1),E(2)# are atE(1)'0.47, andE(2)'1.47. The effective
dispersion at these points isv19'26.13, andv29'10.14, re-
spectively~herev j95d2v/dq2uq5qj

!. Thus even in the cas

the group velocity dispersion does not change sign it
comes much larger than the NLS dispersion. Second,
fixed nonlinearity and in presence of the periodic potent
the dynamics will crucially depend on the sign ofD. This
sign can be controlled by changing the wave number of
initial state, as well as, the potential parameters. Instab
phenomena of extended~Bloch! states close to the edges
the Brillouin zone can then appear. To understand this, le
assume positive scattering length~x̃.0 in Ref. @11#! and
consider the Bloch state atE(1), for which D (1),0. In the
presence of a repulsive interatomic interaction (x.0), the
energy of this state will be shifted upward in the gap wher
cannot exist. One can expect then the state to become
stable against small spatial modulations~modulational insta-
bility ! so that new excitations must arise. Equation~11! pre-
dicts that out of the instability bright solitons should appe
@recall that forx̃.0, andD,0 (D.0), Eq.~11! has stable
bright ~dark! soliton solutions#. On the contrary, if we take a
initial state the Bloch state at the bottom of the second ba
E(2), whereD5D (2).0, one expects modulational stabilit
instead~in this case the nonlinearity is pulling the energy
the state further up in the second band where it can
exist!. This extended stable state can be then used as b
ground to construct the dark soliton solution expected in
case from Eq.~11! ~see below!. Obviously, for negative scat
tering lengths the opposite situation will occur, i.e., modu
tional instability will appear at the top of the gap~leading to
bright solitons! and stability at the bottom~leading to dark
solitons!. From this it is clear that the stability properties
the Bloch states at the edge of the Brillouin zone, play
crucial role for the existence of bright and dark solitons
BEC in optical lattices both for positive and negative sc
tering lengths.

These predictions can be easily checked by direct num
cal integration. In this regard we remark that instabiliti
along thez direction mainly depend on the spectrum of t
operatorLz ~the transverse distribution of the condensate
fects only the absolute value of the coefficientx̃!, so that we
can perform numerical simulations in the framework of a
NLS equation obtained from Eq.~2! with L'Lz . Moreover,
we note that the Bloch state~Mathieu function! at the top of
the first band~bottom of the gap!, is an odd function ofz that
can be approximated by sin(z), while the one at the bottom o
the second band~top of the gap! is an even function ofz very
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close to cos(z). In the following we shall use these approx
mate states as initial conditions for investigating modu
tional stability since they are, in real experiments, easie
generate.

In Fig. 1 a numerical simulation of the 1D problem wit
initial condition close to the state at the bottom of the gap
depicted. We see that, as expected from our analysis, m
lational instability develops and, in spite of the fact that w
have positive scattering (x̃51), bright solitons are create
in agreement with our analysis@the number of solitons com
ing out from the instability can be estimated asLkmax/(2p),
wherekmax is the wave number of the most unstable line
mode@11##. We remark that although the theory is valid fo
small-amplitude excitations, the numerical simulations sh
that the obtained results extend also above this limit~note
that in Fig. 1x̃51!. An intuitive explanation for this is tha
small-amplitude solitons once formed can only become m
and more localized as the nonlinearity is increased. T
modulational instability at higher nonlinearity should, ther
fore, produce solitons that are more localized and of la
amplitude. This is precisely what is observed in Fig. 1.
contrast to this, we find that an initial condition correspon
ing to a Bloch state close to the top of the gap, rema
modulationally stable also in the presence of nonlinear
This is reported in Fig. 2 for an initial profile of cosine typ
It is interesting to note that one can use this state to const
the stable dark soliton predicted by Eq.~11!. To this end we
take

FIG. 1. Modulational instability in Eq.~2! with L'Lz for pa-
rameter valuesx̃51.0, k52.0, andL50.5. The initial condition is
an approximated eigenfunction, taken as a sine function, of the
band of the linear system at the edgeE(1)'0.47 of the Brillouin
zone. Quantities plotted are dimensionless.

FIG. 2. Same as in Fig. 1 but for the eigenfunction at the top
the gapE(2)'1.47 approximated with a cosine function. Quantiti
plotted are dimensionless.
2-3
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as initial condition a modulated Bloch state of the for
tanh(lz)cos(z), where the cosine function, taken as bac
ground, approximates the Mathieu eigenfunction at the e
E(2), while the tanh modulation is used to make the pro
close to the expected dark state.

In Fig. 3 the corresponding numerical simulation is r
ported, from which we see that a dark soliton is indeed g
erated, in perfect agreement with our analysis~the energy of
this state is in the gap close to the bottom of the sec
band!. It is interesting to note that for negative scatteri
lengths this leads to the existence of dark soliton in BEC
optical lattices~in this case one must use the stable Blo
state at the bottom of the gap as background for the d
solution!.

In order to check the self-consistency of the theory
shall estimate the size of the parameters used for the expan
sion, and the magnitude of the effective nonlinearity in E
~11!. To this end we start with the dark soliton or period
solution and notice that the eigenfunctionsfq(z) are normal-
ized to 1, so thatL̃ufqu2;1 and hence, from Eq.~12! we
have thatx̃;1. Similarly, from the normalization of the

FIG. 3. Same as in Fig. 1 but for a dark-soliton initial conditio
Quantities plotted are dimensionless.
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wave function~4! and from the expansion~5!, we have that

pL̃2s2/uxu;1 from which, after restoring physical units, w
gets258Nasa0 /L2. If we consider the case of a condensa
with N'104 atoms of87Rb (as;5.5 nm) with a radial size
a0;17mm, and lengthL;300mm @12#, we have thats2

;0.08, this being reasonably small to justify our expans
~smaller values can be achieved by considering longer, t
ner, cylinders and smaller values ofN!. It is worth noting
here that the effective reduction of the dimensionality of t
problem can lead to a reduction~by a factor much less than
unity! of the nonlinear coefficient, as recently reported
Ref. @13#.

As to the initial state, we remark that it could be genera
from a uniform cylinder by modulating it along thez axis
with a sine or cosine wave of light with twice the waveleng
of the lattice. Another possibility is to use an initial uniform
condensate and accelerate the lattice until the state rea
the edge of the band~it is enough to be close to the edge f
the instability to develop!. Finally we mention that, although
the expansion has been provided for a cylindrically sha
BEC, a number of effects discussed is relevant to a cig
shaped BEC~i.e., including parabolic confining potential i
the direction of periodicity!. This is the case when the effec
~instability, bright or static dark soliton! observed has a scal
much less than the length of the condensate. We hope
the phenomena of modulational instability discussed in t
paper will be soon observed in real BEC experiments.
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