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Transient phase-space localization
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We show that dynamics can, in general, be used to enhance the coherence of a Hamiltonian ensemble and we
analyze the transient coherence using the coarse-grained entropy. We illustrate this concept using a Rydberg
atom subject to an impulsive momentum transfer or “kick.” Classical simulations predict that the wave packet
generated by the kick undergoes strong transient phase-space localization, which forms an excellent starting
point for its further control and manipulation. Moreover, we show that such localized states can be “trapped”
for extended periods using a train of subsequent kicks.
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In recent years there has been increasing interest in th@as constructed by considering a large number of initial
control and manipulation of atomic wave functions to generphase-space points chosen according to this distribution, and
ate wave packets that, for example, mimic classical behaviahe displayed value op(q,p,t) is the fraction of this en-
or that are tailored for specific applications such as data stosemble in each of a rectangular grid of celtsns) of area
age[1]. Such control can be achieved by use of carefullysp s5q, described in more detail beloThe results are scal-
engineered ultrashort laser pulses or by application of one qpg invariant and are displayed in scaled uris=np,d,
more ultrashort unidirectional electric—_field pulses, termequ/nz for scaled bin sizesp,=0.1,6q,=0.1) Every mem-
half-cycle pulsesHCPS [2]. The ease with which some spe- jyor of this ensemble traces the same periodic orbit, with a
cific targeted final states can be produced is governed by ﬂ}?eriod T.=2mn% The ensemble is distributed in phase

initial position and momentum dls_trl_putlons Of. the eIeCtron'space in inverse proportion to the time this orbit spends in a
In essence, the more tightly the initial state is localized in”:

. L iven region(leading to the characteristic peak at the outer
phase space, the more straightforward it is to access song? . . . :
selected final statg8]. In this paper, we demonstrate that the classical t!””'”g_ pointand the_expec_taﬂon yalges of all ob-
dynamics of the atom after application of a single HCP carce"vabledincludingp,q) remain stationary in time.
lead to strong transient localization of the wave packet in SUPPOse that at=0 a short HCP of duratiom, is applied
phase space. Since the coherence of a statistical ensemifethe atom. In the limit thaff,<T,, the HCPFcp(t)
corresponds to the degree to which all the elements of th&imply delivers an impulsive momentum transfer or “kick”
ensemble behave in a similar fashion, such phase-space 189=—J/Fncp(t) dt to the electron. This translates the en-
calization corresponds to a transient increase in the cohefire distribution in momentum by an amoudtp,=nAp
ence of the ensemble. We analyze this coherence by consii= —0.1 for the results in Fig.)land also causes an energy
ering the time development of the coarse-grained entropy ofhangeAE=Ap?/2+ p;Ap (wherep; is the momentum of
the ensemble. the electron immediately before the kjckesulting in the
The present scheme can be described most convenientiyopulation of a range of final energy levels. Different ele-
with the aid of a one-dimensiondlLD) atom and model ments of the phase-space distribution now evolve at different

Hamiltonian, rates and the probability densip(q,p,t) becomes time de-
5 5 pendent and evolves according to the classical Liouville
H :p__}JFA_ 2 equation. The effects of these dynamics are seen in Figs.
a2 g 2q2' 1(b)-1(d) that show the distribution at successively later

times following the kick.
where q and p denote the position and momentum of the As evident from Fig. (b), at a scaled time,=t/T,
electron, respectively, and —0 is a quasiangular momen- =~1.1, the distribution becomes strongly localized. SiAge
tum. Earlier work has shown that the behavior of an atomis very small, the average period of the orbits after the kick
subject to one or more HCPs can be discussed using this 1@2mains very close td,. At somewhat later times the dis-
model Hamiltonian[4,5]. Consider now such a stationary tribution broadens, reaching a maximumtgt 1.5[see Fig.
Rydberg 1D “atom” in a givem level with a binding energy  1(c)]. It then begins to narrow and periodic variations in
E,=—1/(2n?), which is represented classically by a micro- localization continue for several cycles before finally damp-
canonical phase-space distributign(q,p)=cd(H.«(q,p) ing out due to the continuous spectrum of frequencies in the
—E,), wherec is a normalization constang is the Dirac  classical ensemble. At very long times the system relaxes to
delta function, and atomic units are used throughout. Figurés (new) equilibrium phase-space distribution shown in Fig.
1(a) displays this initial microcanonical distribution. This 1(d).
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FIG. 2. Time development of the widths @) the coordinate
and (b) the momentum distributions following an impulsive scaled
momentum transfedp,=—0.1. The corresponding evolution of
the coarse-grained entrofB(t) is shown in(c) for the bin sizes
8po=0.1,69,=0.1 (—) and 8p,=0.0125§9,=0.125(— — -).

coherence is to be expected on general grounds for integrable
Hamiltonian systems. A reasonable measure of the coherence
of p(q,p,t) is provided by the negative of the entropy of the
distribution, either the Gibbs entropy Tr[p In(p)] or the
analytically more useful Renyi entropy] — In[Tr(p?)]. The
Liouville equation,dp(q(t),p(t),t)/dt=0, requires that all
functions of p, including the entropy, be constant in time.
Thus, to measure the coherence through the entropy a small
but finite coarse graining must be used to distinguish a
sharply localized distribution from one that is more spread
out. We, therefore, divide phase-space into equally spaced
rectangular cells of aredgdp centered at phase-space points
(d;,py)i,j=1,2,.... Theentropy is then defined in the usual
way [8] as

SCALED

MOMENTUM SCALED

40 POSITION

=— 2
FIG. 1. Phase-space distributiopép,q,t) for (a) the initial or Se()= In{ 5q5piJ2:l ple(t)}’ 2

parent Rydberg state an{l)—(d) for t, of 1.10, 1.45, and 15, re-

spectively, following an impulsive scaled momentum trangfer, where Pi,j(t) is the average value g¥(q,p,t) in the cell

=nAp=-0.1. centered at dj,p;) and is easily approximated within the

classical trajectory Monte Carlo approach. In particular, if

The time development of(q,p,t) leads to beats in the ©One foIIowg the .Hamiltonian dynamics of a [argg ensemble

mean valueSA)=Tr(pA) of many observables, where Tr Of N trajectories and a subsht ; of these lie within the

denotes the trace or integral over all phase-space variabld§tervals @ —4éa/2,g;+46q/2) and ;- ép/2,pj+ 5p/2)

Previous studie§6] have extensively analyzed the time de- then

velopment of(q),{p). Here we are concerned with the pos-

sibility of transient phase-space localization of the wave (= lim L Ni,j &)

packet and, therefore, consider the time development of the Pij Ntra_ﬁxéqﬁp Niraj

widths of the momentum and coordinate distributicm§ :

=(q?%)—(a)? ando5=(p? —(p)? shown in Figs. @) and  Figure 1 displays the behavior of precisely this quantity. In

2(b). Remarkably, bothr, and o, minimize simultaneously Fig. 2 we compare the time evolutions §f(t),o4(t),op(t).

after a timet,~1. Thus, the localization of the phase-spaceRemarkably, S.(t) oscillates as a function of time and

distribution can be significantly improved by application of athe positions of its minima coincide with the minima for

single kick. a4(t) and op(t). This oscillatory behavior o8 (t) can be
Such oscillatory behavior of phase-space localization andinderstood analytically using an alternate representation of
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coarse graining where we locally smoogh{X,t) [where TF
X=(q,p)] by a Gaussian of widtd= 6,= 5,. The coarse-
grained Renyi entropy can then be written &

= —InTr(exd — 6=(#ax®)p(X) ). In terms of the Fourier

transformp(K) of p, this becomes

e
o
T F

o
[~
T
o
o

o
'S
T
o4
>

Se=—In(Tr exp( —26k?)[p(K)|2]), (4)

o
a

where hereafter the trace runs okevalues. In the limitd
—0, S, can be written, neglecting tern@®(5%), as

) SURVIVAL PROBABILITY
o
N

o
(M)
T

0 1I 2 3 4
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SURVIVAL PROBABILITY

Se=—In(Tr{p?]— 28T k?p|?]) = — In{(1-28x) Tr p?]},
(5)

where x?=Tr(k?p|?)/Tr(|p|?) is approximately the mean- 0 il
square Fourier radius ¢f and is a measure of the structure NUMBER OF KICKS

in p. It has been showi®] that if the dynamics of the system _ N _

is regular(nonchaoti¢, x* executes bounded oscillations for ~ FIG. 3. Calculated survival probability vs the number of kiks
short times, with a slow increase for longer timesylfe-  for a scaled kick repetition frequenay,= v, /v,=0.94 and scaled

by cluded for the initial phase-space distributions in Figg) I—),
and Xc) (- — 9. The inset shows the calcuated survival probability
s (t)=C+25X2(t) (6) vs kick strength following the application of a single half-cycle
¢ “probe” pulse to atoms with the initial phase-space distributions

whereC is some constant dependent upon the initial distri-Shown in Figs. &) (—), 1(b) (- - -, and Xc) (- --), respec-

bution. SinceS, is oscillating, it is to be expected that it can ivel-

be less than its initial value at certain times following the
perturbation, pointing to transient increases in coherence &pace for the kicked 1and 3D atom contains a number of
evident in Fig. 2. The minimum irS;, labeled B, corre- stable islandgassociated with dynamical stabilizatjotihat
sponds to the localized distribution shown in Figb)land are embedded in a chaotic sea. If the system is strongly lo-
the maximum labeled C corresponds to the broad distributiogalized within one of these islands, it will remain strongly
evident in Fig. 1c). Figure 2 includes results for two differ- localized over a very large numbar of kicks, i.e., over an
ent bin sizes: 6p,=0.1,6q,=0.1 and dp,=0.01254q,

=0.0125. Similar structure is observed in both data sets, in- 1.0

dependent of bin sizgl0]. Two time scales are apparent in £
Fig. 2. The shorter time scale associated with the individual g 08
oscillations corresponds to an average over the classical pe- c 06
riods of the product states. The longer time scale over which 2
the oscillations damp is governed by the spread in energy of 8 04r ]
the product states. These time scales and oscillations have o o2k __ GP__ |
been previously recognized in the expectation values of po- T, d -
sition and momenturfi6]. However, their crucial role in the 0.0 ' : :
transient coherence of the system has not been considered. o 25 . . ,
The transient coherence that results from application of B b)
the kick can be investigated experimentally by the applica- z 20
tion of a short half-cycle probe pulse after a variable time g 15
delay, where this probe leads to ionization if it is sufficiently *qc:
large. The inset in Fig. 3 shows the calculated survival prob- g 10
ability as a function of the size of the probe impulse for § 055 b o
conditions where it is applied to the initial “parent” state, ' N/ L Vi Py

and at timest,=1.0 and 1.5 corresponding to the phase- 0.05 '{ : 5 3 y 5

space distributions shown in Figgh]l and Xc), respectively.

Phase space localization leads to a sharp onset in ionization, SCALED TIME

which is a clear signature of the enhanced coherence. FIG. 4. Time development of the widths @) the coordinates
Although the enhanced localization obtained is transientand(p) the momentum distributions for 3D Rydberg atoms initially

it can be maintained to later times by exploiting the mixedin an incoherent statistical distribution of extreme Stark states with

phase space associated with the kicked Rydberg atom, i.e.,na=390,|m|<2, 369<k=2389, following the application of an im-

Rydberg atom subject to a train of identical equispacedulsive scaled momentum transfamp,=—0.1 along thez axis.

S-function impulses. As discussed elsewhfs§ the phase Cylindrical coordinateg and p= x2+y? are used.
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extended time interval. For each of the princigaériod-1 using a simple 1D model, quasi-one-dimensional atoms can
stable islands, the momentum of the electron prior to eache created by exciting the extreme members of individual
kick is ~AP/2, where— AP is the impulse delivered by a Stark manifolds and these display similar behavior. This is
single kick. Each kick then simply reverses the electron moillustrated in Fig. 4, which shows the results of 3D simula-
mentum, AP/2— — AP/2, with little change in its energy. tions fora band of extreme Stark states created parallel to the
The subsequent electron orbital motion is such that its moKick i-€., thez axis. The widths of the momentum distribu-
mentum has the valuA P/2 immediately prior to the next tions and the distribution of position along th@xis mimic

kick. The dominant stable island is associated with a kickn€ 1D simulation closely. Note that the wave packet is ef-
repetition frequency in the train,~ v,,, where v, (=1/T,) fectively localized in 3D because the transverse width of the
is the classical electron orbital frequency. A localized phaselltial Stark state is very narrow. The present approach thus
space distribution such as that shown in Figh)with its provides a practical means of generating wave packets that

o - display strong transient phase-space localization. Further-
momentum centered abopt=0 can be positioned within a pay g P b

: ; . ; ) _ more, this coherence can be maintained by exploiting the
stable island by applying a kick AP/2 immediately priorto - yhase space structure of the kicked system. Such methods

the train of kicks. The subsequent behavior of this distribuy,aye recently been used to select those atoms in an initial
tion is illustrated in Fig. 3 showing the calculated survival gngemple that lie within specific localized regions of phase
probability as a function of the numbei of kicks for a  gnacef11]. This approach has the disadvantage that it is not
scaled-kick repetition frequency,=w/v,=0.94 and a nitary (ie., a large number of initial Rydberg atoms are
scaled momentum transferP, = —0.5. The overall survival  giscardedl In contrast, the present scheme is nearly unitary.
probability is very large, even afté¢=10" kicks, indicating  Finally, the present paper illustrates that dynamics can, in
that the great majority of the initial states are trapped withingeneral, be used to control the coherence of any Hamiltonian
the stable island and maintain their phase-space localizatiofl,semple. Such dynamics can be induced, as here, by appli-

and coherence. For comparison, Fig. 3 also includes resulisytion of a short-lived external perturbation or through a sud-
obtained under the same conditions using the broad initig}ep, change in the Hamiltonian.

phase-space distribution shown in Figc)l The reduced sur-

vival probability indicates that only a small fraction of the  A.K.P. benefited from a very useful conversation with

initial states overlap a stable island. Those that do surviveMark Raizen about the connection between entropy and lo-

however, will be localized in phase-space. calization. This work was supported by the NSF and the
The present paper demonstrates that a single kick can Robert A. Welch Foundation. C.O.R. acknowledges support

used to localize, at least transiently, the phase-space distribby the DCS, OBES, US DOE, managed by UT-Batelle LLC

tion of a system. Although the results presented were derivednder Contract Nos. DE-AC05 and 000R22725.
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