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Transient phase-space localization
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We show that dynamics can, in general, be used to enhance the coherence of a Hamiltonian ensemble and we
analyze the transient coherence using the coarse-grained entropy. We illustrate this concept using a Rydberg
atom subject to an impulsive momentum transfer or ‘‘kick.’’ Classical simulations predict that the wave packet
generated by the kick undergoes strong transient phase-space localization, which forms an excellent starting
point for its further control and manipulation. Moreover, we show that such localized states can be ‘‘trapped’’
for extended periods using a train of subsequent kicks.
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In recent years there has been increasing interest in
control and manipulation of atomic wave functions to gen
ate wave packets that, for example, mimic classical beha
or that are tailored for specific applications such as data s
age @1#. Such control can be achieved by use of carefu
engineered ultrashort laser pulses or by application of on
more ultrashort unidirectional electric-field pulses, term
half-cycle pulses~HCPs! @2#. The ease with which some spe
cific targeted final states can be produced is governed by
initial position and momentum distributions of the electro
In essence, the more tightly the initial state is localized
phase space, the more straightforward it is to access s
selected final state@3#. In this paper, we demonstrate that t
dynamics of the atom after application of a single HCP c
lead to strong transient localization of the wave packet
phase space. Since the coherence of a statistical ense
corresponds to the degree to which all the elements of
ensemble behave in a similar fashion, such phase-spac
calization corresponds to a transient increase in the co
ence of the ensemble. We analyze this coherence by con
ering the time development of the coarse-grained entrop
the ensemble.

The present scheme can be described most conveni
with the aid of a one-dimensional~1D! atom and model
Hamiltonian,

Hat5
p2

2
2

1

q
1

L2

2q2
, ~1!

where q and p denote the position and momentum of t
electron, respectively, andL→0 is a quasiangular momen
tum. Earlier work has shown that the behavior of an at
subject to one or more HCPs can be discussed using this
model Hamiltonian@4,5#. Consider now such a stationar
Rydberg 1D ‘‘atom’’ in a givenn level with a binding energy
En521/(2n2), which is represented classically by a micr
canonical phase-space distributionr i(q,p)5cd„Hat(q,p)
2En…, wherec is a normalization constant,d is the Dirac
delta function, and atomic units are used throughout. Fig
1~a! displays this initial microcanonical distribution. Th
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was constructed by considering a large number of ini
phase-space points chosen according to this distribution,
the displayed value ofr(q,p,t) is the fraction of this en-
semble in each of a rectangular grid of cells~bins! of area
dpodqo described in more detail below.~The results are scal
ing invariant and are displayed in scaled unitspo[np,qo

[q/n2 for scaled bin sizesdpo50.1,dqo50.1.! Every mem-
ber of this ensemble traces the same periodic orbit, wit
period Tn52pn3. The ensemble is distributed in phas
space in inverse proportion to the time this orbit spends i
given region~leading to the characteristic peak at the ou
classical turning point! and the expectation values of all ob
servables~including p,q) remain stationary in time.

Suppose that att50 a short HCP of durationTp is applied
to the atom. In the limit thatTp!Tn , the HCPFHCP(t)
simply delivers an impulsive momentum transfer or ‘‘kick
Dp52*FHCP(t) dt to the electron. This translates the e
tire distribution in momentum by an amountDpo[nDp
(520.1 for the results in Fig. 1! and also causes an energ
changeDE5Dp2/21piDp ~where pi is the momentum of
the electron immediately before the kick!, resulting in the
population of a range of final energy levels. Different e
ments of the phase-space distribution now evolve at differ
rates and the probability densityr(q,p,t) becomes time de-
pendent and evolves according to the classical Liouv
equation. The effects of these dynamics are seen in F
1~b!–1~d! that show the distribution at successively lat
times following the kick.

As evident from Fig. 1~b!, at a scaled timeto[t/Tn
'1.1, the distribution becomes strongly localized. SinceDp
is very small, the average period of the orbits after the k
remains very close toTn . At somewhat later times the dis
tribution broadens, reaching a maximum atto'1.5 @see Fig.
1~c!#. It then begins to narrow and periodic variations
localization continue for several cycles before finally dam
ing out due to the continuous spectrum of frequencies in
classical ensemble. At very long times the system relaxe
its ~new! equilibrium phase-space distribution shown in F
1~d!.
©2002 The American Physical Society05-1
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The time development ofr(q,p,t) leads to beats in the
mean valueŝ A&[Tr(rA) of many observables, where T
denotes the trace or integral over all phase-space varia
Previous studies@6# have extensively analyzed the time d
velopment of̂ q&,^p&. Here we are concerned with the po
sibility of transient phase-space localization of the wa
packet and, therefore, consider the time development of
widths of the momentum and coordinate distributionssq

2

5^q2&2^q&2 andsp
25^p2&2^p&2, shown in Figs. 2~a! and

2~b!. Remarkably, bothsq andsp minimize simultaneously
after a timeto'1. Thus, the localization of the phase-spa
distribution can be significantly improved by application o
single kick.

Such oscillatory behavior of phase-space localization

FIG. 1. Phase-space distributionsr(p,q,t) for ~a! the initial or
parent Rydberg state and~b!–~d! for to of 1.10, 1.45, and 15, re
spectively, following an impulsive scaled momentum transferDpo

5nDp520.1.
02140
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coherence is to be expected on general grounds for integr
Hamiltonian systems. A reasonable measure of the coher
of r(q,p,t) is provided by the negative of the entropy of th
distribution, either the Gibbs entropy2Tr@r ln(r)# or the
analytically more useful Renyi entropy@7# 2 ln@Tr(r2)#. The
Liouville equation,dr„q(t),p(t),t…/dt50, requires that all
functions of r, including the entropy, be constant in tim
Thus, to measure the coherence through the entropy a s
but finite coarse graining must be used to distinguish
sharply localized distribution from one that is more spre
out. We, therefore, divide phase-space into equally spa
rectangular cells of areadqdp centered at phase-space poin
(qi ,pj ) i , j 51,2, . . . . Theentropy is then defined in the usu
way @8# as

Sc~ t !52 lnFdqdp (
i , j 51

`

r i , j
2 ~ t !G , ~2!

where r i , j (t) is the average value ofr(q,p,t) in the cell
centered at (qi ,pj ) and is easily approximated within th
classical trajectory Monte Carlo approach. In particular,
one follows the Hamiltonian dynamics of a large ensem
of Ntra j trajectories and a subsetNi , j of these lie within the
intervals (qi2dq/2,qi1dq/2) and (pj2dp/2,pj1dp/2)
then

r i , j~ t !5 lim
Ntra j→`

1

dqdp

Ni , j

Ntra j
. ~3!

Figure 1 displays the behavior of precisely this quantity.
Fig. 2 we compare the time evolutions ofSc(t),sq(t),sp(t).
Remarkably, Sc(t) oscillates as a function of time an
the positions of its minima coincide with the minima fo
sq(t) and sp(t). This oscillatory behavior ofSc(t) can be
understood analytically using an alternate representatio

FIG. 2. Time development of the widths of~a! the coordinate
and ~b! the momentum distributions following an impulsive scal
momentum transferDpo520.1. The corresponding evolution o
the coarse-grained entropySc(t) is shown in~c! for the bin sizes
dpo50.1,dqo50.1 ~——! anddpo50.0125,dqo50.125~– – –!.
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coarse graining where we locally smoothr(xW ,t) @where
xW[(q,p)] by a Gaussian of widthd5dp5dq . The coarse-
grained Renyi entropy can then be written asSc

52 ln Tr„exp@2d(i(]
2/]xi

2)r(xW)#2
…. In terms of the Fourier

transformr̃(kW ) of r, this becomes

Sc52 ln„Tr@exp~22dk2!ur̃~kW !u2#…, ~4!

where hereafter the trace runs overk values. In the limitd
→0, Sc can be written, neglecting termsO(d2), as

Sc52 ln~Tr@ r̃2#22dTr@k2ur̃u2# !52 ln$~122dx2!Tr@ r̃2#%,
~5!

where x2[Tr(k2ur̃u2)/Tr(ur̃u2) is approximately the mean
square Fourier radius ofr and is a measure of the structu
in r. It has been shown@9# that if the dynamics of the system
is regular~nonchaotic!, x2 executes bounded oscillations fo
short times, with a slow increase for longer times. Ifx re-
mains small, the time dependence ofSc is well approximated
by

Sc~ t !5C12dx2~ t !, ~6!

whereC is some constant dependent upon the initial dis
bution. SinceSc is oscillating, it is to be expected that it ca
be less than its initial value at certain times following t
perturbation, pointing to transient increases in coherenc
evident in Fig. 2. The minimum inSc , labeled B, corre-
sponds to the localized distribution shown in Fig. 1~b! and
the maximum labeled C corresponds to the broad distribu
evident in Fig. 1~c!. Figure 2 includes results for two differ
ent bin sizes: dpo50.1,dqo50.1 and dpo50.0125,dqo
50.0125. Similar structure is observed in both data sets
dependent of bin size@10#. Two time scales are apparent
Fig. 2. The shorter time scale associated with the individ
oscillations corresponds to an average over the classica
riods of the product states. The longer time scale over wh
the oscillations damp is governed by the spread in energ
the product states. These time scales and oscillations
been previously recognized in the expectation values of
sition and momentum@6#. However, their crucial role in the
transient coherence of the system has not been conside

The transient coherence that results from application
the kick can be investigated experimentally by the appli
tion of a short half-cycle probe pulse after a variable tim
delay, where this probe leads to ionization if it is sufficien
large. The inset in Fig. 3 shows the calculated survival pr
ability as a function of the size of the probe impulse f
conditions where it is applied to the initial ‘‘parent’’ state
and at timesto51.0 and 1.5 corresponding to the phas
space distributions shown in Figs. 1~b! and 1~c!, respectively.
Phase space localization leads to a sharp onset in ioniza
which is a clear signature of the enhanced coherence.

Although the enhanced localization obtained is transie
it can be maintained to later times by exploiting the mix
phase space associated with the kicked Rydberg atom, i.
Rydberg atom subject to a train of identical equispac
d-function impulses. As discussed elsewhere@5#, the phase
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space for the kicked 1D~and 3D! atom contains a number o
stable islands~associated with dynamical stabilization! that
are embedded in a chaotic sea. If the system is strongly
calized within one of these islands, it will remain strong
localized over a very large numberN of kicks, i.e., over an

FIG. 3. Calculated survival probability vs the number of kicksN
for a scaled kick repetition frequencyno5nk /nn50.94 and scaled
momentum transferDPo520.5 ~see text for details!. Data are in-
cluded for the initial phase-space distributions in Figs. 1~b! ~——!,
and 1~c! ~– – –!. The inset shows the calcuated survival probabil
vs kick strength following the application of a single half-cyc
‘‘probe’’ pulse to atoms with the initial phase-space distributio
shown in Figs. 1~a! ~——!, 1~b! ~– – –!, and 1~c! (•••), respec-
tively.

FIG. 4. Time development of the widths of~a! the coordinates
and~b! the momentum distributions for 3D Rydberg atoms initia
in an incoherent statistical distribution of extreme Stark states w
n5390, umu,2, 369<k<389, following the application of an im-
pulsive scaled momentum transferDpo520.1 along thez axis.
Cylindrical coordinatesz andr5Ax21y2 are used.
5-3
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extended time interval. For each of the principal~period-1!
stable islands, the momentum of the electron prior to e
kick is 'DP/2, where2DP is the impulse delivered by a
single kick. Each kick then simply reverses the electron m
mentum,DP/2→2DP/2, with little change in its energy
The subsequent electron orbital motion is such that its m
mentum has the valueDP/2 immediately prior to the nex
kick. The dominant stable island is associated with a k
repetition frequency in the trainnk'nn , wherenn([1/Tn)
is the classical electron orbital frequency. A localized pha
space distribution such as that shown in Fig. 1~b! with its
momentum centered aboutp'0 can be positioned within a
stable island by applying a kick6DP/2 immediately prior to
the train of kicks. The subsequent behavior of this distrib
tion is illustrated in Fig. 3 showing the calculated surviv
probability as a function of the numberN of kicks for a
scaled-kick repetition frequencyno[nk /nn50.94 and a
scaled momentum transferDPo520.5. The overall survival
probability is very large, even afterN>104 kicks, indicating
that the great majority of the initial states are trapped wit
the stable island and maintain their phase-space localiza
and coherence. For comparison, Fig. 3 also includes res
obtained under the same conditions using the broad in
phase-space distribution shown in Fig. 1~c!. The reduced sur-
vival probability indicates that only a small fraction of th
initial states overlap a stable island. Those that do surv
however, will be localized in phase-space.

The present paper demonstrates that a single kick ca
used to localize, at least transiently, the phase-space dist
tion of a system. Although the results presented were der
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using a simple 1D model, quasi-one-dimensional atoms
be created by exciting the extreme members of individ
Stark manifolds and these display similar behavior. This
illustrated in Fig. 4, which shows the results of 3D simu
tions for a band of extreme Stark states created parallel to
kick, i.e., thez axis. The widths of the momentum distribu
tions and the distribution of position along thez axis mimic
the 1D simulation closely. Note that the wave packet is
fectively localized in 3D because the transverse width of
initial Stark state is very narrow. The present approach t
provides a practical means of generating wave packets
display strong transient phase-space localization. Furt
more, this coherence can be maintained by exploiting
phase-space structure of the kicked system. Such met
have recently been used to select those atoms in an in
ensemble that lie within specific localized regions of pha
space@11#. This approach has the disadvantage that it is
unitary ~i.e., a large number of initial Rydberg atoms a
discarded!. In contrast, the present scheme is nearly unita
Finally, the present paper illustrates that dynamics can
general, be used to control the coherence of any Hamilton
ensemble. Such dynamics can be induced, as here, by a
cation of a short-lived external perturbation or through a s
den change in the Hamiltonian.
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