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Motion of vortex lines in nonlinear wave mechanics
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We extend our previous analysis of the motion of vortex lines@I. Bialynicki-Birula, Z. Bialynicka-Birula,
and C. Śliwa, Phys. Rev. A61, 032110~2000!# from linear to a nonlinear Schro¨dinger equation with harmonic
forces. We also argue that under certain conditions, the influence of the contact nonlinearity on the motion of
vortex lines is negligible. The present analysis adds new weight to our previous conjecture that the topological
features of vortex dynamics are to a large extent universal.
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I. INTRODUCTION

Owing to recent advances in the experimental studies
Bose-Einstein condensation~BEC!, a detailed theoretical de
scription of the motion of vortex lines in the condensate m
soon become testable. In this report, we continue our pr
ous analysis@1# of the evolution of vortex lines as dete
mined by the quantum-mechanical wave equations. We w
able to extend our methods of obtaining analytic solutions
a nonlinear Schro¨dinger equation.

The standard tool in the study of BEC is the Gros
Pitaevskiıˇ ~GP! equation that describes zero-range inter
tions of the condensate particles. All studies of the cond
sate dynamics based on this equation must rely either
numerical methods or on approximations@2#, since analytic
solutions of the GP equation in three dimensions are
available. In order to obtain a rich family ofexplicit solutions
allowing for elaborate vortex line structure, we modify th
form of nonlinearity replacing the zero-range interaction
harmonic forces. We are fully aware that atoms do not in
act via harmonic forces, but the aim of our report was
answer the question: Does a nonlinear term modify in
essential way our results obtained for the linear Schro¨dinger
equation? In Sec. II, we prove that the answer to this qu
tion is negative in the case of nonlinearity corresponding
harmonic forces. In the other extreme case of contact in
action leading to the GP equation, we do not have anal
solutions to argue our case. However, the nonlinear term
this equation always vanishes on vortex lines. In Sec. III,
show that in the vicinity of the vortex line it remains muc
smaller than the kinetic-energy term. Therefore, we may
gue that also in the case of contact interactions, the effec
the nonlinearity on thequalitative features of the motion o
vortex lines dynamics at close approach is negligible.
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II. NONLINEAR SCHRÖ DINGER EQUATION WITH
HARMONIC FORCES

The starting point of our report is the nonlinear Schr¨-
dinger equation describing the dynamics of atoms in a h
monic trap interacting via harmonic forces in the Hartr
~mean-field! approximation. We shall assume that the trap
fully anisotropic with the characteristic frequencies deno
by ṽx , ṽy , andṽz . The interatomic harmonic forces ma
be either repulsive (V2.0) or attractive (V2,0). In natural
units (\51, m51), our nonlinear Schro¨dinger equation
reads

i ] tc~r ,t !5S 2
1

2
D1

ṽx
2x21ṽy

2y21ṽz
2z2

2
Dc~r ,t !

2
V2

2 E d3r 8uc~r 8,t !u2~r 82r !2c~r ,t !. ~1!

Following our earlier work on systems with harmonic forc
@3,4#, we introduce the following set of time-dependent gl
bal quantities (N is time independent!:

N5E d3r uc~r ,t !u2, ~2!

Rx~ t !5E d3r xuc~r ,t !u2, ~3!

Px~ t !52 i E d3r c* ~r ,t !¹xc~r ,t !, ~4!

Uxx~ t !5 1
2 E d3r x2uc~r ,t !u22

Rx~ t !Rx~ t !

2N
, ~5!

Txx~ t !5 1
2 E d3r ¹xc* ~r ,t !¹xc~r ,t !2

Px~ t !Px~ t !

2N
, ~6!
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Wxx~ t !52
i

4E d3r c* ~r ,t !~x¹x1¹xx!c~r ,t !

2
Rx~ t !Px~ t !

2N
, ~7!

and analogously for the components in they andz directions.
With the use of the quantitiesR(t) andU(t), Eq. ~1! may be
rewritten in the form

i ] tc~r ,t !5S 2
1

2
D1

vx
2x21vy

2y21vz
2z2

2 Dc~r ,t !

2V2S U~ t !2R~ t !•r1
R~ t !•R~ t !

2N Dc~r ,t !,

~8!

wherevx
25ṽx

22NV2, vy
25ṽy

22NV2, vz
25ṽz

22NV2 are
the squared frequencies modified by the mutual interac
andU(t)5Uxx(t)1Uyy(t)1Uzz(t).

As a result of Eq.~1!, the global quantities obey a set o
ordinary linear differential equations~again, we list only the
x components!

dN~ t !/dt50, ~9!

dRx~ t !/dt5Px~ t ! ~10!

dPx~ t !/dt52ṽx
2Rx~ t !, ~11!

dUxx~ t !/dt52Wxx~ t !, ~12!

dTxx~ t !/dt522vx
2Wxx~ t !, ~13!

dWxx~ t !/dt5Txx~ t !2vx
2Uxx~ t !. ~14!

The solutions of these equations are

N~ t !5N, ~15!

Rx~ t !5Rx~0!cos~ṽxt !1Px~0!
sin~ṽxt !

ṽx

, ~16!

Px~ t !52Rx~0!ṽx sin~ṽxt !1Px~0!cos~ṽxt !, ~17!

Uxx~ t !5Uxx~0!cos2~vxt !1Txx~0!
sin2~vxt !

vx
2

1Wxx~0!
sin~2vxt !

vx
, ~18!

Txx~ t !5Uxx~0!vx
2 sin2~vxt !1Txx~0!cos2~vxt !

2Wxx~0!vx sin~2vxt !, ~19!
01410
n

Wxx~ t !52Uxx~0!
vx sin~2vxt !

2
1Txx~0!

sin~2vxt !

2vx

1Wxx~0!cos~2vxt !. ~20!

The center of mass variablesR(t) andP(t) oscillate with the
original trap frequencies (ṽx ,ṽy ,ṽz) and the variables
U, T, andW that describe the motion of the internal qua
rupole moment oscillate with the doubled modified freque
cies (vx ,vy ,vz).

We have found that each solutionc(r ,t) of the nonlinear
Eq. ~1! is related in a simple way to the corresponding so
tion f(r ,t) of the linear Schro¨dinger equation

i ] tf~r ,t !5S 2
1

2
D1

vx
2x21vy

2y21vz
2z2

2 Df~r ,t !.

~21!

In order to prove this assertion, we seek the solution of
nonlinear equation in the form

c~r ,t !5ei f (t)1 ia(t)•rf@r2b~ t !,t#. ~22!

Upon substituting Eq.~22! into Eq. ~8!, we find thatf(r ,t)
must obey Eq.~21! while the scalar functionf (t) and the two
vector functionsa(t) and b(t) must obey the following or-
dinary differential equations:

da~ t !/dt5V2R~ t !2b~ t !, ~23!

db~ t !/dt5a~ t !, ~24!

d f~ t !/dt5
1

2
@vx

2bx~ t !21vy
2by~ t !21vz

2bz~ t !2#2a~ t !•a~ t !

2V2@U~ t !1R~ t !•R~ t !/N#. ~25!

The solutions of these equations forax(t) andbx(t) are

ax~ t !5
1

N
$2Rx~0!@ṽx sin~ṽxt !2vx sin~vxt !#

1Px~0!@cos~ṽxt !2cos~vxt !#%, ~26!

bx~ t !5
1

N H Rx~0!@cos~ṽxt !2cos~vxt !#

1Px~0!S sin~ṽxt !

ṽx

2
sin~vxt !

vx
D J , ~27!

and similarly for the remaining components. The phasef (t)
may be obtained from Eq.~25! after performing a straight-
forward integration of products of trigonometric function
Next, we note that the vanishing ofa, b, and f at t50 im-
plies that the initial valuesc(r ,t50) andf(r ,t50) coin-
cide. Therefore, we may argue that iff(r ,t) is a solution of
the initial value problem for the linear Schro¨dinger equation,
then c(r ,t) given by Eq.~22! will be the solution of the
initial value problem for the nonlinear Schro¨dinger equation.
Note that the initial values of the wave function for the no
1-2
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BRIEF REPORTS PHYSICAL REVIEW A 65 014101
linear problem enter not only through the solution of t
linear problem but also through the initial value
R(0),P(0),U(0),T(0),W(0) of all global variables.

The form ~22! of the solution of the nonlinear problem
shows that there are three effects of the interatomic inte
tions. The wave function acquires a time- and spa
dependent phase factor, the frequencies of the trap are m
fied (ṽ→v), and thewhole wave functionundergoes an
additional rigid motion described by the vectorb(t). This
motion is made of oscillations with the frequencies presen
the problem. The amplitudes of these oscillations are de
mined by the initial values of the center of mass posit
R(0) and momentumP(0).

The relation~22! between the general solution of the no
linear and the linear Schro¨dinger equations obtained in ou
model with harmonic interatomic forces, enables one to a
lyze the effect of this particular type of nonlinearity on th
motion of vortex lines. The phase factor exp@if (t)1ia(t)•r #
does not have any influence on the vortex lines since it ne
vanishes. Thus, the only effect~apart from the modification
of the trap frequencies! is the shift of the argument in Eq
~22! by b(t). This time-dependent shift causes oscillations
the same vortex structure that is already present in the w
function f(r ,t) of the linear problem. Thus, the topologic
structure of vortex lines is not affected by the interatom
harmonic interactions. Vortex creations, annihilations, rec
nections, and switchovers will occur unimpeded as in
linear case.

Equation~22! may also serve as a practical tool to gen
ate explicit solutions of the nonlinear Schro¨dinger Eq.~1!
with ~almost! arbitrary vortex structures. To this end, we on
need to obtain such solutions of the linear equation. T
may be done with the help of the generating functions,
described in Ref.@1#.

As a simple illustration of this general analysis, let
consider the motion of a single straight vortex line along
z axis displaced att50 by a from the origin in the
x-direction. We assume that the initial wave function has
form

fvort~r ,0!5N0~x2a1 iy !expS 2
vxx

21vyy
21vzz

2

2 D ,

~28!

whereN0 is the normalization constant and we have cho
the ground state as the ‘‘background’’ wave function. T
time-dependent solution of the linear Schro¨dinger equation
satisfying att50 the initial condition~28! is for all values of
t given by

fvort~r ,t !5N0 expF2 i
~vx1vy1vz!

2
t G

3~xe2 ivxt2a1 iye2 ivyt!

3expS 2
vxx

21vyy
21vzz

2

2 D . ~29!
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One may obtain this solution using the general method in
duced in Ref.@1#. The position of the vortex line in thexy
plane is determined by the zeros of the equation

uxe2 ivxt2a1 iye2 ivytu250, ~30!

whose solutions are

x52a cos~vyt !/cos@~vx2vy!t#,

y52a sin~vxt !/cos@~vx2vy!t#. ~31!

In the isotropic trap the zeros follow a circle, in all oth
cases, they follow an unbounded curve; the vortex l
moves with an unlimited speed. In order to obtain the so
tion of the nonlinear equation, we need the displacem
vectorb(t). The only nonvanishing components ofR(0) and
P(0) in this case are:Rx(0)5a andPy(0)5a and the vector
b(t) has only thex andy components

bx~ t !5a@cos~ṽxt !2cos~vxt !#,

by~ t !5aS sin~ṽyt !

ṽy

2
sin~vyt !

vy
D . ~32!

The vectorb(t) will draw a Lissajous figure in thexy plane.
The motion of the vortex line in the nonlinear case in t
anisotropic trap will be the composition of an unbound
motion determined by the condition~30! with the motion
following the Lissajous figure determined by Eq.~32!.

III. THE ROLE OF THE CONTACT NONLINEARITY
IN THE VICINITY OF VORTEX LINES

The dynamics of vortex lines in Bose-Einstein conde
sates in a symmetric trap is governed by the GP equatio

i\] tc~r ,t !5S 2
\2

2m
D1

mvr2

2 Dc~r ,t !

1
4p\2a

m
uc~r ,t !u2c~r ,t !, ~33!

wherea is the scattering length. Although we cannot sol
this equation analytically, we may estimate the influence
the nonlinear term on the motion of vortex lines. Since t
wave function vanishes on the vortex lines, the influence
the nonlinearity is weakening when one approaches the
tex line. On the other hand, the interesting topological pr
erties of the vortex lines motion~reconnection, vortex cre
ation, etc.! occur at small distances. Therefore, we restr
our analysis to distances much smaller~at least ten times!
than the extension of the condensate. As an example,
consider the interaction of two perpendicular vortex lin
separated by a distanced. The initial wave function is as-
sumed in the form

c~r ,t50!5A@x1 i ~z2d/2!#@y1 i ~z1d/2!#exp~2r2/L2!,

~34!
1-3
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whereA5ANp23/4L27/2(3/21d4/16L4)21/2 is the normalization constant,L is the linear dimension of the condensate, andN
is the number of atoms in the condensate. The ratio of the nonlinear part of the GP equation to the kinetic energy par
wave function is

8paucu2c
2Dc

5
32N a e2r2/L2

@x21~z2d/2!2#@y21~z1d/2!2#@x1 i ~z2d/2!#@y1 i ~z1d/2!#

ApL3~3/21d4/16L4!@8L4128L2~x1 iz!~y1 iz!1d2~3L22r2!24r2~x1 iz!~y1 iz!12id~x2y!~5L22r2!#
.

~35!
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At the center, this ratio is equal to

8paucu2c

2Dc U
r50

5
N a d6

ApL~L213d2/8!~24L41d4!
. ~36!

Therefore it is small, of the order ofj5N(a/L)(d/L)6. Tak-
ing the linear dimension of the trapL5531025 m, the vor-
tex separationd5L/10, the number of atomsN5106, and
the scattering lengtha5531029 m, one obtainsj51023.
The same estimate of the ratio~35! is valid for all points
lying at distances of the order ofd from the center. Next, we
have to estimate the role of the trap potential. The poten
term modifies the shape of the wave function for times co
parable with the period of the trapT'1022 s. The charac-
teristic time scale for the motion of vortex lines, as discus
in detail in @1#, is T05md2/\. For the sodium atoms, th
value of this parameter isT0'331024 s. Therefore, the
role of the trap potential is negligible for small vortex sep
rations and for times of the order ofT0. In Ref. @1#, we used
the linear Schro¨dinger equation to study the evolution o
wave function that was initially given by Eq.~34!. Vortex
lines that initially were separated by a distanced crossed and
reconnected after the time of the order ofT0. In view of our
present analysis, the same behavior should be found als
s.

01410
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the evolution governed by the GP equation. The same a
ments may be used in the case of more complicated vo
structures provided we restrict ourselves to distances sm
as compared to the linear dimension of the condensate an
times small, as compared to the trap period.

IV. CONCLUSIONS

The aim of this report was to find out to what extent t
topological properties of vortex lines motion carry over fro
linear to nonlinear Schro¨dinger equations. We analyzed tw
extreme cases of the nonlinear term that describes the mu
interaction of particles: the harmonic interaction~extremely
long range! and the contact interaction~zero range!. In the
first case, we were able to give a mathematical proof that
only change in the motion of vortex lines is an overall, tim
dependent displacement of the whole vortex line structure
the second case, we have shown that the features of the
tex lines motion that occur at small distances and for sh
times are governed mainly by the kinetic-energy term in
Schrödinger equation. The influence of the nonlinear cont
term under those conditions is negligible. Thus, many f
tures of the vortex lines motion~especially those that involve
a close approach of two vortex lines! are to a large extent
universal.
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