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Motion of vortex lines in nonlinear wave mechanics
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We extend our previous analysis of the motion of vortex lifle®ialynicki-Birula, Z. Bialynicka-Birula,
and C. $iwa, Phys. Rev. 61, 032110(2000] from linear to a nonlinear Schdinger equation with harmonic
forces. We also argue that under certain conditions, the influence of the contact nonlinearity on the motion of
vortex lines is negligible. The present analysis adds new weight to our previous conjecture that the topological
features of vortex dynamics are to a large extent universal.
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I. INTRODUCTION Il. NONLINEAR SCHRO DINGER EQUATION WITH
HARMONIC FORCES

Owing to recent advances in the experimental studies of The starting point of our report is the nonlinear Sehro
Bose-Einstein condensatiéBEC), a detailed theoretical de- dinger equation describing the dynamics of atoms in a har-
scription of the motion of vortex lines in the condensate maymonic trap interacting via harmonic forces in the Hartree
soon become testable. In this report, we continue our previimean-field approximation. We shall assume that the trap is
ous analysig1] of the evolution of vortex lines as deter- full)i aniiotropic !vith the characteristic frequencies denoted
mined by the quantum-mechanical wave equations. We wergy oy, wy, andw,. The interatomic harmonic forces may
able to extend our methods of obtaining analytic solutions tde either repulsive@*>0) or attractive (2°<0). In natural
a nonlinear Schidinger equation. units (h=1, m=1), our nonlinear Schdinger equation

The standard tool in the study of BEC is the Gross-reads
Pitaevskil (GP) equation that describes zero-range interac-
tions of the condensate particles. All studies of the conden- 1 z,§x2+z)§y2+z,gzz
sate dynamics based on this equation must rely either on  1d(r.)=| —5A+ 5 P(r,t)
numerical methods or on approximatiof, since analytic
solutions of the GP equation in three dimensions are not
available. In order to obtain a rich family ekplicit solutions
allowing for elaborate vortex line structure, we modify the
form of nonlinearity replacing the zero-range interaction byroliowing our earlier work on systems with harmonic forces
harmonic forces. We are fully aware that atoms do not inter{3 4], we introduce the following set of time-dependent glo-
act via harmonic forces, but the aim of our report was topa| quantities K is time independejtt
answer the question: Does a nonlinear term modify in an
essential way our results obtained for the linear Sdimger
equation? In Sec. Il, we prove that the answer to this ques- N:f d3r|y(r,t)|?, i)
tion is negative in the case of nonlinearity corresponding to
harmonic forces. In the other extreme case of contact inter-
actiop leading to the GP equation, we do not have analyti_c Rx(t):f a3 x|y(r, 02, @)
solutions to argue our case. However, the nonlinear term in
this equation always vanishes on vortex lines. In Sec. lll, we

QZ
- 7] a3 [y (r' O12(r' —n)2y(r,t). (1)

show that in the vicinity of the vortex line it remains much . N

smaller than the kinetic-energy term. Therefore, we may ar- Px(t)= _'j d*r = (r,O V(1. 0), )
gue that also in the case of contact interactions, the effect of

the nonlinearity on thejualitative features of the motion of R ()R (1)

vortex lines dynamics at close approach is negligible. U lt) = %f d3r X2 y(r,t)|?— % (5)

T (t)=lfd3rV S (r ) Vap(r t)—w (6)
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and analogously for the components in thendz directions.
With the use of the quantitieR(t) andU(t), Eq.(1) may be
rewritten in the form

1 w>X2+ w2y2+ v
iatz,//(r,t)=(—§A+ . y2 d

R(t)-R(t)
T) y(r,t),

8

—QZ<U(t)—R(t)-r+

wherew;=w;—NQ?, w;=w,—NQ? wi=w;-NQ? are

the squared frequencies modified by the mutual interactio

and U () = U, (t) + U,y (t) + U, A1).

As a result of Eq(1), the global quantities obey a set of
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- .
W)= Uy 0) 0 7 0) S
+ W, (0)cog2w,t). (20)

The center of mass variabl&t) andP(t) oscillate with the

original trap frequencies d,»,,»,) and the variables
U, T, andW that describe the motion of the internal quad-
rupole moment oscillate with the doubled modified frequen-
cies (wy,wy,0;).

We have found that each solutigr(r,t) of the nonlinear
Eq. (1) is related in a simple way to the corresponding solu-
tion ¢(r,t) of the linear Schrdinger equation

w§x2+ w§y2+ wgzz) S(r1)
2 o
(21

, 1
ip(r )= — 54+

In order to prove this assertion, we seek the solution of the

rr]1onlinear equation in the form

P(r,t)=e" 010 gy —p(t),1]. (22

ordinary linear differential equatior(again, we list only the Upon substituting Eq(22) into Eq. (8), we find thate(r,t)

X components

dN(t)/dt=0, )
dR(t)/dt=P(t) (10)
dP,(t)/dt=—w2R(1), (11)
AU, (1)/dt=2W,(1), (12)
AT (1)/dt= —2w2W,(1), (13
AWy (1)/dt= Ty (1) — wFU (1). (14)
The solutions of these equations are
N(t)=N, (15)
- sin(w,t)
Rx(t)ZRX(O)COint)ﬂ— Px(o)~—: (16)
Wy

Px(t): _RX(O)Z)X Sin(:“)xt)_F PX(O)COS(Z)Xt), (17)

Ul(1) = U (0)COS (1) + Ty1(0) sz(—z)xt)
w0 S 19

Ty(1) = Uy (0) g Sin(wyt) + Ty (0)COS(,)

—W,(0) wy Sin(2wyt), (19

must obey Eq(21) while the scalar functio(t) and the two

vector functionsa(t) andb(t) must obey the following or-

dinary differential equations:
da(t)/dt=Q2R(t)—b(t), (23

db(t)/dt=a(t), (29

df(t)/dt= %[wibx(t)2+ wby(1)2+ wlb,(1)?]—a(t)-a(t)

—QU(t)+R(t)-R(t)/N]. (25)

The solutions of these equations fay(t) andb,(t) are
1 -~ o~ .
a(t)= N{_ Ry(0)[ oy SiN(wyt) — wy SiN(wt) ]

+P,(0)[cog w,t) —cog w,) ]}, (26)

by(t)= %[ Rx(0)[cog wyt) —cog wyt)]

) PX(O)( sm(~th) - sm(th)> } R
Wy Wy

and similarly for the remaining components. The phigé
may be obtained from Ed25) after performing a straight-
forward integration of products of trigonometric functions.
Next, we note that the vanishing ef b, andf att=0 im-
plies that the initial valueg/(r,t=0) and ¢(r,t=0) coin-
cide. Therefore, we may argue that#{r,t) is a solution of
the initial value problem for the linear Scliimger equation,
then ¢(r,t) given by Eq.(22) will be the solution of the
initial value problem for the nonlinear Sclioger equation.
Note that the initial values of the wave function for the non-
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linear problem enter not only through the solution of theOne may obtain this solution using the general method intro-
linear problem but also through the initial values duced in Ref[1]. The position of the vortex line in they

R(0),P(0),U(0),T(0),W(0) of all global variables. plane is determined by the zeros of the equation
The form (22) of the solution of the nonlinear problem ot T,
shows that there are three effects of the interatomic interac- [xe™'d—a+iye”'v|*=0, (30

tions. The wave function acquires a time- and space- h luti
dependent phase factor, the frequencies of the trap are modN0S€ solutions are

fied (w—w), and thewhole wave functiorundergoes an x=—acog wyt)/co§ (w,— w)t],
additional rigid motion described by the vectbft). This
motion is made of oscillations with the frequencies present in y=—asin,t)/cod (wx— wy)t]. (31)

the problem. The amplitudes of these oscillations are deter-

mined by the initial values of the center of mass positionin the isotropic trap the zeros follow a circle, in all other

R(0) and momentuni(0). cases, they follow an unbounded curve; the vortex line
The relation(22) between the general solution of the non- moves with an unlimited speed. In order to obtain the solu-

linear and the linear Schdinger equations obtained in our tion of the nonlinear equation, we need the displacement

model with harmonic interatomic forces, enables one to anavectorb(t). The only nonvanishing components®f0) and

lyze the effect of this particular type of nonlinearity on the P(0) in this case areR,(0)=a andP,(0)=a and the vector

motion of vortex lines. The phase factor €xyt)+ia(t)-r] b(t) has only thex andy components

does not have any influence on the vortex lines since it never _

vanishes. Thus, the only effe@@part from the modification b,(t)=a[coq w,t) —cog w,t)],

of the trap frequencigss the shift of the argument in Eq.

(22) by b(t). This time-dependent shift causes oscillations of

the same vortex structure that is already present in the wave- by(t)=a

function ¢(r,t) of the linear problem. Thus, the topological

e e e eTB The vectob() wi raw a Lisajous fgur i theyplane.

) ' ' The motion of the vortex line in the nonlinear case in the

nections, and switchovers will occur unimpeded as in the, . : . .
linear case P anisotropic trap will be the composition of an unbounded

Equation(22) may also serve as a practical tool to gener-motion determined by the conditiof80) with the motion
ate explicit solutions of the nonlinear Schimger Eq.(1) following the Lissajous figure determined by Hg2).

with (almosj} arbitrary vortex structures. To this end, we only
need to obtain such solutions of the linear equation. This
may be done with the help of the generating functions, as

described in Ref{1]. The dynamics of vortex lines in Bose-Einstein conden-

As a simple illustration of this general analysis, let USsates in a symmetric trap is governed by the GP equation
consider the motion of a single straight vortex line along the

sin(yt) sin(wyt)) @

Wy Wy

Ill. THE ROLE OF THE CONTACT NONLINEARITY
IN THE VICINITY OF VORTEX LINES

z axis displaced att=0 by a from the origin in the _ h2 Maor?2
x-direction. We assume that the initial wave function has the ihd(r,t)=| — ﬁAJF 5 (r,t)
form
24 wyy?+ 0,2 LA o, @9
WX+ w w,Z r, ri),
¢von(r,0)=No(x—a+iy)exp(— - éy =, m

wherea is the scattering length. Although we cannot solve
(28) this equation analytically, we may estimate the influence of
the nonlinear term on the motion of vortex lines. Since the
) o wave function vanishes on the vortex lines, the influence of
whereNj is the normalization constant and we hav_e chosenpe nonlinearity is weakening when one approaches the vor-
the ground state as the “background” wave function. Theiey |ine. On the other hand, the interesting topological prop-
time-dependent solution of the linear Scffimger equation  grties of the vortex lines motiotreconnection, vortex cre-
satisfying att=0 the initial condition(28) is for all values of  ation, etc) occur at small distances. Therefore, we restrict
t given by our analysis to distances much smallat least ten times
than the extension of the condensate. As an example, we
consider the interaction of two perpendicular vortex lines
separated by a distanck The initial wave function is as-
sumed in the form

oyt oyt a)z)t

Guorlr,t) =Ng eXF{—' 2

X (xe 'ext—a+iyeTiov

2 2 2 Y(rt=0)=A[x+i(z—d/2)][y+i(z+d/2)]exp —r?/L?),
F{— OX" Wyt Wiz ) 29
X ex 5 . (29) s
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whereA= N7~ 34~ 72(3/2+ d*/16L*) ~*?is the normalization constarit,is the linear dimension of the condensate, ahd
is the number of atoms in the condensate. The ratio of the nonlinear part of the GP equation to the kinetic energy part for this
wave function is

8malyf’y 32N a e X2+ (z— dI2)2|[y2+ (z+ dI2)2][x+i(z— dI2) [y +i (z+ d/2)]
=AY [mL3(3/2+ d16L Y[ 8LA+ 28L2(x +iz) (y+iz) + dX(3L2—r2) — 4r3(x+iz)(y+iz) + 2id (x—y)(5L2—r?)]’

(35

At the center, this ratio is equal to the evolution governed by the GP equation. The same argu-

ments may be used in the case of more complicated vortex

8ma| Y|’y N a d® 36 structures provided we restrict ourselves to distances small,

“Ad = 2 > YN as compared to the linear dimension of the condensate and to
Vo \/;L(L +3d°/8)(24L "+ d) times small, as compared to the trap period.

Therefore it is small, of the order gi=N(a/L)(d/L)®. Tak-
ing the linear dimension of the trdp=5x10"° m, the vor-
tex separatiord=L/10, the number of atomil=10°, and The aim of this report was to find out to what extent the
the scattering lengta=5x10"° m, one obtaing=10"3.  topological properties of vortex lines motion carry over from
The same estimate of the rati@5) is valid for all points linear to nonlinear Schidinger equations. We analyzed two
lying at distances of the order dffrom the center. Next, we extreme cases of the nonlinear term that describes the mutual
have to estimate the role of the trap potential. The potentiaihteraction of particles: the harmonic interactitextremely
term modifies the shape of the wave function for times comiong range and the contact interactiofzero rangg In the
parable with the period of the trap~10"2 s. The charac- first case, we were able to give a mathematical proof that the
teristic time scale for the motion of vortex lines, as discusse@nly change in the motion of vortex lines is an overall, time-
in detail in[1], is To=md?/%. For the sodium atoms, the dependent displacement of the whole vortex line structure. In
value of this parameter i§,~3x10 * s. Therefore, the the second case, we have shown that the features of the vor-
role of the trap potential is negligible for small vortex sepa-tex lines motion that occur at small distances and for short
rations and for times of the order @f. In Ref.[1], we used times are governed mainly by the kinetic-energy term in the
the linear Schrdinger equation to study the evolution of Schralinger equation. The influence of the nonlinear contact
wave function that was initially given by Eq34). Vortex  term under those conditions is negligible. Thus, many fea-
lines that initially were separated by a distanberossed and tures of the vortex lines motio@specially those that involve
reconnected after the time of the orderTgf In view of our  a close approach of two vortex lineare to a large extent,
present analysis, the same behavior should be found also imiversal.

IV. CONCLUSIONS
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