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Conditional evolution in single-atom cavity QED
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We consider a typical setup of cavity QED consisting of a two-level atom interacting strongly with a single
resonant electromagnetic-field mode inside a cavity. The cavity is resonantly driven and the output undergoes
continuous homodyne measurements. We derive an explicit expression for the state of the system conditional
on a discrete photocount record. This expression takes a particularly simple form if the system is initially in the
steady state. As a byproduct, we derive a formula for the steady state that had been conjectured before in the
strong driving limit.
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I. INTRODUCTION
Recently, there has been much experimental progres

single-atom cavity QED@1,2#. In addition to their inherent
fundamental importance, these experiments provide ins
into the physics of open quantum systems, with poten
applications to, e.g., quantum chaos@3#, quantum control@4#,
and quantum computing@5#.

In this paper, we consider a typical experimental setup
single-atom cavity QED@6#, as illustrated in Fig. 1. The
setup consists of a single two-level atom located insid
high-finesse optical cavity, which is externally driven. A s
of photodetectors is arranged to monitor the field escap
from the system into the environment. We assume that
leakage of photons from the cavity mode through an out
mirror is the only significant channel through which the sy
tem interacts with the environment. This assumption can
very realistic for high-finesse cavities@7#. Also, for simplic-
ity, we adjust the cavity length and the frequency of t
driving field so that they both coincide with the frequency
the atomic transition. The cavity output is monitored usi
continuous homodyne measurements@8#. These measure
ments are parametrized by one complex parameter: the
erence fieldb that is added to the cavity output on a bea
splitter prior to the detection.

Given the output of the photodetectors, it is possible,
principle, to write theconditional quantum state inside th
cavity as a function of time and the measurement reco

FIG. 1. Homodyne measurements in cavity QED. Basic para
eters of the system are the strength of the atom-cavity coupling,
and the cavity field decay rateg. The cavity is resonantly driven by
an external laser fieldE, and the cavity output field is analyzed b
the detectorsD1 andD2 after being added to the reference fieldb
on the beam splitter.
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Usually, the conditional state is computed numerically@9,10#
using the formalism of stochastic master equations@11,12#;
these numerical computations may require very large co
putational resources. For some experiments, however,
ability to process data in real time is crucial@1#. It is there-
fore important to develop analytical tools for condition
state evolution.

In this paper, we derive explicit expressions for the st
conditioned on a discrete homodyne measurement recor
the strong-coupling regime, where the atom is stron
coupled to the intracavity field. Our methods may be used
analyze experiments such as the atomic cavity microsc
@1,2#, where the strong coupling is essential, but strong d
ing leads to the problem of saturation@7#. We give special
attention to the experimentally important case that the s
tem is initially in the steady state.

The paper is organized as follows. In Sec. II, we descr
the equations that model the physical system. In Sec. III,
review the formalism of conditional quantum evolution a
introduce the approximations for the strong coupling regim
In Sec. IV, we derive a general formula for the system st
conditioned on a discrete photocount record, for an arbitr
initial system state. In Sec. V, we give a derivation of
general expression for the steady state. In Sec. VI, we
simple formulas for the conditional evolution in the case th
the system is initially in the steady state. We conclude
Sec. VII.

II. MATHEMATICAL MODEL
AND MAIN APPROXIMATIONS

Let ug & and ue& be the ground and excited states of t
atom. For simplicity, we choose the cavity length such t
the frequency of the resonant optical mode coincides w
the frequency of the atomic transition. Using the dipole a
the rotating-wave approximations, the interaction of the tw
level atom with the electromagnetic field inside the cavity
described by the Hamiltonian@13#

H int[ ig~a†s2as†!, ~2.1!

wheres5ug&^eu, g is the strength of the atom-cavity cou
pling, anda is the annihilation operator for the intracavit

-
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ANDREI N. SOKLAKOV AND RÜDIGER SCHACK PHYSICAL REVIEW A65 013804
field. Including dissipation and on-resonant driving of t
cavity mode, the total unconditional master equation in
frame rotating at the driving laser frequency reads

ṙ5@2 iH int1E~a†2a!,r#1
g

2
~2ara†2a†ar2ra†a!,

~2.2!

wherer is the joint density operator for the atom and t
intracavity field,E is the strength of the driving, andg is the
rate of energy loss due to the leakage of photons from
cavity mode through an output mirror.

From the experimental point of view, the question of t
steady state is very important. In fact, using contempor
techniques, it is very difficult to prepare the system in qu
tion in any other state. Using the Jaynes-Cummings mo
Alsing and Carmichael@9# have shown numerically that in
the strong driving limit E@g, the system approaches
steady state of the form

rss5
1

2
~ ua;1&^a;1u1ua* ;2&^a* ;2u!, ~2.3!

whereua;1& andua* ;2& are two orthogonal quantum state

ua;1&5
1

A2
ua&~ ug&1 i ue&)[ua&u1&,

ua* ;2&5
1

A2
ua* &~ ug&2 i ue&)[ua* &u2&, ~2.4!

and whereua& is the coherent field state with amplitude

a5~2E1 ig !/g. ~2.5!

This result has been confirmed in a more recent numer
simulation @10#. Using matrix notation for the intra-atomi
degrees of freedom in the basis$u6&%, Eq. ~2.3! may be
rewritten in the convenient form

rss5
1

2 S ua&^au 0

0 ua* &^a* u D , ~2.6!

which will be useful below.
In this paper, we work in the strong-coupling regimeg

@g), which justifies considering the evolution on time sca
large compared to 1/g. In Sec. V, we give an analytical proo
that on those timescales, Eq.~2.3! is a steady state of Eq
~2.2!.

III. THE MEASUREMENT

We now rewrite Eq.~2.2! in the form

ṙ5Lr, ~3.1!

where the superoperatorL is defined as
01380
a

e

y
-
l,
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s

Lr[@2 iH int1E~a†2a!,r #1
g

2
~2ara†2a†ar2ra†a!.

~3.2!

Let the initial condition ber(0)5r0. Given superoperators
S0 , J1, andJ2 such that

S0~ t !5e(L2J12J2)t, ~3.3!

the solution to Eq.~3.1! may be written using a Dyson ex
pansion,

r~Dt !5 (
m50

`

(
k1 , . . . ,km

p~k1 , . . . ,km ;Dt !

3rc~k1 , . . . ,km ;Dt !, ~3.4!

where trrc(k1 , . . . ,km ;Dt)51 and

p~k1 , . . . ,km ;Dt !rc~k1 , . . . ,km ;Dt !

5E
0

Dt

dtm•••E
0

t3
dt2E

0

t2
dt1S0~Dt2tm!Jkm

3S0~ tm2tm21!Jkm21
•••S0~ t1!r0 . ~3.5!

Following @11,12#, we define the ‘‘smooth evolution’’ opera
tor S0 as

S0~ t !r[N0~ t !r@N0~ t !#†, ~3.6!

where

N0~ t ![expF2 iH intt1E~a†2a!t2
g

2
~a†a1ubu2!t G ,

~3.7!

and the ‘‘jump’’ operatorsJ1 andJ2 as

Jkr[CkrCk
† ,

where

Ck[Ag/2eip(k21)/2@a1~21!kb#. ~3.8!

The following lemma, included for completeness, shows t
the definitions ofS0 , J1, andJ2 just given are consisten
with Eq. ~3.3!.

Lemma 1. The above definitions satisfy the requiremen

S0~ t !5e(L2J12J2)t ~3.9!

and therefore Eqs.~3.4! and ~3.5! indeed give a solution to
Eq. ~3.1!.

Proof. Keeping terms to first order int we have

S0~t!r5N0~t!r@N0~t!#†5r1S @2 iH int1E~a†2a!,r#

2
g

2
~a†ar1ra†a!2gubu2r D t1O~t2!

5~11tL!r2g~ara†1ubu2r!t1O~t2!. ~3.10!
4-2
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On the other hand, by direct calculation we have

Jkr5
g

2
@ara†1~21!k~bra†1b* ar!1ubu2r#,

~3.11!

which implies that

~J11J2!r5g~ara†1ubu2r!. ~3.12!

Equation~3.10! therefore becomes

S0~t!r5~11t@L2~J11J2!# !r1O~t2!. ~3.13!

Taking the limitt→0, we have Eq.~3.9! as required.
There are many different definitions ofS0 , J1, and J2

that satisfy the above lemma. However, definitions~3.6! and
~3.8! are somewhat special: the quantiti
rc(k1 , . . . ,km ;Dt) and p(k1 , . . . ,km ;Dt), which they de-
fine, have an important physical meaning@12#. Suppose that
the continuous measurements were performed over the
interval Dt and recorded as a sequence (k1 , . . . ,km ;Dt) of
photodetector labels in the order of photodetections. For
ample,kj51 would mean that thej th photodetection was
registered by the first detector. Then the probability of
measurement record (k1 , . . . ,km ;Dt) is given by
p(k1 , . . . ,km ;Dt), and the corresponding conditional sta
is rc(k1 , . . . ,km ;Dt).

We will now prepare to consider the conditional syste
evolution on time scales large compared to 1/g. First, we
notice that

H int5H01H1 , ~3.14!

where

H0[2g~a†1a!sy/2, sy[ i ~s†2s!,

H1[ ig~a†2a!sx/2, sx[s†1s. ~3.15!

We define

Q[exp~2 iH 0t2 iH 1t1Ft !, ~3.16!

where

F[E~a†2a!2ga†a/2. ~3.17!

These definitions are connected to the definition~3.6! of the
smooth evolution operator via the relation

N0[e2gubu2t/2Q. ~3.18!

We rewriteQ in the form

Q5e2 iH 0tR0 , ~3.19!

so that

dQ

dt
52 iH 0e2 iH 0tR01e2 iH 0t

dR0

dt
. ~3.20!

From the definition~3.16! and Eq.~3.19! we have
01380
e

x-

e

dQ

dt
5~F2 iH 02 iH 1!e2 iH 0tR0 . ~3.21!

Combining the last two equations we obtain thatR0 obeys
the equation

dR0

dt
5„X~ t !1eiH 0tFe2 iH 0t

…R0 , ~3.22!

where

X~ t ![2eiH 0tiH 1e2 iH 0t. ~3.23!

Using the Corollary to Theorem 1 from the Appendix, t
gether with the identitye2ya†

a5(a1y)e2ya†
, we obtain

2X~ t !5g eiH 0t~a†2a!sxe
2 iH 0t

5g~a†2a2 igsyt !e
iH 0tsxe

2 iH 0t. ~3.24!

The identityeiAsy5cosA1isy sinA gives

eiH 0tsxe
2 iH 0t5sx cos@gt~a†1a!#2sz sin@gt~a†1a!#,

~3.25!

wheresz[ isysx . Finally, we obtain

2X~ t !5g~a†2a2 igsyt !~sx cos@gt~a†1a!#

2sz sin@gt~a†1a!# !. ~3.26!

At time scales large compared to 1/(g^a†1a&), we may ne-
glect oscillating terms in Eq.~3.22!. This means we can se
X(t)50 in Eq. ~3.22!, which becomes

dR0

dt
'eiH 0tFe2 iH 0tR0 . ~3.27!

This approximation has some similarity with the standa
rotating-wave approximation.

Now consider the operator

M[exp~2 iH 0t1Ft !. ~3.28!

Using the same technique as in Eqs.~3.19!–~3.22!, it is easy
to show that

M5e2 iH 0tR1 , ~3.29!

whereR1 obeys the equation

dR1

dt
5eiH 0tFe2 iH 0tR1 . ~3.30!

This equation coincides with Eq.~3.27!, which means that a
time scalesdt@1/(g^a†1a&), the operatorQ can be re-
placed withM. The smooth evolutionS0 may therefore be
approximated as

S0'S, ~3.31!

whereS is defined as

S~ t !r[N~ t !r@N~ t !#†, ~3.32!
4-3
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and where

N~ t ![expF2 iH 0t1E~a†2a!t2
g

2
~a†a1ubu2!t G .

~3.33!

IV. CONDITIONAL EVOLUTION FOR ARBITRARY
INITIAL STATES

In this section, we derive a general formula for the sta
rc(k1 , . . . ,km ;Dt), conditioned on a discrete photocou
record for an arbitrary initial state. The formula is a dire
consequence of two technical theorems, whose proofs
given in the Appendix. At time scalesdt@1/(g^a†1a&), the
theorems allow us to simplify Eq.~3.5! by changing the or-
der in which the smooth evolution operatorsS and the jump
operatorsJk appear.

Using these theorems, we may proceed with the calc
tion of the conditional density matrixrc(k1 , . . . ,km ;Dt).
We have from Eqs.~3.5!, ~3.8! and Eqs.~3.31!–~3.33! that

p~k1 , . . . ,km ;Dt !rc~k1 , . . . ,km ;Dt !

'E
0

Dt

dtm•••E
0

t3
dt2E

0

t2
dt1@N~Dt2tm!

3Ckm
•••N~ t22t1!Ck1

N~ t1!#r0@•••#†. ~4.1!

We may now use Theorem 2 to compute the operator in
square brackets. We have, for instance,

Ck1
N~ t1!5N~ t1! f kFe2gt1/2a1

12e2gt1/2

g
~2E1 igsy!

1~21!k1bG , ~4.2!

where f k[Ag/2eip(k21)/2. Then, using the identityN(t2
2t1)N(t1)5N(t2), we see that repeating the same type
calculations we have

N~Dt2tm!Ckm
•••N~ t22t1!Ck1

N~ t1!

5N~Dt !)
p51

m

f kpFe2gtp/2a1
12e2gtp/2

g
~2E1 igsy!

1~21!kpbG . ~4.3!

Since the factors in the product all have the same struc
and all commute with each other, we see that the integran
Eq. ~4.1! is symmetric in permutations of the time arg
ments. This allows us to change all the limits of integrati
to run between 0 andDt, with a combinatorial factor of
1/(m!). Using the identityf kf k* 5g/2, we therefore have

p~k1 , . . . ,km ;Dt !rc~k1 , . . . ,km ;Dt !

5
gm

2mm!
N~Dt !G~r0 ,b!N†~Dt !, ~4.4!
01380
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where

G~r0 ,b!5E
0

Dt

dtmE
0

Dt

dtm21•••E
0

Dt

dt1

3S )
p51

m Fe2gtp/2a1
12e2gtp/2

g
~2E1 igsy!

1~21!kpbG D r0~••• !†. ~4.5!

For notational convenience, we do not indicate explicitly t
dependence ofG(r0 ,b) on the measurement recor
(k1 , . . . ,km ;Dt) which, however, should always be remem
bered.

Equations~4.4! and ~4.5! have a relatively simple struc
ture. The termsN(Dt), which are given in factored form by
Theorem 1, are the same for all possible measurem
records. This means that all the information about the m
surement records is contained in the functionG(r0 ,b). The
integrand inG(r0 ,b) is a polynomial ina, sy , andr0. The
scalar coefficients of this polynomial are constants or prop
tional to eithere2gtp/2 or e2gtp. Therefore, all the integrals in
Eq. ~4.5! can be easily evaluated, so thatG(r0 ,b) takes the
form of a polynomial ina, sy , andr0 with known coeffi-
cients. In this way, Eqs.~4.4! and ~4.5! provide an explicit
solution for the conditional evolution on the time scales co
sidered.

V. DERIVATION OF THE STEADY STATE

In this section, we show that, at timescalesdt@1/(g^a†

1a&), the staterss defined by Eq.~2.6! is a steady state o
the master Eq.~3.1!. Notice that the only free parameter i
our homodyne measurements is the complex parameterb. If
we can find a value ofb such that for any measureme
record (k1 , . . . ,km ;Dt), the conditional density matrix sat
isfies

rc~k1 , . . . ,km ;Dt !5rss, ~5.1!

thenrss must be a steady state. This is because the solu
~3.4! of the unconditional master Eq.~3.1! becomes, in this
case,

r~Dt !5 (
m50

`

(
k1 , . . . ,km

p~k1 , . . . ,km ;Dt !rss5rss ~5.2!

for anyDt. Intuitively, one would expect that, if subjected t
a nontrivial measurement, the system would normally dep
from the steady state. In our case, however, we will find t
Eq. ~5.1! is satisfied for all real values ofb.

Before we proceed with our rigorous analysis, it may
helpful to develop some intuition about the dependence
the conditional evolution onb. In particular, we are inter-
ested in the dependence of the conditional evolution on
phasef5argb. In our analysis, we deal with the condition
evolution conditioned on a discrete photocount record, wh
is the most general case. However, a lot of insight about
dependence of the conditional evolution on the phasef may
4-4
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be gained by taking the limitubu→`. In this limit, the de-
tectors are registering continuous photocurrents rather
discrete photocounts. Because the resulting measure
records can be viewed as continuous functions of time
becomes possible to derive a master equation for the co
tional density matrixrc . According to Ref.@11#, this may be
done by taking the double limitubu}e21→` and gDt
}e3/2→0 in the Dyson expansion~3.4!. If the measuremen
record consists of the difference photocurrentI 25I 22I 1,
where I 1 and I 2 are the photocurrents detected by the fi
and the second detectors, respectively, then the resu
master equation for the conditional density matrix becom
@11,14#

ṙc5Lr1Agh~e2 ifarc1eifrca
†

2tr@rc~e2 ifa1eifa†!#rc!j, ~5.3!

whereh is the efficiency of the photodetection, andj is the
Gaussian white noise that, in practice, should be taken f
experimental observations of the difference photocurrentI 2

via the relation

I 25ubu~gh tr@rc~eifa†1e2 ifa!#1Aghj!. ~5.4!

Compared to the unconditional master Eq.~2.2!, Eq. ~5.3!
has an additional term

Agh~e2 ifarc1eifrca
†2tr@rc~e2 ifa1eifa†!#rc!j,

~5.5!

which, for f50 and rc5rss, is proportional torss. This
means that, ifLrss50, i.e., if rss is a steady state of th
unconditional evolution, then conditional and uncondition
evolution coincide forf50. This situation is similar to the
one described by Eqs.~5.1! and ~5.2!, which suggests to
consider the case of realb in the following rigorous deriva-
tion.

We now substituter05rss from Eq. ~2.6! into Eq. ~4.5!,
keepingb arbitrary for the moment. We obtain

G~rss,b!5E
0

Dt

dtmE
0

Dt

dtm21•••E
0

Dt

dt1

3S )
p51

m

e2gtp/2@a1 f ~sy ,b!# D rss~••• !†,

~5.6!

where

f ~sy ,b![
egtp/221

g
~2E1 igsy!1~21!kpbegtp/2.

~5.7!

We note that

@sy ,rss#50 and ~sy!251. ~5.8!

Using the first of these properties and the expression forrss
as given by Eq.~2.6!, we have by direct calculation
01380
an
ent
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l

@a1 f ~sy ,b!#rss@a1 f ~sy ,b!#†

5~ f ~sy ,b!@ f ~sy ,b!#†12 Re@ f ~sy ,b!#Re~a!

12 Im@ f ~sy ,b!#Im~a!sy1uau2!rss, ~5.9!

wherea5(2E1 ig)/g. We will use this equation for imagi-
nary b in the next section.

For the rest of this section, we assume thatb is real.
Using this and the fact that (sy)

251, we find that

f ~sy!@ f ~sy!#†5
4E21g2

g2
@egtp/221#21b2egtp

1
4Eb

g
~21!kp~egtp2egtp/2!, ~5.10!

and

Re@ f ~sy!#Re~a!1Im@ f ~sy!#Im~a!sy

5
4E21g2

g2
~egtp/221!1

2Eb

g
~21!kpegtp/2.

~5.11!

Becauseuau25u2E1 igu2/g25(4E21g2)/g2, we therefore
have according to Eq.~5.9!

@a1 f ~sy ,b!#rss@a1 f ~sy ,b!#†

5egtpF4E21g2

g2
1~21!kp

4Eb

g
1b2Grss. ~5.12!

Substituting this into Eq.~5.6! we obtain

G~rss,b!5~Dt !m)
p51

m S 4E21g2

g2
1~21!kp

4Eb

g
1b2D rss.

~5.13!

Therefore, according to Eq.~4.4!,

rc~k1 , . . . ,km ;Dt !}N~Dt !rssN
†~Dt !, for any real b.

~5.14!

As the final step of our argument, we now prove a lem
that, together with Eq.~5.14! and the normalization of the
density matrix, implies Eq.~5.1!.

Lemma 2. Smooth evolution leavesrss invariant in the
following sense:

N~Dt !rssN
†~Dt !}rss. ~5.15!

Proof. Becausesy and rss commute, we may see from
Eq. ~2.6! that the smooth evolution leavesrss diagonal

N~Dt !rss@N~Dt !#†5S L1 0

0 L2
D . ~5.16!

Using Theorem 1, we have
4-5
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2e22Z1L15~e2(gDt/2)a†aeZ2
1a†

eZ3
2a!ua&^au~••• !†,

2e22Z1L25~e2(gDt/2)a†aeZ2
2a†

eZ3
1a!ua* &^a* u~••• !†,

~5.17!

where

Z2
6[

2E6 ig

g
~egDt/221!,

Z3
6[

2E6 ig

g
~e2gDt/221!. ~5.18!

In order to calculate L1, we use the identity
ela†

ua&^auel* a5eua1lu22uau2ua1l&^a1lu, which gives

2e22Z1L15ueZ3
2aueua1Z2

1u22uau2~e2(gDt/2)a†aua1Z2
1&

3^a1Z2
1ue2(gDt/2)a†a!. ~5.19!

Now, with the help of the identitye2la†aua&^aue2la†a

5euau2(e22l21)uae2l&^ae2lu we have

2e22Z1L15ueZ3
2aueua1Z2

1u2e2gDt2uau2u~a1Z2
1!e2gDt/2&

3^~a1Z2
1!e2gDt/2u. ~5.20!

Using the definition of Z2
1 and the value ofa5(2E

1 ig)/g, we see that

~a1Z2
1!e2gDt/25a. ~5.21!

Therefore,

2e22Z1L15ueZ3
2auua&^au. ~5.22!

Repeating the same arguments forL2, we have from Eq.
~5.17!

2e22Z1L25ueZ3
1a* uua* &^a* u. ~5.23!

BecauseueZ3
2au5ueZ3

1a* u, we can now see that

S L1 0

0 L2
D}S ua&^au 0

0 ua* &^a* u D 52rss. ~5.24!

Together with Eq.~5.16! this completes the proof.

VI. CONDITIONAL EVOLUTION
STARTING FROM THE STEADY STATE

In the preceding section we have shown that, for a r
value of b, a homodyne measurement does not give a
information about the system once it has reached the ste
staterss. Although this fact was useful in confirming thatrss
is indeed a steady state of the system, such a measure
would be pointless in practice.

We therefore consider the case of purely imaginaryb, for
which the homodyne measurement does provide informa
01380
al
y
y-

ent

n

about the system. We writeb in the formb5 ib0, whereb0
is real. To find the conditional density matrix in this case,
go back to Eqs.~5.6!–~5.9! and obtain by direct calculation

f ~sy!@ f ~sy!#†5
4E21g2

g2
~egtp/221!2

1b0
2egtp1~21!kp

2gb0

g
~egtp2egtp/2!,

~6.1!

and

Re@ f ~sy!#Re~a!1Im@ f ~sy!#Im~a!sy

5
4E21g2

g2
~egtp/221!1~21!kp

gb0

g
egtp/2sy .

~6.2!

Therefore,

G~rss,ib0!5E
0

Dt

dtmE
0

Dt

dtm21•••E
0

Dt

dt1)
p51

m S 4E21g2

g2

1b0
21~21!kp

2gb0

g
@11~sy21!e2gtp/2# D rss.

~6.3!

Performing the integration, we obtain

G~rss,ib0!5 )
p51

m FDt•S 4E21g2

g2
1b0

21~21!kp
2gb0

g D
1~21!kp4gb0~sy21!

12e2gDt/2

g2 Grss.

~6.4!

Becauserss and sy are both diagonal in the basis$u6&%
defined in Eq.~2.4!, the conditional density matrix may b
written in the form

rc~k1 , . . . ,km ;Dt !5S l1ua&^au 0

0 l2ua* &^a* u D ,

~6.5!

where a5(2E1 ig)/g. For the eigenvaluesl1 and l251
2l1, we have the following simple formula:

l1

l2
5 )

p51

m
b1~21!kp

b1~21!kpF12
4

gDt
~12e2gDt/2!G , ~6.6!

whereb[(4E21g21g2b0
2)/(2ggb0). Similarly, simple ex-

pressions may be obtained for any complex reference fieldb.
4-6
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VII. CONCLUSION

In this paper, we have given explicit formulas for th
quantum state evolution conditioned on a discrete homod
photocount record for a typical experimental setup in sing
atom cavity QED. These formulas have potential appli
tions for the real-time processing of experimental data. T
general methods developed here may be applied to a w
class of similar systems. For example, it should be straig
forward to generalize our results to the case of heterod
measurements.
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APPENDIX

Theorem 1. The operator

M ~ t !5expF ig
sy

2
~a†1a!t1E~a†2a!t2

gt

2
a†aG

~A1!

may be factorized as

M ~ t !5eZ1e2(gt/2)a†aeZ2a†
eZ3a, ~A2!

where

Z15
4E21g2

g2
~12e2gt/22gt/2!,

Z25
2E1 igsy

g
~egt/221!, ~A3!

Z35
2E2 igsy

g
~e2gt/221!.

Proof. Becausea,a†, a†a, and 1 span a Lie algebra
M (t) may be factorized in a systematic way as follows. Fir
we find a functionx(t) such that

M ~ t !5ex(t)a†aM̃ ~ t !, ~A4!

whereM̃ (t) is an exponential of a linear combination ofa
and a†. We will then repeat the same procedure factoriz
M̃ that will conclude the prove of the theorem.

Equation~A4! gives

dM

dt
5 ẋa†a exa†aM̃1exa†a

dM̃

dt
. ~A5!

On the other hand, Eq.~A1! gives

dM

dt
5F ig

sy

2
~a†1a!1E~a†2a!2

g

2
a†aGexa†aM̃ .

~A6!
01380
e
-
-
e
de
t-
e

is

,

g

Comparing this expression with the previous one, we ha

dM̃

dt
5@x~x!2~ ẋ1g/2!a†a#M̃ , ~A7!

where

x~x!5e2xa†aF ig
sy

2
~a†1a!1E~a†2a!Gexa†a. ~A8!

Using the identitye2xa†aaexa†a5aex, the above equation
may be rewritten as

x~x!5S E1 ig
sy

2 De2xa†2S E2 ig
sy

2 Dexa. ~A9!

Looking at Eq.~A7!, we demand that

ẋ1g/250, ~A10!

thereby makingdM̃/dt independent ofa†a. From Eq.~A1!
we see thatM (0)51 and therefore, we choose, in acco
dance with Eq.~A4!, that

x~0!50 and M̃ ~0!51. ~A11!

With these conditions, Eq.~A10! may be integrated to give
according to Eqs.~A4! and ~A7!,

M ~ t !5e2(gt/2)a†aM̃ ~ t !, ~A12!

where

dM̃

dt
5F S E1 ig

sy

2 Degt/2a†2S E2 ig
sy

2 De2gt/2aGeya†
M̃ 8.

~A13!

The proof of the theorem will be completed if we repeat t
same procedure for factorizingM̃ . As before, we introduce a
function y(t) such that

M̃ ~ t !5ey(t)a†
M̃ 8~ t !. ~A14!

We therefore have

dM̃

dt
5 ẏa†eya†

M̃ 81eya† dM̃8

dt
. ~A15!

Combined with Eq.~A13!, this gives

dM̃8

dt
5F S E1 ig

sy

2 Degt/2a†2S E2 ig
sy

2 D
3e2gt/2e2ya†

aeya†
2 ẏa†GM̃ 8. ~A16!

Using the identitye2ya†
aeya†

5a1y, we rewrite the above
expression as
4-7



ar-

o-
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dM̃8

dt
5S F S E1 ig

sy

2 Degt/22 ẏGa†2S E2 ig
sy

2 D
3e2gt/2~a1y! D M̃ 8. ~A17!

We eliminatea† from this expression by setting

ẏ5S E1 ig
sy

2 Degt/2. ~A18!

Equation~A14! suggests the boundary conditions

y~0!50 and M̃ 8~0!51. ~A19!

Performing integration in Eq.~A17! and in Eq.~A18! using
these boundary conditions and the fact thatsy

251, we have
according to Eq.~A14!

M̃ ~ t !5expF2E1 igsy

g
~egt/221!a†GM̃ 8~ t !, ~A20!

where

M̃ 8~ t !5expF4E21g2

g2
~12e2gt/22gt/2!G

3expF2
2E2 igsy

g
~12e2gt/2!aG . ~A21!

This completes the proof of the theorem.
Corollary.

e2 iH 0t5e2g2t2/8eigtsya†/2eigtsya/2. ~A22!
tu

le,

01380
Proof. This can be established easily by repeating the
guments of Theorem 1 forE50 andg50.

Theorem 2. Using the definition

f k[Ag/2eip(k21)/2 ~A23!

and the notation of Theorem 1, we have

CkM ~ t !5M ~ t ! f kFe2gt/2a1
12e2gt/2

g
~2E1 igsy!

1~21!kbG . ~A24!

Proof. By definition @Eqs. ~3.8! and ~A23!# and using
Theorem 1 we have

CkM ~ t !5 f ke
Z1@a1~21!kb#e2(gt/2)a†aeZ2a†

eZ3a,
~A25!

whereZ1 , Z2, andZ3 are specified in the statement of The
rem 1. Using subsequently the identitiese2xa†aaexa†a5aex

and thene2ya†
aeya†

5a1y we have

CkM ~ t !5 f ke
Z1e2(gt/2)a†a@e2gt/2a1~21!kb#eZ2a†

eZ3a

5 f ke
Z1e2(gt/2)a†aeZ2a†

@e2gt/2~a1Z2!

1~21!kb#eZ3a

5 f kM ~ t !@e2gt/2~a1Z2!

1~21!kb#. ~A26!

Putting the value ofZ2 from Theorem 1, we have Eq.~A24!
as required.
p-

n
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