PHYSICAL REVIEW A, VOLUME 65, 013804
Conditional evolution in single-atom cavity QED
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We consider a typical setup of cavity QED consisting of a two-level atom interacting strongly with a single
resonant electromagnetic-field mode inside a cavity. The cavity is resonantly driven and the output undergoes
continuous homodyne measurements. We derive an explicit expression for the state of the system conditional
on a discrete photocount record. This expression takes a particularly simple form if the system is initially in the
steady state. As a byproduct, we derive a formula for the steady state that had been conjectured before in the
strong driving limit.
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[. INTRODUCTION Usually, the conditional state is computed numericE8lyL0]

Recently, there has been much experimental progress imsing the formalism of stochastic master equatiftis12;
single-atom cavity QEQ1,2]. In addition to their inherent these numerical computations may require very large com-
fundamental importance, these experiments provide insighgutational resources. For some experiments, however, the
into the physics of open quantum systems, with potentiabbility to process data in real time is crucfdl]. It is there-
applications to, e.g., quantum chd®$ quantum control4],  fore important to develop analytical tools for conditional
and quantum computinp]. state evolution.

In this paper, we consider a typical experimental setup of In this paper, we derive explicit expressions for the state
single-atom cavity QEO6], as illustrated in Fig. 1. The conditioned on a discrete homodyne measurement record in
setup consists of a single two-level atom located inside @he strong-coupling regime, where the atom is strongly
high-finesse optical cavity, which is externally driven. A setcoupled to the intracavity field. Our methods may be used to
of photodetectors is arranged to monitor the field escapingnalyze experiments such as the atomic cavity microscope
from the system into the environment. We assume that thgl,2], where the strong coupling is essential, but strong driv-
leakage of photons from the cavity mode through an outpuing leads to the problem of saturatipi]. We give special
mirror is the only significant channel through which the sys-attention to the experimentally important case that the sys-
tem interacts with the environment. This assumption can béem is initially in the steady state.
very realistic for high-finesse caviti¢g]. Also, for simplic- The paper is organized as follows. In Sec. Il, we describe
ity, we adjust the cavity length and the frequency of thethe equations that model the physical system. In Sec. Ill, we
driving field so that they both coincide with the frequency of review the formalism of conditional quantum evolution and
the atomic transition. The cavity output is monitored usingintroduce the approximations for the strong coupling regime.
continuous homodyne measuremeh®. These measure- In Sec. IV, we derive a general formula for the system state
ments are parametrized by one complex parameter: the refonditioned on a discrete photocount record, for an arbitrary
erence fieldB that is added to the cavity output on a beaminitial system state. In Sec. V, we give a derivation of a
splitter prior to the detection. general expression for the steady state. In Sec. VI, we find

Given the output of the photodetectors, it is possible, insimple formulas for the conditional evolution in the case that
principle, to write theconditional quantum state inside the the system is initially in the steady state. We conclude in
cavity as a function of time and the measurement recordSec. VII.

O b II. MATHEMATICAL MODEL
AND MAIN APPROXIMATIONS

Let |g) and|e) be the ground and excited states of the

9 ¥ D atom. For simplicity, we choose the cavity length such that
SR W“MM“”/WMN‘ > the frequency of the resonant optical mode coincides with
the frequency of the atomic transition. Using the dipole and

the rotating-wave approximations, the interaction of the two-
P level atom with the electromagnetic field inside the cavity is
described by the Hamiltoniari3]

FIG. 1. Homodyne measurements in cavity QED. Basic param-
eters of the_sys_,tem are the strength of th_e atom-cavity c_ougling HimEig(aT(r—aaT), (2.1)
and the cavity field decay rate The cavity is resonantly driven by
an external laser fiel&, and the cavity output field is analyzed by
the detector®, and D, after being added to the reference figld ~whereo=|g){€gl, g is the strength of the atom-cavity cou-
on the beam splitter. pling, anda is the annihilation operator for the intracavity
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field. Including dissipation and on-resonant driving of the _ Y )
cavity mode, the total unconditional master equation in a Lp=[—iHx+E(a'—a),p ]+ E(ZapaT—aTap—pa a).
frame rotating at the driving laser frequency reads 3.2

: . Y Let the initial condition bep(0)=py. Given superoperators
p=[—iH+tE(a"—a),p]+ E(ZapaT—aTap—paTa), Se. T, and.7, such that 0

2.2
22 So(t)=elE= =), (3.3
wherep is the joint density operator for the atom and the

intracavity field,E is the strength of the driving, andis the the solution to Eq(3.1) may be written using a Dyson ex-

rate of energy loss due to the leakage of photons from th82M%'0"™
cavity mode through an output mirror. -

From the experimental point of view, the question of the p(At)= E 2 kg, ... KoiAD)
steady state is very important. In fact, using contemporary m=0 kg, ", m

techniques, it is very difficult to prepare the system in ques-

X oK .
tion in any other state. Using the Jaynes-Cummings model, pelky, - - km A1), 34
Alsing and Carmicha€f9] have shown numerically that in \where tro(Ky, - . . Ky ;At)=1 and
the strong driving limit E>g, the system approaches a
steady state of the form P(Ki, .« Km; A po(Ky, - .. Ky AL
1 At tg t,
pe g (ot )ai+|+lar = )ari=]), @3 =, e [ ottt
XSo(tm=tm-1) Tk, Solti)po. (3.9

where|a; +) and|a* ; —) are two orthogonal quantum states

Following[11,12, we define the “smooth evolution” opera-
i tor 5y as

lo; +)=—=la)(|g) +i|&))=|a)| +),
V2 So(t)p=No(t)p[No(t)]", (3.6

1 where

la*; =) \/Ela*>(|9>—i|e>)5|a*)l—>, (2.4

No(t)zexp{—iHimt+E(aT—a)t— %(aTa+|ﬂ|2)t :
and wher¢g ) is the coherent field state with amplitude

(3.7
a=(2E+ig)/y. (2.5 and the “jump” operators7; andJ, as
This result has been confirmed in a more recent numerical jkaCkpCl,
simulation[10]. Using matrix notation for the intra-atomic
degrees of freedom in the bagist)}, Eq. (2.3 may be Where
rewritten in the convenient form .
Cy=\yi2e "V a+ (- 1)%g]. (3.9
o :E |)(a 0 (2.6 The following lemma, included for completeness, shows that
2\ 0 la* M a*|)’ the definitions ofS,, 73, and 7, just given are consistent
with Eqg. (3.3.
which will be useful below. Lemma 1The above definitions satisfy the requirement
In this paper, we work in the strong-coupling reginge ( (Lm o T
> ), which justifies considering the evolution on time scales So(t)=et 12 (3.9

large compared to @/ In Sec. V, we give an analytical proof . . .
theg[ on thgse timegcales, E®.3) isga steady s‘é\te o? Eq. and therefore Eqg93.4) and (3.5 indeed give a solution to

2.2 Eq. (3.1).
o Proof. Keeping terms to first order in we have

IIl. THE MEASUREMENT

So(7)p=No(7)p[No(7)]"=p+|[—iH+E(a’~a),p]

We now rewrite Eq(2.2) in the form

T+ O(Tz)

. Y
p=Lp, (3.1) - 5(alap+pa'a)—46%
where the superoperatdy is defined as =(1+7L)p—y(apa'+|B?p) 7+ 0O(7?). (3.10

013804-2



CONDITIONAL EVOLUTION IN SINGLE-ATOM CAVITY QED

On the other hand, by direct calculation we have

o= lapa’+(~ 1 Bpal+ B*ap)+| B[],

(3.1
which implies that
(J1+ To)p=y(apa’+|BI%p). (3.12
Equation(3.10 therefore becomes
So()p=(+ L~ (T +T)Dp+0O(7). (3.13

Taking the limit7— 0, we have Eq(3.9) as required.
There are many different definitions &, J;, and 7,
that satisfy the above lemma. However, definitiéd$) and
(3.8 are somewhat special: the
po(ky, ... Km;AL) and p(ky, ..

quantities
. Km:;At), which they de-
fine, have an important physical meaniig]. Suppose that

PHYSICAL REVIEW A 65 013804

d A
_Q:(F_iHO_iHl)e_IHOtRo.

T (3.2

Combining the last two equations we obtain tigt obeys
the equation

dRy

W=(X(t)+eiH0‘Fe‘iH0t)Ro,

(3.22

where
X(t)=—eoliH e~ Ho",

(3.23

Using the Corollary to Theorem 1 from the Appendix, to-
gether with the identit}e*ya1a=(a+ y)e*yaf, we obtain

2X(t)=g é"o(a’—a)o,e Mot

=g(a'—a—igayt)etota,e o,

(3.29

the continuous measurements were performed over the timghe identityeiA<ry:C05A+igysinA gives

interval At and recorded as a sequenég (. . . Ky ;At) of

photodetector labels in the order of photodetections. For ex- €"o'o,e Mot=g, codgt(a’+a)]—o,singt(a’+a)],

ample,kj=1 would mean that thgth photodetection was
registered by the first detector. Then the probability of the
given by
. Km;At), and the corresponding conditional state

measurement
p(k, ..
is po(Kq, - -

record K{, ... ky;At) s

. Km3At).

We will now prepare to consider the conditional system

evolution on time scales large compared tg.1First, we
notice that

Hin=Ho+H1, (3.14
where
Ho=—g(a'+a)a,/2, oy=i(c'-0),
Hi=ig(a'-a)o, /2, o=0"+0. (3.19
We define
Q=exp(—iHt—iHt+Ft), (3.16
where
F=E(a'—a)—ya'a/2. (3.17

These definitions are connected to the definitidi®) of the
smooth evolution operator via the relation

No=e "A2Q, (3.18
We rewriteQ in the form
Q=e MRy, (3.19
so that
dQ ) . o dRy
EZ—IHOG 'HOtRO+e IHDtW. (3.20

From the definition(3.16 and Eq.(3.19 we have

(3.25
whereo,=ioyo,. Finally, we obtain
2X(t)=g(a'-a—igoyt)(oycoggt(a’+a)]
—o,singt(a’™+a)l). (3.2

At time scales large compared to g{&"+a)), we may ne-
glect oscillating terms in Eq.3.22. This means we can set
X(t)=0 in Eq.(3.22, which becomes

d;RO~e‘H0tFe‘iH0tRO. (3.27
dt
This approximation has some similarity with the standard
rotating-wave approximation.
Now consider the operator
M=exp(—iHt+Ft). (3.28

Using the same technique as in Eg&19—(3.22), it is easy
to show that

M=e Ho'R,, (3.29
whereR; obeys the equation
dR . _
d—tlze'HOtFe*'HO‘Rl. (3.30

This equation coincides with E€3.27), which means that at
time scalesét>1/(g(a'+a)), the operatorQ can be re-
placed withM. The smooth evolutiors, may therefore be
approximated as

(3.31)
wheresS is defined as

S(H)p=N(t)p[N(t)]", (3.32
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and where where
v At At At
N(t)=exp —iHt+E(a'—a)t— E(a*a+|/§’|2)t ) G(po,B)= fo dtmfo dty_q--- jo dt;
(3.33 m R
x| II | e "%a+ ————(2E+igoy)
IV. CONDITIONAL EVOLUTION FOR ARBITRARY p=1 Y
INITIAL STATES

In this section, we derive a general formula for the state, +(—1)%pB )p0(~ -t (4.5

poKq, ... Kyn;At), conditioned on a discrete photocount

record for an a:(bltrary '”g'@' sltat;]a. The formﬁla IS a d|frect For notational convenience, we do not indicate explicitly the
consequence of two technical theorems, whose proofs aigunendence ofG(po.) on the measurement record

given in the Appendix. At time scalest>1/(g(a’+a)), the K k-:At) which. however. should alwavs be remem-
theorems allow us to simplify Eq3.5) by changing the or- (elréd. - km3AT) which, however, uid away

der in which the smooth evolution operatdsand the jump Equations(4.4) and (4.5 have a relatively simple struc-
opera_torsjk appear. . ture. The termdN(At), which are given in factored form by

_ Using these theorems, we may proceed with the calcularpegrem 1, are the same for all possible measurement
tion of the conditional density matripc(ky, ... KmiAl).  records. This means that all the information about the mea-

We have from Eqs(3.5), (3.8) and Eqs(3.3D~(3.33 that g rement records is contained in the funct®fp,3). The
. . integrand inG(pg, ) is a polynomial ina, o, andpg. The
Py, .. kmiApclKa, - - K A scalar coefficients of this polynomial are constants or propor-
At t3 ty tional to eithere™ "'»2 or e~ "', Therefore, all the integrals in
= 0 dty- - Jo dtZJO dty[N(At—tp) Eq. (4.5 can be easily evaluated, so tt@fp,,B) takes the
form of a polynomial ina, oy, andp, with known coeffi-
XCy -+ N(ta=t1)Cy N(ty) Ipol - - -1'. (4.1  cients. In this way, Eqs4.4) ‘and (4.5 provide an explicit
solution for the conditional evolution on the time scales con-
We may now use Theorem 2 to compute the operator in theidered.
square brackets. We have, for instance,
V. DERIVATION OF THE STEADY STATE

1—e” 1112
C N(ty) =N(ty)f e”""%a+ ————(2E+iga,) In this section, we show that, at timescalés>1/(g(a’
Y +a)), the statepss defined by Eq(2.6) is a steady state of
. the master Eq(3.1). Notice that the only free parameter in
+(—=D"B|, (4.2 our homodyne measurements is the complex parangetdr
we can find a value o3 such that for any measurement
where f, =/y/2e"&~172 Then, using the identityN(t, record K4, ... Ky,;At), the conditional density matrix sat-

—t,)N(t;)=N(t,), we see that repeating the same type ofisfies
calculations we have

pcKy, oo K At = pss, (5.9
N(AT=1m) Cy, - Ntz = 11) Ci N(ty) then ps, must be a steady state. This is because the solution
m e M2 (3.4) of the unconditional master E¢3.1) becomes, in this
=N@AO ] fi [e "%a+ ——(2E+igay) case,
p=1 .

. } pAD=2 X p(ky, .. KniADpss= pes (5.2
+(—1Dkep|. (4.3 m=0 ky, . Kn

for any At. Intuitively, one would expect that, if subjected to
Since the factors in the product all have the same structurg nontrivial measurement, the system would normally depart
and all commute with each other, we see that the integrand gfom the steady state. In our case, however, we will find that
Eq. (4.1 is symmetric in permutations of the time argu- Eq. (5.1) is satisfied for all real values ¢8.
ments. This allows us to Change all the limits of integration Before we proceed with our rigorous ana|ysisi it may be
to run between O andt, with a combinatorial factor of helpful to develop some intuition about the dependence of

1/(m!). Using the identityf, fi = /2, we therefore have the conditional evolution orB. In particular, we are inter-
ested in the dependence of the conditional evolution on the
Pk, - KniADP(Ky, - KAL) phasesd=argg. In our analysis, we deal with the conditional
m evolution conditioned on a discrete photocount record, which
- :: N(At)G(po,B)NT(AL), (4.4)  is the most general case. However, a lot of insight about the
2™m! dependence of the conditional evolution on the phaseay
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be gained by taking the limit3|—c. In this limit, the de- [a+f(gyyg)]pss[aﬁ(gy,g)]*
tectors are registering continuous photocurrents rather than .
discrete photocounts. Because the resulting measurement =(f(ay,B)[f(oy,B)]'+2 R f(oy,B)]Re(a)

records can be viewed as continuous functions of time it
becomes possible to derive a master equation for the condi-

tional density matrix.. According to Ref[11], this may be wherea = (2E+ig)/y. We will use this equation for imagi-

done by taking the double limitB|xe 11— and yAt nary 8 in the next section.

= €%2-0 in the Dyson expansio(8.4). If the measurement For the rest of this section, we assume tigais real.

record consists of the difference photocurrént=1,—14, Using this and the fact thara(/)zle we find that
wherel, andl, are the photocurrents detected by the first

+21mf(oy.Hlm(@oy+aPps (5.9

and the second detectors, respectively, then the resulting 4E%+ 2
master equation for the conditional density matrix becomes f(ay)[f(oy)]'=———[e"?~1]>+ g%
(11,14 Y
P ~i¢ ip ot 4EB
pc=Lptyn(e Pap.tepa + ——(—1)*(e”—e"?), (5.10
: ) Y
_tr[Pc(e_l¢a+el¢aT)]pc)§- (5.3
. . - . o and
where 7 is the efficiency of the photodetection, aéds the
Gaussian white noise that, in practice, should be taken from Re f(oy)IRe(a) +Im[f(ay)]Im(a)a,
experimental observations of the difference photocurtent .
; . 4E“+ 2E
via the relation S g (72— 1)+ B(_ 1)koe??2,
. B Y
|_=|Bl(yntipe'?a’+e ?a)]+yné). (5.4 7 611
Compared to the unconditional master Eg.2), Eq. (5.3 .
has an additional term Because| a|?=|2E+ig|?/ y*=(4E2+g?)/y?, we therefore
. . ' _ have according to Eq5.9)
\ Vﬂ(e_l¢apc+ e d)PcaT_ tr[PC(e_l¢a+ e ¢aT)]Pc)§y t
(5.5 [at+f(oy.B)]pdatf(oy.B)]
which, for =0 and p.=pss, IS proportional topgs. This . AE?+g? AEB
means that, ifCp.=0, i.e., if pss iS a steady state of the =evr )2 (=D 5 TB|Pss: (5.12
unconditional evolution, then conditional and unconditional
evolution coincide forg=0. This situation is similar to the  gypstituting this into Eq(5.6) we obtain
one described by Eqg¢5.1) and (5.2), which suggests to
qonsider the case of regl in the following rigorous deriva- . m 4E2+ @2 AEB
tion. . , G(pss:8)=(A0™[] (1) —+ 7 ps.
We now substitutepg= ps from Eq. (2.6) into Eq. (4.5), p=1 Y Y
keepingpB arbitrary for the moment. We obtain (5.13
At At At Therefore, according to E¢4.4),
G(Ps&ﬁ):f dtp, dty-1--- dty
0 0 0 pelKy, . kmi A =N(AL) pNT(AL),  for any real B.
m (5.149
—yt,/2 o\t
X pﬂl e [a+f(ay"8)])p54 ) As the final step of our argument, we now prove a lemma
that, together with Eq(5.14 and the normalization of the
(5.6 density matrix, implies Eq(5.1).
Where Lemma 2 Smooth evolution leavepg invariant in the
following sense:
'ytp/2_
f(oy.B)= T(2E+igay)+(—1)kp,8e7’tp’2. N(At) psNT(A) o< pgs. (5.19
(5.7) Proof. Becauseo, and pss commute, we may see from
We note that Eq. (2.6) that the smooth evolution leavesg diagonal
[oy,ped=0 and (oy)2=1 (5.8 i (A 0
y:Fs oo ' NADpN(ADT={ o, |- (5.16
2

Using the first of these properties and the expressiom for
as given by Eq(2.6), we have by direct calculation Using Theorem 1, we have
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2e ZZlA _(e (yAt/Z)a Zza Z3a)|a><a|(

2e —2Z1 A _(e (yAt/2)a'a Zza Z3a)|a*><a*| )T'
(5.17
where
L. 2E=i
z;=" 0 (e,
2E=+i
Z;= 9 (e~ 7AU2_1), (5.18
In order to calculate A;, we wuse the identity

e’ a)(aler 2= elatM?-la| 4 4 \)(a+ )|, which gives

1?~lal?

De 2l = (e—(yAt/Z)a*a| a+73)

(5.19

Now, with the help of the identitye‘“‘f"j‘|oz)(a|e‘”aTa1
—elal®e”® =) e M) (we ™| we have

|eZ;a|e\a+Z;

X{a+ Zz+|e*(7At’2)aTa).

_ - 12— yAt_| |2 _
2e 221A1:|e23 a|e|a+22| e "2l—|q| |(a+zz')e 'yAt/2>

(5.20

and the value ofa=(2E

X{(a+2Z5)e A2,

Using the definition of Z;
+ig)/y, we see that

(a+22+)ef“/A“2=a.

(5.20)

Therefore,

2e 24\, = |eZ§“| |a)(«al.

(5.22

Repeating the same arguments fog, we have from Eq.

(5.17

20 2417 ,=|e% 9" || a* M a*|. (5.23
Becausee?s ?|=|e?s «*|, we can now see that
Ay O |a)(al 0 5 5
= . 5.
O A2 o 0 |a*><a*| pSS ( 4)

Together with Eq(5.16) this completes the proof.

VI. CONDITIONAL EVOLUTION
STARTING FROM THE STEADY STATE

PHYSICAL REVIEW A65 013804

about the system. We writ@ in the formB=i8,, wherepg,
is real. To find the conditional density matrix in this case, we
go back to Egs(5.6)—(5.9) and obtain by direct calculation

E2+g
2

2
(eytp/Z_ 1)2

f(oy)[f(oy]'=

+ e+ (— 1) ———(e”p— "),

290
Y
(6.1
and
Re f(oy) |JRe(a@)+Im[f(oy) ]Im(a)oy

4E%+ g2
e CICTUTEES

¥

p /2
-, &roy

6.2

Therefore,

_ At At [ 4E2+ g2
G(Pssa'ﬂo):fo dtmfo dtm—l"'f 11_[ (

'

+B5H(— 1) g'BOUH(U l)eytplz]>Pss
(6.3
Performing the integration, we obtain
G(pss,iﬂo):ﬁl At (452;9 +BSH(— 1)k gﬁ")
_ A YAt2
+(—=1)*4gBo(0y—1) Pss-
(6.9

Becausepgs and o, are both diagonal in the bas{$=)}
defined in Eq.(2.4), the conditional density matrix may be
written in the form

)\1|a)<a| 0 )
0 Nola* ) (a*[)’
(6.5

po(Ky, .. ,km;At)=(

where a=(2E+ig)/y. For the eigenvalues; andA,=1
—\1, we have the following simple formula:

In the preceding section we have shown that, for a real

value of 8, a homodyne measurement does not give any
information about the system once it has reached the steady-

statepgs. Although this fact was useful in confirming thad

is indeed a steady state of the system, such a measurement

would be pointless in practice.
We therefore consider the case of purely imagingyyor

_1)kp

, (6.9

n b+ (
=11
p=1

+(_1)k {1_ i(l e yAt/Z)

whereb=(4E2+ g%+ y?B82)/(298,). Similarly, simple ex-

which the homodyne measurement does provide informatiopressions may be obtained for any complex reference field
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VIl. CONCLUSION Comparing this expression with the previous one, we have

In this paper, we have given explicit formulas for the dm
quantum state evolution conditioned on a discrete homodyne —=[x(X)— (x+ y/2)ata]™, (A7)
photocount record for a typical experimental setup in single- dt
atom cavity QED. These formulas have potential applica-
tions for the real-time processing of experimental data. Thévhere
general methods developed here may be applied to a wide

class of similar systems. For example, it should be straight- X(X):e—xa*a ig ﬂ(aT+a)+E(aT—a) exala (A8)
forward to generalize our results to the case of heterodyne 2
measurements. _ _ _ : N _
Using the identitye *® 2ae*® 2=ae*, the above equation
ACKNOWLEDGMENTS may be rewritien as
We would like to thank Howard Wiseman for helpful B L Oy oy . Oy|
comments on a previous version of this manuscript. This x(x)=|Etig—-Je"a'—| E~ig—|€"a.  (A9)

work was supported by the EU IST program.
Looking at Eq.(A7), we demand that
APPENDIX ]
X+ y/2=0, (A10)
Theorem 1The operator
o " thereby makingdM/dt independent ofi'a. From Eq.(A1)
M(t):ex;{ig ?y(aT+a)t+ E(aT—a)t—?aTa} we see thatM(0)=1 and therefore, we choose, in accor-
dance with Eq(A4), that

(A1)
may be factorized as x(0)=0 and M(0)=1. (A11)
M (t) = eZ1e~(WRaagZza"gZsa (A2)  With these conditions, EJA10) may be integrated to give,
according to Eqs(A4) and (A7),
where .
M (t)=e~ (V22 aj (), (A12)
4E2+g? o
1:7(1_9 T2, where
i dm T o ~
Zz:m(em_ 1), (A3) 5t = || E+ig %) e"Z%a’—| E—ig 7") th/Za}eyaTM',
4 (A13)
2E—igoy . .
a=—— (e M2-1), The proof of the theorem will be completed if we repeat the

same procedure for factorizirg . As before, we introduce a

Proof. Becausea,a’, a'a, and1 span a Lie algebra, functiony(t) such that
M (t) may be factorized in a systematic way as follows. First,

~ T~ ,
we find a functionx(t) such that M(t)=e"®2 M (). (Al4)
M(t):ex(t)aTam(t)’ (A4) We therefore have
M) i i i inati dm . - dm’
wherqrM(t) is an exponential of a linear combination @f' IV ateva i eval . (AL5)
anda'. We will then repeat the same procedure factorizing dt dt
M that will conclude the prove of the theorem. ) ) o
Equation(A4) gives Combined with Eq(A13), this gives
dM . toe ¢ dM dM'_ Iy g2t o Ty
W: aTae"aaMJreX""aW. (A5) T_ E+|g? e”a’— E_Ig7
On the other hand, EqAl) gives Xe~ yt/ze—yaTaeyaT_ya*r Y (A16)
dM ag Y t, o~
— _|iqg Y at t_ay_ 2 At xa'a
at |92 (a'+a)+E(a’-a) 22 a}e M. Using the identitye‘yafaeyaTzanL y, we rewrite the above

(AB) expression as

013804-7
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dw’

- T_
dt a

(E+ig%)e7t’2—y E—ig%)

xXe "2(a+y)|M’. (A17)

We eliminatea’ from this expression by setting

y= (A18)

H ﬂ yt/2
E+ig 5 )e .
Equation(Al14) suggests the boundary conditions
y(0)=0
Performing integration in EA17) and in Eq.(A18) using

these boundary conditions and the fact thét: 1, we have
according to Eq(Al14)

and M’(0)=1. (A19)

~ 2E+igo ~
|v|(t):exp[%(evt’2—1)aT M’(t), (A20)
where
. AE2+g?
M'(t):exp{—zg(l—em— yt/2)
Y
2E—-igo
xex;{—%(l—ewz)a . (A21)
This completes the proof of the theorem.
Corollary.
e iHot=g~ g2t2/86igtaya*/zeigwya/z_ (A22)
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Proof. This can be established easily by repeating the ar-
guments of Theorem 1 fdE=0 andy=0.
Theorem 2Using the definition

im(k—1)/2

f=\/y2e (A23)

and the notation of Theorem 1, we have

a2

1
CM(t)=M(t)f,|e "2a+ T(2E+igay)

+(— 1)'%’}. (A24)

Proof. By definition [Egs. (3.8) and (A23)] and using
Theorem 1 we have

C M(t)=f &% a+(—1)kgle” (a'agZza'gZaa
(A25)

whereZ,, Z,, andZ; are specified in the statement of Theo-
rem 1. Using subsequently the identities* 2ae®@ 2= ae*
and thene‘yaTaeyaT=a+y we have

CM(t)= fkezle—(yt/Z)aTa[e— N2y 4 (— 1)kB]ezzaTez3a
_ fkezle—(ytlz)aTaezzaT[e— "2(a+ Z,)
+(-1)kple%
=fiM(t)[e” " a+Z,)
+(—1)"Bl.

Putting the value oZ, from Theorem 1, we have E¢A24)
as required.

(A26)
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