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Towards a quantum Hall effect for atoms using electric fields

Marie Ericsson* and Erik Sjöqvist†

Department of Quantum Chemistry, Uppsala University, Box 518, Se-751 20 Uppsala, Sweden
~Received 2 August 2001; published 13 December 2001!

An atomic analog of Landau quantization based on the Aharonov-Casher interaction is developed. The effect
provides a first step towards an atomic quantum Hall system using electric fields, which may be realized in a
Bose-Einstein condensate.
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I. INTRODUCTION

Paredeset al. @1# have recently proved the existence
anyonic excitations in rotating Bose-Einstein condensa
demonstrating a method to test exotic particle statist
Their analysis was based on the analogy between a con
sate in a rotating trap and a system of interacting electron
a uniform static magnetic field.

Motivated by this result, we provide in this work a fir
step towards another atomic quantum Hall analogy t
could be of interest for the physics of Bose-Einstein cond
sates. The idea is based on the Aharonov-Casher~AC! effect
@2# ~see also@3#! in which atoms may interact with an elec
tric field via a nonvanishing magnetic moment. This intera
tion coincides formally in the nonrelativistic limit with tha
of minimal coupling, where the AC vector potential is dete
mined by the electric field and the direction of the magne
dipole. We demonstrate the existence of a certain field-dip
configuration in which an atomic analog of the standard L
dau effect@4# occurs. This result opens up the possibility f
an atomic realization of the quantum Hall effect using el
tric fields. It should be noted that the AC interaction in Bos
Einstein condenstates has previously been discussed@5#, but
in the different context related to vortex formation.

In the following section, we briefly outline the standa
Landau theory for a charged particle moving in a unifo
magnetic field. The precise conditions under which the
analog of the Landau effect occurs are stated in Sec.
Under fulfillment of these conditions the correspondi
theory is developed in detail. The relation to the AC dual
@2# as well as aspects of gauge and supersymmetry are
lineated in Sec. IV. These aspects illuminate an additio
richness in the physics of the present Landau effect c
pared to that of the standard one. The paper ends with
cluding remarks.

II. STANDARD LANDAU THEORY

Consider a particle with chargeq moving in a plane per-
pendicular to a uniform magnetic fieldB5Bz, say. This sys-
tem is the basic constituent of the quantum Hall effect an
described by Hamiltonian operator~SI units are used
throughout this paper!
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H5
P2

2m
5

1

2m
~2 i\“2qA!2, ~1!

wherem is the mass of the particle, 2p\ Planck’s constant,
andA is the vector potential fulfillingB5“3A. The eigen-
values of H are computed using standard ladder opera
technique based on the canonical structure of the comm
tor

@Px ,Py#5 i\mv5 is\2/ l 2. ~2!

Here v5qB/m5suqBu/m is the cyclotron frequency for
which the signs describes the revolution direction of th
corresponding classical motion. The natural unit of length
the quantum Hall regime is the magnetic lengthl
5A\/uqBu. Next we introduce the annihilation and creatio
operators

a5
1

A2m\uvu
~Px1 isPy!,

a†5
1

A2m\uvu
~Px2 isPy! ~3!

that fulfill the commutation relation@a,a†#51. In terms of
these, we may write the Hamiltonian operator as

H5S a†a1
1

2D\uvu1
pz

2

2m
. ~4!

Thus the motion in thex2y plane has been transformed in
a one-dimensional harmonic oscillator accompanying f
motion in thez direction. It follows that the energy eigenva
ues are

En,kz
5S n1

1

2D\uvu1
\2kz

2

2m
, ~5!

wheren50,1,2, . . . ; andkz is real valued. Note that thes
eigenvalues are independent of both the revolution direc
and the orbit center of the corresponding classical moti
The latter independence is related to the fact that the ab
energy eigenvalues are degenerate. This degeneracy i
vealed by labeling the corresponding eigenfunctions with
eigenvalueh of the quantum orbit center operator@6#. Such
a degenerate set$ch,n,kz

%h defines a Landau level@4#.
©2001 The American Physical Society07-1
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III. AC ANALOG OF LANDAU THEORY

In the nonrelativistic limit one may describe the intera
tion between an atom with nonvanishing magnetic mom
m and an electric fieldE by the AC Hamiltonian operato
@neglecting terms ofO(E2)# @7#

H5
P2

2m
1

m\

2mc2
“•E. ~6!

HereP52 i\“2mc22(n3E) is the kinematic momentum
with n the direction of the magnetic dipole momentm,m is
the mass of the particle, andc is the speed of light. This
defines the AC vector potential

AAC5c22~n3E!, ~7!

the associated field strength

BAC5c22
“3~n3E!, ~8!

and the coupling strengthm. It follows that

@Pk ,P l #5 i\meklm~BAC!m , ~9!

where eklm is the Levi-Civita symbol withk,l ,m running
over x,y,z and the summation convention is used.

The precise conditions on the field-dipole configurati
under which the AC analog of the Landau effect occurs
as follows.~i! Condition for vanishing torque on the dipole
n3(^P&3E)50, where^•& denotes expectation value;~ii !
Conditions for electrostatics,] tE50 and“3E50, and~iii !
BAC uniform.

Condition ~i! follows from the fact that a dipole moving
with velocity ^P& sees an effective magnetic fieldBeff
}^P&3E in its own reference frame and that this magne
field produces a torqueṅ}n3Beff .

For n5(0,0,1), conditions~i! and ~ii ! are fulfilled if E
5„Ex(x,y),Ey(x,y),0… with ]xEy2]yEx50 and the atom
moves in thex2y plane so that̂ Pz& vanishes. Using the
vector identity BAC5n(“•E)1(n•“)E, the second term
vanishes and the condition~iii ! reduces to Gauss’s law“
•E5r0 /e0, where r0 is a nonvanishing uniform volume
charge density ande0 is the electric vacuum permittivity.

With the Landau conditions fulfilled and the above cho
of n and E, we may proceed as in the preceding section
work out energy eigenstates using standard ladder ope
technique. The kinetic part of the Hamiltonian operator
taken care of by noting that the only nonvanishing comm
tator in Eq.~9! is

@Px ,Py#5 i\mvAC5 is\2/ l AC
2 ~10!

with the cyclotron frequency

vAC5
mr0

mc2e0

5
sumr0u

mc2e0

. ~11!
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Again s561 labels the revolution direction of the corre
sponding classical motion. The natural unit of length in t
AC case isl AC5A\c2e0 /umr0u. Next we define the annihi-
lation and creation operators

aAC5
1

A2m\uvACu
~Px1 isPy!,

aAC
† 5

1

A2m\uvACu
~Px2 isPy! ~12!

that fulfill the commutation relation@aAC ,aAC
† #51. Inserting

Eq. ~12! into Eq. ~6! we obtain

H5FaAC
† aAC1

1

2
~11s!G\uvACu1

pz
2

2m
, ~13!

where we have used that

m\

2mc2
“•E5

1

2
\vAC . ~14!

With the constraint̂Pz&5^pz&50 imposed by the condition
~i! we obtain the energy eigenvalues

En
(s)5Fn1

1

2
~11s!G\uvACu,

n50,1,2, . . . . ~15!

These energies are independent of the classical orbit ce
but they depend on the revolution direction. Th
s-dependent set of degenerate states$ch,n

(s) %h defines the AC
analog of a Landau level (h is again the eigenvalue of th
quantum orbit center operator!. Note that the condition for
vanishing torque on the dipole puts an additional constra
on the stationary statesch,n

(s) , viz. that they must fulfill
]zch,n

(s) 50.

IV. PHYSICAL INTERPRETATION OF THE AC ANALOG

A. Relation to the AC duality

The physical origin of the AC analog may be understo
from the standard Landau effect using the AC duality@2#

qF↔ ml

c2e0

, ~16!

whereF is a magnetic flux andl is a uniform linear charge
density in the direction of the magnetic dipole. Consider
separation of the energies in Eq.~5! for fixed kz

DE5\
uqBu
m

. ~17!

The magnetic field can be expressed in terms of its fluxF as
B5F/S,S being the area~perpendicular to the magneti
field! through which the flux is measured. This leads to
7-2
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DE5\
uqF/Su

m
. ~18!

Thus, according to Eq.~16! the AC dual toDE is

DEAC5\
uml/Su

mc2e0

5\
umr0u

mc2e0

, ~19!

which is the Landau level separation in the AC case for fix
s. We have used thatr05l/S is a uniform volume charge
density with the direction ofl perpendicular toS.

B. Gauge symmetries

In the case of a charged particle interacting with an el
tromagnetic field, two distinct experimental setups canno
related by a gauge transformation. This is not so for the
interaction, where there exist different choices of physi
setups associated with the same physical effect. The b
reason for this fact is that the AC vector potential is direc
linked to physical quantities, viz. the electric fieldE and the
direction of the magnetic dipolen, in such a way that two
different pairs (n,E) and (n8,E8) may yield the sameBAC .

To explore this additional gauge symmetry in more det
let us consider the AC vector potentialAAC5c22

(2Ey ,Ex,0) for n5(0,0,1) andE5„Ex(x,y),Ey(x,y),0….
Any electric fieldE8 related to thisE by

Ex85Ex1]yx

Ey85Ey2]xx ~20!

defines the AC vector potential

AAC8 5AAC1“x ~21!

so thatBAC8 5BAC . In particular, with uniformBAC the Lan-
dau conditions are fulfilled for the atom moving in thex
2y plane also forE8 in Eq. ~20!, if Ez850,x5x(x,y), and
¹2x50.

In the Landau case withn5(0,0,1), it is in this context
instructive to consider a uniform volume charge densityr0
confined to regions with differently shapedx-y cross sec-
tions. Solving for a cylindrical shape yields the electric fie
E5@r0 /(2e0)#(x,y,0) in the interior of the cylinder. Herex
andy are measured relative to the symmetry axis of the c
inder, which we take to be thez axis. The corresponding
vector potential becomesAAC5@r0 /(2c2e0)#(2y,x,0).
This is the AC analog of symmetric gauge. On the oth
hand, within a uniformly charged plate of finite width in th
x direction, but infinite extension in they and z directions,
the electric field takes the formE5(r0 /e0)(x,0,0) with x
measured relative to one of the surfaces of the plate.
corresponding vector potential isAAC5@r0 /(c2e0)#(0,x,0).
This is the AC analog of Landau gauge. These two confi
rations yield identical AC Landau level energies and are
lated by the gauge functionx5@r0 /(2e0c2)#xy. Other
choices of gauge may be obtained by further changes of
shape of thex-y cross section.
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C. Supersymmetry

The dependence of the Landau energies on the revolu
direction in the AC case, divides the set of Landau levels i
two classes, each labeled by the value ofs. As we show
now, this may be understood in terms of supersymmetry@8#.

We start with reinterpretings as the eigenvalue of an
operatort and introduce the supercharge

Q5aACf †, ~22!

where @ f , f †#52t, f f †1 f †f 51, and f f 5 f †f †50. This
yields

H/~\vAC!5QQ†1Q†Q5aAC
† aAC1

1

2
~12@ f , f †# !.

~23!

Next we introduce the boson and fermion number opera

NB5aAC
† aAC

NF5
1

2
~11t!5

1

2
~12@ f , f †# !,

~24!

and the Fock space$unAC ,nF&% defined by the action of the
operatorsaAC, aAC

† , f , and f †,

aACunB ,nF&5AnBunB21,nF&,

aAC
† unB ,nF&5AnB11unB11,nF&,

f unB ,nF&5unB ,nF21&,

f †unB ,nF&5unB ,nF11&. ~25!

With the identificationsnB5n andnF5 1
2 (11s), a Lan-

dau level may be defined as a set$uh,nB ,nF&%h of extended
Fock states. Thus the lowest Landau level corresponds to
set$uh,0,0&%h , in which the number of bosons and fermion
both vanish. The states in this set are annihilated by
superchargeQ and its adjointQ† ~unbroken supersymmetry!,
and are therefore associated with zero energy. Higher le
nB.0 are obtained by repeated action ofaAC

† . The super-
symmetric partners correspond to the sets of Fock st
$$uh,nB,1&%h%nB

that contain one fermion. Each such set

obtained from the set$uh,nB11,0&%h under action ofQ.

V. CONCLUSIONS

An atomic analog of the Landau quantization based on
Aharonov-Casher~AC! effect has been discussed. The effe
is intimately related to the AC duality between the char
and magnetic moment. We have shown how symme
gauge and Landau gauge can be realized using two di
ently shaped distributions of charge. Finally, we have arg
that supersymmetry plays a role in that it makes the ze
point energy to vanish in the AC analog of the Landau effe
Further extension of the Landau quantization to other mu
pole moments should be of interest, the most importan
7-3
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which would be that of an electric dipole moving in a ma
netic field.

This work could be of interest for creating an atom
quantum Hall system that may be realized in a Bose-Eins
condensate. In the strong-interaction regime of such a
tem, the present result may provide a realization of the fr
tional quantum Hall effect using electric fields.

It should be kept in mind that a significant AC Landa
quantization requires extreme conditions. In order to achi
reasonable separation of Landau energies and sufficie
small magnetic lengthl AC a dense charge distribution
needed. For example, taking the energy level separa
DEAC;1026 eV, we needr0;1011 C/m3 that impliesl AC
;50 Å. In the case of a charged plate this corresponds
voltage of 1010 V for a plate of thickness 1mm. Clearly,
e
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a

these experimental parameters are very hard to ach
within present day technology, but may be realizable up
improving the energy resolution. Moreover, if we succeed
creating appropriate conditions it will still be challenging
distinguish the present effect from those associated with
charge-induced polarization of the atoms. Technical diffic
ties of this kind must be overcome before the effect can
studied in the laboratory.
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