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Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates
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We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical scenario
based on the standard boson coherent states. We compare such a picture with that of K. Nemotoet al. @Phys.
Rev. A 63, 013604~2001!# and show how our approach entails a simple formulation of the dimeric regime
therein studied. This allows us to recognize the parameters that govern the bifurcation mechanism causing
self-trapping, and paves the way to the construction of analytic solutions.
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I. INTRODUCTION

An increasing interest for the dynamics of coupl
bosonic wells@known in the literature as thedimer ~trimer!
model in case of a pair~triplet! of coupled wells# has been
prompted recently by the construction of devices wh
Bose-Einstein condensates~BEC! interact through the tun
neling effect~see@1# and references therein!. The theoretic
work focused on such models, both in the atomic-phys
community and in other areas of theoretical physics, has s
plied a large amount of results disclosing a quite structu
interwell dynamics.

The two-well model ~TWM!—used to represent two
coupled BECs in a symmetric double-well potential—h
been investigated within a picture based on the algebra s~2!
in Ref. @2#, where, after stemming the model from the man
body quantum theory of BECs, the initial state with t
atomic population self-trapped in one well is shown
evolve in delocalized oscillations involving both the wel
The same model has been studied previously in Ref.@3#,
both at the quantum level and from the point of view of t
dynamical system theory, to illustrate the level splitting th
characterizes the dimer spectrum as a manifestation of
orbit bifurcation in the dimer phase space.

The dynamics of the asymmetric TWM have been fac
in Ref. @4# within the mean-field formulation relative to th
p-phase oscillations as well as the self-trapping effect. T
latter was considered as well in Ref.@3# and therein inter-
preted as a symmetry breaking phenomenon.

More recently, the TWM~and itsS-well generalization!
has been related@5,6# to the Bose-Hubbard model@7# and the
ground states of the two-well system have been interprete
terms of superconducting/insulator regimes. In particular,
reformulation of the TWM in an effective single-boso
realization–generalizable to any S-well system—has b
shown to favor the use of the system symmetries as we
the recognition of the inner parameters controlling the occ
rence of doublets in the energy spectrum. Finally, the den
matrix formalism has been used in Ref.@8# to include in the
TWM mean-field picture the leading quantum corrections

In this paper we consider some recent results proving
existence of configurations with self-trapping within the d
namics of symmetric trimer~identical interwell couplings!.
These have been obtained in Ref.@9# by recasting the trimer
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Hamiltonian within a two-boson operators picture~intro-
duced in the sequel! that involves the algebra su~3!. Such a
picture is the extension of the dimer case@2# based on the
su~2! @the formal setup forS-well models involves@5,6# the
algebra su(S)#.

The main contribution of this paper is to apply to th
trimer an alternative approach that both reproduces the
sults of the su~3! picture and show how the dynamica
mechanism causing self-trapping not only depends on
tunneling amplitude but also from the system initial con
tions. Such an approach relies on a boson coherent state
mulation previously developed for both boson and spin
tice models@10# that seems to be very simple and effectiv
The symmetric trimer is described by Hamiltonian,

H5U(
i 51

3

ni
22vN2

1

2 (
i ,l

Ti l ~ai
†al 1al

† ai !,

with Ti l 5T, that one can derive from the many-body qua
tum theory of BECs through a three-mode expansion of
condensate field operator@9#. ParametersU, v, T, account
for the interatomic scattering, the external potential, and
tunneling amplitude, respectively;ni8ai

†ai count the bosons
in the i th well (N5S ini), while the destruction~creation!
operatorsai (ai

†) obey the canonical commutators@ai ,al
† #

5d i l . Preceding studies of the trimer dynamics have be
focused on the asymmetric case characterized by tun
ing amplitudesT12@T13,T23. Classically (aial

† 5al
† ai ,al

†

[al* ), the asymmetric trimer has revealed@11# the presence
of homoclinic chaos, while, at the quantum level, the s
vival of breather configurations@12# has been investigated o
the trimer viewed as the smallest possible closed chain.

II. CANONICAL FORM OF TRIMER DYNAMICS

If one derives the Heisenberg equations related toH for
the boson operatorsai , ai

† and implements the random
phase approximation in the equations for their expecta
values zi5^ai&, zi* 5^ai

†&, the resulting equations for th
three-well dynamics are (i 51,2,3)

i\ żj5~2Uuzj u22v1T/2!zj2T~z11z21z3!/2, ~1!
©2001 The American Physical Society01-1
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which entail S i uzi u2 as a conserved quantity replacing t
total boson numberN such that@N,H#50. The Hamiltonian
structure of the Heisenberg equations is inherited by Eq.~1!
that, in fact, are also obtained from

H~Z,Z* ![(
j 51

3

@~Uuzj u22v !uzj u22T~zj* zj 111c.c.!/2#,

by using the standard canonical brackets$zk* ,zj%5 idk j /\.
Another significant way to obtain Eq.~1! from H relies on

applying the time-dependent variational principle on a s
able trial stateuC&5eiuuZ& with Z5(z1 ,z2 , . . . ),wherezr ’s
are time-dependent complex parameters accounting for
system evolution~see Refs.@13,14#!. Performing the varia-
tion of ^Cu( i ] t2H)uC&50 furnishes a system of Hamil
tonian equations forZ5(z1 , . . . ,zr) and identifiesu with the
action of the system. If the trial state is defined as@10#

uC&5eiuuz1& ^ uz2& ^ uz3&, ~2!

whereuzi& are the standard bosonic coherent states that o
the defining equationai uzi&5zi uzi&, then Eq.~1! is recoverd
~up to the shift v→v1U) in which zi[^zi uai uzi&, zi*
[^zi uai

†uzi&, uzi u2[^zi uni uzi&, and du/dt is the Lagrangian
associated toH. In addition to describing the system evol
tion throughuC&, this approach also provides a natural w
to find the quantum configuration~in terms of states! corre-
sponding to the initial conditions of a given classical motio

III. su „3… FORM OF TRIMER DYNAMICS

In Ref. @9# the semiclassical treatment of the trimer d
namics was based on deriving the equations of motion
the expectation values of the two-boson operators form
the basis of su~3! instead ofai , ai

† . Such an algebra is gen
erated by the creation operatorse15a1

†a2 , e25a2
†a3 , e3

5a3
†a1, the destruction operatorse i

†5(e i)
†, i 51,2,3 and the

~so-called! Cartan operatorsh25(D22D3)/A3, h15D1,
where

D15
n12n2

2
, D25

n22n3

2
, D35

n32n1

2
. ~3!

By using imbalanceoperators~3!, the su~3! algebraic struc-
ture is specified by the commutators,

@e i ,e i
†#52Di , @e i ,e l #5« i l k ek

† , @D l ,e l #5e l ,

with i ,k,l P@1,3# (« i l k is the standard antisymmetric sym
bol!, together with

@e i ,D l #5e i /2, @e i ,e l
† #50,

for iÞl . Expressing HamiltonianH throughh1 andh2 one
finds

H52U~h1
21h2

2!2 f ~N!2
T

2
~e11e21e31H.c.!, ~4!
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with f (N)ªUN2/31vN, where the operatorN is a group
invariant, namely@N,g#50, ;gP su~3!. This implies that
@N,H#50. In this framework the Heisenberg equations a
easily carried out. If the random-phase approximation^AB&
[^A&^B& is also implemented Heisenberg’s equations
the su~3! generators take the form,

i ėk52~T14Uek! Dk1
T

4
«kil ~e i

†2e l
† !,

i ḣ15
T

4
@~2e12e32e2!2c.c.#, ~5!

i ḣ25
T

4
@A3~e32e2!2c.c.#,

where we have used the displacement operatorsD j for sim-
plifying the formulas. Notice that, in Eq.~5! the approxima-
tion ^AB1BA&[2^AB& has been repeatedly applied to b
linear terms, ande l , e l

† , h1 , h2 have been used in place o
their expectation valueŝe l &, ^e l

† &, ^h1&, ^h2&. A possible
integrable regime is achieved by setting

h150~⇔n1[n2!, e22e3
†50, e12e1

†50,

which leads to the reduced system of equations,

i ė15
T

2
~e2

†2e2!,

i ė25
T

2
~e22e1

†22D2!24U D2 e2 , ~6!

i ḣ25
T

2
@A3e2

†2c.c.#.

Their solutions have been calculated implicitly by geomet
arguments and reproduced numerically for various choice
initial conditions in Ref.@9#.

In the alternative solution scheme based on Eq.~1! the
above constraints reduce to impose the conditionz15z2.
This selects an integrable subdynamics. In fact, Eq.~1! be-
comes two:

i\ ż15~2Uuz1u22v !z12
T

2
~z11z3!,

i\ ż35~2Uuz3u22v !z32Tz1 , ~7!

where the two costants of motion corresponding to the
ergy and the total boson number~we setni[uzi u2)

E5U~2n1
21n3

2!2vN2Tn12T~z3* z11z1* z3!,

N52n11n3 ~8!

make Eq.~7! integrable.
1-2
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IV. DIMERLIKE REGIME AND SELF-TRAPPING ONSET

The dynamical behavior is obtained explicitly via a sta
dard quadrature procedure~see Refs.@4,13#! which furnishes
the phase-independent equation forD3,

Ḋ3
25

9

16
~4T2n1n32R2!, ~9!

by substituting Rª@E1vN1Tn12U(2n1
21n3

2)#

52T(z3* z11c.c.) inside the ~squared! equation Ḋ3
2

529T2@z3* z12c.c.#2/16 for D3. Introducing the further

constant of motionN to obtain Ḋ3
2 written in terms of the

unique variableD3 requires thatn1 andn2 are expressed a
n15(N22D3)/3 andn35(N14D3)/3. These, in turn, sub
stituted in Eq.~9! give the equation

Ḋ3
25

T2

4
~N22D3!~N14D3!2

9

16
R2~D3!, ~10!

for the imbalance variableD35(n32n1)/2, in which

R~D3![E1vN1
T

3
~N22D3!2

U

3
~N218D3

2!

5
2

3
$~A2D2!@T14U~A1D2!#2TN K~P!%

with

AªD3~0!, K~P!ª
1

2
@~a12!229a2#1/2cosD,

Pª(a,D), a52A/N, and Dªu3(0)2u1(0). The second
version ofR(D3) is obtained by writingE in terms of the
initial conditions D3(0), uk(0). Phasesu j are defined by
zk5Anke

iuk. Equation~10! can be cast in the dimensionle
form (dx/ds)2522Vt(x;P) with sªNUt and

Vt~x;P!ª
1

2
@~a2x!~a1x1t/2!2tK#2

2
t 2

2
~12x!~112x!,

wherexª2D3 /N (xP@21,1#), tªT/NU. In view of the
fact that both the squared term inVt ~namely R2) and
(dx/ds)2 are non-negative, the further condition (12x)(1
12x)>0 must be accounted for which implies the restr
tion of thex range to21/2<x<1.

The reduction of Eq.~7! to Eq. ~10! allows one to con-
struct explicit solutions in terms of elliptic functions by re
casting the quartic term via standard transformation meth
@15#. This will be enacted elsewhere. Operationally, o
goal–the description of bifurcation mechanism inherent
Eq. ~10!—can be achieved as well through the equival
01360
-

-

ds
r
n
t

potential problemE5 1
2 (dx/ds)21Vt(x;P) at E50, where

parametersN, K, and x(0) in Vt are fixed by setting the
initial conditions.

With negativet and a suitable choice of the other param
eters,Vt can exhibit an asymmetric double well. In gener
three solutions are obtained by annihilating

dVt

dx
52x31

3t

2
x21

1

4
@9t228bt~P!#x2

t

2
@t1bt~P!#,

whereb(t,P)ª(a1t/4)22t(K1t/16), that correspond to
a maximum ofVt(x;P) with two side minima.

In particular, settinga51 reproduces the conditions un
der which dynamics was studied in Ref.@9# @depleted twin
wells, that isn3(0)[1#, and leads to the potential,

Vt~x!5
1

2
~12x!2S x1

t

2
11D 2

2
t 2

2
~12x!~112x!,

whose maximum is such thatVt(xm)50 with xm50 when
t522/3. For t.22/3 one hasVt(xm).0. The important
feature thus emerging~see Fig. 1! is that, whenever the po
tential maximum is non-negative,Vt(x) generates two non
communicating basins withVt(x)<0 ~separated by a forbid
den interval whereVt.0) entailing two independen
oscillatory motions. In each basin the motion has a perio
character. This represents the bifurcation effect remines
of the behavior manifested by two-well dynamics@3,6#.

What we emphasize here, based on ourzj description, is
that the onset of separated motions can be caused by va
the other parameters of the problem. In particular, a h
sensitivity is manifested relative to the initial phases inc
porated inD. Suitable changes of the latter are capable
switching on the bifurcation mechanism even foraÞ1. Such
a situation is represented in Fig. 2 fora50.99 ~twin wells
almost empty! and t522/3, where various potential well
are generated by varying cosD in @21,1#. For sufficiently
low values of cosD the presence of the maximum is ensure
The ‘‘opposite’’ casea520.49 andt521/3 @corresponding

FIG. 1. By varyingt in @20.75,20.63# with a51, Vt(x,P)
generates a second~small! basin on the left~dashed potential cor-
responds tot.20.66).Vt andx are dimensionless quantities.
1-3
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to twin wells almost half-filled andn3(0).0# of Fig. 3 con-
firms the presence of isolated basins as well as the case
a more negative couplingt520.7,22/3 anda50.99.

Decreasing sufficiently the value oft by keeping the
same range for cosD entails situations where the potenti
wells never exhibit a local maximum responsible for the se
trapping. This can be proved analytically in the special c
t521 in which the potential becomes

Vt~x;P![
1

2
@~a21/4!21K2X2#22

9

16
1X2

with X5x21/4, and the stationary points can be calcula
explicitly. One finds a maximum atxm51/4 with Vt(xm)
,0 so that no bifurcation effect occurs. The side minima
placed atxr ,l 51/46@K211(a21/4)2#1/2. These are rea
providedK211(a21/4)2>0 namely if

cosD>@12~a21/4!2#/@~12a!~112a!#1/2.

For a generict, the maximum depends ona and D in a
complicated way that makes difficult the analytic calculati
of Vt(xm) and of its sign. Nevertheless, some necessary c
ditions ensuring its existence can be obtained explicitly.
suggested by Figs. 1–3, increasingD with both t and a

FIG. 2. By varyingD in @0,p# with a50.99,Vt(x,P) generates
a second~small! basin on the left~dashed potential corresponds
D.1.40).

FIG. 3. Representation of bifurcation mechanism by varyingD
P@0,p# in Vt(x,P) with a520.49, t521/3.
01360
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constant implies that the maximum atx5xm and the left
minimum at x5xl reach the~flex! point x5c for critical
value D[D* . Since the interval@xl ,xm# where dVt /dx
.0 vanishes forxl ,xm→c then

lim
D→D*

~dVt /dx!xl ,xm
505~d2Vt /dx2!c . ~11!

The derivation of the roots ofd2Vt /dx250, atx5c,

x65
t

4
$216@8~2a21at22Kt!/~3t2!25#1/2%,

from d2Vt /dx256x213tx22bt(P)19t2/4 allows one to
exploit the fact that the lowest one,x2 , is a maximum of
dVt /dx corresponding to theVt flex point atx5c. When

~dVt /dx!c[
8t

33/2utu
@bt~P!#3/22t~t11!>0 ~12!

becomes negative the maximum disappears~see, e.g., Figs.
1–3!. The bifurcation conditionVt(x).0 must be searched
within the parameter space domain wherea, D, t satisfy
formula ~12!.

V. CONCLUSIONS

Based on a variational technique developed previou
@10,5#, we have reformulated the dynamics of the boso
trimer in terms of the expectation valueszi andzi* of opera-
tors ai and ai

† , respectively~canonical description!. Such a
picture is quite simple and provides a useful alternative
the formulation based on the algebra su~3! of Ref. @9# when
one investigates the trimer dynamics. In particular, the
scription of dynamics viazi ’s @such coherent states’ labe
are introduced by state~2!# both allows one to relate quan
tum states to initial conditions of classical motions, and
stem in a direct way the integrable dimeric subregime
ready obtained within the su~3! description.

The main advantage entailed by the canonical descrip
becomes evident, in particular, when Eq.~7! are used to re-
duce the dimeric dynamics to a one-dimensional poten
problem via a systematic use of constant of motions. T
has allowed us to explore thoroughly~namely for initial con-
ditions a, D, and values oft chosen in a general way! the
self-trapping effect pointed out in Ref.@9# ~and therein stud-
ied for a particular choice of initail conditions! and to recog-
nize the general circumstances able to cause it. The cha
of D, for example, is shown to be sufficient to initiate th
appearence of separated periodic motions with the same
ergy.

If the analysis developed reproduces consistently the s
trapping of the pure dimer, it shows as well how the onse
the bifurcation effect is governed, in general, by the comp
interplay of all parametersa, D, t. These turn out to undergo
condition~12!. A complete study of trimer dynamics require
that one considers any possible initial condition for the d
namics and thus the situations in whichn1(0)Þn2(0), ex-
1-4
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cluded in the present paper. In this case the nonintegr
character of the system is expected to crop up in a dram
way. The systematic analysis of fixed points for the symm
ric three-well dynamics and the emergence of possible c
otic behavior close to the hyperbolic points is in progress
this moment. It will be discussed in a separate paper.
ox
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