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Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates
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We formulate the dynamics of three coupled Bose-Einstein condensates within a semiclassical scenario
based on the standard boson coherent states. We compare such a picture with that of K.etlenfRiys.
Rev. A63, 013604(2001)] and show how our approach entails a simple formulation of the dimeric regime
therein studied. This allows us to recognize the parameters that govern the bifurcation mechanism causing
self-trapping, and paves the way to the construction of analytic solutions.
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I. INTRODUCTION Hamiltonian within a two-boson operators pictutatro-
duced in the sequethat involves the algebra &). Such a
An increasing interest for the dynamics of coupledpicture is the extension of the dimer cgd&} based on the
bosonic wellgknown in the literature as theéimer (trimer) ~ su2) [the formal setup foSwell models involved5,6] the
model in case of a paitriplet) of coupled well§ has been algebra sug)].
prompted recently by the construction of devices where The main contribution of this paper is to apply to the
Bose-Einstein condensatéBEC) interact through the tun- trimer an alternative approach that both reproduces the re-
neling effect(see[1] and references therginThe theoretic ~Sults of the s(B) picture and show how the dynamical
work focused on such models, both in the atomic-physicgnechanism causing self-trapping not only depends on the
community and in other areas of theoretical physics, has sugtnneling amplitude but also from the system initial condi-
plied a large amount of results disclosing a quite structuredions. Such an approach relies on a boson coherent state for-
interwell dynamics. mulation previously developed for both boson and spin lat-
The two-well model (TWM)—used to represent two tice modeld10] that seems to be very simple and effective.
coupled BECs in a symmetric double-well potentia—hasThe symmetric trimer is described by Hamiltonian,
been investigated within a picture based on the algeh@ su
in Ref.[2], where, after stemming the model from the many- 3 1
body quantum theory of BECs, the initial state with the H=U>, niz_UN_E_E, T, (ala,+ala),
atomic population self-trapped in one well is shown to =1 1=
evolve in delocalized oscillations involving both the wells.
The same model has been studied previously in Raf. Wwith T; =T, that one can derive from the many-body quan-
both at the quantum level and from the point of view of thetum theory of BECs through a three-mode expansion of the
dynamical system theory, to illustrate the level splitting thatcondensate field operatf®]. ParametersJ, v, T, account
characterizes the dimer spectrum as a manifestation of tH@r the interatomic scattering, the external potential, and the
orbit bifurcation in the dimer phase space. tunneling amplitude, respectively;iafai count the bosons
The dynamics of the asymmetric TWM have been facedn the ith well (N=23;n;), while the destructior(creation
in Ref. [4] within the mean-field formulation relative to the operatorsa; (a/) obey the canonical commutatdia; ,a ]
m-phase oscillations as well as the self-trapping effect. The=¢, .. Preceding studies of the trimer dynamics have been
latter was considered as well in R¢B] and therein inter- focused on the asymmetric case characterized by tunnel-
preted as a symmetry breaking phenomenon. ing amplitudesT;,> T3, T,,. Classically @al=a’a;,a’
More recently, the TWM(and its Swell generalization  =a*), the asymmetric trimer has revealgd] the presence
has been relatei®,6] to the Bose-Hubbard modgf] and the  of homoclinic chaos, while, at the quantum level, the sur-
ground states of the two-well system have been interpreted iy a| of breather configuratiorfd 2] has been investigated on

reformulation of the TWM in an effective single-boson

realization—generalizable to any S-well system—has been

shown to favor the use of the system symmetries as well as !l CANONICAL FORM OF TRIMER DYNAMICS

the recognition of the inner parameters controlling the occur- ¢ 5ne derives the Heisenberg equations related ttor
rence of doublets in the energy spectrum. Finally, the densﬁyhe boson operatora, , ai’r and implements the random-

flr_1va\1/t|(/|lxr;oer;r:1a;|i:8 hflcstu?getﬂeuf:; dl|rr: R%]aﬁl']?:lggﬁéztfgﬁs phase approximation in the equations for their expectation
P 99 . valuesz=(a;), z*=(a]), the resulting equations for the

In this paper we consider some recent results proving th i /
existence of configurations with self-trapping within the dy_?nree—well dynamics are {-1,2,3)
namics of symmetric trime(identical interwell couplings )
These have been obtained in Réf] by recasting the trimer ifz;=(2U|z|*~v+T/2)zj—T(zy + 2+ 23)/2, (1)
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which entail3;|z|? as a conserved quantity replacing the with f(N):=UN?%/3+vN, where the operatoN is a group
total boson numbeN such thaf N,H]=0. The Hamiltonian invariant, namely{N,g]=0, Yge su3). This implies that
structure of the Heisenberg equations is inherited by(Eg. [N,H]=0. In this framework the Heisenberg equations are

that, in fact, are also obtained from easily carried out. If the random-phase approximatias)
=(A)(B) is also implemented Heisenberg’'s equations for
8 the sy3) generators take the form,

H(Z,Z*)E;l [(U]zj|>=v)|z|>~T(Z 711+ c.c)/2],

i T Tt

by using the standard canonical brackits ,z;} =i &; /7. =~ (THaUe) Dict gewre—e),

Another significant way to obtain E¢l) from H relies on
applying the time-dependent variational principle on a suit- LT
able trial statdW)=e'%|Z) with Z=(z,,2,, ... ),wherez’s |h1=Z[(251— €3~ €)—C.Cl, ®)
are time-dependent complex parameters accounting for the
system evolution(see Refs[13,14)). Performing the varia- T
tion of (‘lf|(|.at—H)|\If>=0 furnishes a system of Hamil- ihZZZ[\/§(63_ €,)—c.cl,
tonian equations faZ=(z4, . . . ,z,) and identifies with the

action of the system. If the trial state is defined 28] where we have used the displacement operalgréor sim-

Y plifying the formulas. Notice that, in E45) the approxima-
W) =€"lz))®|2;)®|z5). @ tion (AB+BA)=2(AB) has been repeatedly applied to bi-

where|z;) are the standard bosonic coherent states that obé{f!€ar terms, and, e/, hi, hy Pave been used in place of
the defining equatiom;|z)=z|z), then Eq.(1) is recoverd ~their expectation valuege,), (€,), (hy), (hy). A possible
(up to the shiftv—v+U) in which z=(z|a|z), z* integrable regime is achieved by setting

=(zlal|z), |z|?=(z|ni|z), andda/dt is the Lagrangian . ;

associated td{. In addition to describing the system evolu- h;=0(=n;=ny), €—-€=0, €—€=0,

tion through| W), this approach also provides a natural way
to find the quantum configuratiofin terms of statescorre-
sponding to the initial conditions of a given classical motion.

which leads to the reduced system of equations,

iflzi(fz_fz),
. su(3) FORM OF TRIMER DYNAMICS

In Ref. [9] the semiclassical treatment of the trimer dy-
namics was based on deriving the equations of motion for
the expectation values of the two-boson operators forming
the basis of s{B) instead ofa; , aiT. Such an algebra is gen- LT

- _ o ih,= =[3el—c.c].
erated by the creation operatoes=a a,, e;=ajaz, €3 279 2
=aja,, the destruction operatoe$ =(¢)", i=1,2,3 and the
(so-called Cartan operatorsh,=(D,—D3)/\/3, h;=D,,  Their solutions have been calculated implicitly by geometric
where arguments and reproduced numerically for various choice of
initial conditions in Ref[9].
N —n, N,—Ns Na—n, In the alternative solution spheme based on El(){.the
Dl:T’ DzzT, D3:T' (3 above constraints reduce to impose the conditgr z,.
This selects an integrable subdynamics. In fact, @g.be-
comes two:

T
i€;=5 (e~ €1-2D5)~4U Dy &5, (6)

By usingimbalanceoperatorg3), the su3) algebraic struc-
ture is specified by the commutators,

. T
ihzy=(2U|z3*~v)z1— 5 (21+ 23),
[€i.€/1=2D;, [e.e/]=2ier, [D,.e/]=¢,, 2

with i,k,/ e[1,3] (e, is the standard antisymmetric sym- ix L 2_ _
bol), together with ih23=(2U|2|"~v)z3— T2, @)
: where the two costants of motion corresponding to the en-
[€i.D/1=¢€l2, [e,€,]=0, ergy and the total boson numbgre setn;=|z|?)
;prdi # /. Expressing Hamiltoniakl throughh,; andh, one E=U2n2+nd) —uN-Tn—T(zz,+ 25 25),
inds
N:2n1+ N3 (8)

T
_ 2 12y L
H=2U(hi+h) —f(N) =5 (et etetHe), @ | e o itearable.
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IV. DIMERLIKE REGIME AND SELF-TRAPPING ONSET

The dynamical behavior is obtained explicitly via a stan-
dard quadrature procedufgee Refs[4,13]) which furnishes
the phase-independent equation by,

. 9
D§=1—6(4T2n1n3—R2), 9)
by substituting  R:=[E+uvN+Tn;—U(2n?+n3)]
=-T(z{z;+c.c.) inside the (squared equation D3
=—-9T9zz,—c.c]?/16 for Ds. Introducing the further

constant of motiorN to obtainD3 written in terms of the
unique variableD ; requires thah, andn, are expressed as
n,=(N—2D3)/3 andn;=(N+4D3)/3. These, in turn, sub-
stituted in Eq.(9) give the equation

2

9
2 (N—2D3)(N+4D3)— 1_6R2(D3)’

D3= (10)

for the imbalance variabl® ;= (nz—n;)/2, in which

T U 9
R(D3)=E+uvN+ §(N—2D3)— §(N2+8D3)

g{(A— D,)[T+4U(A+D,)]-TNK(P)}

with

1
A:=D3(0), K(P): E[(a+2)2—9a2]1’2cosA,

P:=(a,A), a=2A/N, and A:=65(0)—6,(0). The second
version ofR(D3) is obtained by writingE in terms of the
initial conditions D5(0), 6,(0). Phasest; are defined by
7= Jne'%. Equation(10) can be cast in the dimensionless
form (dx/ds)?= —2V (x;P) with s:=NUt and

V(X P):

1
sl@=x)(atx+r/2) = 7K]?

72
- 7(1—x)(1+ 2X),

wherex:=2D3;/N (xe[—1,1]), =:=T/NU. In view of the
fact that both the squared term M. (namely R?) and
(dx/ds)? are non-negative, the further condition{%)(1
+2Xx)=0 must be accounted for which implies the restric-
tion of thex range to— 1/2=x<1.

The reduction of Eq(7) to Eq. (10) allows one to con-
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FIG. 1. By varyingr in [ —0.75~0.63] with a=1, V (x,P)
generates a secoridmal) basin on the lef{dashed potential cor-
responds tar=—0.66).V, andx are dimensionless quantities.

potential problem€= %(dx/ds)?+ V. (x;P) at £=0, where
parametersN, K, and x(0) in V, are fixed by setting the
initial conditions.

With negativer and a suitable choice of the other param-
eters,V, can exhibit an asymmetric double well. In general,
three solutions are obtained by annihilating

dv,

dx

37

—9y3
2x+2

1 T
X2+ Z[972-8B,(P)Ix— 5[ 7+ B(P)],

where B(r,P) :=(a+ 7/4)>— (K + 7/16), that correspond to
a maximum ofV (x;P) with two side minima.

In particular, settinga=1 reproduces the conditions un-
der which dynamics was studied in R§®] [depleted twin
wells, that isn3(0)=1], and leads to the potential,

2

2

+ 14
X 2

VT(><)=%(1—X)2 3 (1=X)(1+2x),

whose maximum is such that,(x,)=0 with x,,=0 when
7=—2/3. For > —2/3 one hasV (x,)>0. The important
feature thus emergingsee Fig. 1is that, whenever the po-
tential maximum is non-negativ®,.(x) generates two non-
communicating basins witll (x) <0 (separated by a forbid-
den interval whereV >0) entailing two independent
oscillatory motions. In each basin the motion has a periodic
character. This represents the bifurcation effect reminescent
of the behavior manifested by two-well dynam|&6].

What we emphasize here, based on pudescription, is
that the onset of separated motions can be caused by varying
the other parameters of the problem. In particular, a high
sensitivity is manifested relative to the initial phases incor-
porated inA. Suitable changes of the latter are capable of
switching on the bifurcation mechanism evendgt 1. Such

struct explicit solutions in terms of elliptic functions by re- a situation is represented in Fig. 2 far=0.99 (twin wells
casting the quartic term via standard transformation methodalmost empty and 7= —2/3, where various potential wells
[15]. This will be enacted elsewhere. Operationally, ourare generated by varying casin [ —1,1]. For sufficiently
goal—the description of bifurcation mechanism inherent inlow values of coa the presence of the maximum is ensured.
Eq. (10—can be achieved as well through the equivalentThe “opposite” casea= —0.49 andr= — 1/3[corresponding
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constant implies that the maximum atx,, and the left
minimum atx=x, reach the(flex) point x=c for critical
value A=A*. Since the intervalx,,x,,] where dV,/dx
>0 vanishes fox, ,x,,— ¢ then

V(x.P)
lim (dV,/dx), ,Xm=o=(d2v,/dx2)c. (11

~0.05 A—A*

The derivation of the roots af?V_/dx*=0, atx=c,

X, =7 {~1+[8(2a%+ar—2K)/(37) 5],

from d?V,/dx?=6x2+37x—28,(P)+97%/4 allows one to
exploit the fact that the lowest ong, , is a maximum of
dV,/dx corresponding to th¥ . flex point atx=c. When

FIG. 2. By varyingA in [0,7] with a=0.99,V .(x,P) generates
a secondsmal) basin on the leffdashed potential corresponds to
A=1.40).

to twin wells almost half-filled andi;(0)=0] of Fig. 3 con- T .
firms the presence of isolated basins as well as the case with (dVr/dX)c533,—2||[ﬁT(P)] -7(r+1)=0 (12
a more negative coupling=—0.7<-2/3 anda=0.99. T

Decreasing sufficiently the value of by keeping the

o - becomes negative the maximum disappdae®, e.g., Figs.
same range for cas entails situations where the potential 1-3. The bifurcation condition/.(x)>0 must be searched
wells never exhibit a local maximum responsible for the self- 4

trapping. This can be proved analytically in the special cas%:rmzlﬂizf arameter space domain whexed, r satisfy

7=—1 in which the potential becomes

! ° V. CONCLUSIONS
VAx;P)=S[(a— 142+ K—X?P— —+X?
2 16 Based on a variational technique developed previously

with X=x—1/4, and the stationary points can be calculate 10,9, we have reformulated the dynamics of the bosonic

explicitly. One finds a maximum at,=1/4 with V (x,,) rimer in terr?s of the e_xpectation _valuasano_lzi*_ of opera-
<0 so that no bifurcation effect occurs. The side minima ard®rS & anda; , respectively(canonical description Such a
placed atxr/=1/4i[K—1+(a—1/4)2]1’2. These are real Picture is qqlte simple and provides a useful alternative to
providedK — 1+ (a— 1/4)2=0 namely if the fprmulgtlon based on the algeb_re(i-éuof Ref_. [9] when
one investigates the trimer dynamics. In particular, the de-
cosA=[1—(a—1/4?]/[(1—a)(1+2a)]2 scription of dynamics via;’s [such coherent states’ labels
are introduced by stat€)] both allows one to relate quan-

For a genericr, the maximum depends amandA ina  tum states to initial conditions of classical motions, and to
complicated way that makes difficult the analytic calculationstem in a direct way the integrable dimeric subregime al-
of V,(xn,) and of its sign. Nevertheless, some necessary coneady obtained within the $8) description.
ditions ensuring its existence can be obtained explicitly. As The main advantage entailed by the canonical description
suggested by Figs. 1-3, increasidgwith both 7 anda  becomes evident, in particular, when E@) are used to re-
duce the dimeric dynamics to a one-dimensional potential
problem via a systematic use of constant of motions. This
has allowed us to explore thoroughlyamely for initial con-
ditions a, A, and values ofr chosen in a general wayhe
self-trapping effect pointed out in R€®] (and therein stud-
ied for a particular choice of initail conditiophand to recog-
nize the general circumstances able to cause it. The change
of A, for example, is shown to be sufficient to initiate the
appearence of separated periodic motions with the same en-
ergy.

If the analysis developed reproduces consistently the self-
trapping of the pure dimer, it shows as well how the onset of
the bifurcation effect is governed, in general, by the complex
interplay of all parameters, A, 7. These turn out to undergo
condition(12). A complete study of trimer dynamics requires

FIG. 3. Representation of bifurcation mechanism by varying that one considers any possible initial condition for the dy-
e[0,7] in V(x,P) with a=—0.49, r=—1/3. namics and thus the situations in whiok(0)#n,(0), ex-
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cluded in the present paper. In this case the nonintegrable ACKNOWLEDGMENTS
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