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Quantum revivals in periodically driven systems close to nonlinear resonances
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We calculate the quantum revival time for a wave packet initially well localized in a one-dimensional
potential in the presence of an external periodic modulating field. The dependence of the revival time on
various parameters of the driven system is shown analytically. As an example of an application of our ap-
proach, we compare the analytically obtained values of the revival time for various modulation strengths with
the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good
agreement.
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In nature, interference phenomena lead to recurren
@1,2#. In the quantum-mechanical evolution, for instance,
terference plays a crucial role and manifests itself in qu
tum recurrences@3#. A quantum wave packet spreads all ov
the available space after a few classical periods follow
wave mechanics and collapses. However, due to quan
dynamics, it rebuilds itself after a certain evolution time th
is larger than the classical period. In one-dimensional s
tems, this phenomenon has been well studied and is kn
as quantum revivals and fractional revivals@4–9#. In higher-
dimensional systems, which exhibit classical and quan
chaos, this phenomenon has been numerically observed
lier @10–14#. In particular, the quantum revivals occurring
driven gravitational cavities@15,16# have been investigate
analytically and numerically.

In this paper, we provide a general analytical prescript
to the revival phenomenon occurring in any periodica
driven time-dependent systems close to a quantum nonli
resonance. By using semiclassical secular theory@17–19#,
we derive a simple relation that allows us to calculate
quantum revival time in the presence of the external perio
modulation. For the sake of concreteness, we apply our g
eral result to the dynamics of atoms in a modulated grav
tional cavity @20#, which is accessible to laboratory expe
ments @21#. Hence, we argue that dynamical revivals a
generic to all periodically driven explicitly time-depende
systems, as far as resonances prevail.

Let us consider a one-dimensional system driven by
external periodic field. In order to calculate its quasiener
we consider the nonlinear resonances of the time-depen
system@17,18#. We denote the eigenstates and eigenvalue
the corresponding time-independent system byun& and En ,
respectively, so thatH0un&5Enun&, whereH0 is the unper-
turbed Hamiltonian. We consider the evolution of a wa
packet in an arbitrary one-dimensional potential in the pr
ence of an external periodic field. The Hamiltonian of t
driven system in dimensionless form may be expressed
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H5H01lV~x!sint, ~1!

wherel is the dimensionless modulation strength andV(x)
defines the coupling.

In order to study the quantum nonlinear resonances of
system, we make the ansatz@17,18# that the solution of the
Schrödinger equation corresponding to the Hamiltonian~1!
may be written in the form

uc~ t !&5(
n

Cn~ t !un&expH 2 i FEr1~n2r !
k-

N
G t

k-
J , ~2!

wherek- denotes the effective Planck’s constant, andEr is the
average energy of the wave packet in theNth resonance.

We substitute Eq.~2! into the Schro¨dinger equation and
project the state vector̂mu onto the result. This leads to

ik- Ċm5FEm2Er1~m2r !
k-

N
GCm~ t !1

l

2i (n
Vm,n

3@ei ~n2m1N!t/N2ei ~n2m2N!t/N#Cn~ t !, ~3!

whereVn,m5^nuV(x)um& are the matrix elements ofV(x).
In Eq. ~3!, we drop the fast oscillating terms and keep on
the resonant ones, that is,n5m6N. Moreover, for largem,
we may take@16,17# Vm,m1N'Vm,m2N5V. Hence, Eq.~3!
reduces to

ik- Ċm5FEm2Er1~m2r !
k-

N
GCm~ t !1

lV

2i
~Cm1N2Cm2N!.

~4!

In view of the slow dependence of the energyEm on the
quantum numberm around the initially excited levelr in a
nonlinear resonance, we expand the energyEm up to second
order. Hence, the equation of motion for the probability a
plitude Cm takes the form

ik- Ċm5~m2r !S Er82
k-

N
DCm1

1

2
~m2r !2Er9Cm

1
lV

2i
~Cm1N2Cm2N!. ~5!
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For the exact resonance caseEr85k- /N, and as a result, the
first term on the right-hand side vanishes. We may write t
equation in angle representation by introducing the Fou
representation ofCm as

Cm5
1

2p E
0

2p

g~w!e2 i ~m2r !wdw

5
1

2Np E
0

2Np

g~u!e2 i ~m2r !u/Ndu. ~6!

This particular choice of the Fourier representation ofCm

yields a Schro¨dinger-like equation,ik- ġ(u, t)5Hg(u, t),
where the HamiltonianH~u! reads

H~u!52
N2Er9

2

]2

]u2 1lV sin~u!, ~7!

and is independent of time. To obtain this equation, we h
assumed that the functiong(u, t) has a 2Np periodicity inu
coordinate.

Due to the time-independent behavior ofH(u), we can
write the time evolution ofg as g(u, t)5g̃(u)e2 iEt/k- . On
substituting this representation in the equation of motion
g(u, t), we are left with rather simple equation,

F2
N2Er9

2

]2

]u2 2 E1lV sin~u!G g̃~u!50. ~8!

With the change of variableu52z1p/2, we may reduce it
to the standard Mathieu equation

F ]2

]z2 1a22q cos~2z!G g̃~z!50. ~9!

Here, a58E/N2Er9 , q54lV/N2Er9 , and g̃(w) is a
p-periodic function.

Through this procedure, we have mapped our initially u
solvable time-dependent Schro¨dinger equation onto the
known Mathieu equation@17,18# under the assumption o
exact resonance. The Floquet solution of the Mathieu eq
tion @19# may be written asg̃n(z)5eiznPn(z), wherePn are
the Mathieu functions@22#. Since we require ap periodicity
of g̃, we are forced to take only the even values of the ind
i.e., n52k/N.

Hence, the Floquet quasienergy eigenvectors@19# may be
written as

uck~ t !&5eiEkt/ k2uuk~ t !&, ~10!

whereEk and uuk(t)& are defined as

Ek[
N2Er9

8
an~q!, ~11!

uuk~ t !&[
1

2p (
n

eint/NE
0

2p

dweinNw/2e2 i ~n2r !w/2Pn~k!un&.

~12!
01340
is
r

e

r

-

a-

,

In this way, we have obtained an approximate solution fo
nonlinear resonance of our explicitly time-dependent syst

In order to check the correctness of our result, we fi
consider the case of zero modulation strength, that isl50,
for which q50. The corresponding value for the Mathie
characteristic parameter becomesan(n)(q50)54(n
2r )2/N2. This reduces the quasienergy given in Eq.~11! to

Ek~q50!5
Er9

2
k2, ~13!

which is indeed the energy of the unmodulated system
panded aroundn5r for the exact resonance case. This
obtained by consideringk5n2r , and therefore we may ex
pressnn(q50)52(n2r )/N.

The eigenfunctions given in Eq.~10! form a complete set
of basis vectors. Therefore, we may write the propaga
wave packet at any later time in terms of the quasiene
eigenstates, such that

uc~ t !&5(
n

jne2 iEnt/k- uun~ t !&, ~14!

wherejn describes the probability amplitude in thenth state.
In order to investigate the dynamical revivals, we calc

late the autocorrelation function between the initially excit
wave packet and the wave packetuc(t)& after a certain evo-
lution time t, i.e.,

^c~0!uc~ t !&5(
n

ujnu2e2 iEnt/k- . ~15!

We take into account that the wave packet is initially ce
tered aroundn5r in the energy representation. Therefore,
expanding the quasienergy of the system around the reso
level r, we may write

^c~0!uc~ t !&5(
n

ujnu2 exp$2 i @v~0!1~n2r !v~1!

1~n2r !2v~2!1¯#t%, ~16!

wherev ( j )[( j !k- )21En
( j )un5r andEn

( j )un5r denotes thej th de-
rivative of En with respect ton, calculated atn5r .

We then compare the autocorrelation function for t
driven system, as given in Eq.~16!, with the autocorrelation
function for the corresponding one-dimensional unperturb
system@5,15#. This comparison helps us to identify the cla
sical period for the driven system as

Tcl[
2p

v~1! 5
2pk-

En
~1!un5r

, ~17!

and the quantum revival time as

Tl[
2p

v~2! 5
4pk-

En
~2!un5r

. ~18!
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Let us now consider the case of small perturbations,
l!1. Under this condition, we may use the expansion
the Mathieu characteristic parameteran @22# only up to sec-
ond order inq. Equation~11! then becomes

En5
Er9

8 S nn
21

q2

2

1

nn
221D 1O~q4!, ~19!

and remove an expression for the revival time in the driv
system may be derived from Eqs.~18! and ~19!.

In general, the initially excited wave packet is away fro
the center of the resonance and the conditionEr85k- /N is not
satisfied. For the sake of clarity, in the above discussion,
have only considered the case of the exact resonance. H
ever, taking into account the nonresonant situation, the
vival time for a time-dependent system may be calculated
the general case and reads@15#

Tl5T0F12
1

2 S lV

Er9
D 2S 2

ND 4 3n r
211

~n r
221!3G . ~20!

Here, T054pk- /Er9 denotes the revival time of the initia
wave packet in the undriven potential and the indexnn is
defined as

nn5
2

N
~n2r !1

2~Er82k- /N!

NEr9
, ~21!

where the second term on the right-hand side is due to
nonresonant condition. Substituting in Eq.~20! the value of
nn calculated atn5r from Eq. ~21!, we obtain the genera
expression for the quantum revival time in a periodica
driven system as

Tl5T0F12
1

2 S lV

Er9
D 2 3m21N2/4

~m22N2/4!3G , ~22!

where m5(Er82k- /N)/Er9 . Equation ~22! constitutes our
main result: It expresses the modification of the quant
revival time in the presence of an external periodic drivi
field as a function of the modulation strengthl and of the
other characteristic parameters of the system.

The present approach is valid for small modulati
strengths. In the weak binding potentials, for which the le
spacing decreases as we increase the quantum numbe
nonlinear resonances disappear after small modulations
observed numerically for a gravitational cavity@23,24# and
also for the hydrogen atom. As a consequence, this techn
is reasonably good for these kind of potentials. For tig
binding potentials, for which the level spacing increases
we go up in the energy, we find nonlinear resonances
higher modulation as well. In this kind of potential we ne
to consider higher-order terms in the expansion of
Mathieu characteristic parameter in order to correctly cal
late the recurrence time.

As an application of our method, we consider the dyna
ics of atoms in a gravitational cavity@20# in the presence o
01340
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an external periodic field@25,26#. In this case, the atom
move in a potentialx1V0e2kx, where the linear term is due
to the gravitational potential and the exponential term com
from the evanescent-wave field that may be obtained by t
internal reflection of a laser light field on the surface of
glass prism@20,21,27–30#. In the approximation of a trian-
gular well potential, the coupling constant for theNth reso-
nance is given by

V[^muxum6N&52
2Em

N2p2@17N/6m1O~m22!#2 ,

~23!

which in the limit of largem becomesV>22EN /N2p2.
Substituting this expression into Eq.~22!, it is possible to
calculate the time of revival for a wave packet initially e
cited with average energyEr around theNth resonance,
which reads

Tl5T0H 12
1

8 S l

Er
D 2 3~12a!21b2

@~12a!22b2#3J , ~24!

wherea[(EN /Er)
1/2 andb[a2k- /4Er . If the initial energy

is large enough, that isEr@1, we may neglectb2 with re-
spect to (12a)2 in Eq. ~24!, obtaining the simpler formula

Tl5T0F12
3

8 S l

Er
D 2 1

~12a!4G . ~25!

This expression allows us to compare the analytically cal
lated revival time with the numerically computed ones.

FIG. 1. Comparison between the numerically computed ra
Tl /T0 for two different initial conditions,Er5104.1 ~solid line
with circles! andEr570.28 ~solid line with squares!, and the cor-
responding@Eq. ~25!# analytical results~dashed lines! in the case of
an atom bouncing in a modulated gravitational cavity. The ot

parameters arek- 51, V051, andk51.
1-3
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In the example considered above, one may prepare a w
packet by trapping and cooling cesium atoms in a magn
optical trap ~MOT! @19,20,26#. The wave packet may b
placed at~or close to! the Nth resonance by accurately co
trolling the position of the center of the MOT where the ato
is localized and giving the atom some velocity using anot
laser. In laboratory experiments, the driving frequency m
be changed from 0 to 2 MHz@21#. Hence, if we select a
frequencyv52p30.93 kHz out of this domain, for cesium
atoms of massM52.2310225kg, the dimensionless Plank’
constant isk- 51. Moreover, with an effective Rabi frequenc
Veff52p33.72 kHz and a potential steepness equal to 0
mm21, we haveV51 andk51. In our numerical calcula-
tions we use these values of the dimensionless paramete
order to estimate the quantum recurrence time, in the
merical simulations we have placed the atomic wave pac
above the atomic mirror atx0529.8mm, for which Er
5104.1, andx0520.1mm, for whichEr570.28.

Our numerical results show a complete qualitative a
quantitative agreement with the analytical results. In fa
from Eq.~25! we learn that~i! the revival time changes qua
dratically as a function of the strengthl of the external
modulation field, and~ii ! the revival time depends inverse
on the square of the initial average energy of the wa
packet. Our numerical investigation confirms both these a
lytical results.

In Fig. 1, we compare the quantum revival times calc
lated from Eq.~25! ~dashed lines! with those obtained nu
merically~solid lines! for an atomic wave packet bouncing
a modulated gravitational cavity. We see from the numer
data that the revival time displays a quadratic dependenc
ev

A
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the strengthl of the external modulation. Moreover, th
change in the revival time is just about 8% forl ranging
from 0 to 0.25 when the initial average energyEr5104.1,
~solid line with circles!, whereas it increases to almost 40
for the same range ofl when the initial average energyEr

570.28 ~solid line with squares!, in agreement with the in-
verse square dependence ofTl on Er .

In summary, we have presented a general approach to
investigation of the phenomenon of quantum revivals in
certain class of periodically driven systems. We have deri
a simple relation that provides the quantum revival time a
function of the modulation strength. We have finally appli
our theory to the case of the revival time arising in the d
namics of atoms bouncing in a modulated gravitational c
ity, obtaining an excellent agreement with the exact num
cal data. For the set of parameters that we have used in
calculations, a modulated gravitational cavity may be re
ized within the framework of presently available technolo
@15#. We strongly suggest an experiment, designed with
help of these parameters, to test our prediction of the qu
tum recurrences in the driven gravitational cavity.
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