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Quantum revivals in periodically driven systems close to nonlinear resonances
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We calculate the quantum revival time for a wave packet initially well localized in a one-dimensional
potential in the presence of an external periodic modulating field. The dependence of the revival time on
various parameters of the driven system is shown analytically. As an example of an application of our ap-
proach, we compare the analytically obtained values of the revival time for various modulation strengths with
the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good

agreement.
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In nature, interference phenomena lead to recurrences H=Hy+\V(x)sint, )

[1,2]. In the quantum-mechanical evolution, for instance, in-

terference plays a crucial role and manifests itself in quanwhereh is the dimensionless modulation strength af(c)

tum recurrencefS]. A quantum wave packet spreads all over defines the coupling. _

the available space after a few classical periods following N order to study the quantum nonlinear resonances of the

wave mechanics and collapses. However, due to quantu@’sht?cg?' we make the anse[ﬂz?,lzﬂ_ that thﬁ sﬂutiqr of the
dynamics, it rebuilds itself after a certain evolution time that chralinger equation corresponding to the Hamiltonid

is larger than the classical period. In one-dimensional Sysr_nay be written in the form

tems, this phenomenon has been well studied and is known

as quantum revivals and fractional revivids-9]. In higher- ly(t))=>, Cp(t)|n)exp —i
dimensional systems, which exhibit classical and quantum n

ghaos, this phenomenon has been numerllcally obser.ved. e%\r/herek denotes the effective Planck’s constant, &nds the
lier [10—14. In particular, the quantum revivals occurring in

: L S . . average energy of the wave packet in fin resonance.
drlven. gravitational cay|t|e$15,16 have been investigated We substitute Eq(2) into the Schidinger equation and
analytically and numerically.

: ) . . rProject the state vectdm| onto the result. This leads to
In this paper, we provide a general analytical prescriptio

to the revival phenomenon occurring in any periodically .
driven time-dependent systems close to a quantum nonlinear  1RCy=
resonance. By using semiclassical secular théif~19,
we derive a simple relation that allows us to calculate the X [l (N=mTNUN_ gi(n=m=NUNJC (1), (3)
guantum revival time in the presence of the external periodic .
modulation. For the sake of concreteness, we apply our ger\(\_/herevn,mz(n|V(x)|m> are the matrix elements 6/(x).
eral result to the dynamics of atoms in a modulated gravita1n Eq. (3), we drop the f?St oscillating terms and keep only
tional cavity[20], which is accessible to laboratory experi- the resonant ones, that is=m=N. Moreover, for largem,
ments[21]. Hence, we argue that dynamical revivals areVe may take[16,17 Vinmi N~ Vimm-n=V. Hence, Eq(3)
. o : A reduces to

generic to all periodically driven explicitly time-dependent
systems, as far as resonances prevail. )

Let us consider a one-dimensional system driven by ankC,=
external periodic field. In order to calculate its quasienergy, 4
we consider the nonlinear resonances of the time-dependent
system17,18. We denote the eigenstates and eigenvalues ah view of the slow dependence of the enery, on the
the corresponding time-independent system|jyand E,, guantum numbem around the initially excited level in a
respectively, so thaltiy|n)=E,|n), whereH, is the unper- nonlinear resonance, we expand the en&gyup to second
turbed Hamiltonian. We consider the evolution of a waveorder. Hence, the equation of motion for the probability am-
packet in an arbitrary one-dimensional potential in the presplitude C,, takes the form
ence of an external periodic field. The Hamiltonian of the
driven system in dimensionless form may be expressed as

kit
Eﬁ(”‘”ﬁk], (2

k A
En— Bt (M=1)G|Cr()+ 57 2 Vimy

kK AV
Em— Er+(m_r)ﬁ Cm(t) + j(cmﬁ—N_Cm—N)-

1
Cmt+ =(m—r)%E/C,

N 2

. K
|ka=(m—r)<E;——

*Email: address: farhan@qau.edu.pk AV
+ — — .
TEmail address: mauro@camcat.unicam.it 2i (Cmin=Crm-n) )

1050-2947/2001/64)/0134015)/$20.00 65013401-1 ©2001 The American Physical Society



FARHAN SAIF AND MAURO FORTUNATO PHYSICAL REVIEW A65 013401

For the exact resonance casg=k/N, and as a result, the [n this way, we have obtained an approximate solution for a
first term on the right-hand side vanishes. We may write thigionlinear resonance of our explicitly time-dependent system.
equation in angle representation by introducing the Fourier [N order to check the correctness of our result, we first

representation of,, as consider the case of zero modulation strength, that=,
for which q=0. The corresponding value for the Mathieu
1 (2= imer)e characteristic  parameter becomes,,)(q=0)=4(n
Cn=5- o g(e)e de —r)2/N?. This reduces the quasienergy given in Exf) to
1 2Nm —i(m—r)6/N & 0 E:’, k2 13
=ong ), 90e do. (6) (q=0)= 7K, (13
This particular choice of the Fourier representationGyf  which is indeed the energy of the unmodulated system ex-
yields a Schidinger-like equation,ikg(6, t)="Hg(6, t),  Panded around=r for the exact resonance case. This is
where the HamiltoniarH(6) reads obtained by considering=n—r, and therefore we may ex-
pressv,(q=0)=2(n—r)/N.
N2E] 42 ) The eigenfunctions given in EGL0) form a complete set
H(O)=— TWH\V sin(#), () of basis vectors. Therefore, we may write the propagated

wave packet at any later time in terms of the quasienergy
and is independent of time. To obtain this equation, we hav€igenstates, such that
assumed that the functi@{( 6, t) has a N periodicity in ¢
coordinate. _ —i&t/k
. . . t)= e nflun(t)), 14
Due to the time-independent behavior B{6), we can [¥(V) En: n [un(V)) (149
write the time evolution ofg as g(6, t)=G(#)e &k, On

substituting this representation in the equation of motion fowhereé, describes the probability amplitude in thth state.
g(6, t), we are left with rather simple equation, In order to investigate the dynamical revivals, we calcu-

late the autocorrelation function between the initially excited

N2E; 42 . 5 wave packet and the wave packe{t)) after a certain evo-
5 52— EHAVsIn()[G(6)=0. (8 lution timet, i.e.,
With the change of variablé=2z+ 7/2, we may reduce it 0 t)) = 2 —iEt/K 15
to the standard Mathieu equation ((O)¥(V) 2 &% ' 19

aZ
-7 +a—2qcog2z)

We take into account that the wave packet is initially cen-
tered arounch=r in the energy representation. Therefore, by
expanding the quasienergy of the system around the resonant
Here, a=8&/N%E), q=4AVIN’E/, and Q(¢) is a levelr, we may write
m-periodic function.

Through this procedure, we have mapped our initially un-

9(2)=0. ©)

X - 2 i[O _ 1
solvable time-dependent Schlinger equation onto the (l/f(0)|¢(t)>—§n: a2 exp{—i[0®+(n—1)o™
known Mathieu equatiol17,18 under the assumption of
exact resonance. The Floquet solution of the Mathieu equa- +(n—r)2w@+--t}, (16)

tion [19] may be written ag,(z) =e'?"P,(z), whereP,, are
the Mathieu function$22]. Since we require a periodicity — wherewW=(j!k) "], _, and&W|,_, denotes théth de-
of §, we are forced to take only the even values of the indexyivative of &, with respect ton, calculated ah=r.

i.e., v=2k/N. _ _ We then compare the autocorrelation function for the
Hence, the Floquet quasienergy eigenvect® may be  driven system, as given in E(L6), with the autocorrelation
written as function for the corresponding one-dimensional unperturbed

ek system[5,15]. This comparison helps us to identify the clas-
[ (1)) =€ u (1)), (100 sical period for the driven system as
where&, and|u,(t)) are defined as o 2K
” T |E D ’ (17)
N2EI’ ¢ w(l g#wl)|n:r

5kE 8 av(q)l (11)
and the quantum revival time as

1 ) 2m : .
|Uk(t)>52—2 e|nt/Nf nge'VN‘P/ZG_I(n_r)‘pQPV(k)ln>. 2 A7k
T n 0 T\=

(12) I, (18
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Let us now consider the case of small perturbations, i.e.an external periodic field25,26. In this case, the atoms
A<<1. Under this condition, we may use the expansion formove in a potentiak+Vye™ “*, where the linear term is due
the Mathieu characteristic parametgr[22] only up to sec- to the gravitational potential and the exponential term comes
ond order ing. Equation(11) then becomes from the evanescent-wave field that may be obtained by total

internal reflection of a laser light field on the surface of a
E/ q> 1 . glass prism20,21,27-30 In the approximation of a trian-
gnzg( Vnt > ;2__1) +0(9%), (19 gular well potential, the coupling constant for theh reso-
" nance is given by

and remove an expression for the revival time in the driven oE

system may be derived from Eqd.8) and(19). V=(m[x|m=N)= — ——— m S
In general, the initially excited wave packet is away from N1+ N/6m+0O(m™~°)]

the center of the resonance and the condiEpr k/N is not

satisfied. For the sake of clarity, in the above discussion, W& hich in the limit of largem becomesvz—ZEN/Nzwz.

have only considered the case of the exact resonance. HO‘%’ubstituting this expression into E€2), it is possible to

ever, taking into account the nonresonant situation, the lCalculate the time of revival for a wave packet initially ex-

vival time for a time-dependent system may be calculated in; 4 \ith average energf, around theNth resonance,
the general case and redd$] which reads r

1/ N\23(1—a)?+p?
. 20 - S I R A
( ) T}\_TO[l B(Er) [(1_a)2_B2]3]1 (24)

(23

1(>\v)2<2>4 3v2+1
2

T\ =Tol-=|=| |o| —7—=
! °[ E/) \N) (17-1)

Here, To=4nKk/E] denotes the revival time of the initial wherea=(Ey/E,)Y? and 8= a?k/4E, . If the initial energy
wave packet in the undriven potential and the indexis is large enough, that iE,>1, we may neglecB? with re-

defined as spect to (1 a)? in Eq. (24), obtaining the simpler formula
2 2(E]/—KIN) 3/a\2 1
vnzﬁ(n—r)+T, (22) TFTo[l—g E| - (25)
r

where the second term on the right-hand side is due to th&hiS expression allows us to compare the analytically calcu-
nonresonant condition. Substituting in E80) the value of lated revival time with the numerically computed ones.

v, calculated an=r from Eq. (21), we obtain the general

expression for the quantum revival time in a periodically 1
driven system as

— 1/\V\? 3u?+N?/4 - T
S A= RPN @2 VT,

where u=(E; —k/N)/E;. Equation (22) constitutes our
main result: It expresses the modification of the quantum
revival time in the presence of an external periodic driving
field as a function of the modulation strengthand of the
other characteristic parameters of the system.

The present approach is valid for small modulation
strengths. In the weak binding potentials, for which the level
spacing decreases as we increase the quantum number, the
nonlinear resonances disappear after small modulations, as
observed numerically for a gravitational cav(i®3,24] and
also for the hydrogen atom. As a consequence, this technique
is reasonably good for these kind of potentials. For tight 06
binding potentials, for which the level spacing increases as 0 0.1 A 0.2
we go up in the energy, we find nonlinear resonances for
higher modulation as well. In this kind of potential we need FIG. 1. Comparison between the numerically computed ratio
to consider higher-order terms in the expansion of ther, /T, for two different initial conditions,E,=104.1 (solid line
Mathieu characteristic parameter in order to correctly calcuwith circles and E,=70.28(solid line with squares and the cor-
late the recurrence time. respondindEg. (25)] analytical resultgdashed linesin the case of

As an application of our method, we consider the dynam-an atom bouncing in a modulated gravitational cavity. The other
ics of atoms in a gravitational cavif0] in the presence of parameters ark=1, Vo=1, andxk=1.
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In the example considered above, one may prepare a wavtke strength\ of the external modulation. Moreover, the
packet by trapping and cooling cesium atoms in a magnetoechange in the revival time is just about 8% ferranging
optical trap (MOT) [19,20,2§. The wave packet may be from 0 to 0.25 when the initial average enerfy=104.1,
placed at(or close t9 the Nth resonance by accurately con- (solid line with circle$, whereas it increases to almost 40%
trolling the position of the center of the MOT where the atomfor the same range of when the initial average enerdy;
is localized and giving the atom some velocity using another— 70 28 (solid line with squares in agreement with the in-
laser. In laboratory experiments, the driving frequency may,erge square dependenceTgfonE, .
be changed from 0 to 2 MHE21]. Hence, if we select a |y symmary, we have presented a general approach to the
frequencyw=2mx0.93 k':'ZZSOUt of this domain, for cesium ;,\eqtigation of the phenomenon of quantum revivals in a
atoms of mas$l =2.2x10" kg, the dimensionless Plank’s certain class of periodically driven systems. We have derived
constant ik=1. Moreover, with an effective Rabi frequency 3 simple relation that provides the quantum revival time as a
{leg=2mx3.72 kHz and a potential steepness equal to 0.5¢,nction of the modulation strength. We have finally applied
pum =, we haveV=1 and«=1. In our numerical calcula- oy theory to the case of the revival time arising in the dy-
tions we use these values of the d|menS|onIes_s par.ameters.,gamiCS of atoms bouncing in a modulated gravitational cav-
order to estimate the quantum recurrence time, in the Nur, ohtaining an excellent agreement with the exact numeri-
merical simulations we have placed the atomic wave packety| gata. For the set of parameters that we have used in our
above the atomic mirror ak,=29.8um, for which B, cajculations, a modulated gravitational cavity may be real-
=104.1, andko=20.1um, for whichE, =70.28. ized within the framework of presently available technology

Our numerical results show a complete qualitative anq1s) we strongly suggest an experiment, designed with the
quantitative agreement with the analytical results. In factpe|p of these parameters, to test our prediction of the quan-

from Eq.(25) we learn thati) the revival time changes qua- ym recurrences in the driven gravitational cavity.
dratically as a function of the strength of the external

modulation field, andii) the revival time depends inversely =~ We thank G. Alber, I. Bialynicki-Birula, R. Grimm, W. P.
on the square of the initial average energy of the waveSchleich, and F. Steiner for many fruitful discussions. We
packet. Our numerical investigation confirms both these anagratefully thank Professor Wolfgang Schleich for his hospi-
lytical results. tality at the University of Ulm, where part of this work was
In Fig. 1, we compare the quantum revival times calcu-carried out. F. S. acknowledges the support from QAU, and
lated from Eq.(25) (dashed lineswith those obtained nu- M.F. acknowledges financial contributions from INFM, EU
merically (solid line9 for an atomic wave packet bouncing in (through the Human Potential Programme “QUEST”
a modulated gravitational cavity. We see from the numericaMURST, and the University of CameriritProgetto Giovani
data that the revival time displays a quadratic dependence dricercatori”).
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