
PHYSICAL REVIEW A, VOLUME 65, 012707
‘‘Single-sided’’ focusing of the time-dependent Schro¨dinger equation
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The problem of focusing is considered for the one-dimensional time-dependent Schro¨dinger equation with a
local potential. Focusing is also considered for the closely related plasma wave equation. It is supposed that an
experimenter can send in an incident wavefrom one side of the potential. Then to what degree can the wave
be focused? It will be shown that an incident wave can be found so that thereal part of the wavecollapses to
a delta functiond(x2xo) when t50. The equation that governs this previously unsolved ‘‘single-sided’’
focusing problem is derived and shown to be Marchenko’s equation—the canonical equation of one-
dimensional inverse-scattering theory.
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I. INTRODUCTION

Suppose a distorting layer separates an experimenter
half of space. Furthermore, suppose that the experime
can probe this distorting layer by sending in arbitrary tim
domain waves from one side and by measuring the resu
reflected waves. Finally, suppose thatx denotes the spatia
coordinate andxo an arbitrary focal point, which may b
inside the support of the distorting layer. Then the followi
question can be asked. ‘‘To what degree can the exp
menter find a wave, incident from one side, such that
wave collapses tod(x2xo) at a prespecified time, i.e
‘single-sided’ focusing of the wave atxo?’’

An exact theory of such focusing does not currently ex
Here, this gap is partly closed and an exact one-dimensi
~1D! theory is presented for both the time-dependent Sch¨-
dinger equation~TDSE! and the plasma wave equatio
~PWE!. Marchenko’s equation@1–6#—the canonical equa
tion of 1D inverse-scattering theory—is shown to gove
single-sided focusing for both wave equations. The real p
of the wave can be focused for the TDSE~generally, the
imaginary part remains unfocused!. For the closely related
PWE, the total wave can be focused~generally, the time
derivative of the wave remains unfocused!. Mathematical
proofs and analytic examples for single-sided focusing of
PWE will be published separately@7#.

This work was motivated by the fact that many imagi
methods rely explicitly on the ability to focus a wave of o
kind or another. Furthermore, imaging is plausibly
inverse-scattering method since it remotely determines
properties of an object from scattered or reflected waves.
conjunction of these two facts suggests that a connec
might exist between exact inverse-scattering theory and
exact theory of focusing. This possibility motivated the d
velopment of a theory of focusing for the 1D Schro¨dinger
equation where the problem of inverse scattering is well
derstood. A paper by Dyson@8# provided additional motiva-
tion. He considered adaptive focusing through a turbul
atmosphere and showed that the ‘‘least-squares’’ optimal
cus is obtained by solving a multidimensional Marchenk
like equation.

This paper is organized as follows. Section II introduc
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the needed wave equations, reviews scattering theory,
defines notation. More importantly, it shows that single-sid
focusing for the TDSE is equivalent to single-sided focus
for the PWE. Section III derives the equation that gove
single-sided focusing for the PWE and thus for the TDS
Section IV shows by numerical example that Marchenk
equation can, in fact, be used to focus the wave. Finally,
paper is concluded with a discussion and summary.

II. EQUIVALENCE OF ‘‘SINGLE-SIDED’’ FOCUSING FOR
THE PWE AND THE TDSE

This section reviews the formalism needed to solve
single-sided focusing problem. Section II A introduces t
time-independent Schro¨dinger equation and the PWE. Se
tion II B shows that the PWE and TDSE are equivalent w
respect to single-sided focusing.

‘‘Time’’ for the TDSE does not have the same nature
the ‘‘time’’ for the PWE. For the TDSE time is the variabl
conjugate to the energy. For the PWE time is the varia
conjugate to the wave number. This distinction is maintain
by using ‘‘t’’ for the TDSE time and ‘‘t’’ for the PWE time.
These different definitions of time lead to a crucial differen
between the TDSE and PWE. Namely, the speed of pro
gation is unbounded for the~parabolic! TDSE but is finite
and bounded by the value 1 for the~hyperbolic! PWE.

The repeated use of the phrase single-sided focusin
cumbersome. From this point onward, the word focusing w
replace the phrase single-sided focusing except where
phasis is needed.

A. The wave equations and notation

The time-independent Schro¨dinger equation and two
equivalent time-domain wave equations are introduced.
time-independent Schro¨dinger equation

S 2
d2

dx2 1n~x! Dc~k,x!5Ec~k,x! ~1a!

is chosen to describe wave propagation on the line~for the
quantum scattering problem insert\2/2m before the second
derivative!. For simplicity, the potentialn(x) is chosen to be
©2001 The American Physical Society07-1
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JAMES H. ROSE PHYSICAL REVIEW A 65 012707
a positive, finite, and real function with compact support
the right of the origin of coordinates,x50. Bound states are
excluded by construction since the potential is everywh
positive. These conditions on the potential can all be sign
cantly relaxed@7#. E denotes the energy andk the wave
number. For the class of potentials mentioned above,
energy is related to the wave number byE5k2 and the wave
equation becomes

S 2
d2

dx2 1n~x! Dc~k,x!5k2c~k,x!. ~1b!

Scattering solutions of Eqs.~1! are generated by an inc
dent right-going plane wave. They are defined by the follo
ing solutions of the Lippmann-Schwinger equation:

c1~k,1,x!5eikx1E
2`

`

dx8 Ĝo
1~k,ux2x8u!n~x8!c1~k,1,x8!.

~2!

Here, the argument ‘‘1’’ indicates waves incident from t
left. The 1D noninteracting causal Green’s function is

Ĝo
1~k,x,x8![

eikux2x8u

2ik
. ~3!

Note that ifk is a real number,

c1~k,1,x!5c1* ~2k,1,x!, ~4!

since both are solutions of the same Lippmann-Schwin
equation. This fact is needed to connect the time-indepen
Schrödinger equation and the PWE. The data for the foc
ing problem are the reflection coefficient for all realk, where
R̂(k) is defined by

c1~k,1,x![eikx1R̂~k!e2 ikx ~5!

for x,0.
The plasma wave equation is

S ]2

]t22
]2

]x2 1n~x! DU~t,x!50. ~6!

The PWE follows from Fourier transforming the time
independent Schro¨dinger equation, Eq.~1b!, with respect to
the wave numberk. Only real solutionsU will be considered.

The scattering solutions for the PWE follow by Fouri
transformingc1 and are

u1~t,1,x!5
1

2p E
2`

`

dk e2 iktc1~k,1,x!. ~7!

Here, the integration has been extended to negativek by
using the reality condition, Eq.~4!. The Lippmann-
Schwinger equation becomes
01270
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u1~t,1,x!5d~t2x!1E
2`

`

dx8E
2`

`

dt8

3Go
1~t2t8,ux2x8u!n~x8!u1~t8,1,x8!.

~8!

The total wave due to an arbitrary incident waveU in(t2x)
is denoted by

U~t,x!5E
2`

`

dt8 u1~t2t8,1,x!U in~t8!. ~9!

Finally, we definethe impulse response function Rto be the
Fourier transform of the reflection coefficient with respect
k,

R~t![
1

2p E
2`

`

dk R̂~k!e2 ikt. ~10!

The impulse response is just the reflected wave~adjusted for
the travel time! due to a delta-function incident wav
d(t2x). It is the data needed to solve the focusing proble

The TDSE follows from the time-independent Schr¨-
dinger equation in the standard way,

S i
]

]t
1

]2

]x22n~x! DC~ t,x!50. ~11!

The scattering solutions are denoted byC1(t,1,x) and are
given by

C1~ t,1,x!5
1

p E
0

`

dk c1~k,1,x!e2 ik2t ~12!

The total wave due to an arbitrary wave incident from t
left is

F1~ t,1,x!5
1

p E
0

`

dk Ûin~k!c1~k,1,x!e2 ik2t. ~13!

B. Focusing the PWE is equivalent to focusing the TDSE

This section shows that focusing the PWE implies foc
ing the TDSE andvice versa. Once this equivalence is
shown, one can infer the focusing properties of the TDSE
establishing the focusing properties of the PWE.

The PWE is said to be focused atxo if some real right-
propagating incident wave,U in(t2x;xo), causes the tota
wave to collapse to ad function atxo at t50, i.e.,

U~t50,1,x!5E
2`

`

dt8 U in~2t8;xo!u1~t8,1,x!5d~x2xo!.

~14!

See Eq.~9!. The second argument forU in indicates that this
particular incident wave focuses the total wave toxo .

The TDSE is said to be focused if someÛ in , incident
from the left, causes the real part of the total wave to c
lapse to ad function atxo at t50, i.e.,
7-2
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‘‘SINGLE-SIDED’’ FOCUSING OF THE TIME- . . . PHYSICAL REVIEW A 65 012707
ReF~ t50,1,x!5Re
1

p E
0

`

dk Ûin~k;xo!c1~k,1,x!

5d~x2xo!. ~15!

See Eq.~13!.
I will first show that if the PWE is focused—i.e., if Eq

~14! is true—then the TDSE is also focused—i.e., Eq.~15! is
true. Start by supposing that Eq.~14! is true. Fourier trans-
form the integral on the right-hand side to thek domain.
Note thatÛ in(2k;xo)5Û in* (k;xo) sinceU in(t;xo) is real by
construction. Next, use the reality condition, Eq.~4!, to re-
write the integral over positivek. The result is Eq.~15!.
Thus, the TDSE is focused if the PWE is focused.

Next, I show that if the TDSE is focused—i.e., if Eq.~15!
is true—then the PWE is also focused—i.e., Eq.~14! is true.
At t50, the real part ofF @defined by Eq.~13!# can be
written as

ReF~ t50,1,x!5
1

2p E
0

`

dk „Û in~k;xo!c1~k,1,x!

1Û in* ~k;xo!c1* ~k,1,x!…

5d~x2xo!. ~16!

Equation~16! becomes, after using the reality conditions f
Û in andc1,

ReF~ t50,1,x!5
1

2p E
2`

`

dk Ûin~k;xo!c1~k,1,x!

5d~x2xo!. ~17!

Finally, Fourier transform the integrand on the right-ha
side of Eq.~17! from k to t and obtain the integral found o
the right-hand side of Eq.~14!. Thus, if the TDSE is focused
then so is the PWE.

The equivalence of focusing for the TDSE and PWE
easily verified for the following trivial example—focusing i
free space, i.e.,n(x)50 ;x. The required incident wave tha
focuses the TDSE and PWE is

Û in~k;xo!5e2 ikxo, ~18!

while c1(k,1,x)5eikx is the total wave. The required delt
function for the TDSE follows when Eq.~18! is substituted
into Eq. ~17!. Thed function for the PWE follows whenÛ in
and c1 are Fourier transformed to thet domain and then
substituted in Eq.~14!.

III. SINGLE-SIDED FOCUSING OF THE PWE

The single-sided focusing problem for the PWE is solv
in this section and the governing role of Marchenko’s eq
tion is clarified. Section III A sets up the focusing proble
Next, a key time antisymmetry of the wave is derived in S
III B. In Sec. III C the equation that governs focusing is d
rived and found to be Marchenko’s equation.

The main points of the derivation are especially well re
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resented visually. Figure 1 shows the focusing of the PWE
a point behind a square well. Somewhat inconsistently ti
is labeled byt rather thant in Figs. 1 and 2. This schematic
drawing~actually a numerical result, see Sec. IV! shows the
propagation of the total wave through the square well and
collapse to a delta functiond(x2xo) at t50. The incident
wave, shown by the curve labeled24, consists of a sharp
Gaussian peak~the ‘‘delta function’’! followed by a long
‘‘tail.’’ Below, I will show that one computes just this ‘‘tail’’
when one solves the Marchenko equation. The curves
beled22.2,21.8, and 0.0 show the evolution of the wave a
it propagates through the square well and collapses tod
function atxo54.0.

Figure 2 shows that, if the wave is focused, then the le
going reflected wave att5xo is the negative of the right-
going incident wave att52xo for all points 22xo,x,0.
That is, the curve labeled24.0 is opposite and equal to th
curve labeled 4.0 over this range. Thus, this part of the
flected wave can be immediately inferred from the incide
wave. This illustrates an important result that will be used
the derivation. To wit, focusing at anyxo.0 causes the total
wave to be antisymmetric in time—for points to the left o
the focal point and during a certain time interval. In partic
lar, I will show that at x50, U tot(t,x50)
52Utot(2t,x50) for 2xo,t,xo .

A. Preliminaries for the derivation

The equivalence of the PWE and the Schro¨dinger equa-
tion for potential-scattering problems is notable and wide
used in inverse scattering theory@1,2#. The PWE is a disper-
sive hyperbolic wave equation that propagates a sharp w
front at velocity 1. The PWE simplifies to the~Helmholtz!
wave equation if the potential is everywhere zero~i.e., in free
space!.

The focusing problem for the PWE is as follows. Suppo
that one has a physical system governed by the PWE and

FIG. 1. The leftmost dashed curve shows the incident wave t
focuses to the dash-dotted curve atx54.0 andt50.0. The dash-
dotted line shows the focused wave, while the solid and dotted li
show the wave at intermediate times. The rectangle represen
repulsive square-well potential with height 3.0 and width 1.0. F
the quantum scattering problem the unit for distance is meters w
the unit for the field is sec21 m21/2.
7-3
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JAMES H. ROSE PHYSICAL REVIEW A 65 012707
one knows the impulse response function. Determine
right-going wave, incident from2`, that results in the total
wave collapsing tod(x2xo) at t50. Here,xo is inside or to
the right of the support of the potential.

A hypothetical experiment proceeds as follows. The e
perimenter is assumed to have access to the left half-linx
<0, where the potential is zero. Since the accessible reg
is free space, it is assumed that the experimenter can di
guish left- and right- going waves, and can also prepare
bitrary right-going incident wavesU in(t2x) and measure
arbitrary left-going reflected wavesUout(t1x). The total
wave is denoted byU tot(t,x) and is defined for allx and t.
The initial condition for the waveU tot(t,x) is that at some
sufficiently early timeU tot has support confined tox,0 and
is identical to the incident waveU in(t2x). As time
progresses,U tot spreads onto the right half-line, interac
strongly with the potential, and partially backscatters
yielding a left-going part that becomes identical to the
flected waveUout(t1x) at late times. Forx,0, the total
wave can be written as the sum of the right-going incide
and the left-going reflected waves. That is,

U tot~t,x!5U in~t2x!1Uout~t1x!. ~19!

Now let us turn to the incident wave for which the tot
wave is focused toxo at t50. It is hypothesized~and later
verified! to have the form

U in~t2x;xo!5d~t2x1xo!1V~t2x;xo!. ~20!

Physically, the incident wave consists of ad-function wave
front followed by a long tail; see the curve marked24.0 in

FIG. 2. The tail of the right-going incident wave att52xo

524.0 and that of the left-going reflected wave fort5xo54.0 are
opposite and equal forx,0.0. The dotted curve shows the focuse
wave atx54.0. The dashed-dotted curve represents the wave a
it has passed through the focal point; note that it suddenly beco
nonzero over the ranget523.0,x,1.0. For the quantum-
scattering problem the unit for distance is meters while the unit
the field is sec21 m21/2.
01270
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Fig. 2.V is a to-be-determined function supported to the l
of the delta function wave front, i.e.,V(t;xo)50 for t,
2xo .

The impulse response functionR(t) is the input data for
the focusing equation and is defined by Eq.~10!. In the time-
domain pictureR is the reflected wave measured atx50 that
evolves from an incident delta-function waved(t2x). More
precisely define the scattered waveU tot

1sc to be the difference
between this total wave and the incidentd function. The
impulse response function is

R~t!5U tot
1sc~t,0!. ~21!

The solution of the single-sided focusing problem follow
from considerations of how the reflected waveUout is deter-
mined from the incident waveU in . As discussed in the nex
section, two independent linear equations determineUout
from U in if the total wave is focused. The equation that go
erns focusing follows when these two equations are co
bined andUout is eliminated.

The first equation that determinesUout from U in follows
from supposing that the total wave has a single-sided fo
at some pointxo . I will show that such a total wave must b
antisymmetric in time over the interval2xo,t,xo at the
observation pointx50. The antisymmetry determines the r
flected wave~measured at late times! from the incident wave
~measured at early times!. The second equation that dete
minesUout from U in is true whether the wave is focused
not. It follows straightforwardly from the linearity of the
PWE, causality, and the knowledge of the impulse respo
function. To wit, the reflected wave is determined by co
volving the incident wave and the impulse response functi
i.e., ordinary linear scattering theory. To sum up,for focused
waves, there are two independent ways of finding the
flected wave, given the incident wave:~1! antisymmetry in
time and~2! linearity and the impulse response function.

B. Temporal antisymmetry for focused waves

I will show that if the total wave focuses to somexo.0,
then U tot(t,x50) ~the total wave evaluated atx50! is anti-
symmetric int during the time interval2xo,t,xo . This
antisymmetry follows from the definition of focusing an
two key properties of the PWE. First, the wave front prop
gates with a velocity of 1. Second, the total wave at a
point x and timet is determined by certain initial-value data
These data are the wave att50 and the time derivative o
the wave att50 both evaluated over a sufficiently larg
region aboutx. What are the data required to determine t
total wave atx50 for times2xo,t,xo? Since the wave
front velocity is 1, causality implies that att50 only waves
and their derivatives in the range2xo,x,xo contribute.

All the elements are now in place to show the antisy
metric nature of the total wave. The data required to fi
U tot(t,x50) for 2xo,t,xo are ~1! U tot(t50,x) and ~2! its
time derivative,]U tot(t,x)/]tut50, both on the spatial interva
2xo,x,xo . But the total waveU tot(t50,x) is zero on this
interval since by hypothesis the total wave is focused
d(x2xo) at t50. Thus, for times 2xo,t,xo ,

er
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r
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‘‘SINGLE-SIDED’’ FOCUSING OF THE TIME- . . . PHYSICAL REVIEW A 65 012707
U tot(t,x50) depends only on the time derivative of the to
wave att50, i.e.,]U tot(t,x)/]tut50. Antisymmetry arises~as
argued in the next paragraph! because the data
]U tot(t,x)/]tut50, changes sign under time reversal,t→2t.

Temporal antisymmetry in time is shown as follows. Fir
defineU tot(t,x50) by propagating the data towards the futu
from t50. Second, obtain2U tot(2t,x50) by propagating
the same data towards the past. Propagating the wave t
past can be broken up into the following three steps:~a! time
reverse the data (t→2t), ~b! propagate this new problem t
its future to obtain2U tot(t,x50), and ~c! time reverse the
solution (2t→t) to get2U tot(2t,x50). Thus,

U tot~t,x50!52U tot~2t,x50! ~22!

for 2xo,t,xo .
The antisymmetry of the total focused wave atx50 im-

plies that the incident and reflected waves are also relate
antisymmetry. Combine Eqs.~19! and ~22! to obtain

U in~t;xo!1Uout~t;xo!52U in~2t;xo!2Uout~2t;xo!
~23a!

for 2xo,t,xo . Finally, equate the left-going waves o
both sides of Eq.~23a! to find

Uout~t;xo!52U in~2t;xo! ~23b!

for 2xo,t,xo .

C. Marchenko’s equation governs single-sided focusing

The equation that governs focusing is derived and sho
to be Marchenko’s equation. First, the linearity of the PW
ensures that the reflected wave can be found by convol
the incident wave with the impulse response function. O
uses the definition of the impulse response function, cau
ity, and the superposition principle to obtain

Uout~t;xo!5E
2`

`

dt8 R~t2t8!U in~t8;xo!. ~24!

Second, the reflected wave is determined from the incid
wave by antisymmetry as expressed by Eq.~23b!.

The focusing equation follows since we have two eq
tions @Eqs. ~23b! and ~24!# and two unknowns~U in5d1V
andUout!. We solve forV using Eq.~20! and obtain

V~2t;xo!1R~t1xo!1E
2`

`

dt8 R~t1t8!V~2t8;xo!50

~25!

for t,xo andV(2t)50 for t.xo . Equation~25!, if it can
be solved, yieldsV, the trailing part of the incident wave—
again, see the curve labeled24.0 in Fig. 1. This, in turn,
determines the incident wave needed to focus the total w
at xo via Eq. ~20!.

Inspection shows that the focusing equation~25! is iden-
tical to Marchenko’s equation after the simple change
notation,
01270
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Al~x,y!5V~2y;x!. ~26!

Here,Al denotes the solution of Marchenko’s equation in t
notation of Ref.@1#. Finally, note that the single-sided focu
ing problem is uniquely soluble since Marchenko’s equat
has a unique solution@1–6#.

IV. NUMERICAL SIMULATION OF SINGLE-SIDED
FOCUSING

Numerical solutions for several square-well examp
were used to test the utility of Marchenko’s equation f
focusing the PWE. Since focusing the PWE and TDSE
equivalent, these results also test the use of Marchen
equation to focus the TDSE. Numerical solutions to Marc
enko’s equation were obtained for a variety of attractive a
repulsive square wells. These numerical solutions were t
used to obtain focused waves. In particular, the incid
wavesU in(t;xo) were found from Eqs.~20! and ~25!. Fi-
nally, these incident waves were propagated through the
tential and the results graphed.

A finite difference algorithm implemented inFORTRAN

with double-precision arithmetic was used to simulate wa
propagation. A spatial region of length 12.0 was discretiz
in 6000 equal intervals and the travel time from the origin
focal pointxo was discretized in 30 000 equal intervals. B
sides discretization and finite-precision arithmetic, the m
important approximation was to replace thed function by a
narrow Gaussian wave with an integrated strength of 1. T
half-width of the Gaussian was chosen to be 0.05. The
tentials were chosen so that the origin~the observation point!
was always to the left of the potential’s support. The solut
to Marchenko’s equation was obtained by iteration.

Figures 1 and 2 show finite-difference calculations fo
repulsive ~positive! square well that had strengthVo53.0
and extended from 1.0 to 2.0. The focal point was chose
lie to the right of the potential atxo54.0. Figure 1 shows the
evolution of the wave for four different times up to and i
cluding the time of focus att50.0. Theincident wave is
shown by the curve labeled24.0. The curve labeled22.2
shows the peak traversing the potential. As it does so, the
begins to decrease. The third peak, labeled21.8, shows that
the tail is further reduced as the peak passes through
potential. Finally, focus is achieved and the tail disappe
completely att50.0. Figure 2 shows the wave evolving
later times. The antisymmetry of the scattering process
x,0.0 is evident from the curves labeled24.0 and 4.0.

Additional calculations were carried out for focusing
and through a variety of attractive and repulsive squ
wells. Single-sided focuses were obtained in all cases ex
ined including attractive square-well potentials with bou
states.

V. DISCUSSION AND SUMMARY

The work was motivated by the desire to explore the c
nection, if any, between focusing and inverse scattering
have shown that the same fundamental equatio
7-5
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JAMES H. ROSE PHYSICAL REVIEW A 65 012707
Marchenko’s equation—governs both problems for the
Schrödinger equation.

Single-sided focusing of the TDSE concentrates the
part of the total wave tod(x2xo) at t50. The imaginary
part of the wave is not concentrated atxo and consequently
single-sided focusing does not concentrate the probab
density toxo at t50. However, the probability current den
sity

j ~ t,x![ i S F~ t,x!
]

]x
F* ~ t,x!2F* ~ t,x!

]

]x
F~ t,x! D

~27!

is concentrated toxo at t50. The basic result of the paper
that upon focusing, ReF(t50,x)5d(x2xo). Since the fo-
cused waveF(t50,x) is purely imaginary forxÞxo it fol-
lows by direct evaluation of Eq.~27! that j (t50,x)50 for
all xÞxo . Similarly, although single-sided focusing of th
PWE concentrates the total wave toxo at t50, it does not
.

01270
al

ty

concentrate the time derivative of the total wave to th
point. Consequently, the energy density, which depends
part on the time derivative of the wave, is generally nonz
for xÞxo .

In summary, this paper has sought the equation that de
mines the incident wave that focuses the real part of
wave tod(x2xo) at timet50 for the TDSE. The result was
Marchenko’s equation. The fact that Marchenko’s equat
governs single-sided focusing was tested numerically for
PWE and verified for square-well potentials.
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