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The problem of focusing is considered for the one-dimensional time-dependentiBgerequation with a
local potential. Focusing is also considered for the closely related plasma wave equation. It is supposed that an
experimenter can send in an incident wdr@m one side of the potentialhen to what degree can the wave
be focused? It will be shown that an incident wave can be found so thaedhpart of the waveollapses to
a delta functiond(x—X,) whent=0. The equation that governs this previously unsolved “single-sided”
focusing problem is derived and shown to be Marchenko’s equation—the canonical equation of one-
dimensional inverse-scattering theory.
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[. INTRODUCTION the needed wave equations, reviews scattering theory, and
defines notation. More importantly, it shows that single-sided
Suppose a distorting layer separates an experimenter frofacusing for the TDSE is equivalent to single-sided focusing
half of space. Furthermore, suppose that the experimenté@r the PWE. Section III derives the equation that governs
can probe this distorting layer by sending in arbitrary time-single-sided focusing for the PWE and thus for the TDSE.
domain waves from one side and by measuring the resultin§ection IV shows by numerical example that Marchenko's
reflected waves. Fina”y' suppose thatlenotes the Spatia| equation can, in fact, be used to focus the wave. Finally, the
coordinate andk, an arbitrary focal point, which may be Paper is concluded with a discussion and summary.
inside the support of the distorting layer. Then the following
guestion can be asked. “To what degree can the experil. EQUIVALENCE OF “SINGLE-SIDED” FOCUSING FOR
menter find a wave, incident from one side, such that the THE PWE AND THE TDSE
wave collapses tod(x—x,) at a prespecified time, i.e.,

‘single-sided’ focusing of the wave at?” This section reviews the formalism needed to solve the

single-sided focusing problem. Section Il A introduces the

An exact theory of such focusing does not currently exist.. : b .
Here, this gap is partly closed and an exact one—dimension:%'lme"nd(apendent Scheinger equation and the PWE. Sec-

(1D) theory is presented for both the time-dependent "Schror':g 23 f’:gms ggﬁ;‘g ; \é\{iiﬁnd TDSE are equivalent with
dinger equation(TDSE) and the plasma wave equation P 9 9.

(PWE). Marchenko’s equatiofl—6]—the canonical equa- '!"|_me ”for the TDSE does not have _the same natl_Jre as
- . . . the “time” for the PWE. For the TDSE time is the variable
tion of 1D inverse-scattering theory—is shown to govern oniugate to the enerav. For the PWE time is the variable
single-sided focusing for both wave equations. The real pargonl'ugate to the wave?ﬂ)[ljmber This distinction is maintained
of the wave can be focused for the TDSgenerally, the Jug ’ s for the PWE time

. . . by using “t” for the TDSE time and 7
imaginary part remains unfocused-or the closely related . o ; S
PWE, the total wave can be focuségenerally, the time These different definitions of time lead to a crucial difference

derivative of the wave remains unfocusedlathematical between the TDSE and PWE. Namely, the speed of propa-

; L . ation is unbounded for th@paraboli¢ TDSE but is finite
Er\;)voEfsWa”rll%:npztl)t/)tlzgr:—:-é(g?é);easr;‘g[ys]mgle sided focusing of th(%md bounded by the value 1 for tlileyperbolio PWE.

THS work was motvate by e fact trat may maging,, 10 (0SS0 Lse of e pivase Sigleided ocusig
methods rely explicitly on the ability to focus a wave of one : b ’ 9

kind or another. Furthermore, imaging is plausibly anreplace the phrase single-sided focusing except where em-

inverse-scattering method since it remotely determines thBhaSIS is needed.
properties of an object from scattered or reflected waves. The
conjunction of these two facts suggests that a connection
might exist between exact inverse-scattering theory and an The time-independent Schiinger equation and two
exact theory of focusing. This possibility motivated the de-equivalent time-domain wave equations are introduced. The
velopment of a theory of focusing for the 1D Sctimmger  time-independent Schdinger equation
equation where the problem of inverse scattering is well un-
derstood. A paper by Dysd] provided additional motiva-
tion. He considered adaptive focusing through a turbulent
atmosphere and showed that the “least-squares” optimal fo-
cus is obtained by solving a multidimensional Marchenko-is chosen to describe wave propagation on the (foe the
like equation. quantum scattering problem insért/2m before the second
This paper is organized as follows. Section Il introducesderivative. For simplicity, the potential(x) is chosen to be

A. The wave equations and notation

d2
(-WJFV(X))MK,X):E!//(KX) (1a)
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a positive, finite, and real function with compact support to % %

the right of the origin of coordinates=0. Bound states are ut(r,1x)=8(r— X)*‘f dX'f dr’

excluded by construction since the potential is everywhere o o

positive. These conditions on the potential can all be signifi- XGJ(r—7"|x=x'])v(x")u™(r',1x").
cantly relaxed[7]. E denotes the energy arklthe wave

number. For the class of potentials mentioned above, the ®
energy is related to the wave numberby: k?

. and the wave 16 to1a] wave due to an arbitrary incident wave(—x)
equation becomes

is denoted by
d? o
(—R-FV(X)):,//(k,X):kZJJ/(k,X). (1b) U(’T,X)ZJl dr ut(r—7,1xX)Uir (7). 9

Scattering solutions of Eq$l) are generated by an inci- Finally, we definethe impulse response functiont® be the
dent right-going plane wave. They are defined by the follow-Fourier transform of the reflection coefficient with respect to
ing solutions of the Lippmann-Schwinger equation: K,

©

© 1 T —ik7
l//+(k,1,)():eikx+ fﬁxdxl AG;('(,|X_X,|)V(X’)(!/+(k,l,x,). R(T)Eﬂf ocdk R(k)e k . (10)

@ The impulse response is just the reflected waadjusted for
the travel tim¢ due to a delta-function incident wave
8(7—Xx). Itis the data needed to solve the focusing problem.

The TDSE follows from the time-independent Schro
dinger equation in the standard way,

Here, the argument “1” indicates waves incident from the
left. The 1D noninteracting causal Green’s function is

eiklex’\

é;(k,X,X/)E W (3) J (92
iﬁ’Lﬁ_ v(x))\lf(t,x)=0. (11

Note that ifk is a real number,
The scattering solutions are denoted By (t,1x) and are

P (k1x)= ¢ (—k,1x), (4)  given by

since both are solutions of the same Lippmann-Schwinger TE(t,1x)= ijdkl/ﬁ(k,l’x)e*ikzt (12)
equation. This fact is needed to connect the time-independent ™ Jo

Schralinger equation and the PWE. The data for the focus- ) o

ing problem are the reflection coefficient for all réawhere The total wave due to an arbitrary wave incident from the

R(k) is defined by left is
1 (= . .
(k1 x)=e*+R(k)ek* (5) dH(t,1x)= ;fo dk U (K¢t (k,1x)e . (13)

for'l)'(fzoblasma wave equation is B. Focusing the PWE is equivalent to focusing the TDSE

This section shows that focusing the PWE implies focus-
ing the TDSE andvice versa Once this equivalence is

2 2t V(X)) U(7,x)=0. (6)  shown, one can infer the focusing properties of the TDSE by

establishing the focusing properties of the PWE.

The PWE is said to be focused x§ if some real right-
propagating incident waved);,(7—X;X,), causes the total
wave to collapse to & function atx, at =0, i.e.,

P FP

The PWE follows from Fourier transforming the time-
independent Schdinger equation, Eq(1b), with respect to
the wave numbek. Only real solutiondJ will be considered.
The scattering solutions for the PWE follow by Fourier w0
transformingy™ and are U(r= 0,1x)=f d7’ Up(— 7% )ut (77,1X) = 8(X—X,).

(14)

1 (= .
+ - —ikT o+
ur(n1% 27 J_mdk ey (k). @ See Eq.(9). The second argument fat;, indicates that this

particular incident wave focuses the total wavexgo

Here, the integration has been extended to negdtimy The TDSE is said to be focused if sortk,, incident
using the reality condition, Eq.(4). The Lippmann- from the left, causes the real part of the total wave to col-
Schwinger equation becomes lapse to asd function atx, att=0, i.e.,
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1 [~ n
Red(t=0,1x)=Re— f dk Upn(kiXo) 9" (K, 1)
0

= 5(X—X,). (15

See Eq(13).

I will first show that if the PWE is focused—i.e., if Eq.

(14) is true—then the TDSE is also focused—i.e., E) is
true. Start by supposing that E(.4) is true. Fourier trans-
form the integral on the right-hand side to tkedomain.
Note thatU;,(— k;x,) = U (Kk;X,) sinceUi(7;x,) is real by
construction. Next, use the reality condition, E4), to re-
write the integral over positivik. The result is Eq.(15).
Thus, the TDSE is focused if the PWE is focused.

Next, | show that if the TDSE is focused—i.e., if E4.5)
is true—then the PWE is also focused—i.e., Egj) is true.
At t=0, the real part of® [defined by Eqg.(13)] can be
written as

1 © N
Recb(t=o,1x>=zfo dk (Oyn(kixo) ¥ (K, 1)

+U* (K;Xo) % (K,1X))

=8(X—X,). (16)

PHYSICAL REVIEW A 65012707

14
12 1 =40 —» : .
10 t : :
=22 : !
o 8 b
] =18 ———t—ip i
ost (. |
t=-0 ! : i
4t i i
‘lx i
i —— e s I
2 a ~ i
e e \ "
0 e il 1 L i _QL

8 6 4 2 0 2 4 6

Distance

FIG. 1. The leftmost dashed curve shows the incident wave that
focuses to the dash-dotted curvexat4.0 andt=0.0. The dash-
dotted line shows the focused wave, while the solid and dotted lines
show the wave at intermediate times. The rectangle represents a
repulsive square-well potential with height 3.0 and width 1.0. For
the quantum scattering problem the unit for distance is meters while
the unit for the field is sec- m~*2,
resented visually. Figure 1 shows the focusing of the PWE to
a point behind a square well. Somewhat inconsistently time

Equation(16) becomes, after using the reality conditions for is labeled byt rather thanr in Figs. 1 and 2. This schematic

U, and ¢,
1 (= "
Req)(t:O,lX)sz dk Uin(k;Xo) " (k,1%)

= 5(X—X,). (17)

drawing(actually a numerical result, see Sec) Bhows the
propagation of the total wave through the square well and its
collapse to a delta functiod(x—X,) at 7=0. The incident
wave, shown by the curve labeled4, consists of a sharp
Gaussian peakthe “delta function” followed by a long
“tail.” Below, | will show that one computes just this “tail”
when one solves the Marchenko equation. The curves la-

Finally, Fourier transform the integrand on the right-handP€léd—2.2,—1.8, and 0.0 show the evolution of the wave as
side of Eq.(17) from k to = and obtain the integral found on it Propagates through the square well and collapses & a

the right-hand side of Eq14). Thus, if the TDSE is focused,

then so is the PWE.
The equivalence of focusing for the TD

easily verified for the following trivial example—focusing in
free space, i.ey(x) =0 Vx. The required incident wave that

focuses the TDSE and PWE is

Uin(k;x)=e %o, (18

function atx,=4.0.
Figure 2 shows that, if the wave is focused, then the left-

SE and PWE is90ing reflected wave at=x, is the negative of the right-

going incident wave at= —x, for all points —2x,<x<0.
That is, the curve labeled 4.0 is opposite and equal to the
curve labeled 4.0 over this range. Thus, this part of the re-
flected wave can be immediately inferred from the incident
wave. This illustrates an important result that will be used in
the derivation. To wit, focusing at ang>0 causes the total

while ™ (k,1x) =€ is the total wave. The required delta Wave to be antisymmetric in time—for points to the left of

function for the TDSE follows when Eq18) is substituted

into Eq.(17). The & function for the PWE follows whel;,
and " are Fourier transformed to thedomain and then
substituted in Eq(14).

IIl. SINGLE-SIDED FOCUSING OF THE PWE

the focal point and during a certain time interval. In particu-
lar, 1 will show that at x=0, U(rx=0)
=—Uoi(— 7x=0) for —X,<7<X,.

A. Preliminaries for the derivation

The equivalence of the PWE and the Sdinger equa-
tion for potential-scattering problems is notable and widely

The single-sided focusing problem for the PWE is solvedused in inverse scattering thedry,2]. The PWE is a disper-
in this section and the governing role of Marchenko’s equasive hyperbolic wave equation that propagates a sharp wave
tion is clarified. Section Il A sets up the focusing problem. front at velocity 1. The PWE simplifies to thglelmholtz
Next, a key time antisymmetry of the wave is derived in Secwave equation if the potential is everywhere zére., in free
[l B. In Sec. 1l C the equation that governs focusing is de-space.

rived and found to be Marchenko’s equation.

The focusing problem for the PWE is as follows. Suppose

The main points of the derivation are especially well rep-that one has a physical system governed by the PWE and that
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Fig. 2.Q is a to-be-determined function supported to the left

16 of the delta function wave front, i.eQ(7;x,)=0 for 7<
—Xg-
2 L t=40—— > The impulse response fpncticR(T) is the input dat'a for
) i s the fopus[ng equ_atlon and is defined by EL). In the time-
£=0.0 | > domain pictureRis the reflected wave measuredkat0 that
8 | t=0.8 .'E > l‘. evolves from an incident delta-function wad¥ér—x). More
Z teao i Lo precisely define the scattered wavg:°to be the difference
i :'i ol between this total wave and the incidefitfunction. The
4r ! Poh impulse response function is
ST 1 .
0 e ¥ - f/’ﬁ i R(7)=U1(7,0). (21
~ The solution of the single-sided focusing problem follows
4 ' : : : ‘ ' from considerations of how the reflected wavg, is deter-
-8 6 -4 2 0 2 4 6 mined from the incident wavl;,. As discussed in the next
Distance section, two independent linear equations determihg,

from Uy, if the total wave is focused. The equation that gov-
FIG. 2. The tail of the right-going incident wave &t —x, erns focusing follows when these two equations are com-

=—4.0 and that of the left-going reflected wave ferx,=4.0 are bined ar_1dU out IS e.“mmated' .
opposite and equal for<0.0. The dotted curve shows the focused The first e_quatlon that determinek,, from Uin fO_IIOWS
wave atx=4.0. The dashed-dotted curve represents the wave aftdfOm SUpposing that the total wave has a single-sided focus
it has passed through the focal point; note that it suddenly becomedt SOme poink, . | will show that such a total wave must be
nonzero over the range:—3_0<)(<l.0_ For the quantum_ antisymmetric in t|me over the intel’vaJr X0< T<Xo at the
scattering problem the unit for distance is meters while the unit forobservation poink=0. The antisymmetry determines the re-
the field is sec*m~Y2 flected wavelmeasured at late timpfom the incident wave
(measured at early timgsThe second equation that deter-
one knows the impulse response function. Determine theninesU,, from Uy, is true whether the wave is focused or
right-going wave, incident from-, that results in the total not. It follows straightforwardly from the linearity of the
wave collapsing ta5(x—x,) at 7=0. Here X, is inside or to PWE, causality, and the knowledge of the impulse response
the right of the support of the potential. function. To wit, the reflected wave is determined by con-
A hypothetical experiment proceeds as follows. The ex-volving the incident wave and the impulse response function,
perimenter is assumed to have access to the left halfsine, i.e., ordinary linear scattering theory. To sum &g, focused
<0, where the potential is zero. Since the accessible regiowaves there are two independent ways of finding the re-
is free space, it is assumed that the experimenter can distiflected wave, given the incident wavek) antisymmetry in
guish left- and right- going waves, and can also prepare aitime and(2) linearity and the impulse response function.
bitrary right-going incident wave#);,(7—x) and measure
arbitrary left-going reflected waves,,(7+x). The total B. Temporal antisymmetry for focused waves
wave is denoted by,,(7,x) and is defined for alk and 7.
The initial condition for the waveJ,(7,X) is that at some
sufficiently early timeU,, has support confined to<0 and
is identical to the incident waveJ;,(7—X). As time
progressesU,, spreads onto the right half-line, interacts
strongly with the potential, and partially backscatters—
yielding a left-going part that becomes identical to the re-
flected waveU,(7+x) at late times. Fox<0, the total
wave can be written as the sum of the right-going inciden
and the left-going reflected waves. That is,

| will show that if the total wave focuses to somg>0,
then U,y(7,x=0) (the total wave evaluated at=0) is anti-
symmetric in7 during the time interval-X,<7<X,. This
antisymmetry follows from the definition of focusing and
two key properties of the PWE. First, the wave front propa-
gates with a velocity of 1. Second, the total wave at any
pointx and timer is determined by certain initial-value data.
t'I'hese data are the wave &0 and the time derivative of
the wave atr=0 both evaluated over a sufficiently large
region aboutx. What are the data required to determine the
Uil 7:X) = Uin(7—X) + U g 7+ X). (19 total wave atx=0 for times —x,<7<X,? Since the wave
front velocity is 1, causality implies that at=0 only waves
Now let us turn to the incident wave for which the total and their derivatives in the rangex,<x<x, contribute.
wave is focused ta, at 7=0. It is hypothesizedand later All the elements are now in place to show the antisym-
verified) to have the form metric nature of the total wave. The data required to find
Uo(7,x=0) for —x,<7<X, are (1) U;(7=0x) and(2) its
Uin(7T—X;Xg) = (7= X+ Xo) + Q(7—X;X,). (200 time derivative,dU (7,X)/d1],—q, both on the spatial interval
—Xo<X<X, . But the total waveJ,,(r=0,) is zero on this
Physically, the incident wave consists ofédunction wave interval since by hypothesis the total wave is focused to
front followed by a long tail; see the curve markedt.0 in  §(x—x%,) at 7=0. Thus, for times —x,<7<X,,
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Uoi(7,x=0) depends only on the time derivative of the total A(Xy)=Q(—y;X). (26)
wave atr=0, i.e.,dU o(7,X)/37,—o. Antisymmetry arisegas
argued in the next paragraphbecause the data,
U o(TX)/d7,—o, changes sign under time reversak: — 7.
Temporal antisymmetry in time is shown as follows. First,
defineU,y(7,x=0) by propagating the data towards the future
from 7=0. Second, obtain-U,,(—7,x=0) by propagating
the same data towards the past. Propagating the wave to the

Here,A, denotes the solution of Marchenko’s equation in the
notation of Ref[1]. Finally, note that the single-sided focus-
ing problem is uniquely soluble since Marchenko’s equation
has a unique solutiofil—6].

past can be broken up into the following three stépstime IV. NUMERICAL SIMULATION OF SINGLE-SIDED

reverse the datar(~ — 7), (b) propagate this new problem to FOCUSING

its future to obtain—U,y(7,x=0), and(c) time reverse the . i

solution (- 7— 7) to get— U o(—7x=0). Thus, Numerical solutions fq( several square-well exgmples
were used to test the utility of Marchenko’s equation for

U 7,X=0)=—Uo( — 7,x=0) (22)  focusing the PWE. Since focusing the PWE and TDSE are

equivalent, these results also test the use of Marchenko’s

for —x,<7<X,. equation to focus the TDSE. Numerical solutions to March-

The antisymmetry of the total focused wavexat0 im-  enko’s equation were obtained for a variety of attractive and
plies that the incident and reflected waves are also related bypulsive square wells. These numerical solutions were then

antisymmetry. Combine Eq$19) and(22) to obtain used to obtain focused waves. In particular, the incident
wavesU;,(7;X,) were found from Eqs(20) and (25). Fi-
Uin(7:X0) +Uoud 73X0) = = Uin( = 73%0) = Uoud — 71Xo) nally, these incident waves were propagated through the po-

(233 tential and the results graphed.

A finite difference algorithm implemented iRORTRAN
with double-precision arithmetic was used to simulate wave
propagation. A spatial region of length 12.0 was discretized
in 6000 equal intervals and the travel time from the origin to
focal pointx, was discretized in 30 000 equal intervals. Be-
sides discretization and finite-precision arithmetic, the most
important approximation was to replace thdéunction by a
narrow Gaussian wave with an integrated strength of 1. The
half-width of the Gaussian was chosen to be 0.05. The po-

The equation that governs focusing is derived and showientials were chosen so that the ori¢ihe observation poiit
to be Marchenko’s equation. First, the linearity of the PWEWwas always to the left of the potential’s support. The solution
ensures that the reflected wave can be found by convolvintp Marchenko’s equation was obtained by iteration.
the incident wave with the impulse response function. One Figures 1 and 2 show finite-difference calculations for a
uses the definition of the impulse response function, causarepulsive (positive) square well that had strengi,=3.0
ity, and the superposition principle to obtain and extended from 1.0 to 2.0. The focal point was chosen to
lie to the right of the potential at,=4.0. Figure 1 shows the
evolution of the wave for four different times up to and in-
cluding the time of focus at=0.0. Theincident wave is
shown by the curve labeled 4.0. The curve labeled-2.2
Second, the reflected wave is determined from the inciderghows the peak traversing the potential. As it does so, the tail
wave by antisymmetry as expressed by E28b). begins to decrease. The third peak, labeteld8, shows that

The focusing equation follows since we have two equathe tail is further reduced as the peak passes through the
tions [Egs. (23b) and (24)] and two unknowngU;,= 8+  potential. Finally, focus is achieved and the tail disappears
andU,,). We solve for() using Eq.(20) and obtain completely at7=0.0. Figure 2 shows the wave evolving at

later times. The antisymmetry of the scattering process for
* x<0.0 is evident from the curves labeleé4.0 and 4.0.
Q= 7X0) +R(7+Xo) + fﬁxdT’ R(7+7)Q(=7"%0)=0 Additional calculations were carried out for focusing in
(25) and through a variety of attractive and repulsive square
wells. Single-sided focuses were obtained in all cases exam-
for 7<x, andQ(—7)=0 for r>x,. Equation(25), ifitcan  ined including attractive square-well potentials with bound
be solved, yield€), the trailing part of the incident wave— States.
again, see the curve labeled4.0 in Fig. 1. This, in turn,
determines the incident wave needed to focus the total wave
at x, via Eq. (20).

for —x,<7<X,. Finally, equate the left-going waves on
both sides of Eq(239 to find

Uoul 7:X0) = = Uin(— 7:Xo) (23b)

for —Xo<7<X,.

C. Marchenko’s equation governs single-sided focusing

Uout(T;Xo):J’oo d7' R(7— 7")Uin(7';X%0). (24

V. DISCUSSION AND SUMMARY

Inspection shows that the focusing equati@b) is iden- The work was motivated by the desire to explore the con-
tical to Marchenko’s equation after the simple change ofnection, if any, between focusing and inverse scattering. |
notation, have shown that the same fundamental equation—

012707-5



JAMES H. ROSE PHYSICAL REVIEW A 65 012707

Marchenko’s equation—governs both problems for the 1Dconcentrate the time derivative of the total wave to that
Schralinger equation. point. Consequently, the energy density, which depends in
Single-sided focusing of the TDSE concentrates the regbart on the time derivative of the wave, is generally nonzero
part of the total wave ta(x—x,) att=0. The imaginary for X#X, .
part of the wave is not concentratedx@tand consequently In summary, this paper has sought the equation that deter-
single-sided focusing does not concentrate the probabilitynines the incident wave that focuses the real part of the
density tox, att=0. However, the probability current den- wave tod(x—Xx,) at timet=0 for the TDSE. The result was
sity Marchenko’s equation. The fact that Marchenko’s equation
J 5 governs single-sided focusing was tested numerically for the
J(tx)=i <I>(t,x)5<b*(t,x)—¢>*(t,x)&fb(t,x) PWE and verified for square-well potentials.
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