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Full quantum-mechanical study of protonium formation in slow collisions of antiprotons
with hydrogen atoms

Kazuhiro Sakimoto*
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A rigorous full quantum-mechanical wave-packet calculation is carried out to study the protonium formation

p̄1H→ p̄p1e. The present paper directly solves the time-dependent Schro¨dinger equation for the heavy
particle Coulomb collision system. A discrete-variable-representation technique is used to evaluate the action
of the Hamiltonian operator on the wave packet. The cross sections for the protonium formation are obtained
at center-of-mass translational energies up to 10 eV. The present quantum-mechanical results are compared
with those of previous studies based on classical trajectory Monte Carlo and semiclassical methods. Applica-
bility of the adiabatic molecular picture to the protonium formation is also discussed.
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I. INTRODUCTION

In the antiproton decelerator facility atCERN, low-energy
antiprotons (p̄) are now experimentally available for variou
purposes@1,2#. The study of the interaction between antipr
tons and ordinary matters is of special importance to
fundamental physical principles such as charge-parity-t
invariance and the gravitational weak equivalence princip
Projects for such experimental studies are progressing a
collaborations ofASACUSA, ATHENA, andATRAP @1,2#. As the
need arises, the collision processes involving antiprotons
come very important also from the point of view of atom
physics.

The collision of antiprotons with hydrogen atoms may
regarded as one of the most basic processes in atomic p
ics, and is interesting also as a production process of pr
nium atoms (p̄p). Since the collision is a three-body prob
lem, its rigorous numerical treatment is possible by the
of recent computers. In the present study, we carry ou
rigorous full quantum-mechanical~QM! calculation to obtain
the cross section for the protonium formation

p̄1H~1s!→ p̄p1e. ~1.1!

This rearrangement process becomes important only at e
gies less than about the threshold of breakup ionizationp̄
1p1e) @3–6#. We consider the center-of-mass translatio
energies up to 10 eV. In this energy region, the brea
ionization channel is closed, and thereby the emission
electrons just means the formation of protonium atoms.

So far, several theoretical studies have been made fo
protonium formation~1.1!. Cohen@3–5# and Schultzet al.
@6# applied a classical trajectory Monte Carlo~CTMC!
method. However, a classical treatment would not be ap
priate to describe the low-energy collisions and especi
the electron motion. Cohen@4,5# also took partly account o
a QM effect in the CTMC calculation by means of
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mentum-dependent pseudopotential, which had been firs
troduced by Kirschbaum and Wilets@7# for the study of
atomic structure. As another way, an adiabatic molecu
~i.e., quantum chemistry! picture may be applicable becaus
the process~1.1! occurs at low energies. The QM nature
the electron motion during the collision may be able to
implicitly taken into account in the adiabatic potential. B
supposing that the classical trajectory of the relative mot
is determined from the adiabatic potential, Morgan a
Hughes@8,9# estimated the adiabatic limit of the cross se
tion for the protonium formation~1.1!. Very recently, the
present author@10# ~hereafter referred to as paper I! has
shown that the nonadiabatic transition is rather a domin
mechanism for the formation process~1.1!. In the adiabatic
picture, the electron emission cannot occur unless the r
tive radial distanceR betweenp̄ and H becomes less than th
so-called Fermi-Teller radiusRFT50.639 a.u.~c.f., Fig. 1!.
On the contrary, paper I has shown that the probability
the protonium formation still remains unity even if the clo
est distance is larger thanRFT ; the formation probability
falls off from unity when the closest distance isR.1 a.u.,
and becomes negligibly small at last forR.2 a.u. For this
reason, if we rely on the adiabatic picture, the formati
cross section is underestimated in the energy region abo
eV @10#. As a full QM study, Voronin and Carbonell@11#
have carried out a calculation for the process~1.1! by intro-
ducing a coupled-channel model, in which the effect
closed channels corresponding to the protonium continu
states is presumed to be the appearance of the polariz
potential. Only thes and p waves have been calculated fo
the total angular momentum, and accordingly, they ha
studied the low-energy limit (,1024 eV) of the formation
cross section. As shown in CTMC studies@4,5# and in paper
I, the total angular momentum quantum numbers up to;50
contribute to the formation cross section at energ
&10 eV.

In paper I, the present author has studied the forma
process~1.1! within a framework of a semiclassical~SC!
theory. A SC approach was also made for the negative m
(m2) capture, i.e.,m21H→m2p1e @12#. In these SC treat-
©2001 The American Physical Society06-1
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KUZUHIRO SAKIMOTO PHYSICAL REVIEW A 65 012706
ments, a common classical trajectory is assumed for the r
tive motion between a massive negative particle and a
drogen atom, and the other motions are described in quan
mechanics. In paper I, the common trajectory is defined
the way that the expectation of the total Hamiltonian is eq
to the total energy~i.e., the energy conservation in an ave
age sense!. Although this assumption seems to be one of
most appropriate choices, there is no unambiguous wa
define a common trajectory in a semiclassical manner. F
thermore, it is not certain that the common trajectory tre
ment is satisfactory to describe the rearrangement pro
such as Eq.~1.1! at low energies. Carrying out a full QM
calculation is necessary to precisely understand the colli
dynamics.

In paper I, the variable treated in classical mechanic
only one degree of freedom, i.e., the relative radial dista
R, and the conservation of the total angular momentum
already taken into account. Therefore, we can straight
wardly extend the calculation of paper I to the full QM ma
ner though the numerical computation becomes substant
laborious. As the natural extension of paper I, we adop
time-dependent wave-packet propagation picture to desc
the collision process. In paper I, a numerical technique
discrete variable representation~DVR! @13# has been used to
solve the time-dependent Schro¨dinger equation. The effi-
ciency of the DVR technique for thep̄1H collision has been
already discussed elsewhere@14,15#. The present work is an
attempt to apply the time-dependent full QM method
heavy particle collisions of the Coulomb three-body syst
by using the DVR numerical technique.

FIG. 1. Adiabatic potential and adiabatic ionization energies

the p̄1H system, taken from Wallset al. @20#. The ionization en-
ergy vanishes at the Fermi-Teller radiusRFT50.639 a.u., and be
comes 0.5 a.u. asR→`.
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II. THEORY AND NUMERICAL METHOD

A. Total Hamiltonian operator

In the three-body system, three sets of Jacobi coordin
each correspond to different arrangement channels. Here
describe the collision process~1.1! in the Jacobi coordinate
suitable for thep̄1ep arrangement: namely,R andr denote
the position vectors ofp̄ from the center-of-mass of H and o
e from p, respectively. The related reduced massesm andm
are expressed in terms of the electron massme and the pro-
ton ~antiproton! massmp as

m5
mp~me1mp!

me12mp
, m5

memp

me1mp
. ~2.1!

Since the calculation is carried out merely for the total pro
ability for the protonium formation in the present study,
seen later, we may do without the other sets of Jacobi c
dinates.~A summary of the Jacobi coordinates for thee

1 p̄p channel is shown in the Appendix.!
We further employ a body-fixed~BF! frame in which the

z axis is chosen alongR. The rotation from a space-fixe
~SF! frame to the BF frame is represented by the Eu
angles (a,b,g), whereR̂5(b,a) in the SF frame andg is
the azimuthal angle ofr̂ . Then, the total Hamiltonian opera
tor of the three-body system may be written as@16,17#

H̃52
1

2mR

]2

]R2 R1
~ L̃2 l̃ !2

2mR2 2
1

2mr

]2

]r 2 r 1
l̃2

2mr2

1V~R,r ,u!, ~2.2!

whereu is the polar angle ofr̂ . We use atomic units unles
otherwise stated. In Eq.~2.2!, L̃ and l̃ are the total and elec
tronic angular momentum vectors~operators!, respectively,

~ L̃2 l̃ !25L̃21 l̃222L̃zl̃ z2 l̃ 1L̃22 l̃ 2L̃1 ~2.3!

is the Coriolis operator@18#, andV(R,r ,u) is the sum of all
the Coulomb potentials, i.e.,

V5UR2
mp

me1mp
rU21

2UR1
me

me1mp
rU21

2r 21.

~2.4!

B. Time-dependent Schro¨dinger equation

The time-dependent picture is employed to solve the c
lision problem. The time-dependent Schro¨dinger equation for
the total wave functionCLM is

i
]

]t
CLM~R,r ,t !5H̃CLM~R,r ,t !, ~2.5!

f

6-2
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FULL QUANTUM-MECHANICAL STUDY OF PROTONIUM . . . PHYSICAL REVIEW A65 012706
where L and M are the total angular momentum quantu
number and its magnetic component in the SF frame, res
tively. The total wave functionCLM may be written in the
form @14#

CLM~R,r ,t !5~Rr!21(
l

D̄Ml
L ~a,b,g!cLl~R,r ,u,t !,

~2.6!

where

D̄Ml
L ~a,b,g!5F2L11

8p2 G1/2

@DMl
L ~a,b,g!#* ~2.7!

is the normalized Wigner’s rotation matrix element@19#, and
l5L̃z5 l̃ z is the magnetic quantum number in the BF fram
In the actual calculation, the conservation of parity is furth
take into account@14# though it is not shown explicitly here
The time-dependent wave function~2.6! has the same form
as the semiclassical one given in paper I except for the ra
R part.

We may write the stationary solution of Eq.~2.5! in the
form

CLM~R,r ,E!exp~2 i Et!, ~2.8!

where CLM(E) is the time-independent wave function fo
the total energyE, i.e.,

~H̃2E!CLM~R,r ,E!50, ~2.9!

and is given by@16,17#

CLM~R,r ,E!5~Rr!21(
l

D̄Ml
L ~a,b,g!cLl~R,r ,u,E!.

~2.10!

In terms of the time-independent wave functioncLl(E) in
Eq. ~2.10!, the time-dependent~nonstationary! solution
cLl(t) in Eq. ~2.6! may be expanded as the wave pac
having the form

cLl~R,r ,u,t !5E C~E!cLl~R,r ,u,E!exp~2 i Et!dE.

~2.11!

The coefficientC(E) determines an explicit form of the ini
tial wave packetcLl(t50), and is normalized to unity,

E uC~E!u2dE51. ~2.12!

Evidently, the quantityuC(E)u2 gives the energy distribution
of the initial wave packet.

C. Asymptotic form of time-independent wave function

To calculate theS-matrix elements for collisional transi
tion, we see the asymptotic form of the time-independ
wave functioncLl(E). Because of the low-energy collision
the adiabatic state may be used to define the asymp
01270
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channels. As shown in paper I, the use of the adiabatic b
leads to the reduction of the computation time. The adiab
basis is given by the following eigenvalue equation for ea
fixed R:

F2
1

2m

]2

]r 21
l̃2

2mr2
1V~R,r ,u!GxGl~r ,u;R!

5EGl~R! xGl~r ,u;R!, ~2.13!

where (G,l) classifies the adiabatic state. In Fig. 1, the ad
batic potentialEGl(R)2EGl(R→`) and the adiabatic ion-
ization energy, taken from Wallset al. @20#, are shown for
the electronic ground state.@The adiabatic states of Wall
et al. are given by settingmp→` in Eq. ~2.13!, but the dif-
ference is actually negligible.# In the p̄1H system, the adia-
batic state is meaningless atR<RFT because the electroni
bound states are absent. WhenR.2 a.u., the nonadiabatic
coupling becomes negligible@14,10#. Accordingly, for suffi-
ciently largeR(@2 a.u.), the wave function may be writte
in the form

cLl~R,r ,u,E!5xG0l0
~r ,u;R! f G0l0

2 ~R!dll0

2(
G

xGl~r ,u;R! f Gl
1 ~R!SGl,G0l0

L ,

~2.14!

where SGl,G0l0

L is the S-matrix element for the elastic~or

inelastic! transition. The breakup ionization channel is clos
in the present energy region. To take account of theR depen-
dences of the centrifugal potential and the adiabatic ba
the WKB functions are used to express the incoming~2! and
outgoing~1! waves@21#:

f Gl
6 ~R!5F m

2pkGl~R!G
1/2

expF6 iER

kGl~R8!dR8G
~2.15!

with the local radial wave-numberkGl(R) defined by

kGl~R!5H 2mFE2
L~L11!22l2

2mR2 2EGl~R!G J 1/2

.

~2.16!

In the Appendix, we present the asymptotic form of the tim
independent wave function representing thee1 p̄p channel.
This asymptotic form becomes essential only if we intend
calculate the final-state specified probabilities for the pro
nium formation. However, the consideration of th
asymptotic form~2.14! alone is sufficient just for the calcu
lation of the formation probability summed over all the fin
states.

D. Preparation of initial wave packet

The initial condition ofcLl(t) at t50 may be taken as

cLl~R,r ,u,t50!5xG0l0
~r ,u;R!z~R!dll0

. ~2.17!
6-3
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KUZUHIRO SAKIMOTO PHYSICAL REVIEW A 65 012706
Here, (G0 ,l0) is the initial state of the hydrogen atom, and
Gaussian wave packet is assumed forz(R), i.e.,

z~R!5~2pd2!21/4expF2
~R2R0!

2

4d2
2 i k0~R2R0!G ,

~2.18!

whered is a width parameter,R0 is the center of the wave
packet, andk0 is the center in the momentum space. Fro
Eqs. ~2.14! and ~2.17!, the coefficientC(E) in Eq. ~2.11!
may be given by

C~E!5^ f 2uz&. ~2.19!

When R is large, the adiabatic wave-functio
xG0l0

(r ,u;R) is loosely dependent onR. Therefore, if the

wave-packetz(R) is well localized aroundR0 , we may as-
sumexG0l0

(r ,u;R)5xG0l0
(r ,u;R0) in the initial condition

~2.17!. However, theR dependence of the local wave-numb
kGl(R) should not be neglected in the calculation of E
~2.19!.

E. Analysis of final wave packet

To extract theS-matrix elements or the transition prob
abilities from the scattered wave packet, we need to mak
proper analysis of the wave packet. This is done in the
lowing way. We introduce a fixed radial distanceR5Rf
where the asymptotic form~2.14! is satisfied. Making a time
integral~Fourier transform! at R5Rf , we define the energy
dependent amplitude:

AGl,G0l0

L ~E!5
1

A2p
E

t0

`

exp~ i Et!^xGlucLl~ t !&R5Rf
dt,

~2.20!

wheret0 is the first time that satisfiescLl(t0)50 at R5Rf
just after the incoming phase of the wave-packet propa
tion. If the S-matrix elements are requested for a center-
mass translational energyEt , the total energyE is give as

E5Et2I G0l0
, ~2.21!

whereI G0l0
52EG0l0

(R→`) is the ionization energy of the
hydrogen atom. From Eqs.~2.11!, ~2.14!, and~2.20!, we can
easily show that

SGl,G0l0

L ~E!52
AGl,G0l0

L ~E!

A2pC~E! f Gl
1 ~Rf!

. ~2.22!

Alternatively, using the flux formalism, a numerically mo
convenient expression for the transition probabil
PGl,G0l0

L 5uSGl,G0l0

L u2 is directly given by@22,23#

PGl,G0l0

L ~E!5
1

muC~E!u2
ImF ~AGl,G0l0

L !*
dAGl,G0l0

L

dRf
G .

~2.23!
01270
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Since the breakup ionization channel is closed here,
probability for the protonium formation may be calculate
from

Pp̄p
L

~G0l0!512(
Gl

PGl,G0l0

L , ~2.24!

where the sum is taken over all the bound states of the
drogen atom. Finally, the formation cross section is defin
by

s p̄p~G0l0!5
p

@kG0l0
~R→`!#2 (

L
~2L11!Pp̄p

L
~G0l0!.

~2.25!

F. Discrete variable representation

In solving the time-dependent Eq.~2.5!, we use the DVR
technique@13# to evaluate the action of the Hamiltonian o
erator on the wave packet. In the DVR method, a grid
constructed from zero points of an orthogonal polynom
We introduce a grid-based functionun(x) @24#

un~x!5@vnW~x!#1/2(
t

N

Ft~xn!Ft~x!, ~2.26!

whereFt(x) is a normalized orthogonal polynomial of de
gree t; and xn is the zero point ofFN(x); W(x) is the
weight function; andvn is the quadrature weight. Arbitrary
types of orthogonal polynomials are acceptable. The g
based function satisfies the following orthogonal properti

un~xn8!5S Wn

vn
D 1/2

dnn8 , ^unuun8&5dnn8 , ~2.27!

where we have putWn5W(xn).
As shown recently in Ref.@15#, the ~generalized! La-

guerre polynomials@25#

Ft~r !5@~t12!~t11!#21/2Lt
(2)~r ! ~2.28!

are appropriate for ther coordinate because of the Coulom
nature. One may expect that the Legendre polynomials

Ft~cosu!5~2t11!1/2Pt~cosu! ~2.29!

are efficient for theu coordinate. However, this is true onl
when l5even @27,26#. The present author@26# has shown
that the following ultraspherical~or Jacobi! polynomials@25#

Ft~cosu!5F ~2t11!~t11!

4t G1/2

Pt21
(1,1)~cosu! ~2.30!

should be used in the case of oddl. For theR coordinate, we
use the Chebyshev polynomials

FtS sin
pR

Rmax
D5A2

p
sin

tpR

Rmax
, ~2.31!
6-4
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where Rmax defines the outermost radius in the numeri
calculation. It is mentioned that only the Chebyshev z
points construct an equally spaced grid.

Puttingui(pR/Rmax), uj (r ), anduk
l5even/odd(cosu) as the

DVR functions~2.26! for the coordinatesR, r, andu, respec-
tively, we may have

cLl~R,r ,u,t !5(
i jk

S v iv jvk
l

WiWjWk
lD 1/2

cLl~Ri ,r j ,uk
l ,t !

3ui~pR/Rmax!uj~r !uk
l~cosu!, ~2.32!

where Wi51, Wj5r j
2e2r j , Wk

l5even51, Wk
l5odd

5sin2u k
l5odd; and v i , v j , vk

l5even, and vk
l5odd are the

quadrature weights of the Chebyshev, Laguerre, Legen
and ultraspherical polynomials, respectively. Inserting E
~2.32! into the time-dependent Schro¨dinger Eq. ~2.5!, and
using the orthogonalities~2.27!, we have a set of couple
linear equations with respect to the wave packet given on
DVR grid points (Ri ,r j ,uk

l), i.e.,

dc i jk
Ll~ t !

dt
5 (

l8 i 8 j 8k8
@Mi jk ,i 8 j 8k8

l,l8

2 i V~Ri ,r j ,uk
l!dll8d i i 8d j j 8dkk8#c i 8 j 8k8

Ll8 ~ t !,

~2.33!

where we have put

c i jk
Ll~ t !5S v iv jvk

l

WiWjWk
lD 1/2

cLl~Ri ,r j ,uk
l ,t !. ~2.34!

The coupling matrix elementsMi jk ,i 8 j 8k8
l,l8 come from only the

kinetic-energy operators, and hence, this matrix is spa
This is a great advantage of the DVR method in the num

cal computation. The explicit forms ofMi jk ,i 8 j 8k8
l,l8 are easily

calculated using the properties of orthogonal polynom
@24#, and can be found in previous papers@14,15#.

G. Numerical calculations

We have prepared the initial wave-packet~2.17! by taking
d50.25 a.u. andR054 a.u., and have setRf5R0 . The hy-
drogen atom is assumed to be initially in the ground 1s state.
Since the energy range ofEt<10 eV is considered, the elas
tic @ p̄1H(1s)# and protonium formation channels are op
in the collision, and the other inelastic@ p̄1H(n>2)# and
breakup ionization channels are closed. The value ofR0
54 a.u. is slightly smaller than the initial distance (R
55 a.u.) chosen in paper I. We have confirmed the app
priateness of this choice by comparing with the results
R05Rf56 a.u. When we make the integral~2.20! over a
long time, the portions of the wave packet propagated ba
ward into the entrance channel will eventually reach the e
of the gridR5Rmax, and will be reflected back onto the grid
This phenomena is evidently unphysical, and produces a
titious result in the present calculation. The choice of a s
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ficiently large value ofRmax resolves the edge problem, bu
makes the computation time impractical. As usually done
most of the wave-packet propagation calculations@28#, we
have applied a negative imaginary~absorbing! potential@29#
near the edge, and thereby we can chooseRmax56 a.u.

The central translational energiesEt
05k0

2/2m of the initial
Gaussian wave packet~2.18! have been taken to be 5 and 7
eV for the calculation of the formation cross sections. T
wave packet has some range of translational energiesEt .
The weight of each energy component is given by Eq.~2.19!.
In the present study, the probability has been extracted
the translational energyEt that satisfies

UC~Et2I 1s!

C~Et
02I 1s!

U2

.0.1. ~2.35!

Then, the two wave packets ofEt
055 and 7.5 eV cover the

energy range of 3&Et&10 eV. We have checked the acc
racy of this extraction by takingEt

05Et for the initial wave
packet, and we estimate that the error of the formation pr
abilities in the present calculation is much less than 1%.
the occasion demands, another value has been chosen fo
central energyEt

0 .
The number of grid points has been changed accordin

the total angular momentumL. We have takenNR560–200
~a larger value ofNR for low L where the wave packe
reaches smallR) and Nr520–40 ~a larger value ofNr for
high L where the formation probability becomes small!. In
the process~1.1!, the protonium is formed in very high
orbital states. The present choice forNR gives, for example,
the protonium energies of27.8203 eV for the angular mo
mentum l̄ 510, 27.8128 eV for l̄ 520, and27.8126 eV
for l̄ 530 when the principal quantum numbern̄ is 40, while
the accurate value is27.8126 eV. A convergence check fo
the description of the hydrogen bound states has been g
in Ref. @15#. Voronin and Carbonell@11# found that the con-
sideration of the electronic angular momental 50 and 1
were sufficient in their calculation because of the very lig
mass of an electron. In the present calculation, the value
Nu52 or 3 has been chosen, and the states withl50 and 1
have been coupled. This consideration for the angular
corresponds to the inclusion of the electronic angular m
menta up tol 53 or 4. All these choices have been made
that the convergence error of the cross sections is estim
to be less than a few percent. To solve the time-depend
linear Eqs.~2.33!, a fourth-order Runge-Kutta formula ha
been applied although several numerically efficient meth
were developed@28#. A simple method of the Runge-Kutt
algorithm has sufficiently served the present purpose. For
matrix multiplication in the right-hand side of Eq.~2.33!, the
number of the numerical operations is not so tremend
since the coupling matrix is sparse and may be easily sto
in advance. The calculation has not been made for all
partial waves required in the summation~2.25!. Since the
probabilities form a smooth function ofL, those for partial
waves not calculated may be obtained appropriately b
cubic-spline interpolation.
6-5
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KUZUHIRO SAKIMOTO PHYSICAL REVIEW A 65 012706
In Ref. @15#, we have found that the Laguerre grid is mo
attractive to describe the electron continuum motion than
Chebyshev grid since the argument of the Laguerre poly
mials ranges to infinity. It should be noted, however, that
interval between adjacent grid points increases rapidly
very larger j . ~As an example, whenNr530, the interval is
about 4.5 a.u. forr;40 a.u. The interval around the samer
decreases with increasingNr .) Therefore, the Laguerre gri
is certainly not suitable for an accurate description of
electron continuum motion in the asymptotic region. T
practical use of the Laguerre grid is limited to the electr
motion in the ranger ,r Nr

. Furthermore, the reflection of th

wave packet occurs unphysically aroundr 5r Nr
. This reflec-

tion causes a problem when long-time propagation is
quired. Fortunately, here we do not need to know deta
information on the wave packet for larger since the final-
state specified formation probabilities are not calculat
Therefore, a negative imaginary potential@29# has been ap-
plied also atr .r op540 a.u. to avoid the above troublesom
problems. However, owing to the sparseness of the Lagu
grid for larger j , the imaginary potential has not been able
work absolutely for the absorption of the wave packet. T
efficiency of the imaginary potential improves with increa
ing Nr . In the present choice ofNr , we have found that the
function of the imaginary potential is efficient enough

FIG. 2. Plots of the probability distributionrL530(R,r ,t) for
Et

056.8 eV at different points of time, as shown by contours.
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make the reflection effect negligible at energiesEt*3 eV.
To calculate the time integral~2.20! for these energies, we
need the end time up tot;900 a.u. If the translational en
ergy is lower, longer-time propagation is required, and
larger value ofNr will be necessary.

III. RESULTS AND DISCUSSION

A. Time evolution

In Figs. 2 and 3, we show the time evolution of the pro
ability distribution defined by

rL~R,r ,t !5R2r 2E uCLM~R,r ,t !u2dR̂ dr̂ . ~3.1!

The wave packets prepared for the figures are for the cen
translational energyEt

056.8 eV and the total angular mo
mentaL530 and 40. The wave packet is initially localize
around the position ofR54 a.u. andr .1.5 a.u., and is
then propagated through the entrance channel~i.e., along the
R axis!. The panels~a! and ~b! of the figures correspond to
this early stage. The panels~c! or ~d! indicate the dynamica
feature that the wave packet is just reflected back alongR by
the centrifugal barrier. We see that the position~R! of the
reflection area is an important factor to understand the
mation mechanism. The protonium formation is expressed
two dynamical actions of the wave packet, i.e., the stretch
the wave packet alongr and then the breakaway of its po
tions into larger. These two successive actions are rap
because they are also related to the escape motion o
electron, and are nearly completed while the wave packe
lying around the reflection area. The reflection position
mostly R,1 a.u. for the lower angular momentumL530,
and is 1,R,2 a.u. for the higherL540. WhenL530,
after the reflection, the most portions of the wave pac
move through thee1 p̄p channel~i.e., along ther axis!, and
never return into largeR. This means that the protonium
atom is formed in the probability of nearly unity. WhenL
540, on the other hand, the main part of the wave packe
propagated backward into the entrance channel, and the
tonium formation does not occur so frequently. In the S
study of paper I, we have been able to see a similar dyna
cal aspect, which are characterized well in terms of the fi
turning point of the common trajectory.

In Fig. 4, the time evolution of the electron distributio
defined by

rL~r ,t !5E rL~R,r ,t !dR ~3.2!

is shown for three total angular momenta at the central tra
lational energyEt

057.5 eV. The three partial waves ofL
530, 40, and 50 represent the wave packets mostly mov
through thee1 p̄p channel, partly moving through this chan
nel, and reflected back into the entrance channel, res
tively. For L530 and 40, the two actions of the stretch a
breakaway can be seen clearly. However, only the stre
motion is present forL550.
6-6
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We also display in Fig. 4 the electron distribution calc
lated by using the SC method of paper I. The SC elect
distribution may be defined in the same way as Eq.~3.1!
except for the radial distanceR. In the SC calculation, the
translational energyEt and the initial distanceR have been
set to be equal to the corresponding central values of
wave packet~i.e., Et

0 and R0). It should be noted that the
initial wave packet spans some range ofEt or R, which de-
pends on the width parameterd through Eq.~2.18!. Hence,
the QM electron distribution reflects the overlapping f
various energies or various initial distances. In this sense
may not have to make a detailed comparison between
QM and SC results. Nevertheless, the comparison is v
interesting, and we see a close similarity between the
and SC electron distributions in Fig. 4. From this result,
may expect that the SC method is very useful to describe
QM motion of the electron during the collision.

For the cases shown in Fig. 4, we have further calcula
the time dependence of the average radial distances,

^R~ t !&5E RrL~R,r ,t !dRdr, ~3.3!

^r ~ t !&5E rrL~R,r ,t !dRdr. ~3.4!

FIG. 3. Plots of the probability distributionrL540(R,r ,t) for
Et

056.8 eV at different points of time, as shown by contours.
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The results are shown in Fig. 5. The smallest value of^R(t)&
will be helpful to characterize the reflection position in th
wave-packet propagation. The average distance^r (t)& may
measure the extent of the electron cloud. WhenL530 and
40, as seen in Fig. 4, the wave packet has a finite amplit
at large r. However, once a portion of the wave pack
reachesr .r op, that will be absorbed by the imaginary po
tential. For this reason, tracing the time evolution of the a
erage distances has no meaning after the absorption o
wave packet begins. Therefore, the curves are drawn only
the time range that the absorption is negligible.

In Fig. 5, we also show the time dependence of the av
age distances calculated by the SC method of paper I.
can see that the average distance^r (t)& is nicely described
by the SC method as expected from Fig. 4. The aver
value ^R(t)& is also very close to the SC quantityRsc(t),
which is just given by a common trajectory itself. The us
fulness of the SC method for predicting the average distan
is easily understandable in the cases ofL530 and 50 be-
cause most of the collisions induce merely single proc
~elastic transition or protonium formation!. WhenL540, as
may be seen in Fig. 4, however both the elastic and pro
nium formation processes will occur equally in the col
sions. Hence, in the classical treatment, two quite differ
kinds of trajectories~i.e., recoil and capture! must be consid-
ered for thep̄ motion at the same time. The common traje
tory assumption would be no more valid in such case. N
ertheless, we find in Fig. 5 that the common trajectoryRsc(t)
is still a good approximation tôR(t)& even forL540.

B. Formation probabilities

First, we compare the formation probabilities calculat
by the present QM method with the SC results of paper
three energiesEt54.0, 6.8, and 10.0 eV. In Fig. 6, we sho
the opacities defined by (2L11)Pp̄p

L as a function of the
total angular momentumL. From Eq.~2.25!, the summation
of the opacities overL provides the quantity proportional t
the formation cross section. The SC opacities are found to
very close to the QM ones forL higher than and also muc
lower than the peak position. However, around the peak,
SC calculation gives larger opacities, and even exhibits
culiar L dependence.

To understand theL dependence of the SC formatio
probabilities, it may be helpful to consider the energy co
servation expected to be satisfied in the SC calculation,

Et2I 1s5Et81ePsc
L 2I 1s~12Psc

L !, ~3.5!

where Et8 is the final translational energy,e is the mean
energy loss due to the electron emission, andPsc

L is the SC
probability for the electron emission. In the common traje
tory treatment, it may be judged that the antiproton is c
tainly captured ifEt8,0. Sincee.0, we find that the con-
dition Et8,0 holds whenever the emission probabilities a
Psc

L .Et /I 1s . ~It should be noted, however, that there is
definite way to evaluate the emission probability in the co
mon trajectory treatment whenPsc

L .Et /I 1s .! Consequently,
the SC formation probabilities become unity forPsc

L

6-7
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.Et /I 1s . This appears in Fig. 6 as a linear curve (52L
11) of the SC results fromL50 to the critical peak position
Lc defined byPsc

Lc.Et /I 1s .
WhenL.Lc , the common trajectory exhibits a behavi

of only the recoil motion for the antiproton although th
capture is possible in the QM calculation unlessL is much
higher thanLc . ~Accordingly, the SC emission probabilit
Psc

L could be rather evaluated in paper I.! It has been assume
in paper I that the formation probability is given byPp̄p

L

5Psc
L for L.Lc . From Fig. 6, we see that this assumption

acceptable. It is very interesting that the SC method, wh
offers only a recoil behavior of the common trajectory, is s
useful to describe the protonium formation. As may be s
in Fig. 3 ~or shown in paper I!, the electron is ejected rapidl
only around the reflection position~i.e., the first turning
point!. Hence, the common trajectory would not deviate
much from real trajectories at least until it reaches the fi
turning point, and consequently, we could calculate the em
sion probability forL.Lc in a reasonable accuracy by usin
the common trajectory. We can see in Fig. 5 that the comm
trajectory is in fact a good approximation to^R(t)&. When
L.Lc , it should be noted that although the common traj
tory treatment will be justified for the calculation of the fo
mation probability summed over all the final states, it c

FIG. 4. Time evolution of the electron distributio
rL530,40,50(r ,t), as shown by contours. The QM and SC results
for Et

057.5 eV andEt57.5 eV, respectively.
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never provide any information on the bound motion of t
protonium atom.

In the QM calculation, the formation probabilitiesPp̄p
L are

close to, but not equal to unity forL!Lc . Hence, the SC
probabilities are slightly larger than the QM ones there. T
error of the SC probability becomes the largest;1003(1
2Et /I 1s)% at L5Lc . As a result, the main error of the S
calculation for the cross section comes fromL ’s equal to and
slightly lower thanLc . If we may evaluate the emissio
probabilitiesPsc

L for the low L(<Lc), the SC method will
give more reliable formation probabilities by equatingPp̄p

L

5Psc
L .

In paper I, we have found that the position of the fir
turning point of the common trajectory is a key point
understand the mechanism of the electron emission, and
thermore that the turning point may be well estimated fro
the adiabatic potential. Accordingly, we show in Fig. 7 t
present QM formation probabilities as plotted against
turning pointRtp

ad for the adiabatic potential. The probabilitie
are displayed in the same figure for the translational ener
Et53.5, 5.0, 6.8, and 10.0 eV all together. A very interesti
thing is that all the points are almost put on a single cur
This result supports the finding of paper I that the relat
motion of p̄ and H can be nicely described by the adiaba
potential at least until reaching the first turning point. W
may further expect that the turning point is the almost o
important factor to determine the dynamics of the protoni
formation ~1.1! in the present energy region.

The solid line in Fig. 7 is a fit of all the data forEt
52.72–10 eV, and its function form is assumed as

Pfit~Rtp
ad!5

a

b1Rtp
ad

exp@2c~Rtp
ad2d!4#, ~3.6!

whereRtp
ad,2 a.u. anda588, b594.5, c52.3, d50.426.

For Rtp
ad&RFT ~except very smallRtp

ad), the probabilities take
a nearly constant valuePc.0.93. By using this fit, we may
calculate the formation probabilities for any energies wh
the calculation has not been made. For the adiabatic turn
pointsRtp

ad ranging from;RFT to 2 a.u., the formation prob
ability decreases to zero, but has a significant contribution
the cross section. This fact indicates the importance of no
diabatic coupling for the low-energy formation process~1.1!.

C. Formation cross sections

In Fig. 8, we plot the formation cross sectionss p̄p as a
function of the translational energyEt . The present QM
cross section is compared with those calculated by the
method~paper I!, the CTMC method@4#, the CTMC method
with the pseudopotential@4#, and the adiabatic method@8#.
The adiabatic cross section is given by assuming that
formation probability is unity ifRtp

ad<RFT and is otherwise
zero. The usefulness of the adiabatic potential mentio
above appears as the fact that the energy dependence o
adiabatic cross section is similar to the QM one. Howev
the adiabatic method significantly underestimates the for
tion cross section at these energies as found in paper I.

e

6-8
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SC cross sections are about 15% larger than the QM o
As seen in Fig. 6, this error manly comes from the defec
the common trajectory treatment forL<Lc . The CTMC
cross sections are larger than the QM results for the h
energies and smaller for the low energies. When the pse
potential is introduced to present a QM effect in the CTM
calculation, the cross section becomes much closer to
QM value. This result suggests that the QM nature is imp
tant in the protonium formation~1.1!.

D. Angular momentum distribution of protonium

In the CTMC study, Cohen@4# calculated the level distri-
bution of the protonium atom formed in the process~1.1!.
Since we have not made a complete analysis of the w
packet for the arrangement channele1 p̄p, we cannot obtain
the accurate level distribution of the protonium atom. Ne
ertheless, since very high total angular momenta (L@ l ) are
mostly important in the protonium formation~1.1!, it would
be allowed that the angular momentuml̄ of the protonium
atom is approximated byl̄ 5L. ~See, also, the Appendix.!
Therefore, we may define the relative fraction of the pro
nium atom having the angular momentuml̄ as

FIG. 5. Time dependence of the average distances^R(t)& and
^r (t)& for L530, 40, and 50. The QM and SC results are forEt

0

57.5 eV andEt57.5 eV, respectively. On the upper panel, t
common trajectoryRsc(t) is shown for the SC results.
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f ~ l̄ !5
~2 l̄ 11!Pp̄p

L5 l̄

(
L

~2L11!Pp̄p
L

. ~3.7!

In Fig. 9, the relative fractions calculated in this way a
shown for three energiesEt52.72, 5.44, and 8.16 eV, and ar
compared with the analytical fits of the CTMC results giv
by Cohen@4#. In contrast to the case of the cross section
seems that the relative fraction given by the pure CTM
method ~without the pseudopotential! agrees rather bette
with the QM result.

IV. SUMMARY AND FURTHER DISCUSSION

We have applied a time-dependent full QM wave-pac
propagation method to a Coulomb three-body (p̄1H) colli-
sion problem. A DVR technique has been employed for
numerical calculation. Cross sections have been obtained
the protonium formation processp̄1H→ p̄p1e at transla-

FIG. 6. Opacities (2L11)Pp̄p
L as a function of the total angula

momentumL for Et54.0, 6.8, and 10.0 eV. The SC results of pap
I are also shown.
6-9
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KUZUHIRO SAKIMOTO PHYSICAL REVIEW A 65 012706
tional energies below 10 eV. Although the time-depend
full QM approach has been widely accepted in the field
chemical reaction@21,23,28#, the present work is probably it
first application to heavy particle collisions of the atom
Coulomb system. The present study and recent applicatio
the electron-impact ionization vigorously made by Pindz
and Schultz, and Robicheaux, and Colganet al. @30# encour-
age the theoretical treatment based on the time-depen
picture also in atomic collision processes.

A plot of the QM formation probabilitiesPp̄p
L for various

energies against the adiabatic turning pointsRtp
ad gives a uni-

versal curve in a good approximation. The adiabatic poten
and especially the adiabatic turning point are of critical i
portance to understanding the mechanism of the proton
formation. However, it does not mean that the adiabatic p
ture is fully acceptable. The significance of the adiaba
turning pointsRtp

ad.RFT for the protonium formation indi-
cates that the nonadiabatic transition is very important in
process.

Paper I has shown that when the translational energ
below 1.57 eV, the formation cross section is identical to
so-called orbiting cross sectionsorb

ad that is obtained using the
adiabatic potential. It is not easy to extend the present ca
lation to these low energies because the wave-packet pr
gation must be performed for a very long time. Neverthele
the present results may be helpful to estimate the forma
cross section in the orbiting energy region. We have fou
that the protonium formation occurs in the probability
Pc (.0.93) in cases ofRtp

ad&RFT . Paper I has suggeste
that whenL is lower than the critical value that the orbitin
occurs, the relative motion to the small distancesR&RFT
becomes classically allowed. Therefore, we may expect
the formation cross section in the orbiting energy region
given bys p̄p5Pcsorb

ad , which is about 10% smaller than th
orbiting value. It should be noted that the orbiting approa
becomes meaningless at extremely low energies since it
classical picture. In fact, the orbiting treatment gives t
large cross sections at energies ofEt,1026 eV @11#.

It has been shown that the SC method assuming a c
mon trajectory@10# can describe well the time evolution o
some QM quantities. Therefore, the SC method is very u
ful to gain a physical understanding of the collision dyna
ics in p̄1H. However, the SC method is not always reliab
to obtain an accurate formation probability just because
common trajectory is assumed. It is very interesting to inv
a more sophisticated trajectory for the relative motion in
SC method.

In a CTMC method@4#, if a pseudopotential is added i
the interaction, the formation cross section agrees well w
the QM results at the energies considered in the pre
study. For relative angular momentum distribution, the p
CTMC method~without the pseudopotential! @4# seems to be
rather better. It should be noted, however, that the CTM
methods both with and without the pseudopotential@4# give
the formation cross sections~respectively, 163 and 67 a.u!
largely different from the orbiting valuesorb

ad (591 a.u.) at
Et50.272 eV.

It would be interesting to compare the present results w
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those of the QM study of Voronin and Carbonell@11#. How-
ever, unfortunately, the time-dependent picture is not app
priate for the calculation of the collisions at extremely lo
energies because of the necessity of very-long-time prop
tion and still more the diffuseness of the wave packet. T
time-independent picture will be much more suitable for e
tremely low energies.

It is very important to obtain the final-state specified cro
sections for the protonium formation. To calculate the ac
rate cross sections specified by the principal and angular
mentum quantum numbers (n̄, l̄ ) of the protonium atom, the
coordinates (R,r ) must be transformed into another set
Jacobi coordinates (Q,q), which correspond to the arrange
ment channele1 p̄p. ~See the Appendix.! In doing an analy-
sis of the final wave packet, we must remember that
Laguerre grid is not appropriate because the grid points
come scattered for large distances. To avoid this problem
instance, we will be able to take the following step: the wa
packet is propagated using the present numerical method
til it reaches a reaction zone, the transformation (R,r )
→(Q,q) is made there, the Chebyshev grid is applied b
for the Q andq coordinates, and then the wave packet m
be propagated into sufficiently largeq. The calculation of the
final-state specified cross sections for the protonium form
tion remains in future work.

When the translational energy is higher than the ioni
tion energy (513.6 eV) of the hydrogen atom, the breaku
ionization p̄1p1e becomes an open channel. The CTM
studies@6,4# showed that the protonium formation~1.1! was
negligible atEt.15 eV. Of special interest is the questio

FIG. 7. Formation probabilitiesPp̄p
L are plotted against the adia

batic turning pointsRtp
ad for Et53.5, 5.0, 6.8, and 10.0 eV. A solid

curve is a fit of all the data forE52.72–10.0 eV.
6-10
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whether the SC method with the common trajectory assu
tion is satisfactory also to describe the breakup ionizati
The extension of the present QM approach to the ene
region above the ionization threshold may be made strai
forwardly. The full QM calculation for the breakup ioniza
tion and the comparison with the SC results will be repor
in a next study@31#.
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APPENDIX: ASYMPTOTIC FORM FOR PROTONIUM
FORMATION

For the arrangement channele1 p̄p, we have a set of
Jacobi coordinatesQ andq, which are the position vectors o
p̄ from p and of e from the center-of-mass ofp̄p, respec-
tively. The coordinatesQ andq are expressed in terms ofR
and r as

Q5R1
me

me1mp
r , q52

1

2
R1

me12mp

2~me1mp!
r . ~A1!

Becauseme!mp , we may setQ5R unlessr is too large.
Therefore, in the BF frame (ẑ5R̂), the time-independen
wave function~2.10! may be re-expressed as

FIG. 8. Formation cross sectionss p̄p as a function of the trans
lational energyEt . The SC results are taken from paper I. T
results of the CTMC method and the one with the pseudopote
are given by Cohen@4#. The cross sections obtained under the ad
batic assumption are also shown.
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CLM~E!5~Rq!21(
l

D̄Ml
L ~a,b,g8!cLl~R,q,f,E!,

~A2!

whereq̂5(f,g8).
For sufficiently largeq, the wave-functioncLl(R,q,f,E)

becomes

cLl~R,q,f,E!52 (
n̄ll8

P̄l
l~cosf!hl,l8

Ln̄l
~R!A m8

2pkn̄

3exp~1 i kn̄q!Sn̄ll8,G0l0

L , ~A3!

where P̄l
l is the normalized associated Legendre functionl

is the electronic angular momentum quantum number,m8 is
the reduces mass of thee1 p̄p system,kn̄ is the wave num-
ber of the ejected electron, andSn̄ll8,G0l0

L is the S-matrix

al
-

FIG. 9. Relative angular momentum distribution of the pro

nium atomf ( l̄ ) for Et52.72, 5.44, and 8.16 eV. The results of th
CTMC method and the one with the pseudopotential are taken f
Cohen@4#.
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element for the protonium formation. In Eq.~A3!, the radial

wave function of the protoniumhl,l8
Ln̄l (R) in the BF frame is

defined by

hl,l8
Ln̄l

~R!5(
l̄

2 l̄ 11

2L11
~ l̄ 0lluLl!h n̄ l̄ ~R!~ l̄ 0ll8uLl8!,

~A4!

whereh n̄ l̄ (R) is the ordinary radial Coulomb function, an
(n̄, l̄ ) are the quantum numbers of the protonium atom
should be noted, however, that the final magnetic compon
l8 in Sn̄ll8,G0l0

L is not a good quantum number even in t

limit of q→`. If we describe the protonium state in the S
frame, theS-matrix element becomes

Sn̄l̄ l ,G0l0

L
5(

l8
S 2 l̄ 11

2L11
D 1/2

~ l̄ 0ll8uLl8!Sn̄ll8,G0l0

L .

~A5!
,

c
In

e,

01270
It
nt

Since the electronic angular momentuml is very small
compared withL in most cases, we may assumel̄ 5L in Eq.
~A4!. Then, we have

hl,l8
Ln̄l

~R!5h n̄L~R!dll8 , ~A6!

and the asymptotic form ofcLl(E) becomes

cLl~R,q,f,E!52(
n̄l

P̄l
l~cosf!h n̄L~R!A m8

2pkn̄

3exp~1 i kn̄q!Sn̄ll,G0l0

L . ~A7!

This approximation is just the same as the one usually d
in the study of molecular spectroscopy: i.e., the Coriolis co
pling is neglected for thep̄-p motion in the BF~rotating
protonium! frame.
.

hy,

J.

.

@1# J. Eades and F. J. Hartmann, Rev. Mod. Phys.71, 373 ~1999!.
@2# M. H. Holzscheiter and M. Charlton, Rep. Prog. Phys.62, 1

~1999!.
@3# J. S. Cohen, Phys. Rev. A36, 2024~1987!.
@4# J. S. Cohen, Phys. Rev. A56, 3583~1997!.
@5# J. S. Cohen, Phys. Rev. A59, 1160~1999!.
@6# D. R. Schultz, P. S. Krstic´, C. O. Reinhold, and J. C. Wells

Phys. Rev. Lett.76, 2882~1996!.
@7# C. L. Kirschbaum and L. Wilets, Phys. Rev. A21, 834 ~1980!.
@8# D. L. Morgan, Jr. and V. W. Hughes, Phys. Rev. A2, 1389

~1970!; 7, 1811~1973!.
@9# D. L. Morgan, Jr., inInternational School of Physics of Exoti

Atoms, 6th Workshop: Exotic Atoms, Molecules and Their
teractions, edited by C. Rizzo and E. Zavattini~Servizio di
Riproduzione della Sezione dell’INFN di Trieste, Triest
1994!, p. 205.

@10# K. Sakimoto, J. Phys. B34, 1769~2001!.
@11# A. Y. Voronin and J. Carbonell, Phys. Rev. A57, 4335~1998!.
@12# N. H. Kwong, J. D. Garcia, and J. S. Cohen, J. Phys. B22,

L633 ~1989!.
@13# J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82,

1400 ~1985!; D. Baye and P. H. Heenen, J. Phys. A19, 2041
~1986!.

@14# K. Sakimoto, J. Phys. B33, 3149~2000!.
@15# K. Sakimoto, J. Phys. B33, 5165~2000!.
@16# R. T. Pack, J. Chem. Phys.60, 633 ~1974!.
@17# J. M. Launay, J. Phys. B9, 1823~1976!.
@18# E. B. Wilson and J. B. Howard, J. Chem. Phys.4, 260 ~1936!.
-

@19# M. E. Rose,Elementary Theory of Angular Momentum~Wil-
ley, New York, 1957!.

@20# R. Walls, R. Herman, and H. W. Milnes, J. Mol. Spectrosc.4,
51 ~1960!.
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