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Angular correlation theory for double photoionization in a rare-gas atom

Dipankar Chattarji and Chiranjib Sur
Department of Physics, Visva Bharati, Santiniketan 731 235, India

~Received 21 May 2001; published 11 December 2001!

We consider the process of double photoionization~DPI! in a rare-gas atom as a two-step process, namely,
~i! photoionization in an inner shell followed by~ii ! the emission of an Auger electron from an outer shell. An
angular correlation function for the two emitted electrons is defined by analogy with the theory of angular
correlation in nuclear physics. An expression is obtained for this angular correlation function by a statistical
method that makes use of the density and efficiency operators. The latter takes care of the attenuation of the
probability of detection of an electron due to the geometrical properties of the detector. Theoretical values of
the angular correlation function are obtained for DPI in xenon and these are shown to be in good agreement
with the experimental results given by Ka¨mmerling and Schmidt@J. Phys. B26, 1141~1993!#.
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I. INTRODUCTION

The theory of angular correlation was originally form
lated in nuclear physics. This was done for two possi
kinds of phyical situations.

~i! Angular correlation of successive nuclear radiatio
emitted by a radioactive nuclear species, e.g., ag-g cascade.

~ii ! Angular correlation of the successive nuclear rad
tions resulting from the more general case of a nuclear s
tering process.

The earliest paper on this subject was written by Hamil
@1# for the case of ag-g cascade. Later on, Gardner@2# wrote
down the angular correlation function using the wave fu
tions of the states occurring in a cascade decay. Racah@3#
obtained, thereafter, a simple expression for the angular
relation function in terms of the angle between the directio
of emission of the two successive radiations emitted b
nucleus. He did not worry about the history of this nucle
and his theory held regardless of whether the emitted ra
tions consisted of bosons or fermions. Subsequently, Bied
harn and Rose@4# extended Racah’s work to give a gene
form of the angular correlation function for the success
nuclear radiations. About the same time, Coester and Ja
@5# gave a theory in the more general context of nucl
reactions. Their paper gives a derivation of the angular c
relation function that brings out the statistical nature of
problem. Later, Devons and Goldfarb@6# wrote a detailed
review of angular correlations up to that point.

In our problem, a rare-gas atom absorbs a photon ha
specified properties, i.e., energy, spin etc. As a result,
atom emits a photoelectron giving rise to a singly charg
ion. This ion now deexcites by emitting an Auger electro
This yields a doubly charged residual ion. Note two ba
features of this problem.

~i! The initial atomic state is randomly oriented~an im-
proper state!.

~ii ! Only limited information is available about the emi
ted electrons, usually their directions of motion.

The density matrix or statistical matrixr was introduced
into quantum mechanics to provide for the discussion of
such a situation@7,8#. It forms an important ingredient of th
nuclear theory of angular correlations. It will naturally figu
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in our atomic theory of angular correlations as well.
In Sec. II we shall try to construct an angular correlati

function for the atomic problem outlined above. This is do
in Sec. II A using a statistical approach. In Sec. III we rep
our calculation for the xenon atom that was experimenta
studied by Schmidt and his co-workers@9#.

II. AN ANGULAR CORRELATION THEORY FOR ATOMS:
THE DOUBLE-PHOTOIONIZATION PROBLEM

Double photoionization~DPI! occurs when an atomic tar
get consisting of rare-gas atoms is irradiated with phot
from an advanced light source, e.g., a synchrotron, and
atom emits two electrons in quick succession. In the c
where the time interval between the emission of these
electrons is very small, one could think of DPI as a one-s
process. A considerable amount of work has already b
done on this@10,11#. However, in the case where the tim
interval between the successive emission of the two elect
is substantially longer than the time taken by the photoe
tron to leave the interaction zone, DPI may be regarded
two-step process@12#. This in its turn will depend on the
energy imparted to the atomic system by the incident pho

We shall now try to construct a theory for the two-st
process described above, keeping in view the earlier w
done in nuclear physics. Since this is a two-step proc
mediated by electromagnetic interaction at two vertices,
expect it to be a second-order process as compared to no
photoionization~PI!. Hence the probability of its occurrenc
will be much lower than that of PI, and its detection will ca
for a much greater precision.

Consider a randomly oriented rare-gas atom in a1Se

state. It absorbs a photon and after a certain time inte
emits a photoelectron from an inner shell, giving a sing
vacancy ionic state. This intermediate ionic state now de
cites by emitting an Auger electron, typically from an out
shell, giving rise to a two-vacancy final state@12#. So our
process amounts to

hn1A→A11e1
2→A211e1

21e2
2 . ~1!

The initial state of our system is characterized by the
of quantum numbers (JaMaaa), or by virtual quantum num-
©2001 The American Physical Society02-1
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DIPANKAR CHATTARJI AND CHIRANJIB SUR PHYSICAL REVIEW A65 012702
bers (Ja8Ma8aa8) arising from a possible interaction with othe
atoms and electrons. Here (JaMa) or (Ja8Ma8) are angular
momentum quantum numbers, andaa ,aa8 denote the set o
remaining quantum numbers characterizing the system.

We wish to obtain an angular correlation function for t
two emitted electrons in terms of the angleu between their
directions of emission.

The method of efficiency and density operators

We now approach the problem of angular correlation fr
a statistical standpoint. We note that there is a certain p
ability for the atom to attain the final state given above. T
is described by the appropriate matrix element of the den
or statistical operatorr as defined in the literature@7,13#.
Now, even if the atom goes over to the final state, becaus
the finite size of our detecting equipment and other limiti
factors, this event may or may not be detected. There is
a certain probabilitye(0<e<1) that the event will be de
tected. This probability is represented by the efficiency
erator« that will depend on the size, position, and geome
cal arrangement of the detecting equipment.

Now, how does the angular correlation function relate
the operatorsr and«? We shall try to answer this question
the following manner. We start out by defining

«̄5(
Q

«Q^QuruQ&5(
Q

«QrQQ5Tr~«r!. ~2!

Here «Q is the efficiency or probability of detection of th
state described by quantum numbersQ, andrQQ the prob-
ability of the system being in the particular stateQ.

From the elements of statistical mechanics, we know t
«̄ is the expectation value~or average value! of the efficiency
operator« @13#. We shall presently see that the angular c
relation function is simply related to«̄.

Since «̄ is the trace of a matrix it is invariant under
unitary transformation in Hilbert space.

We now ask the question: what are the transformat
properties of the matrices« andr as we go from one unitary
representation to another? It is easily seen that« andr are
tensor operators. Hence they are also called the efficie
and density~or statistical! tensors, respectively@5#. The fact
that« andr are both tensor operators makes them amen
to further analysis.

Since the initial atomic system is randomly oriented,
have that the rotational symmetry and angular momentum
conserved. Hence our state vectors are eigenvectors oJ2

and Jz . In such a case the matrix elements of a tensor
erator have a simple geometric dependence on the mag
quantum numbers. This is given by the Wigner-Eckart th
rem.

Using this theorem we write the matrix element of t
density operator as

^JaMaaauruJa8Ma8aa8&

5 (
kaka

~21!Ja82Ma8C
MaM

a8ka

JaJa8ka rkaka
~Jaaa ,Ja8aa8!.

~3!
01270
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In Eq. ~3! C
MaM

a8ka

JaJa8ka is a Clebsch-Gordan coefficient satisf

ing the triangle ruleka5Ja1Ja8 andka is the projection of
ka . Similarly, the matrix element of the efficiency operator
given by

^JaMaaau«uJa8Ma8aa8&

5 (
kaka

~21!Ja82Ma8C
MaM

a8ka

JaJa8ka «kaka
~Jaaa ,Ja8aa8!.

~4!

Using the unitarity property of Clebsch-Gordan coef
cients, we get the density tensor of rankka with (2ka11)
components

rkaka
~Jaaa ,Ja8aa8!

5 (
MaMa8

~21!Ma2Ma8C
MaM

a8ka

JaJa8ka ^JaMaaauruJa8Ma8aa8&.

~5!

A similar expression can be obtained for the components
the efficiency tensor.

So the expectation value of« becomes

«̄5Tr~«r!

5 (
JaJa8aaaa8kaka

rkaka
~Jaaa ,Ja8aa8!«kaka

! ~Jaaa ,Ja8aa8!.

~6!

Our choice of phase@14# ensures thatrkaka
is a Hermitian

tensor. It satisfies the relation

rkaka

! ~Jaaa ,Ja8aa8!5~21!Ja82Ja1karka2ka
~Ja8aa8 ,Jaaa!.

~7!

Some simplification yields the result

rkaka
~Jaaa ,Ja8aa8!5

dka0dka0dJaJ
a8

A2Ja11
^Jci j 2iJb&

3^Jci j 28iJb&
!^Jbi j 1iJa&^Jbi j 18iJa&

!.

~8!

Here the symbol̂ ii& stands for a reduced matrix element
The first decay, namely the photoionization process

characterized by the relation

Ja5Jb1 j 1 . ~9!

Since the detection of the photoelectron and that of the
gly charged ion are independent events, the joint probab
of their detection is given by the product of the individu
probabilities. Hence we can write
2-2
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ANGULAR CORRELATION THEORY FOR DOUBLE . . . PHYSICAL REVIEW A 65 012702
^JaMaaau«uJa8Ma8aa8&5( ^JbMbabu«uJb8Mb8ab8&

3^ j 1m1u«u j 18m18&

3CMbm1Ma

!Jbj 1Ja C
M

b8m
18M

a8

Jbj 18Ja8 . ~10!

Here (JbMb), (Jb8Mb8) describe the intermediate state a
ab ,ab8 denote the remaining quantum numbers. The sum
tion in Eq. ~10! extends overMbMb8m1m18 .

Then

«kaka
~Jaaa ,Ja8aa8!5 (

k1k1kbkb

«kbkb
~Jbab ,Jb8ab8!«k1k1

~ j 1 j 18!

3Ckbk1ka

!kbk1kaA2Ja11A2Ja811A2kb11

3A2k111H Jb j 1 Ja

Jb8 j 18 Ja8

kb k1 ka

J , ~11!

with the relations

Ja5Jb1 j 1 ,ka5Ja1Ja8 ,kb5Jb1Jb8

and

k15 j 11 j 18 .

Since the intermediate singly ionized state decays into a
sidual doubly ionized atom and an Auger electron, we c
factorize the efficiency operator of the singly ionized atom
terms of the efficiency operators of the residual doubly io
ized atom and the Auger electron.

Since the residual doubly ionized atom is left in a sha
eigenstate with the quantum numberJc and no further mea-
surement is made on it, we get the efficiency operator

«kckc
~Jcac ,Jc8ac8!5A2Jc11dkc0dkc0dJcJ

c8
daca

c8
. ~12!

A matrix element of the efficiency operator for each ele
tron has the form

«kik i
~ j i j i8!5 (

m im i8
~21! j i2 j i8C

m i2m
i8k i

j i j i8ki ^ j im i u«u j i8m i8&

5 (
m im i8s is i8

~21! j i82m i8C
m i2m

i8k i

j i j i8ki ^ j im i uV is i&

3^s i u«us i8&^V is i8u j i8m i8&, ~13!

with i 51,2. i 51 denotes the photoelectron andi 52 the
Auger electron. Using the axis of the detector as the qua
zation axis for each detected electron, we get

^V is i u j im i&5(
k i

^0s i u j ik i&Dm ik i

j i! ~Ri !, ~14!
01270
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D(Ri) is the corresponding rotation matrix for thei th elec-
tron.

Then Eq.~13! becomes

«kik i
~ j i j i8!5(

k i8
ckik i8

~ j i j i8!D
k ik i8

ki! ~Ri !, ~15!

whereckik i8
( j i j i8) is the attenuation factor corresponding

the change in the state of polarization and is given by

ckik i
~ j i j i8!5I (

m im i8
~21! j i82m i8^0s i u j im i&

!

3^0s i8u j i8m i8&Cm i2m
i8k i

j i j i8ki ^s i u«us i8&. ~16!

The symbolI represents a summation over the spin of t
emitted electrons and depends on the characteristics of
detector. We now take the summationIf (ss8) to be equiva-
lent to (^su«us8& f (ss8).

Making use of properties of Clebsch-Gordan coefficie
and 9-j symbols, and also using the additivity of rotatio
matrices@14#

(
n

Dnk1

k ~R1!Dnk2

k! ~R2!5(
n

Dnk1

k ~R1!Dk2n
k ~R2

21!

5Dk2k1

k ~R2
21R1!, ~17!

we get

«̄5~2Jb11!~21!Ja1Jc22Jb

3( ~21!k2 j 12 j 2w~JbJb8 j 1 j 18 ,kJa!

3w~JbJb8 j 2 j 28 ,kJc!ckk1
~ j 18 j 1!ckk2

! ~ j 2 j 28!Dk1k2

k ~u1u2u3!

3^Jci j 2iJb&^Jci j 28iJb&
!^Jbi j 1iJa&^Jbi j 18iJa&

!. ~18!

In Eq. ~18! the summation is overj 1 , j 18 , j 2 , j 28 ,k,k1, andk2.
If the electrons are unpolarized, or if the detectors

insensitive to polarization,k15k250 and D00
k (u1u2u3)

5Pk(cosu2). We now identify the angleu2 with u, the angle
between the directions of emission of the photo-electron
the Auger electron. From the Hermitian character of the
ficiency and density matrices, it follows that

ckk~ j j 8!5~21!kckk
! ~ j 8 j !. ~19!

For our casek15k250, and

ck0~ j j 8!5
A2 j 11A2 j 811

4p
~21! j 2(1/2)1kC(1/2)2(1/2)0

j j 8k .

~20!

We can thus write
2-3
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«̄5~21!Ja1Jc22JbA2Jb11

3(
k

~21!k2 j 12 j 2w~JbJb8 j 1 j 18 ,kJa!w~JbJb8 j 2 j 28 ,kJc!

3^Jci j 2iJb&^Jci j 28iJb&
!3^Jbi j 1iJa&

3^Jbi j 18iJa&
!ck0~ j 1 j 18!ck0

! ~ j 2 j 28!Pk~cosu!. ~21!

Here k is an even integer ranging from zero tokmax, kmax

being defined as follows. Let$$ j 11 j 18%max,$j 21 j 28%max%min

5p. Thenkmax5p if p is even andkmax5p21 if p is odd.
We now expresŝJci j 2iJb& in terms of^Jbi j 2iJc&. Though
the reduced matrix elements are neither real nor Hermitia
happens that

A2Jb11^Jai j iJb&5~21!Ja2 j 1JbA2Ja11^Jbi j iJa&
!.
~22!

This gives

«̄5(
k

~21! j 11 j 2ck0~ j 1 j 18!ck0
! ~ j 2 j 28!^Jci j 2iJb&

3^Jci j 28iJb&
!^Jbi j 1iJa&^Jbi j 18iJa&

!

3w~JbJb8 j 1 j 18 ,kJa!w~JbJb8 j 2 j 28 ,kJc!Pk~cosu!.

~23!

If the finite size of the detector is taken into account, t
efficiency of detection described by the matrix element of
efficiency operator must be changed slightly. Then we h
to introducezk as the attenuation factor due to the finite s
of the detector. We assume the detector to be axially s
metric @15,16#. The efficiency tensor described by Eq.~15! is
now written as

«kik i
~ j i j i8!5(

k i8
zki

ckik i8
~ j i j i8!D

k ik i8

ki! ~Ri !. ~24!

So the expectation value in our case becomes

«̄5(
k

zk~1!kzk~2!~21! j 11 j 2ck0~ j 1 j 18!ck0
! ~ j 2 j 28!

3^Jci j 2iJb&^Jci j 28iJb&
!^Jbi j 1iJa&^Jbi j 18iJa&

!

3w~JbJb8 j 1 j 18 ,kJa!w~JbJb8 j 2 j 28 ,kJc!Pk~cosu!.

~25!

Note that theu dependence of«̄ is contained in the function

W~u!5(
k

zk~1!kzk~2!~21! j 11 j 2ck0~ j 1 j 18!ck0
! ~ j 2 j 28!

3w~JbJb8 j 1 j 18 ,kJa!w~JbJb8 j 2 j 28 ,kJc!Pk~cosu!.

~26!

We now defineW(u) to be the angular correlation func
tion for the two emitted electrons whereu is the angular
01270
it

e
e
e
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separation between their directions of emission@17#. It is
clear that angular correlation between the directions of em
sion of the photoelectron and the Auger electron is a dir
manifestation of the efficiency of the observing equipme
In Sec. III we shall see that the angular correlation funct
so defined agrees closely with the measured angular cor
tion in the DPI experiments on xenon@9#. This confirms that
the observing equipment does play a role, introducing
element of probability that finds expression in the angu
correlation function.

This definition will have to be modified if it is possible fo
the photoelectron to be emitted into more than one ang
momentum channels. In Sec. III we shall see how this mo
fication can be made.

Note that Eq.~26! holds formally not only for double
photoionization in atoms, but also for two-step angular c
relation experiments involving either fermions or bosons.

III. CALCULATION AND RESULTS

We consider the problem of DPI in xenon. The neut
xenon atoms are irradiated with a photon beam of ene
94.5 eV. This leads to photoionization in the 4d5/2 shell fol-
lowed by anN5-O2,3O2,3

1
S0 Auger decay. Using the dipole

approximation the possible photoionization channels
e4d5/2→epf 7/2, f 4d5/2→epf 5/2 andg4d5/2→epp3/2, respec-
tively. The Auger transition is characterized by only one p
tial waveeAd5/2 @18#. These transitions are governed by t
corresponding selection rules for photoionization and Au
transitions.

Since the initial photoionization process is not charact
ized by a single angular momentum quantum number bu
angular momentum quantum numbers corresponding to t
possible channels, the angular correlation function descri
in Sec. II A above will be modified. The total intensity wil
however, remain unchanged. If the photoionization chann
are described by the total angular momentum quantum n
bers j 1

e , j 1
f and j 1

g and the Auger electron byj 2, then the
expectation value of the efficiency operator becomes

«~u!5«e~u!1« f~u!1«g~u!1«e f~u!1« f g~u!1«ge~u!.
~27!

Here

«e~u!5(
k

zk~1!zk~2!~21! j 1
e
1 j 2ck0~ j 1

ej 1
e!ck0

! ~ j 2 j 2!

3u^Jci j 2iJb&u2u^Jai j 1
eiJb&u2

3w~JbJbj 1
ej 1

e ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!.

~28!

The expectation values« f(u) and«g(u) have the same form
with j 1

e→ j 1
f and j 1

e→ j 1
g respectively. The quantity« i j (u) is

an interference term arising from interaction between pho
ionization channelsi and j ( i , j 5e, f ,g with iÞ j ).
2-4
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«e f~u!5(
k

zk~1!zk~2!~21! j 2u^Jci j 2iJb&u2

3^Jai j 1
eiJb&^Jai j 1

f iJb&

3@~21! j 1
e
ck0~ j 1

ej 1
f !1~21! j 1

f
ck0~ j 1

f j 1
e!#ck0

! ~ j 2 j 2!

3w~JbJbj 1
ej 1

f ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!,

~29!

« f g~u!5(
k

zk~1!zk~2!~2 ! j 2u^Jci j 2iJb&u2

3^Jai j 1
f iJb&^Jai j 1

giJb&

3@~21! j 1
f
ck0~ j 1

f j 1
g!1~21! j 1

g
ck0~ j 1

gj 1
f !#ck0

! ~ j 2 j 2!

3w~JbJbj 1
gj 1

f ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!

~30!

and

«ge~u!5(
k

zk~1!zk~2!~21! j 2u^Jci j 2iJb&u2

3^Jai j 1
giJb&^Jai j 1

eiJb&

3@~21! j 1
e
ck0~ j 1

ej 1
g!1~21! j 1

g
ck0~ j 1

gj 1
e!#ck0

! ~ j 2 j 2!

3w~JbJbj 1
ej 1

g ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!.

~31!

In «e(u), « f(u), and«g(u) k is the smallest even integer o
the sets$2 j 1

e,2j 2,2Jb%, $2 j 1
f ,2j 2,2Jb% and $2 j 1

g,2j 2,2Jb% re-
spectively. In«e f(u), « f g(u) and «ge(u) k is the smallest
even integer (kÞ0) of the sets $ j 1

e1 j 1
f ,2j 2,2Jb%, $ j 1

f

1 j 1
g,2j 2,2Jb%, and $ j 1

e1 j 1
g,2j 2,2Jb% respectively. We can

now write

«~u!5u^Jci j 2iJb&u2@ve~u!1d1
2v f~u!1d2

2vg~u!

1d1ve f~u!1d2v f g~u!1d1d2vge~u!#, ~32!

where

d15
^Jai j 1

f iJb&

^Jai j 1
eiJb&

and d25
^Jai j 1

giJb&

^Jai j 1
eiJb&

. ~33!

Here

ve~u!5(
k

zk~1!zk~2!~21! j 1
e
1 j 2ck0~ j 1

ej 1
e!ck0

! ~ j 2 j 2!

3w~JbJbj 1
ej 1

e ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!,

~34!

v f(u) and vg(u) have the same form withj 1
e→ j 1

f and j 1
e

→ j 1
g respectively. And
01270
ve f~u!5( zk~1!zk~2!~21! j 2@~21! j 1
e
ck0~ j 1

ej 1
f !

1~21! j 1
f
ck0~ j 1

f j 1
e!#ck0

! ~ j 2 j 2!

3w~JbJbj 1
ej 1

f ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!,

~35!

v f g~u!5(
k

zk~1!zk~2!~21! j 2@~21! j 1
f
ck0~ j 1

f j 1
g!

1~21! j 1
g
ck0~ j 1

gj 1
f !#ck0

! ~ j 2 j 2!

3w~JbJbj 1
gj 1

f ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!

~36!

and

vge~u!5(
k

zk~1!zk~2!~21! j 2@~21! j 1
e
ck0~ j 1

ej 1
g!

1~21! j 1
g
ck0~ j 1

gj 1
e!#ck0

! ~ j 2 j 2!

3w~JbJbj 1
ej 1

g ,kJa!w~JbJbj 2 j 2 ,kJc!Pk~cosu!.

~37!

The parametersd1 and d2 can be determined uniquely b
comparison with the experiment@6#. Writing out the expres-
sion ~32! in terms of Legendre polynomials, we get

«~u!5:@a01a2P2~cosu!1a4P4~cosu!#. ~38!

Here

:5u^Jci j 2iJb&u2u^Jai j 1
eiJb&u2,

and the coefficients area05z0(1)z0(2)(11d1
21d2

2), a2

5z2(1)z2(2)(1.020410.751d1
210.8d 2

210.269d21 0.311d1

10.733d1d2), anda45z4(1)z4(2)(0.551020.122d1
2). This

gives

FIG. 1. A polar plot of our angular correlation function for DP
in Xenon is compared with the experimental polar plot given
Kämmerling and Schmidt@9#.
2-5
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«̄5:8@11b2P2~cosu!1b4P4~cosu!#, ~39!

whereb25a2 /a050.760,b45a4 /a050.042, and:85:a0

5u^Jci j 2iJb&u2u^Jai j 1
eiJb&u2a0. We now define the angula

correlation function for this case of channel mixing by wr
ing

W~u!5@11b2P2~cosu!1b4P4~cosu!#. ~40!

Figure 1 gives the results of the comparison between
theoretical values and the experimental values@9#. It will be
seen that our polar plot ofW(u) agrees quite closely with
that given by Ka¨mmerling and Schmidt@9# except for a
small difference in the region aroundu50° andu5180°.

By using scattering theory with the appropriate bound
conditions, it is possible to obtaind1 andd2 without recourse
to the experimental curves. This in its turn should give n
only a0, but alsob2 andb4. This is the way our theory can b
used to predict the value of the angular correlation funct
at any required angle. This would make our theory auto
mous. In the absence of multichannel interaction,d15d2
50, Eq. ~40! reduces to Eq.~26!.
om

01270
ur

y

t

n
-

The expectation value«̄ turns out to be the product of
normalization factor depending on the reduced matrix e
ments and an angular factor. The simplicity of the latter
very striking. It seems as if the dynamical calculation invo
ing the radial matrix elements is redundant. Of course thi
not true, because to extract dynamical properties of the
tem, such as, triply differential cross sections we have to p
with the normalizing factor. However, the very simplicity o
the result hinges on the factorization of the problem into
dynamical part and an geometrical part depending onu. This
comes from the use of Wigner-Eckart theorem, which is
consequence of the fact that we are dealing with the ma
elements of tensor operators.
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