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Angular correlation theory for double photoionization in a rare-gas atom
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We consider the process of double photoionizatidoRl) in a rare-gas atom as a two-step process, namely,
(i) photoionization in an inner shell followed Kiy) the emission of an Auger electron from an outer shell. An
angular correlation function for the two emitted electrons is defined by analogy with the theory of angular
correlation in nuclear physics. An expression is obtained for this angular correlation function by a statistical
method that makes use of the density and efficiency operators. The latter takes care of the attenuation of the
probability of detection of an electron due to the geometrical properties of the detector. Theoretical values of
the angular correlation function are obtained for DPI in xenon and these are shown to be in good agreement
with the experimental results given by ianerling and Schmidil. Phys. B26, 1141(1993].
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[. INTRODUCTION in our atomic theory of angular correlations as well.
In Sec. Il we shall try to construct an angular correlation
The theory of angular correlation was originally formu- function for the atomic problem outlined above. This is done
lated in nuclear physics. This was done for two possibldn Sec. Il A using a statistical approach. In Sec. Ill we report
kinds of phyical situations. our calculation for the xenon atom that was experimentally
(i) Angular correlation of successive nuclear radiationsstudied by Schmidt and his co-worke®.
emitted by a radioactive nuclear species, e.gi;acascade.
(i) Angular correlation of the successive nuclear radia-Il. AN ANGULAR CORRELATION THEORY FOR ATOMS:
tions resulting from the more general case of a nuclear scat- THE DOUBLE-PHOTOIONIZATION PROBLEM
tering process. S .
Tr?epearliest paper on this subject was written by Hamilton Doublg phot0|on|zat|0mDPI) oceurs Whgn an atomic tar-
[1] for the case of 3~ cascade. Later on, Gardré] wrote get consisting of rare-gas atoms is irradiated with photons
down the angular correlation function using the wave func-from an z_;\dvanced light source, €.9., a syn(_:hrotron, and an
tions of the states occurring in a cascade decay. RE&Rh atom emlts_two_electrons in quick succession. In the case
' where the time interval between the emission of these two

obtained, thereafter, a simple expression for the angular COL\actrons is very small, one could think of DPI as a one-step

relation function in terms of the angle between the directions rocess. A considerable amount of work has already been

of emission of the two successive radiations emitted by . . .

. . . done on thig10,11]. However, in the case where the time
nucleus. He did not worry about the history of this nucleus, b h . - fth |
and his theory held regardless of whether the emitted radia{[]terva etween the successive emission of the two electrons

Is substantially longer than the time taken by the photoelec-

tions consisted of bosons or fermions. Subsequently, Bieden- | he i . b ded
harn and Ros@4] extended Racah’s work to give a general tron to leave the Interaction zone, DPI may be regarded as a
two-step proces$12]. This in its turn will depend on the

form of the angular correlation function for the successive ' : A
e . nergy imparted to the atomic system by the incident photon.

nuclear radiations. About the same time, Coester and Jauc
We shall now try to construct a theory for the two-step

[5] gave a theory in the more general context of nuCIearprocess described above, keeping in view the earlier work

reactions. Their paper gives a derivation of the angular COMone in nuclear physics. Since this is a two-step process

relation function that brings out the statistical nature of themediated by electromagnetic interaction at two vertices. we
problem. Later, Devons and Goldfafb] wrote a detailed y g ’

X . . expect it to be a second-order process as compared to normal
review of angular correlations up to that point.

hotoionization(Pl). Hence the probability of its occurrence

In.qur problem, arare-gas atom absorbs a photon haV'”@m be much lower than that of PI, and its detection will call
specified properties, i.e., energy, spin etc. As a result, th or a much greater precision

atom emits a photoelectron giving rise to a singly charge Consider a randomly oriented rare-gas atom in-g¢

lon. This ion now deexcites by emitting an Auger elemmn'st:’:\te. It absorbs a photon and after a certain time interval

This yields a doubly charged residual ion. Note two basic_ . . - .
. emits a photoelectron from an inner shell, giving a single-
features of this problem.

(i) The initial atomic state is randomly orientén im- vacancy ionic state. This intermediate ionic state now deex-
proper statg y cites by emitting an Auger electron, typically from an outer
(ii) Only limited information is available about the emit- shell, giving rise to a two-vacancy final sti2]. So our

ted electrons, usually their directions of motion. process amounts to

~ The density matrix or statistical matrix was introduced hv+A—AT+e; A% +e; +e, . (1)

into quantum mechanics to provide for the discussion of just

such a situatiofi7,8]. It forms an important ingredient of the The initial state of our system is characterized by the set
nuclear theory of angular correlations. It will naturally figure of quantum numbersJ¢M ,a,), or by virtual quantum num-
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bers g M «}) arising from a possible interaction with other aka

atoms and electrons. Herd M,) or (J,M}) are angular M.y

momentum quantum numbers, aag,a, denote the set of ing the triangle rulek,=J,+J} and «, is the projection of

remaining quantum numbers characterizing the system. k.. Similarly, the matrix element of the efficiency operator is
We wish to obtain an angular correlation function for the given by

two emitted electrons in terms of the anglebetween their

directions of emission. (JaM qaale]IoM [al)

In Eqg. (3) Ciﬂaj is a Clebsch-Gordan coefficient satisfy-

The method of efficiency and density operators 1t 3k
. =2 (mD%MeC e gy (Jaaa,dpad).

We now approach the problem of angular correlation from Kaka MaM ky "a%a
a statistical standpoint. We note that there is a certain prob- 4)
ability for the atom to attain the final state given above. This
is described by the appropriate matrix element of the density
or statistical operatop as defined in the literaturgs,13].
Now, even if the atom goes over to the final state, because
the finite size of our detecting equipment and other limiting
factors, this event may or may not be detected. There is thus
a certain probabilitye(0<e<1) that the event will be de-
tected. This probability is represented by the efficiency op-

Using the unitarity property of Clebsch-Gordan coeffi-
cients, we get the density tensor of rakkwith (2k,+ 1)
omponents

Pkaka(‘]aaa i‘]z;aa,\)

eratore that will depend on thg size, p_osition, and geometri- = z (— 1)Ma—MéC'J\AaJ:Ak?K (JaM a4l p|IaM [al).
cal arrangement of the detecting equipment. MM, a“a"a

Now, how does the angular correlation function relate to
the operatorg ande? We shall try to answer this question in ®)

the following manner. We start out by defining A similar expression can be obtained for the components of

_ the efficiency tensor.
&= EQ: 8Q<Q|P|Q>:%: eqpQo= Tr(ep). 2 So the expectation value ef becomes

Hereeq is the efficiency or probability of detection of the e=Tr(ep)

state described by quantum numb&sand pqq the prob-

ability of the system being in the particular st&@e - 2 J I al)et !
.. . pkK( Ay, a)s K(Ja,Ja).

__ From the elements of statistical mechanics, we know that Jdlagalkang araratalTharg TatarTata

¢ is the expectation valu@r average valueof the efficiency ©6)

operatore [13]. We shall presently see that the angular cor-

relation function is simply related te. Our choice of phasfl4] ensures thap_,_is a Hermitian
Since ¢ is the trace of a matrix it is invariant under a tensor. It satisfies the relation

unitary transformation in Hilbert space.
We now ask the question: what are the transformation

r o (Jaaa,dhal)=(—1)%ada ke, (3lal Jaas).
properties of the matricesandp as we go from one unitary Py Jacta Jata Py ralJatta Jatta

representation to another? It is easily seen thandp are @)
tensor operators. Hence they are also called the efficienc¥, o simplification yields the result
and density(or statistical tensors, respectivelyp]. The fact
thate andp are both tensor operators makes them amenable S5 S
to further analysis. ] )= ka0 @ra0%5d, TR
Since the initial atomic system is randomly oriented, we Py Jaar Jaca) = J23,+1 {Jelli2ll o)
have that the rotational symmetry and angular momentum is
conserved. Hence our state vectors are eigenvectot® of X(Jellj 2l 36) *(Iulli allIa)(Iolli 1l19a) ™
andJ,. In such a case the matrix elements of a tensor op- ®)

erator have a simple geometric dependence on the magnetic
quantum numbers. This is given by the Wigner-Eckart theogre the symbo{||) stands for a reduced matrix element.

rem. _ _ _ The first decay, namely the photoionization process, is
Using this theorem we write the matrix element of the characterized by the relation

density operator as
’ 1o = +ij .
(JaM aaa|P|‘]aMaaa> Ja=Jdot 1 ©
C 1.9k Since the detection of the photoelectron and that of the sin-
=> (—1)J8_MaCNT o Pror,(Jaa, Jpary). gly charged ion are independent events, the joint probability
kara ared of their detection is given by the product of the individual
3 probabilities. Hence we can write
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D(%R;) is the corresponding rotation matrix for thth elec-
tron.
Then Eq.(13) becomes

(3.Maagle|IIMLaly =2, (IMpap|e|IM paf)

X(jamaleliipr)
PR . .y ki*
« C*birda oobida (10) ek, il )ZZ Cr/ (il )DKiKir(fﬁi), (15

M M ’ r rt
b#1Ma M u My

Here @,Mp), (JpMy) describe the intermediate state andwhereckK /(jij{) is the attenuation factor corresponding to
ay,,ay, denote the remaining quantum numbers. The SUMM&yq change in the state of polarization and is given by
tion in Eq. (10) extends oveM M w1 .
Then L
CkiKi(JiJi’)ZBE, (=)l 7400 |jipi)*

N [ Py ik
e, (Jaa Jhal) = 2 i 0 (I . Ihah) e e (1)1)
kqr1Kpkp

-
x(0a!|jl u YT (aile|ol).  (16)
X Co e 23, + 120, 12K+ 1 C

o i1 Ja The symbolJ represents a summation over the spin of the
L, emitted electrons and depends on the characteristics of the
X\2ki+19 3y J1 Jdag, (11D detector. We now take the summatidf(co’) to be equiva-
ke ki ki lent to 2(o|e|o’)f(oa’).
Making use of properties of Clebsch-Gordan coefficients
with the relations and 94 symbols, and also using the additivity of rotation

matrices[14]
Ja=Jpt]j1.Ka=Ja+ 3], kp=Jp+ 3}

d * -
o 2 DY, (MDY (M) =2 DY (R)DL (R )
ki=j1+]1.

P =Dk (% 1%Ry), (17)
Since the intermediate singly ionized state decays into a re-
sidual doubly ionized atom and an Auger electron, we cafye get
factorize the efficiency operator of the singly ionized atom in
terms of the efficiency operators of the residual doubly ion—‘,_;—:(ZijL 1)(—1)%* 3 2%
ized atom and the Auger electron.

Since the residual doubly ionized atom is left in a sharp K] A
eigenstate with the quantum numhkrand no further mea- E (=) ow(JIpdpjaja Kk Ja)
surement is made on it, we get the efficiency operator c e

XW(JIpdpj2j2,KJe) Cu, (11)1) Ciec, (I 2] 5D (016,63)

Kikp

ShoncJeo Jore) = V2ot 1000k 003,9;ucaf: (12 % (il Iy ISy Il Il sl (18)

A matrix element of the efficiency operator for each elec-

tron has the form In Eq. (18) the summation is over,j1,j2,]2,K, k1, andx,.

If the electrons are unpolarized, or if the detectors are

i insensitive to polarizationx;=«x,=0 and D(k)o(610203)
i I

e (Jili)= > (=)l C (j,,u,l i mi) =P(cos#,). We now identify the anglé, with 6, the angle
M between the directions of emission of the photo-electron and
the Auger electron. From the Hermitian character of the ef-
= —1i-kc Jili ki ficiency and density matrices, it follows that
2 (~pimie, L Cinilie)
o Celii )= (=) ek (D). (19
X(aile|of }Qiai|ji ui), (13

For our case<;=k,=0, and
with i=1,2. i=1 denotes the photoelectron ang2 the

Auger electron. Using the axis of the detector as the quanti- 2j+12j +1 _
zation axis for each detected electron, we get Cloljj )= ——5— (= 1)i-@2rkcl & oo

(20

(Qiailjimy=2 (00iljik)D” (%), (14 _
Kj i We can thus write
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e=(—1)%" e 2b\2], +1
X Ek: (= 1) I l2w(Ipdpjaj 1, kIDW(Indhj2i ko)

Xl 2l Ielli 2l 96 * X (Ipllj 11 9a)
X(Jpll1l13a) *Croi1i 1) Ckoli2i 2) Pk(cosb). (21)

Herek is an even integer ranging from zero k@ .y, Kmax
being defined as follows. Lefj1+j1}maxsii2T ]2} maxmin
=p. Thenky,=p if pis even andk,.,=p—1 if p is odd.
We now expressJ.|j,lJp) in terms of(Jy|j,||Jc). Though
the reduced matrix elements are neither real nor Hermitian,
happens that

Jzab+1<Ja||1||Jb>=<—1)Ja*1'“w2Ja+1<Jb||j||Ja>*(-22)
This gives
Z=; (— 1)1 2c,0(j 1) 1) Choli2i ){Iellj 2l )

X(Jelli2l96)*(Iollj 2l Ia)(Iollj 2l 9a)*
XW(Jpdpj1i1.kIa)W(Ipdpi2)2.kIc) Pi(COSH).
(23

If the finite size of the detector is taken into account, the
efficiency of detection described by the matrix element of th
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separation between their directions of emissjai]. It is
clear that angular correlation between the directions of emis-
sion of the photoelectron and the Auger electron is a direct
manifestation of the efficiency of the observing equipment.
In Sec. Il we shall see that the angular correlation function
so defined agrees closely with the measured angular correla-
tion in the DPI experiments on xend8]. This confirms that

the observing equipment does play a role, introducing an
element of probability that finds expression in the angular
correlation function.

This definition will have to be modified if it is possible for
the photoelectron to be emitted into more than one angular
momentum channels. In Sec. Il we shall see how this modi-
fication can be made.

Note that Eq.(26) holds formally not only for double
photoionization in atoms, but also for two-step angular cor-
relation experiments involving either fermions or bosons.

Ill. CALCULATION AND RESULTS

We consider the problem of DPI in xenon. The neutral
xenon atoms are irradiated with a photon beam of energy
94.5 eV. This leads to photoionization in thd shell fol-
lowed by anN5-021302,3130 Auger decay. Using the dipole
approximation the possible photoionization channels are
e4ds,— €yf 72, f4ds,— €pfs, andgéds,— eppsp, respec-
tively. The Auger transition is characterized by only one par-
tial wave exdsj, [18]. These transitions are governed by the
corresponding selection rules for photoionization and Auger

&ransitions.

efficiency operator must be changed slightly. Then we have - gjnce the initial photoionization process is not character-

to introducez, as the attenuation factor due to the finite sizej,¢q by a single angular momentum quantum number but by
of the detector. We assume the detector to be axially symsnqy1ar momentum quantum numbers corresponding to three

metric[15,16. The efficiency tensor described by Ef5) is
now written as

ek (1i1)=2 2 (D, (R). (24

So the expectation value in our case becomes
&= Ek: 2 1)z 2) (— 1)1 I2ey0(j 1 1) Colj 21 )

X(Jeli2llIp)(Iclli 2l Ip) *(Iplli 119 (Iulli 111 92)*
XW(Ipdpiai1.KIa)W(Ipdpj2j2,kIe) Py(cosb).
(25

Note that thef dependence of is contained in the function

W( e>=; 2 1),z (2)(— 1)1 I2e,0(j 1) 1) Choli2i )
XW(Ipdpi1i1,KI)W(Ipdj2is,kde) Pr(cosh).
(26)

We now defineW(#) to be the angular correlation func-
tion for the two emitted electrons wher is the angular

possible channels, the angular correlation function described
in Sec. Il A above will be modified. The total intensity will,
however, remain unchanged. If the photoionization channels
are described by the total angular momentum quantum num-
bersj$, jfl and j§ and the Auger electron bj,, then the
expectation value of the efficiency operator becomes

e(0)=¢eq(0)+&:(0)+teg(0)+teei(0)+erg(0)+egel 0()2
Here

el )= 2 1)2(2)(— 1)1 TH2c,0(j8] S Cio(j 21 2)

X [(Jelli2ll In1?¢ 3alliT6) 12
XW(Jpdpj 11, kJa)W(Ipdpj2i2,KJc) Pi(coso).
(28)

The expectation values(¢) andegy(6) have the same form
with j¢—j! andj¢—j? respectively. The quantity;; () is

an interference term arising from interaction between photo-
ionization channels andj (i,j=e,f,g with i #).
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sef<a>=2k 2(1)2d2)(— 1)121(3 [ 2l )]

X (Jalli§136)¢ 3alli 1l 36)

x[(_l)jiCkO(Jljl)_"( 1)'10koJ 1D ICko(j2)2)
XW(JIpdpj §i1.kI)W(Ipdbi2) 2, kJe) Pi(cOSH),
(29

efgw):; 2(1)Z(2)(—)2 (3] 2] I)]?

X (Jalli 119604 3alli Sl 36)

X[(— 1)]10ko(1111)+( l)chkO(Jlll)]CkO(JZJZ)
XW(JpJpi 3i 1 kI)W(Ipdpj i, ko) P(cOSH)
(30)

and

sge<a>=; 2(1)Z(2)(—1)12|(3]lj 2l Ip) |2

X (Jallifl196)(Jalli 5]l Ib)

X[(— 1)j§CkO(J Y+ (= 1)J1Ck0(] 1D Icko(i2i2)
XW(Jpdpj7i§.kI)W(Ipdpj2j2.kJe) Pi(cosh).
(31)

In g4(60), £¢(6), andsg(e) k is the smallest even integer of

b} re-
spectively. Ineq(0), e14(0) and ege(6) K is the smallest

the sets{25,2j,,23p}, {2j1,2),,23,} and{29,2j,,2J

even integer K+0) of the sets{j$+j!,2j,23.}, {j!
+12,2j2,23p}, and {j1+)7,2j,,2]
now write

£(0)=|(3[J 2 I [ 0 6) + 0 0) + S304( 6)
+ S1wer(0) + 62wfg( )+ 5152wge( 0], (32

where

REATHEN
EATHEN!

_ (JaliTl9)
SREATHESY

Here

we(0)= 2 2(1)2d2)(~ DI e[ ol i)
XW(Jpdpj 711 KJa)W(Jpdpj2) 2, kIe) Pi(coS6),
(34)

w¢(0) and wy(6) have the same form witljfi—>jf1 andj$
— |9 respectively. And

p} respectively. We can

PHYSICAL REVIEW A 65012702

wer(0)= 2 2(1)2(2)(— )12 (— 1) ic(j$iD)

f ot .

+(=Dlco(itiDHIcko(i2i2)

XW(JpJpisi § kI)W(Ipdp] iz, kI Pi(cosb),
(35)

wtg(0)= Ek 2d(1)2(2)(— DI (— icye(j )

i9 .q- * /=

+(_1)]1Ck0(1%]fl)]CkO(JZJZ)

XW(Jpdpidit kIW(Ipdp]2i2.kJe) Pi(coSO)
(36)

and
wge )= 2 1)2(2)(— 1)12[ (- 1)icg($i9)

+(— 1)y (9i) 1cko(i 21 2)
.kJ)W(Ipdpj2j2,kJc) Pi(cosh).
(37)

The parameter®$; and §, can be determined uniquely by
comparison with the experimef#]. Writing out the expres-
sion (32) in terms of Legendre polynomials, we get

XW(JIpJpi ]

e(0)=X[ag+a,P,(cosh)+a,P,(cosh)]. (38
Here
N=[(3cllj 2 I 13l T Iu) 12,

and the coefficients ar@y=2z(1)zo(2)(1+ 5§+ 5%), a,
=7,(1)2(2)(1.0204+ 0.75155 + 0.855+ 0.26%,+ 0.3115,
+0.7335,6,), anda,=2z4(1)z4(2)(0.5510-0.12253). This
gives

w(8) theory
exb

8 =270°

FIG. 1. A polar plot of our angular correlation function for DPI
in Xenon is compared with the experimental polar plot given by
Kammerling and Schmidi9].
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8_=x'[1+ b,P,(cos#)+b,P,(cosh)], (39 The expectation value turns out to be the product of a
normalization factor depending on the reduced matrix ele-
whereb,=a,/a,=0.760,bs=a4/a,=0.042, and’=RXa;,  ments and an angular factor. The simplicity of the latter is
= [(3clli 2I6)1?[{Jalli5llIp) ?a0. We now define the angular very striking. It seems as if the dynamical calculation involv-
correlation function for this case of channel mixing by writ- ing the radial matrix elements is redundant. Of course this is
Ing not true, because to extract dynamical properties of the sys-
tem, such as, triply differential cross sections we have to pla
W(0)=[1+b,P2(cos)+b,P4(coso) . 40 \ith the normaligi)rqg factor. However, the very simplicity I[())f g
Figure 1 gives the results of the comparison between oufh€ result hinges on the factorization of the problem into a
theoretical values and the experimental vali@sIt will be ~ dynamical part and an geometrical part depending ofhis
seen that our polar plot oV(6) agrees quite closely with COMes from the use of Wigner-Eckart the_:orem_, which is a
that given by Kanmerling and Schmidf9] except for a consequence of the fact that we are dealing with the matrix
small difference in the region arourtt=0° and 6= 180°. elements of tensor operators.
By using scattering theory with the appropriate boundary
conditions, it is possible to obtai#, and s, without recourse
to the experimental curves. This in its turn should give not ACKNOWLEDGMENTS
only ag, but alsob, andb,. This is the way our theory can be
used to predict the value of the angular correlation function One of the authorgD.C.) is deeply grateful to Professor
at any required angle. This would make our theory autonoVolker Schmidt for introducing him to the subject of double
mous. In the absence of multichannel interactiops= &, photoionization. C.S. would like to acknowledge the support

=0, Eq.(40) reduces to Eq(26). provided by the University Grants Commission of India.
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