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Generalized diatomics-in-molecules method for polyatomic anions
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The diatomics-in-molecules~DIM ! method for the construction of polyatomic potential-energy functions
from the potential energies of atomic and diatomic fragments is generalized to obtain a description of potential-
energy functions of both quasistationary and bound states of polyatomic anions. The formulation is based on
the combination of the DIM method with the projection-operator approach of scattering theory. The proposed
theory allows the construction of diabatic discrete states, electron-molecule scattering continua, and discrete-
continuum coupling elements from the corresponding data of the fragments. The polyatomic projection-
operator description obtained in this way provides the basis for a rigorous treatment of the nuclear dynamics in
short-lived electron-molecule collision complexes and ion-molecule collisions in terms of energy-dependent,
complex, and nonlocal effective potentials. More approximate local complex potential-energy surfaces of
quasistationary states of polyatomic anions also can be obtained with the generalized DIM method via the
determination of the poles of the multichannel electron-molecule scattering matrix in the fixed-nuclei limit.
Although the focus of the present work is on anions, the proposed theory is also applicable to quasistationary
states of neutral and positively charged polyatomic systems including clusters. To illustrate the concepts, the
generalized DIM method is applied to obtain the potential-energy functions of the ground and first excited
states of the H3

2 anion, making use of information that is available for the bound and resonance states of H2

and H2
2.

DOI: 10.1103/PhysRevA.65.012508 PACS number~s!: 31.50.2x, 31.10.1z, 33.35.1r, 34.20.2b
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I. INTRODUCTION

Remarkable progress has been achieved in the quan
mechanical theory of elementary reactions, see, for exam
@1,2# and references therein. Many detailed and accurate
perimental and theoretical studies of the reaction dynam
of triatomic systems have been reported in recent years,
impressive agreement between theory and experiment
been obtained. The theoretical studies require two esse
prerequisites: an accurate Born-Oppenheimer poten
energy surface~PES! as well as appropriate numerical tec
niques for treating the quantum-scattering problem w
proper inclusion of rearrangement channels.

The simplest chemically reactive systems are H1H2 and
its isotopic variants. For H1H2 an accurate ground-stat
PES has been available for some time@3,4#. For this proto-
typical system, a great variety of methods for the treatm
of the collision dynamics, based on time-independent s
tering theory or on time-dependent wave-packet propagat
have been successfully applied. At least at low collision
ergies, the H1H2 collision system appears to be understo
in considerable detail@1,5#.

Another fundamental collision system is H21H2, as well
as isotopic variants thereof, e.g., H21D2 and D21H2. The
H21H2 complex represents the prototype of chemical re
tions involving negative ions, which are of both fundamen
and applied importance. Under certain conditions, H2 ions
can be abundant in low-temperature hydrogen plasmas.
development of efficient H2 sources@6# is of considerable
applied interest, in particular, for neutral-beam heating
fusion research. In this context a detailed understanding
the collision behavior of negative ions interacting with ne
tral molecules is of particular interest.
1050-2947/2001/65~1!/012508~15!/$20.00 65 0125
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Recently, a wealth of new experimental data on lo
energy H21H2 and H21D2 collisions has been obtaine
@7–11#. These precise and detailed data represent a challe
for the theory of elementary chemical-reaction dynamics
volving negative ions. A particularly interesting aspe
which is absent in the H1H2 system, is the existence of th
electron detachment channel, i.e., H21H2→H1H21e2,
which also has been experimentally observed@12#. The reac-
tion dynamics of the H3

2 system is thus considerably mor
involved than the dynamics of the H3 system, and a signifi-
cant extension of the theoretical framework is required.

Electron detachment processes usually occur via quas
tionary states, which are known to be difficult to calcula
with standard quantum-chemical variational methods. T
calculations of the ground state and the first excited s
PESs of the H3

2 system for collinear geometry, carried o
by the molecular-orbital~MO! configuration-interaction~CI!
method, give a clear example of these difficulties@13#; while
for the PES of the ground state, differentab initio calcula-
tions agree reasonably with each other@13–16#, the PES of
the first excited state obtained with the MO CI method@13#
actually corresponds to the surface of the neutral H3 mol-
ecule with an additional electron in a diffuse molecular o
bital, but not to a PES of a quasistationary state. This fact
the following explanation: the ground state is bound and t
properly described by the variational approach, whereas
first excited state is mainly quasistationary@17,18# and hence
corresponds to an electronic state embedded in thee21H3
scattering continuum. Another example is the N2H2 com-
plex. It has been shown@19# that PESs of quasistationar
states obtained by theab initio variational method exhibit
unstable behavior with respect to a change of the size of
basis set.
©2001 The American Physical Society08-1
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In principle, scattering theory provides the proper fram
work for the description of quasistationary electronic sta
of molecules. Both bound states as well as nonstation
states~resonances! are given as poles of the analytically co
tinued scattering matrix@20,21#. A variety of computational
schemes have been developed for theab initio implementa-
tion of the electron-molecule scattering theory and the de
mination of resonances. Examples are the Kohn variatio
principle @22#, the separable potential method@23#, the
R-matrix method @24#, as well as complex-rotation an
complex-basis-function methods@25–27#. An alternative is
variational calculations employing complex absorbing pot
tials @28#. With respect to the inclusion of electron
correlation effects, which is required, e.g., for the descript
of target polarization effects and the description of bo
breaking, these calculations for resonance states have no
reached the same level of sophistication as the establi
variational calculations for bound states. The technical d
culties encountered in the implementation of the meth
based on scattering theory have prevented their applica
for the calculation of complex PESs, in particular, for po
atomic anions. In fact only fewab initio calculations of com-
plete potential-energy functions of nonstationary states of
atomic anions have been reported~see, e.g.,@23,26#! and no
complete energy surfaces of nonstationary states of triato
anions or larger systems have so far been obtained withab
initio methods.

The present stage of development of calculations for
PESs of triatomic anions appears comparable to the situa
for neutral triatomics a couple of decades ago. Under th
circumstances, the diatomics-in-molecules~DIM ! method
@29# appears to represent an attractive compromise betw
accuracy and feasibility. The idea of the DIM method
based on the fragmentation of the electronic Hamiltonian
a polyatomic molecule, which allows one to construct t
Hamiltonian matrix from atomic and diatomic fragment e
ergies. Diagonalization of the Hamiltonian matrix co
structed in this way provides PESs for a polyatomic m
ecule. The DIM method has been widely used for t
construction of the PESs of triatomic and larger molecule
the past@29–31# as well as recently@32–36#. It has been
employed to obtain potential-energy functions for liqui
@37,38#, solids@39,40# and clusters@41–43#.

If so-called local complex potentials~LCP! @44,45# of
quasistationary states of diatomics are used as fragmen
tentials, one may construct a complex Hamiltonian ma
and then get local complex PESs for a polyatomic syst
This approach is called the LCP DIM method. Indeed,
LCP DIM method has been applied to obtain the real part
PESs of polyatomic anions@17,18,46–48#, as well as of qua-
sistationary states of neutral molecules@49–51#. As shown
below, the straightforward application of the LCP DIM pr
cedure to quasistationary states of polyatomics can lea
artifacts such as a complex potential for a bound state.
DIM method therefore needs to be generalized for the tr
ment of quasistationary states.

The LCP approximation, which basically corresponds
the Breit-Wigner pole approximation@21#, has its limitations,
moreover, for short-lived resonances and for resonances
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continuum thresholds. If the lifetime of the electro
molecule collision complex is short, or threshold effects a
important, the LCP approximation breaks down and a m
general complex effective potential has to be introduc
which is energy-dependent and nonlocal@52,53#. This so-
called nonlocal theory allows for an accurate treatment of
nuclear dynamics also for very short-lived collision com
plexes @53#. To the best of our knowledge, the nonloc
complex-potential formalism has been applied to diatom
systems only. In view of the existence of such an essenti
rigorous treatment of the nuclear dynamics in quasistation
states, it appears attractive to extend the DIM method
obtain a generalized approach that allows one to calcu
both local and nonlocal complex PESs of polyatomic anio
This is the goal of the present paper.

It is worth mentioning that calculations of PESs@16–18#
as well as of nonadiabatic couplings@54# for the H3

2 colli-
sional system have opened the possibility of dynamical tre
ments of different processes in H21H2 collisions @17,55–
66#. These dynamical treatments are mostly based on
single PES of the ground state of H3

2. Nonadiabatic effects
have been treated only in Refs.@62,65#. Obtaining more re-
liable information about the potentials of this system, ev
within the LCP approximation, which is sometimes sufficie
for the dynamical treatment~see, for example,@67#!, will
allow one to perform more rigorous dynamical studies of
processes in collisions of H2 with H2.

The article is organized as follows. Section II gives
short description of the projection-operator~PO! approach
for diatomic systems, which forms the basis of the desc
tion of resonances. Section III gives a new description of
DIM method. In Sec. IV the PO formalism is combined wi
the DIM method to obtain a description of nonstationa
PESs of polyatomic anions beyond the LCP approximati
An illustrative example is given in Sec. V.

II. THE PROJECTION-OPERATOR APPROACH FOR
DIATOMICS

Let Ĥe denote the electronic Hamiltonian of a molecul
anion. For the sake of simplicity, the case of only one d
crete state and one continuum is treated in this section.
straightforward to extend the formalism to the case of sev
discrete states and several continua~see Sec. IV!. Assume
that a stateucd& with a localized~square-integrable! wave
function is given, which approximately describes a res
nance in the scattering of an electron from a neutral m
ecule. This so-called discrete state with the energy expe
tion value

Vd5^cduĤeucd& ~1!

is not an eigenstate ofĤe , but is coupled with a scattering
continuumufnk&5ucn&uk& via matrix elements

Vd,nk5^cduĤeufnk&. ~2!

Here ucn& denotes the ground eigenstate of the target m
ecule with energyVn ~the subscriptn stands for ‘‘neutral’’!
8-2
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and uk& is a single-electron continuum state. For a diatom
target, bothVn andVd depend only on the internuclear sep
rationR, while Vd,nk depends both onR as well as the energy
and angular momentum quantum numbers of the continu
electron. The ufnk& are so-called background-scatterin
states, constructed to be orthogonal toucd&. An explicit pre-
scription for the construction of theucd& and ufnk& can be
found in Ref.@53#.

Given these electronic states, we can define mutually
thogonal projection operators@53,68,69#

Q̂5ucd&^cdu, ~3!

P̂512Q̂5(
k

ufnk&^fnku. ~4!

By solving the background-scattering problem@53#, the rep-
resentation ofĤe can be made diagonal in theP space
@53,68,69#.

We thus have the following representation of the fixe
nuclei Hamiltonian in the complete electronic spa
$ucd&,ufnk&%,

Ĥe5ĤQQ1ĤPP1ĤPQ1ĤQP

5ucd&Vd^cdu1E k dk dVkufnk&~Vn1Ek!^fnku

1E k dk dVk~ ucd&Vd,nk^fnku1ufnk&Vnk,d^cdu!,

~5!

whereEk5k2/2 is the kinetic energy of the continuum ele
tron.

For the manipulations to be described in the followi
sections, it is convenient to define the infinite-dimensio
matrix representationH= of Ĥe ,

H= 5S Vd Vd,nk Vd,nk8 . . .

Vnk,d Vn1Ek 0 . . .

Vnk8,d 0 Vn1Ek8 . . .

A A A �

D , ~6!

where k, k8, . . . have continuous values. Throughout t
article a double underlined symbol denotes a matrix, whil
single underlined symbol stands for a basis set~a column
vector!. H= has the structure of an ‘‘arrow’’ matrix.

If the fixed-nuclei Hamiltonian is given in the form Eq
~5!, algebraic expressions can be derived for theS and T
matrices@53,68–70#. The fixed-nucleiT matrix for the tran-
sition from an initial statenk to a final statenk8, for ex-
ample, is given by

Tnk8,nk~R!5Vnk8,d~R!@Ek1Vn~R!2Vd~R!2F~k,R!#21

3Vd,nk~R!, ~7!

where
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uVd,nk8~R!u2

Ek2E8
5D~Ek ,R!2

i

2
G~Ek ,R!

~8!

is the so-called level-shift function.
Resonances, bound states and virtual states of an a

defined as the poles of theT matrix, are thus given by the
complex solutions of the following equation in the complexk
plane@53,71,72#:

k2

2
1Vn~R!2Vd~R!2F~k,R!50. ~9!

Here F(k,R) is the analytic continuation of the level-shi
function ~8! into the complexk plane. The real part of the
solutionk2/2 of Eq. ~9! defines the position of the resonan
with respect to the potential of the neutral molecule grou
state, while the imaginary part gives the decay width@21#.

Alternatively, the position of the resonance may be o
tained from the solution of the following equation for re
positiveEk ,

Ek1Vn~R!2Vd~R!2D~Ek ,R!50, ~10!

which defines the pole of theK matrix. Obviously Eq.~10! is
the real analog of the complex equation~9!. When the decay
width of the resonance is sufficiently small, the solution
Eq. ~10! is approximately equal to the real part of the so
tion of Eq. ~9!, whereas for broad resonances the two so
tions may differ significantly@73#. The width of the reso-
nance has to be found by evaluatingG(Ek ,R) at the
resonance energy

G~R!5G„Eres~R!,R…52puVd,nkres
~R!u2. ~11!

Either Eq.~9! or Eqs.~10! and ~11! define a local complex
potential-energy function of the resonance,

Vres~R!5Ures~R!2
i

2
G~R!, ~12!

Ures~R!5Vn~R!1Eres~R!. ~13!

When the LCP~12!,~13! is used, together with the nuclea
kinetic-energy operatorT̂N , to evaluate the resolvent in theT
matrix @cf. Eq. ~7!#, one obtains the so-called LCP approx
mation for resonant electron-molecule scatteri
@44,45,52,53#. This approximation has been shown to fail f
broad resonances as well as in the presence of threshol
fects @53#. The main reason of this failure is the breakdow
of the Breit-Wigner pole approximation in such situations

It is the essence of the projection-operator formalism t
it defines a more general energy-dependent nonlocal c
plex effective potential, which governs the nuclear motion
the collision complex. It is defined as@52,53#

Ve f f~R,R8;E!5Vd~R!d~R2R8!1F~R,R8;E!, ~14!
8-3
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F~R,R8;E!5E k dk dVkVd,nk~R!

3G̃n
(1)~R,R8;E2k2/2!Vnk,d~R8!. ~15!

HereE is the total~conserved! energy of the collision com-
plex and

G̃n
(1)~R,R8;E!5^Ru~E2T̂N2Vn1 ih!21uR8& ~16!

denotes the Green’s function for nuclear motion in the tar
stateucn&. h is the usual positive infinitesimal.

It should be emphasized that the nonlocal complex po
tial is completely determined by the functionsVn(R),
Vd(R), and Vd,nk(R).1 The explicit construction of
Ve f f(R,R8;E) by ab initio methods has been achieved for
few diatomic molecules, e.g., H2 and HCl @74,75#, for the
case of electronically elastic scattering. Recently, disc
electronic potentialsVd(R) and discrete-continuum couplin
elements also have been obtained for a few polyatomic m
ecules, but only as a function of a single selected nuc
coordinate@76#.

III. THE DIATOMICS-IN-MOLECULES METHOD

Let us briefly describe the DIM method for the constru
tion of potential-energy surfaces and nonadiabatic coup
matrix elements for electronically bound states of polyatom
molecules. Within the DIM method, the potential-energy s
faces are obtained by the diagonalization of the Hamilton
matrix calculated with a chosen basis set. The constructio
the Hamiltonian matrix is based on the representation o
polyatomic Hamiltonian via atomic and diatomic Hamilt
nians. Detailed descriptions of the standard DIM appro
can be found, for example, in@18,29–31#. As has been
shown by numerous examples, this approach provides
able potential-energy surfaces and nonadiabatic coupling
neutral molecules and positive ions. In order to derive in
following section the generalized DIM method applicable
a description of both bound and quasistationary states
polyatomic anions, as well as for treating quasistation
states of neutral and positively charged polyatomic syste
let us derive in this section a new formulation of the DI
method.

In the framework of the DIM method, the basis man
electron functions uCm

anti& of an N-atomic molecule
AB•••Z are taken as superpositions of antisymmetriz
products of atomic wave functions2

1Note that as mentioned above the discrete-continuum coupl
also depend on the electron energy via the continuous indexk.

2In general, basis functions can be taken as simple product
atomic wave functions, but in practice it is more convenient
choose basis functions as linear combinations of such produc
order to describe spin-adopted states.
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uCanti&55
uC1

anti&

uC2
anti&

A

uCm
anti&

A
6 , uCm

anti&5ÂuCm&,

uCm&5 ŝuxm
a &uxm

b & . . . uxm
z &, ~17!

whereÂ is the operator of antisymmetrization,m is the gen-
eralized index of a molecular basis function,uxm

a & denotes an
electronic wave function of a monoatomic particlea, and the
operatorŝ makes a linear combination of wave functions
obtain spin-adopted states. It should be pointed out
within the DIM method the basis sets are restricted to wa
functions of electronically bound states only.

The essence of the DIM method is the fragmentatio
representation of theN-atomic (N>3) Hamiltonian via di-
atomic (Ĥab) and atomic (Ĥa) Hamiltonians@29#,

Ĥe5(
ab

Ĥab2~N22!(
a

Ĥa, ~18!

where the summation is carried out over all possible fr
mentations. Note that the atomic wave functionsuxm

a & are

eigenfunctions of the corresponding atomic HamiltonianĤa.
The construction of the Hamiltonian matrix can be pe

formed via the operation of the HamiltonianĤe on the basis
set uCanti&. According to Eq.~18! this can be expressed vi

the operations of the diatomicĤab and the atomicĤa

Hamiltonians on the same set. These Hamiltonians can
written via adiabatic potentials and adiabatic wave functio
of both bound and continuum states. For example, for a
atomic fragmentab, the Hamiltonian has the form

Ĥab5(
j

uc j
ab&Vj

ab^c j
abu

1(
n
E k dk dVkufnk

ab&~Vn
ab1Ek!^fnk

abu, ~19!

where uc j
ab& denotes a diatomic adiabatic wave functio

~eigenfunction! of a bound statej with a corresponding adia
batic potential-energy functionVj

ab(Rab), ufnk
ab& is a con-

tinuum state associated with the target stateucn
ab& with a

corresponding potentialVn
ab(Rab), and Rab is an internu-

clear separation of the fragmentsa and b. Taking into ac-
count Eq. ~19!, the commutation of the electronic Hami
tonian with the operator of antisymmetrization, the fact th
the basis set is constructed from wave functions of bou
states only, and the mutual orthogonality of the adiaba
wave functions, the operation of the diatomic Hamiltoni
Ĥab on a basis wave functionuCm

anti& can be written as
follows:

gs

of

in
8-4
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ĤabuCm
anti&5ÂĤabuCm&

5Â(
j

uC j
ab&Vj

ab^C j
abuCm&. ~20!

Here the wave functionsuC j
ab& of the whole polyatomic an-

ion are constructed from products of the diatomic wave fu
tions uc j

ab& multiplied by wave functions of electrons tha

are not included inĤab,

uC j
ab&5 ŝuc j

ab&ux j
g&•••ux j

v&. ~21!

The overlap integrals in the Eq.~20! represent matrix ele
ments of a transformation operatorB̂ab for the construction
of the functionsuCab& from the basis setuC&. The corre-
sponding matrix representationB= ab links these two sets

uCab&5B= abuC&. ~22!

In practice, the elements of the matrixB= ab are obtained as
overlap integrals calculated with the wave functions of
electrons that are included in the diatomic fragmentab, that
is, as overlap integrals between the eigenfunctionsuc j

ab& and
the parts of the basis functionsuCm&, which depend on the
electrons treated. Taking this into account, the operation
the diatomic HamiltonianĤab on the whole basis setuCanti&
can be written in matrix form

ĤabuCanti&5ÂB= ab†
V= abuCab&5B= ab†

V= abB= abuCanti&.

~23!

Here Vab is a diagonal matrix, whose elements are the
atomic adiabatic potentialsVj

ab of the fragmentab.
The operation of other fragment Hamiltonians in Eq.~18!

on the basis setuCanti& can be written in a way similar to Eq

~23!, and finally the operation of the total electronic Ham
tonianĤe on the whole basis setuCanti& can be described by

means of the following Hamiltonian matrixH= DIM :

ĤeuCanti&5H= DIM uCanti&, ~24!

where

H= DIM 5(
ab

B= ab†
V= abB= ab2~N22!(

a
V= a. ~25!

As continuum wave functions are not included and the ba
set of bound-state wave functions in practice is truncated
finite number, the matrixH= DIM is finite, and, hence, its di
agonalization provides both the potential-energy surfaces
eigenfunctions of the polyatomic molecule under consid
ation. The Hamiltonian matrix~25! coincides with the
Hamiltonian matrix obtained by using another approach@18#.

Thus, within the framework of the DIM approach, th
input data required are the diatomic adiabatic potentials,
atomic energies, and the matricesB= ab for the construction of
diatomic eigenfunctions from products of single-atom
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wave functions. These data can be calculated separatel
each atomic and diatomic fragment. Couplings of mon
atomic bound states with continua are not considered wi
the conventional DIM method.

IV. COMBINATION OF THE PROJECTION-OPERATOR
APPROACH AND THE DIATOMICS-IN-MOLECULES

METHOD

Let us consider anN-atomic anion (N>3). The basis set
of the antisymmetrized many-electron functionsuCm

anti& of
the anion is taken in the form of Eq.~17!, but includes con-
tinuum wave functions as well. In the spirit of the PO a
proach, the basis set of nonantisymmetrized basis funct
uCm& consists of two subsets:~i! a set of discrete-state wav
functions uCdi

& ~all electrons are bound! and ~ii ! a set of

continuum-state functionsuFntk&5uCnt
&uk& ~one electron is

unbound!,

uC&5H uCd&

uFnk&
J . ~26!

uCnt
& denotes an electronic state of the target molecu

From here on, the Latin indicesi , j stand for discrete state
with corresponding potentialsVd j , while the Greek indices
t,l stand for electronic ground and excited states of
neutral molecule with the potentialsVnt

, Vnl
, respectively;

the Greek superscriptsa,b,g label nuclei. The generalized
indexm runs over:~i! an indexi ~or j ) of discrete states of an
anion,~ii ! an indext ~or l) of electronic states of a neutra
molecule, and~iii ! an electronic continuum variablek,

$m%5ˆ$ i %;$tk%‰. ~27!

In the spirit of DIM, the basis functionsuCdi
& anduCnt

& are
chosen as superpositions of corresponding products
atomic wave functions@see Eq.~17!#.

The electronic HamiltonianĤe of a polyatomic anion is
represented in terms of diatomicĤab and atomicĤa Hamil-
tonians by Eq.~18!. Each of the fragment HamiltoniansĤab

or Ĥa can be written in the PO form as the generalization
Eq. ~5!. For the case of several discrete states of an an
interacting with several electron-scattering continua one h
for example,

Ĥab5(
j

ucdj

ab&Vdj

ab^cdj

abu

1(
l
E kabdkabdVkabucnl

ab&ukab&

3~Vnl

ab1Ekab!^kabu^cnl

abu1(
j ,l

E kabdkabdVkab

3~ ucdj

ab&Vdj ,nlk
ab ^kabu^cnl

abu

1ucnl

ab&ukab&Vnlk,dj

ab ^cdj

abu!. ~28!
8-5
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Note that the small lettersc andf stand for diatomic wave
functions, while the capital lettersC and F are used for
polyatomic wave functions. The superscriptab determines a
specified diatomic fragment with an internuclear distan
Rab . For example,ucdj

ab& stands for the wave function of

discrete statej of a diatomic fragmentab with a correspond-
ing potentialVdj

ab(Rab), and so on.

According to the DIM philosophy one needs to constru
the Hamiltonian matrix. This can be done by the operation
tio

-

us

p

te
e
tio

th
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ry

-
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the HamiltonianĤe on the basis set via the operation of th
atomic and diatomic fragment Hamiltonians on a basis fu
tion. Of course, in the present case the Hamiltonian matri
infinite dimensional. Taking into account that the operat
Ĥab and Â commute with each other, and adding the u
operator(m8uCm8&^Cm8u in each term in Eq.~28!, the op-
eration ofĤab on the basis wave functionuCm

anti& @similar to
the operation on a single term in Eq.~20!# can be written in
the following form:
ĤabuCm
anti&5ÂĤabuCm&

5ÂH (
j ,m8

uCm8&^Cm8uCdj

ab&Vdj

ab^Cdj

abuCm&

1 (
l,m8

E kabdkabdVkabuCm8&^Cm8uCnl

ab&ukab&~Vnl

ab1Ekab!^kabu^Cnl

abuCm&

1 (
j ,l,m8

S E kabdkabdVkabuCm8&^Cm8uCdj

ab&Vdj ,nlk
ab ^kabu^Cnl

abuCm&

1E kabdkabdVkabuCm8&^Cm8uCnl

ab&ukab&Vnlk,dj

ab ^Cdj

abuCm& D J . ~29!
e
sis
e

e

eu-

-

Here, as well as in the preceding section, the transforma
from the diatomic functionsucdj

ab& and ucnl

ab& to the poly-

atomic functionsuCdj

ab& anduCnl

ab& was performed. The gen

eralized indexm8 runs over both discrete and continuo
values, and, hence, the summation overm8 in the last equa-
tion means the summation over the integer indicesi 8 andt8
of the anion discrete states and continuum states, res
tively, and the integration overkW8 (k8 dk8 dVk8). Taking into
account the orthogonality of discrete and continuum sta
the summation overm8 in the first and the third terms in th
right-hand side of the last equation results in the summa
over the discrete state indexi 8 only, while in the second and
in the fourth terms it results in both the summation over
index t8 and the integration overk8 dk8 dVk8 .

As the wave functionsuCdj

ab& are constructed from the

electronically bound wave functions, the overlap integr
betweenuCdj

ab& and the wave functionsuCm& from the Q

subspace represent matrix elements of a unita
transformation operatorD̂ab (uCd

ab&5D̂abuCd&), operating
in Q,

^CmuCdj

ab&5^Cdi
uCdj

ab&dm$ i %5D ji
abdm$ i % . ~30!

Here the Kronecker symboldm$ i % is nonzero only if the index
m corresponds to a function from theQ subspace. In a simi
lar way in theP subspace one has
n

ec-

s,

n

e

s

-

^CmuCnl

ab&ukab&5^ku^Cnt
uCnl

ab&ukab&dm$tk%

5Clkab,tk
ab dkkabdm$tk% . ~31!

The unitary operatorĈab determines the construction of th
wave functions of a neutral diatomic fragment from the ba
functionsuCnt

&, and the construction of the continuum wav

functions of an electron scattered on a diatomic fragmentab
from the wave functionsuk& of the electron scattered on th
whole anion(uCn

ab&ukab&5ĈabuCn&uk&). As a result, the

operatorĈab is a product of two commuting operators:nĈab

operating on the wave functions of bound states of the n
tral molecule~the target states! and cĈab operating on the
continuum wave functions of a scattered electron.

The Kronecker symboldkkab, being equal to

dkkab5dEkEkabd~Vk2Vkab!, ~32!

selects continuum states of equal energy

Ek5Ekab , ~33!

whereas the Kronecker symboldm$tk% selects the wave func
tions uCm& from theP subspace.

Taking Eqs.~30!–~32! into account, Eq.~29! can be re-
written as
8-6
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ĤabuCm
anti&5Â(

m8
H(

j
D ji 8

abdm8$ i 8%Vdj

abDi j
ab†dm$ i %

1(
l
E k dk dVkClt8

ab dkkm8
dm8$t8k8%~Vnl

ab1Ek!Ctl
ab†dkkm

dm$tk%

1(
j ,l

S E k dk dVkD ji 8
abdm8$ i 8%Vdj ,nlk

ab Ctl
ab†dkkm

dm$tk%

1E k dk dVkClt8
ab dkkm8

dm8$t8k8%Vnlk,dj

ab Di j
ab†dm$ i %D J uCm8&. ~34!
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Due to Eqs.~32! and~33!, the integration in the last equatio
is carried out overkW instead ofkWab.

Equation ~34! shows that the operation of the diatom
HamiltonianĤab on the basis wave functionuCm

anti& results
in the sum of some terms@in the curly brackets in Eq.~34!#,
multiplied by the basis wave functions. Therefore, it can
written in matrix-multiplication form similar to Eq.~23!. The
operation of other fragment Hamiltonians in Eq.~18! on the
basis functionuCm

anti& can be written in a similar way. Fi

nally, the operation of the total electronic HamiltonianĤe on
the whole set of the basis functionsuCm

anti& can be described
by the Hamiltonian matrixH= ,

ĤeuCanti&5H= uCanti&, ~35!

where

H= 5S Hd= Vdk8= Vdk9= . . .

Vk8d= H= n1Ek8I= 0 . . .

Vk9d= 0 Hn=1Ek9I= . . .

A A A �

D . ~36!

Here the matrix

Hd=5(
ab

D= ab†Vd=
abD= ab2~N22!(

a
Vd=

a ~37!

is the matrix for the calculation of the PESs of discrete sta
for the polyatomic anion,Vd=

ab is a diagonal matrix, the el

ements of which are the discrete-state potentialsVdj

ab of a

corresponding diatomic anionab. The matrix Hd= is con-
structed in a way similar to the conventional DIM metho
but in Eq. ~37! the potentials of the discrete states are u
instead of the potentials of resonances for diatomic ani
within the LCP approximation. By analogy,

Hn=5(
ab

C= ab†V= n
abC= ab2~N22!(

a
Vn=

a ~38!

is the matrix for the calculation of the PESs of the neut
polyatomic molecule, constructed within the standard D
01250
e

s

,
d
s

l

method,Vn=
ab is a diagonal matrix, consisting of the pote

tials Vnl

ab of the neutral diatomic moleculeab. I= is the unit

matrix, and the matricesVdk= andVkd= are defined as

Vdk= 5(
ab

D= ab†Vdk=
abC= ab2~N22!(

a
Vdk=

a, ~39!

Vkd= 5Vdk=
†. ~40!

The matrix H= is infinite dimensional and exhibits bloc
structure as indicated in Eq.~36!.

The diagonalization of the matrixHd= defined by Eq.~37!

provides the matrixU= of the unitary transformation to the
orthogonal wave functions of the discrete states in theQ
subspace,

uC̃d&5U= uCd
anti&, ~41!

and the PESsṼdj
of the discrete states of the polyatom

anion

V= d5U= Hd= U= †. ~42!

Note that the wave functionsuC̃di
& are not eigenfunctions o

the anion; they are coupled with continuum states.
The diagonalization of the matrixHn= , Eq. ~38!, gives the

matrix W
=

of the unitary transformation to the adiabatic wa
functions of the polyatomic target molecule, which are t
eigenfunctions of the corresponding Hamiltonian,

uC̃n&5W= uCn
anti&, ~43!

and the PESsṼnl
of the neutral molecule

V= n5W= Hn= W= †. ~44!

The matrixH
=

defined by Eq.~36! is nondiagonal within
the subblocks, being constructed by means of nonorthog
basis functions within subsets. Performing block diagon
ization separately in theQ andP subspaces, respectively, th
is, making the transformation from the nonorthogonal wa
functions uCdi

anti& and uCnt

anti& to the orthogonal~within the
8-7
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subspacesQ and P) wave functionsuC̃di
& and uC̃nt

&, one

has the matrixH= , which gives the representation of th
electronic Hamiltonian in orthogonal basis functions

H̃= 5S Ṽd= Ṽdk8= Ṽdk9= . . .

Ṽk8d= Ṽn=1Ek8I= 0 . . .

Ṽk9d= 0 Ṽn=1Ek9I= . . .

A A A �

D . ~45!

The matricesṼd= andṼn= are the diagonal ones defined abov
and the matrices of couplings of discrete states with conti
are defined as

Ṽdk= 5U= F(
ab

D= ab†Vdk=
abC= ab2~N22!(

a
Vdk=

aGW= †,

~46!

Ṽkd= 5Ṽdk=
†. ~47!

It is seen that the Hamiltonian matrixH̃
=

of Eq. ~45! has
the form of an arrow matrix like in Eq.~6!. The diagonal
matrix elements are the PES of discrete statesṼdi

and the

energies of continuum statesṼnt
1Ek ; the off-diagonal ele-

ments are nonzero only for couplings between discrete st
and continua as defined by Eq.~46!. The matrix H̃= has a
clear structure: the matrixṼd= is the matrix representation o

the operatorĤQQ in Eq. ~5!, which operates in theQ sub-
space, the matricesṼdk= and Ṽkd= correspond to the operator

ĤPQ and ĤQP coupling the discrete and continuum state
and the rest represents theĤPP operator in theP subspace.

Taking into account the form of the Hamiltonian matri
Eq. ~45!, the Hamiltonian operator can be written in th
projection-operator form

Ĥe5(
i

uC̃di
&Ṽdi

^C̃di
u

1(
t
E k dk dVkuC̃nt

&uk&~Ṽnt
1Ek!^ku^C̃nt

u

1(
i ,t

E k dk dVk~ uC̃di
&Ṽdi ,ntk^C̃nt

u^ku

1uC̃nt
&uk&Ṽntk,di

^C̃di
u!, ~48!

which is the natural generalization of Eq.~5! for the case of
several discrete states and several continua. The form
~37!, ~38!, ~42!, ~44!, ~46!, and~47! allow one to achieve the
PO description of the polyatomic anion from the correspo
ing information of atomic and diatomic anions.

Thus, the generalized DIM method consists of the follo
ing: in the spirit of DIM, the matrixHd= for discrete states o

a polyatomic anion is constructed by means of Eq.~37!
01250
,
a

es

,

las

-

-

based on discrete-state potentials of diatomic and atomic
ions; the diagonalization of this matrix provides the PESs
discrete statesṼdi

and the matrix of the unitary transforma

tion U= ; the matrixHn= for the neutral polyatomic molecule i

constructed within the standard DIM method by means
Eq. ~38!, which gives the PESsṼnt

of the neutral molecule

and the transformation matrixW= ; continuum states are asso
ciated with the PESsṼnt

; then couplings between discre
states of a polyatomic anion and continua are calculated
means of Eq.~46!; and finally, the fixed-nuclei Hamiltonian
within the projection-operator formalism is given by E
~48!.

It is worth pointing out that the coupling-matrix elemen
of the diatomic discrete states with diatomic continua dep
on both the corresponding internuclear distanceRab and the
electron energyEk : Vdj ,nlk

ab 5Vdj ,nlk
ab (Rab). As a result, the

matrix elementsṼdk of the coupling between polyatomic dis
crete states and polyatomic continua depend on the whole
of internuclear distances~for example, three distances for
triatomic anion:Rab , Rbc , Rca) and on an electron energ
Ek : Ṽdi ,ntk5Ṽdi ,ntk(R). R stands for the set of coordinate
describing the nuclear configuration in a multidimension
space~three dimensional for a triatomic anion!.

As mentioned above, the PESsṼdi
of the discrete states

the neutral-molecule PESsṼnt
, and the discrete-continuum

couplingsṼdi ,ntk allow one to perform the dynamical trea
ment of both electron-molecule scattering and negative-io
molecule collisional processes in the framework of the n
local complex-potential formalism. In analogy to Eqs.~14!–
~16!, the nonlocal complex effective potential for th
polyatomic collision complex is given by the nonlocal matr

Vi j
e f f~R,R8;E!5Vdi

~R!d i j d~R2R8!1Fi j ~R,R8;E!,
~49!

Fi j ~R,R8;E!5(
t
E k dk dVkṼdi ,ntk~R!

3G̃nt

(1)~R,R8;E2k2/2!Ṽntk,dj
~R8!,

~50!

where

G̃nt

(1)~R,R8;E!5^Ru~E2T̂N2Vnt
1 ih!21uR8& ~51!

is the Green’s function for nuclear motion in the target st
t. Equations~49!–~51! make explicit that the polyatomic
nonlocal complex-potential matrix is completely determin
by the functionsṼdi

(R), Ṽnt
(R), andṼdi ,ntk(R).

If the LCP approximation is used for the dynamical tre
ment, the LCPs can be derived within the present formal
on the basis of Eq.~48! @or Eq.~45!#. As described in Sec. II,
the LCPs are defined as the poles of the correspondingT or
S matrices in the complexk plane, and can be obtained b
8-8
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using the approach of Refs.@72,77#. The poles are the com
plex solutions of the following equation, which is the gen
alization of Eq.~9!:

detUk2

2
I=1Ṽn=2Ṽd= ~R!2F= t~R,k!U50, ~52!

and the elements of the matrixFt(R,k) are defined as

Fi j
t ~R,k!5(

t
Fi j

t ~R,k!, ~53!

Fi j
t ~R,k!5E k8dk8dVk8

Ṽdi ,ntk8~R!Ṽntk8,dj
~R!

k2

2
2

k82

2

. ~54!

The LCPs are then given by

Vres~R!5
kres

2

2
1Ṽn0

~R!, ~55!

kres being the solution of Eq.~52! associated with the
ground-state potentialṼn0

of the neutral molecule. If the

state is bound, the potentialVres is real. If Re(12 kres
2 ).0, the

potential is complex and describes an electron-molec
resonance.

If the position of the resonance is defined as the singu
ity of the K matrix, then its position is given by the solutio
of the following equation for realEk :

detuEkI=1Vn=2Vd= ~R!2D= t~R,Ek!u50, ~56!

where D i j
t (R,Ek)5ReFi j

t (R,Ek). In this case the width of
the resonance is obtained in a similar way as given by
~11!.

V. APPLICATION OF THE GENERALIZED DIM METHOD
TO H3

À

Let us apply the formalism derived in the previous sect
to the H3

2 collisional complex. According to Eq.~48!, the
construction of the electronic Hamiltonian of H3

2 in the
projection-operator form requires~i! the PESsṼnt

of the

neutral H3 molecule,~ii ! the potential-energy surfacesṼdi
of

discrete states of the H3
2 anion, and~iii ! the couplings

Ṽdi ,ntk between discrete states and continua.

The H3 PESs can be taken fromab initio calculations
@3,4#. The construction of theṼdi ,ntk matrix elements from
diatomic information requires also the knowledge of t
expansion-coefficient matricesC= ab and W= for H3. In the
present work they are calculated with the conventional D
method with the minimum basis set, which consists of o
two states@78#,

uCn1
&5

1

A2
~ ux̃H

a &uxH
b &2uxH

a &ux̃H
b &)uxH

c &,
01250
-

le

r-

q.

n

y

uCn2
&5

1

A6
~2uxH

a &uxH
b &ux̃H

c &2uxH
a &ux̃H

b &uxH
c &

2ux̃H
a &uxH

b &uxH
c &), ~57!

whereuxH
a & andux̃H

a & ~the superscripta5a, b, or c labels the
nuclei A, B, or C) represent the hydrogen-atom groun
states with positive and negative spin quantum number,
spectively. The matricesC= ab, C= bc, and C= ca can easily be
obtained from the basis~57!, e.g., C= ab5I=. The basis~57!
provides a 232 matrixHn= in accordance with Eq.~38!. The
input information here are the diatomic adiabatic potenti
of the H2(X 1Sg

1) and H2(a 3Su
1) states, which are known

with high accuracy@79,80#. The diagonalization ofHn= gives

the matrixW= @see Eq.~44!# and the two lowest surfacesṼnt
,

which are then replaced by theab initio PESs@4#. The con-
struction of the continuum basis statesuFntk&, required for

the total basis set of Eq.~26! for the singlet states of H3
2,

from the basis states~57! is straightforward.
The minimum basis set for the low-lying singlet discre

states of the H3
2 anion consists of the following three state

uCd1
&5

1

A2
uxH2

a &~ ux̃H
b &uxH

c &2uxH
b &ux̃H

c &),

uCd2
&5

1

A2
uxH2

b &~ ux̃H
a &uxH

c &2uxH
a &ux̃H

c &), ~58!

uCd3
&5

1

A2
uxH2

c &~ ux̃H
a &uxH

b &2uxH
a &ux̃H

b &),

uxH2
a & being the ground state of H2. This leads to easily

computable matricesD= ab, D= bc, D= ca, and finally to a 333
matrix Hd= defined by Eq.~37!. The input information here is
the binding energy of H2 ~the experimental value of 0.75 eV
@81# is used in the present calculations! as well as the di-
atomic potentials of the2Su

1 and 2Sg
1 discrete states of H2

2

~see below and Appendix!. The difference between th
present generalized DIM approach and the LCP DIM meth
for H3

2 @17,18# is that the diatomic potentialsVdj

ab and

atomic energiesVdj

a for the discrete states are used in E

~37! instead of the positions of the resonances. The outpu
the potential energies of the discrete states instead of the
parts of the LCP PESs. According to Eq.~42!, the diagonal-
ization of the matrixHd= provides the PESsṼdi

of the three

lowest singlet states of H3
2 and the matrixU= .

At each energyEk the couplings between the three di
crete states of H3

2 and the continua associated with the tw
lowest states of a neutral H3 molecule are determined by
matrix Ṽdk= defined by Eq.~46!. As follows from this equa-
tion, the following input is needed: the matricesD= ab and
C= ab for the construction of the DIM Hamiltonian matrice
for both H3

2 discrete states and H3 bound states from di-
8-9
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atomic potentials@Eqs.~37! and~38!#, the matricesVdk
ab and

Vdk
a consisting of the coupling-matrix elements between d

crete states and continua for the diatomic and atomic ani
and the transformation matricesU= andW= , obtained from the

FIG. 1. The real parts of the local complex potentials of t
ground and the first excited states of the H3

2 anion~solid lines! and
the ground-state PES of the neutral H3 molecule@4# ~dashed line!
for collinear geometry at the Jacobi internal coordinater 51.4 a.u.
as a function of the Jacobi collision coordinate. The thick lines
the real parts of PESs calculated by means of the generalized
method, the thin solid curves are the calculations within the L
DIM method. The symbols are theab initio data for the ground state
of H3

2 @16#, which are in agreement with the results of otherab
initio calculations@13– 15#.

FIG. 2. The width functions of the ground and the first excit
states of H3

2 for collinear geometry at the Jacobi internal coord
nater 51.4 a.u. as a function of the Jacobi collision coordinate. T
thin and thick solid lines correspond to the widths of the ground
the first excited states obtained by means of the generalized
method, respectively; the thin and thick dashed curves are the
culations within the LCP DIM method for the ground and the fi
excited states.
01250
-
s,

diagonalization of the DIM matricesHd= and Hn= @Eqs. ~42!

and ~44!#, respectively.
In contrast to the neutral hydrogen molecule, the data

the bound and resonant states of the H2
2 anion are not

readily available. The potential-energy function of th
H2

2(2Su
1) discrete state and the coupling between this d

crete state and the H2(X 1Sg
1) p-wave continuum~as a func-

tion of both the internuclear distanceR and the electronic
energy! are known from theab initio calculation forR,3
a.u. @74#. When combined withab initio data for the bound
H2

2(2Su
1) state atR.3 a.u.@82#, this information allows us

to construct the discrete-state potential and the correspon
coupling over the whole range of the internuclear distan
and electronic energy@67#. Unfortunately, this information is
not available for the H2

2(2Sg
1) discrete state, which is

coupled with the H2(X 1Sg
1) and H2(a 3Su

1) continua. There
exist several calculations of the LCP of the H2

2(2Sg
1) reso-

nance@83–88#, as well as empirical LCPs obtained by fittin
of experimental data@89,90#. In general, the LCP is not suf
ficient for the extraction of the complete information abo
the discrete-state potential and the couplings with the c
tinua. Therefore, anab initio calculation of these data for th
H2

2(2Sg
1) resonance is highly desirable. In the prese

work, the recent LCP obtained by anR-matrix calculation
@88# is used for the construction of a model potential for t
H2

2(2Sg
1) discrete state and its couplings with th

H2(X 1Sg
1) and H2(a 3Su

1) continua. In order to avoid com
putational problems, a new simplified model for th
H2

2(2Su
1) resonance also has been derived based on thab

initio calculation @74,82# and the model of Ref.@67#. The
nonlocal diatomic models used in the present work for b
the H2

2(2Su
1) and H2

2(2Sg
1) resonances are specified in th

Appendix.
The procedure described above allows us to obtain

electronic Hamiltonian of the H3
2 anion in the projection-

operator form, Eq.~48!. As mentioned above, this form pro
vides the basis for a treatment of the nuclear dynamics
yond the LCP approximation. The same form of t
electronic Hamiltonian can be used for calculating the L
energy surfaces by means of Eqs.~52! or ~56!.

As an example, the calculated local complex potenti
for the two lowest singlet states of H3

2 are shown in Figs. 1
and 2 for collinear geometry at the Jacobi internal coordin
r 51.4 a.u. as a function of the Jacobi collision coordinateR.
The full three-dimensional surfaces obtained by the gene
ized DIM method will be reported in a separate publicatio
In the present calculations the real parts of the LCPs~the
positions of the resonances! have been determined as th
poles ofK matrix, that is, as the solutions of Eq.~56! for real
Ek(R). The quasistationary widthsG i(R) of the resonances
are obtained from the imaginary parts of diagonal mat
elementsFii

t (R,Ek), the energiesEk(R) being given by the
solution of Eq.~56!: G i(R)522 ImFii

t (R,Ek(R)).
Figure 1 displays the real parts of the LCPs: the th

solid lines are the results of the calculations carried out
means of the generalized DIM method, while the thin so
curves are the real PESs obtained within the LCP D
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method.3 The symbols are theab initio data @16# for the
ground state of H3

2, and the dashed line corresponds to t
ground state PES of H3 @4#. It is seen that there is goo
agreement between theab initio and the present calculation
for the ground state of H3

2, which asymptotically (R→`)
correlates to H21H2(X 1Sg

1). The quasistationary widths o
the LCPs of the same states are shown in Fig. 2; the thin
thick solid lines correspond to widths of the ground and
first excited states of H3

2 obtained by means of the genera
ized DIM method, respectively, while the thin and thic
dashed curves represent the calculations carried out w
the LCP DIM method for the ground and the first excit
states. The ground-state PES of H3

2 lies mainly below the
PES of the ground state of H3 at this geometry and, hence,
real in the generalized DIM calculations, except for a sm
region aroundR52 a.u. where it is slightly above th
ground-state H3 PES. Theab initio calculations@16# also
exhibit a crossing of the H3

2 and H3 PESs in this region. It
is seen from Fig. 1 that the LCP DIM potentials qualitative
reproduce the real parts of the LCPs, but the imaginary p
of the LCPs obtained by means of the LCP DIM method
not correct: the ground-state LCP is complex forR,5 a.u.,
although the state is bound~see Fig. 2!. In contrast to this,
the generalized DIM method yields automatically
potential-energy surface, which is real for a bound state
complex for a resonance. An example of the latter case is
PES of the first excited state of H3

2 which asymptotically
(R→`) corresponds to the H1H2

2(2Su
1) configuration

~see Fig. 1!; it is located above the ground-state PES of
neutral H3 molecule and has a nonzero imaginary part pl
ted in Fig. 2. Except for the asymptotic region, the mag
tudes of the quasistationary widths calculated within the L
DIM method are much larger than the ones obtained
means of the generalized DIM method, even when the
parts of the LCPs are close to each other. Thus, the LCP D
method does not provide reliable results for imaginary pa
of complex potentials. As mentioned above, the generali
DIM method developed in the present work is reliable a
free of such artifacts as a complex potential for a bound st

It has recently been shown by classical-trajectory@62# and
wave-packet@65# calculations that the quasistationarity
the excited state~as well as the nonadiabatic transitions b
tween the ground state and the first excited state! is respon-
sible for the electron detachment process in low-energy2

1H2 collisions. While the calculation of the real part of th
excited-state PES has been performed earlier@17,18# by
means of the LCP DIM method, the present work represe
the first calculation of the imaginary part.

It should be pointed out that the H2
2(2Sg

1) resonance is
short lived and the resonant electron energy is close to
threshold with respect to the H2(a 3Su

1) continuum. As men-
tioned above, the LCP approximation breaks down in t
case. For this reason the model for the H2

2(2Sg
1) resonance,

3Note that in the present work different positions of t
H2

2(2Su,g
1 ) resonances are used than in the previous LCP D

calculations@17,18,54#.
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obtained from the LCP@88#, needs to be improved. In add
tion, it is pointed out in Ref.@88# that there is nonadiabati
coupling between the H2

2(2Sg
1) resonance and anothe

higher-lying resonance. To obtain more accurate PES
H3

2, an extension of the basis set and moreab initio data for
the H2

2(2Sg
1) resonance are required.

VI. CONCLUSIONS

In the present paper the concept of the combination of
projection-operator approach and the diatomics-in-molecu
method has been developed. The result is a generalized
mulation of the diatomics-in-molecules method, which yiel
a description of potential-energy functions of both quasis
tionary and bound states for polyatomic anions. The deri
approach is also applicable for quasistationary states of n
tral and positively charged polyatomic systems. The p
posed theory allows one to calculate potential-energy s
faces of both discrete states and discrete-continuum coup
elements from the corresponding data of the atomic and
atomic fragments, that is, to obtain the complete informat
for quasistationary and bound states of polyatomic anio
The ground as well as excited states of polyatomic ani
can be described with this approach.

The extension of the projection-operator formalism
polyatomic systems obtained in this way provides the ba
for a rigorous treatment of the nuclear dynamics of electr
molecule scattering, including resonance effects, and for
molecule collisions in terms of energy-dependent, comp
and nonlocal effective potentials. More approximate lo
complex potential-energy surfaces of quasistationary st
also can be obtained with the generalized DIM method
the determination of the poles of the multichannel electr
molecule scattering matrix in the fixed-nuclei limit.

In previous calculations of the LCPs by means of the D
method, the LCP approximation has been used first, and
the Hamiltonian matrix has been constructed with the c
ventional DIM method, based on the atomic and diatom
LCPs. This LCP DIM method cannot assure reliable LC
PESs in the vicinity of thresholds. It may yield, for examp
nonzero imaginary parts of PESs for bound states. In
generalized DIM method, the Hamiltonian matrix as well
the projection-operator form of the Hamiltonian are co
structed first based on the DIM philosophy, and then the L
approximation is employed if the LCP PESs are desired. T
strategy leads to consistent potentials with proper thresh
behavior of the widths.

The input data needed for the generalized DIM meth
are the adiabatic energies of neutral atomic and diato
fragments, the potential-energy functions of discrete state
atomic and diatomic anions, as well as energy- and distan
dependent couplings between the discrete states and
electron-molecule continua. This information is very limite
at present, and more data of this kind are highly desirab

In order to illustrate the concepts derived, the generali
DIM method has been applied to the ground and the fi
excited states of the H3

2 anion, making use of information
that is available for the bound and resonance states of2
8-11
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TABLE I. The parameterb1(R) of the nonlocal model for the H2
2(2Su

1) resonance at small internuclea
distancesR.

R ~a.u.! b1 ~a.u.! R ~a.u.! b1 ~a.u.! R ~a.u.! b1 ~a.u.! R ~a.u.! b1 ~a.u.! R ~a.u.! b1 ~a.u.!

0.2 2.280 0.7 3.137 1.4 3.569 2.4 4.707 4.0 6.253
0.3 2.399 0.8 3.060 1.6 3.897 2.6 4.763 4.5 6.977
0.4 2.536 0.9 3.031 1.8 4.220 2.8 4.884 5.0 7.798
0.5 2.688 1.0 3.071 2.0 4.485 3.0 5.101 5.5 8.486
0.6 2.834 1.2 3.275 2.2 4.641 3.5 5.639
lly

g
o
is
l-
l

um

ca

n

m
nu
t

-
sh
f

u-
ined

for

rk.
um
ble,

s

rk,

he

l

and H2
2. The LCP PES calculated in this way are physica

consistent and in reasonably good agreement with theab
initio calculations as far as the latter are available@13–16#.
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APPENDIX

1. Nonlocal models for the H2
À
„

2Su,g
¿

… resonances

The description of resonances in electron-molecule s
tering requires the following functions to be known~see, for
example,@53#!: ~i! the potential energiesVnl

(R) of the con-
sidered states of the neutral molecule,~ii ! the potential ener-
giesVdi

(R) of the relevant discrete states of the anion, a

~iii ! the discrete-continuum coupling elementsVdi ,nlk(R) as

functions of both nuclear configuration coordinatesR and
continuum electron parameters. In the case of a diato
anion, the nuclear configuration is described by the inter
clear separationR. For the H2

2(2Su,g
1 ) resonances, the targe

states are the ground stateX 1Sg
1 and the lowest triplet state

a 3Su
1 with the well-known potential energiesVn1

(R) and

Vn2
(R) @79,80#. For the H2

2(2Su
1) resonance, the discrete

state potential, the quasistationary width, and the energy
have been calculated withab initio methods as functions o
the electron kinetic energyE5k2/2 for a grid of seven inter-
01250
e-
f
-

t-

d

ic
-

ift

nuclear distancesR, ranging from 1.4014 to 2.75 a.u.@74#.
Based on these data a short-range (1 a.u.,R,3 a.u.) nonlo-
cal model has been obtained@91#, that is, analytic fits have
been obtained for the discrete-state potentialVd1

(R) and for

the matrix elementVd1 ,n1k(R), which couples the H2
2(2Su

1)

discrete state with the H2(X 1Sg
1) continuum. By a combi-

nation with ab initio calculations of the bound H2
2(2Su

1)
potential for R.3 a.u. @82#, a nonlocal model for the
H2

2(2Su
1) resonance over the whole range of the intern

clear separation and the electronic energy has been obta
@67#. In both models@67,91#, theVd1 ,n1k(R) coupling is rep-
resented by a sum of three terms, which leads to six terms
the energy shift@see Eq.~8!#. In order to simplify the calcu-
lations, a new nonlocal model for the H2

2(2Su
1) resonance

based on theab initio calculations@74,82,91# and on the
model of Ref.@67# has been developed in the present wo
In the new model described below, the discrete-continu
coupling element consists of a single, albeit nonsepara
term.

In contrast to the H2
2(2Su

1) resonance, few calculation
have been performed for the H2

2(2Sg
1) resonance. Only

LCP information is available@83–90#, which is not sufficient
for the construction of a nonlocal model. In the present wo
a preliminary nonlocal model for the H2

2(2Sg
1) resonance is

obtained, based on a recentR-matrix calculation of the short-
range ~from 0.8 to 4 a.u.! local complex potential@88# as
well as on the long-range (R.4 a.u.! empirical LCP@90#
obtained by the fitting of experimental data.

Atomic units are assumed in all formulas given in t
following.

2. The H2
À
„

2Su
¿
… resonance

The discrete-state potentialVd1
(R) for the p-wave 2Su

1

resonance in electron-H2 scattering is taken from the mode
of Ref. @67#. The analytic form of the potential is
Vd1
~R!55 1.74e22.37R2

94.4e222.5/R

~~R22.54!213.11!2
1E2 for R<10.6 a.u.,

20.008 45Re20.35R2
2.25

R4 2
97

R6 1E2 for R.10.6 a.u.,

~A1!
8-12
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TABLE II. The short-range part of the potentialVd2
(R) for the H2

2(2Sg
1) discrete state as a function o

the internuclear distanceR.

R ~a.u.! Vd2
~a.u.! R ~a.u.! Vd2

~a.u.! R ~a.u.! Vd2
~a.u.! R ~a.u.! Vd2

~a.u.! R ~a.u.! Vd2
~a.u.!

0.20 2.25000 2.00 0.19822 3.80 0.01890 5.4020.01137 8.01 20.02348
0.40 1.10000 2.20 0.15600 4.00 0.01347 5.6020.01369 8.40 20.02407
0.60 0.70500 2.40 0.12128 4.20 0.00911 5.8620.01601 8.74 20.02449
0.80 0.50167 2.60 0.09042 4.40 0.00506 6.1220.01783 9.11 20.02486
1.00 0.38683 2.80 0.06828 4.50 0.00306 6.4020.01925 9.50 20.02519
1.20 0.33322 3.00 0.05367 4.70 20.00006 6.71 20.02046 10.0 20.02554
1.40 0.29433 3.20 0.04287 4.84 20.00311 7.03 20.02143 10.5 20.02582
1.60 0.26658 3.40 0.03366 5.00 20.00580 7.38 20.02229 11.2 20.02615
1.80 0.23742 3.60 0.02556 5.17 20.00843 7.68 20.02290
m

u

n

l
u
n-

nd
e

whereE2520.0277 a.u. is the binding energy of H2.
In order to be able to perform the calculation of the co

plex level-shift @see Eq. ~54!# analytically, the discrete-
continuum coupling is parametrized as

Vd1 ,n1k~R!5
1

A2p
E3/4e2b1(R)Eg1~R!, E5

k2

2
.

~A2!
This ansatz fulfills the Wigner threshold law forp-wave scat-
tering @92#. The functiong1(R) is given by

g1~R!53.5 exp~20.0346R2!. ~A3!

To allow the approximation of the discrete-continuum co
pling by the single term~A2!, the coefficientb1 is chosen to
be R dependent. ForR,5.5 a.u., this dependence is give
numerically in Table I. Otherwise it has the analytic form

b1~R!5
A12A2

11expS R2R0

DR D 1A2 , R.5.5 a.u., ~A4!

whereA152.198,A2510.654,R053.883, andDR51.518.

3. The H2
À
„

2Sg
¿
… resonance

The short-range (R<11.2 a.u.! discrete-state potentia
Vd2

(R) for the H2
2(2Sg

1) resonance has been obtained n
merically and is given in Table II. At long range, the pote
tial has the analytic form

Vd2
~R!50.008Re20.35R2

2.25

R4 2
97

R6 1E2

for R.11.2 a.u.~A5!
r

nd

01250
-

-

-

This discrete state is coupled with the H2(X 1Sg
1) ground-

state and the lowest triplet-state (a 3Su
1) continua by the

following matrix elements:

Vd2 ,n1k~R!5
1

A2p
E1/4e2b2Eg2~R!, ~A6!

g2~R!5(
j 51

2

hj
(1) exp~2t j

(1)@R2Rj
(1)#2!, ~A7!

Vd2 ,n2k~R!5
1

A2p
E3/4e2b3Eg3~R!, ~A8!

g3~R!5(
j 51

2

hj
(2) exp~2t j

(2)@R2Rj
(2)#2!. ~A9!

The parameters of the model have the following values:b2

52.7212, b3515.0, h1
(1)50.33, h2

(1)50.22, t1
(1)51.2, t2

(1)

t2
(1)50.7, R1

(1)51.85, R2
(1)54.0, h1

(2)55.8, h2
(2)54.67, t1

(2)

t1
(2)51.8, t2

(2)50.15, R1
(2)51.74, R2

(2)53.1. The formulas
~A6! and ~A8! fulfill the Wigner threshold law fors and p
waves, respectively.

The described nonlocal model yields both the position a
the width of the H2

2(2Sg
1) resonance in accordance with th

data of@88,90#.
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