PHYSICAL REVIEW A, VOLUME 65, 012508
Generalized diatomics-in-molecules method for polyatomic anions
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The diatomics-in-moleculeDIM) method for the construction of polyatomic potential-energy functions
from the potential energies of atomic and diatomic fragments is generalized to obtain a description of potential-
energy functions of both quasistationary and bound states of polyatomic anions. The formulation is based on
the combination of the DIM method with the projection-operator approach of scattering theory. The proposed
theory allows the construction of diabatic discrete states, electron-molecule scattering continua, and discrete-
continuum coupling elements from the corresponding data of the fragments. The polyatomic projection-
operator description obtained in this way provides the basis for a rigorous treatment of the nuclear dynamics in
short-lived electron-molecule collision complexes and ion-molecule collisions in terms of energy-dependent,
complex, and nonlocal effective potentials. More approximate local complex potential-energy surfaces of
quasistationary states of polyatomic anions also can be obtained with the generalized DIM method via the
determination of the poles of the multichannel electron-molecule scattering matrix in the fixed-nuclei limit.
Although the focus of the present work is on anions, the proposed theory is also applicable to quasistationary
states of neutral and positively charged polyatomic systems including clusters. To illustrate the concepts, the
generalized DIM method is applied to obtain the potential-energy functions of the ground and first excited
states of the K™ anion, making use of information that is available for the bound and resonance states of H
and H.
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[. INTRODUCTION Recently, a wealth of new experimental data on low-
energy H +H, and H +D, collisions has been obtained
Remarkable progress has been achieved in the quanturfi#—11]. These precise and detailed data represent a challenge
mechanical theory of elementary reactions, see, for examplégr the theory of elementary chemical-reaction dynamics in-
[1,2] and references therein. Many detailed and accurate excolving negative ions. A particularly interesting aspect,
perimental and theoretical studies of the reaction dynamic#/hich is absent in the HH, system, is the existence of the
of triatomic systems have been reported in recent years, arelectron detachment channel, i.e., HH,—H+H,+e",
impressive agreement between theory and experiment haghich also has been experimentally obserl/&2]. The reac-
been obtained. The theoretical studies require two essentitibn dynamics of the KI” system is thus considerably more
prerequisites: an accurate Born-Oppenheimer potentiainvolved than the dynamics of thegksystem, and a signifi-
energy surfacéPES as well as appropriate numerical tech- cant extension of the theoretical framework is required.
niques for treating the quantum-scattering problem with Electron detachment processes usually occur via quasista-
proper inclusion of rearrangement channels. tionary states, which are known to be difficult to calculate
The simplest chemically reactive systems areh, and  with standard quantum-chemical variational methods. The
its isotopic variants. For HH, an accurate ground-state calculations of the ground state and the first excited state
PES has been available for some tii3e4]. For this proto- PESs of the K~ system for collinear geometry, carried out
typical system, a great variety of methods for the treatmenby the molecular-orbitalMO) configuration-interactiodClI)
of the collision dynamics, based on time-independent scamethod, give a clear example of these difficul{is]; while
tering theory or on time-dependent wave-packet propagatioror the PES of the ground state, differeatt initio calcula-
have been successfully applied. At least at low collision entions agree reasonably with each oth&8—16|, the PES of
ergies, the H-H, collision system appears to be understoodthe first excited state obtained with the MO Cl metha8]
in considerable detajl1,5]. actually corresponds to the surface of the neutralnkbl-
Another fundamental collision system is H H,, as well  ecule with an additional electron in a diffuse molecular or-
as isotopic variants thereof, e.g.; D, and D +H,. The bital, but not to a PES of a quasistationary state. This fact has
H™ +H, complex represents the prototype of chemical reacthe following explanation: the ground state is bound and thus
tions involving negative ions, which are of both fundamentalproperly described by the variational approach, whereas the
and applied importance. Under certain conditions, idns  first excited state is mainly quasistationgty’,18 and hence
can be abundant in low-temperature hydrogen plasmas. Tteorresponds to an electronic state embedded irethe Hy
development of efficient H sourceq 6] is of considerable scattering continuum. Another example is theHN com-
applied interest, in particular, for neutral-beam heating inplex. It has been showfl9] that PESs of quasistationary
fusion research. In this context a detailed understanding ddtates obtained by thab initio variational method exhibit
the collision behavior of negative ions interacting with neu-unstable behavior with respect to a change of the size of the
tral molecules is of particular interest. basis set.
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In principle, scattering theory provides the proper frame-continuum thresholds. If the lifetime of the electron-
work for the description of quasistationary electronic statesnolecule collision complex is short, or threshold effects are
of molecules. Both bound states as well as nonstationarimportant, the LCP approximation breaks down and a more
statesresonancesare given as poles of the analytically con- general complex effective potential has to be introduced,
tinued scattering matrif20,21. A variety of computational Which is energy-dependent and nonlo¢a2,53. This so-
schemes have been developed for aheinitio implementa- ~ called nonlocal theory allows for an accurate treatment of the
tion of the electron-molecule scattering theory and the detefduclear dynamics also for very short-lived collision com-
mination of resonances. Examples are the Kohn variationd?'€x€s [53]. To the best of our knowledge, the nonlocal
principle [22], the separable potential methd@3], the complex-potentlal.formallsm hgs been applied to dlatomlc
R-matrix method[24], as well as complex-rotation and systems only. In view of the existence o_f su_ch an e_:sse_ntlally
complex-basis-function method€5—27. An alternative is  1190ToUS treatment of the r_1uc|ear dynamics in quasistationary
variational calculations employing complex absorbing potenStates, it appears attractive to extend the DIM method to
tials [28]. With respect to the inclusion of electron- obtain a generalized approach that allows one tq calqulate
correlation effects, which is required, e.g., for the descriptior?0th local and nonlocal complex PESs of polyatomic anions.
of target polarization effects and the description of bond! NS iS the goal of the present paper.
breaking, these calculations for resonance states have not yet 't IS worth mentioning that calculations of PESS5-1§
reached the same level of sophistication as the establishéf Well s of nonadiabatic couplinfs4] for the H™ colli-
variational calculations for bound states. The technical diffi-Sional system have opened the possibility of dynamical treat-
culties encountered in the implementation of the methodgnents of different processes in"H H, collisions [17,55—
based on scattering theory have prevented their applicatiocff): These dynamical treatments are mostly based on the
for the calculation of complex PESs, in particular, for poly- Single PES of the ground state of H Nonadiabatic effects
atomic anions. In fact only fewb initio calculations of com- have been treated only in Ref{$2,65. Obtaining more re-
plete potential-energy functions of nonstationary states of dil@ble information about the potentials of this system, even
atomic anions have been reportage, e.9.[23,26) and no within the LCP.approxmatlon, which is sometimes sufﬁment
complete energy surfaces of nonstationary states of triatomfQ" the dynamical treatmen(see, for example[67]), will
anions or larger systems have so far been obtained atith allow one tp perfprm more rigorous dynamical studies of all
initio methods. processes in collisions of Hwith H,.

The present stage of development of calculations for the The article is organized as follows. Section Il gives a
PESs of triatomic anions appears comparable to the situatiot0rt description of the projection-operat$tO) approach
for neutral triatomics a couple of decades ago. Under thestor diatomic systems, which forms the basis of the descrip-
circumstances, the diatomics-in-moleculé3IM) method tion of resonances. Section Il gives anew descr|p_t|on of_the
[29] appears to represent an attractive compromise betwedplM method. In Sec. IV the PO formalism is combined with
accuracy and feasibility. The idea of the DIM method isthe DIM method to obtain a description of nonstationary
based on the fragmentation of the electronic Hamiltonian of ESS of polyatomic anions beyond the LCP approximation.
a polyatomic molecule, which allows one to construct theAn illustrative example is given in Sec. V.

Hamiltonian matrix from atomic and diatomic fragment en-

ergies. Diagonalization of the Hamiltonian matrix con- Il. THE PROJECTION-OPERATOR APPROACH FOR

structed in this way provides PESs for a polyatomic mol- DIATOMICS

ecule. The DIM method has been widely used for the N ) o

construction of the PESs of triatomic and larger molecules in  Let He denote the electronic Hamiltonian of a molecular
the past[29-31 as well as recently32-36. It has been anion. For the sake of s!mpllcn_y, the case of _only one dIS.-
employed to obtain potential-energy functions for quuidsCVEt_e state and one continuum is treated in this section. It is
[37,39, solids[39,40 and cluster§41—43. s;ralghtforward to extend the form_alism to the case of several

If so-called local complex potentiald CP) [44,45 of discrete states anld several _contlr(sae Sgc. IY. Assume
quasistationary states of diatomics are used as fragment p§lat a statgyg) with a localized(square-integrabjewave
tentials, one may construct a complex Hamiltonian matrixfunction is given, which approximately describes a reso-
and then get local complex PESs for a polyatomic systemfance in _the scattering of an electron from a neutral mol-
This approach is called the LCP DIM method. Indeed, thee_cule. This so-called discrete state with the energy expecta-
LCP DIM method has been applied to obtain the real parts ofion value
PESs of polyatomic anio47,18,46—48 as well as of qua- R
sistationary states of neutral molecul@®—-51]. As shown Va=(talHel thg) 1)
below, the straightforward application of the LCP DIM pro- R
cedure to quasistationary states of polyatomics can lead te not an eigenstate dfl,, but is coupled with a scattering
artifacts such as a complex potential for a bound state. Theontinuum|e,,) =|#,)|K) via matrix elements
DIM method therefore needs to be generalized for the treat-
ment of quasistationary states. Vg k= (gl He dni)- 2

The LCP approximation, which basically corresponds to
the Breit-Wigner pole approximatidi21], has its limitations, Here|,) denotes the ground eigenstate of the target mol-
moreover, for short-lived resonances and for resonances neecule with energy,, (the subscriph stands for “neutral)
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and|k) is a single-electron continuum state. For a diatomic

target, bothv,, andVy4 depend only on the internuclear sepa-
rationR, while V4 , depends both oR as well as the energy

and angular momentum quantum numbers of the continuum

electron. The|¢,) are so-called background-scattering
states, constructed to be orthogonal Q). An explicit pre-
scription for the construction of thgsy) and|¢,) can be
found in Ref.[53].

Given these electronic states, we can define mutually o
thogonal projection operatof§3,68,69

Q=|a) (., 3)

P=1-Q=20 [$nd(end- )
By solving the background-scattering probl¢s8], the rep-

resentation ofH, can be made diagonal in the space
[53,68,69.

We thus have the following representation of the fixed-
in the complete electronic space

nuclei Hamiltonian

{l4a).| dni0

He: HQQ+ F'pp+ l:po‘l‘ HQP
=)Vl thel + f kdk dy] dni(Vn+ E){dnil

+ J k dk dy(| ) Va,nid Pnrl + | nid Vak ol #al)»
5

whereE,=k>?/2 is the kinetic energy of the continuum elec-
tron.

For the manipulations to be described in the following
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% Vi (R)]2 i
F(k,R)=J0 dE,%:A(EkrR)_EF(EkyR)
—

8
is the so-called level-shift function.

Resonances, bound states and virtual states of an anion,
defined as the poles of the matrix, are thus given by the

r(_:omplex solutions of the following equation in the complex

plane[53,71,72:

2

5 +Vh(R)—V4(R)—F(k,R)=0.

©)

Here F(k,R) is the analytic continuation of the level-shift
function (8) into the complexk plane. The real part of the
solutionk?/2 of Eq.(9) defines the position of the resonance
with respect to the potential of the neutral molecule ground
state, while the imaginary part gives the decay wickf|.
Alternatively, the position of the resonance may be ob-
tained from the solution of the following equation for real
positiveE,,
Ex+V,(R)—V4(R)—A(E,R)=0, (10
which defines the pole of th€ matrix. Obviously Eq(10) is
the real analog of the complex equati@. When the decay
width of the resonance is sufficiently small, the solution of
Eq. (10) is approximately equal to the real part of the solu-
tion of Eq. (9), whereas for broad resonances the two solu-
tions may differ significantly{73]. The width of the reso-
nance has to be found by evaluatiiyE,,R) at the
resonance energy

I'(R)=T'(Eres(R).R) =27 Vy i, (RI% (1D

sections, it is convenient to define the infinite-dimensional

matrix representatiohl of M,

A Vank  Vank
Vnk,d Vn+ Ek 0
H= : (6)
- Vnk’,d 0 Vn+ Ek’
wherek, k', ... have continuous values. Throughout the

article a double underlined symbol denotes a matrix, while
single underlined symbol stands for a basis (@tolumn
vectop. H has the structure of an “arrow” matrix.

If the fixed-nuclei Hamiltonian is given in the form Eq.
(5), algebraic expressions can be derived for hand T
matrices[53,68—7Q. The fixed-nucleil matrix for the tran-
sition from an initial statenk to a final statenk’, for ex-
ample, is given by

Tokr nk(R) =V a( R Ex+ Vi(R) = V4(R) — F(k,R)] 1
X Vg n(R), (7)

where

Either Eq.(9) or Eqgs.(10) and (11) define a local complex
potential-energy function of the resonance,

Vies R =Ures R = 5T(R), 12

Ues(R)=Vp(R) T Ees(R). (13

When the LCR12),(13) is used, together with the nuclear

Ef<inetic—energy operato?N , to evaluate the resolvent in tfie

matrix [cf. Eq. (7)], one obtains the so-called LCP approxi-
mation  for resonant electron-molecule  scattering
[44,45,52,53 This approximation has been shown to fail for
broad resonances as well as in the presence of threshold ef-
fects[53]. The main reason of this failure is the breakdown
of the Breit-Wigner pole approximation in such situations.

It is the essence of the projection-operator formalism that
it defines a more general energy-dependent nonlocal com-
plex effective potential, which governs the nuclear motion in
the collision complex. It is defined 452,53

VE(R,R":E)=V4R)8(R—R')+F(R,R;E), (14
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r |\Panti>\
F(R,R’;E)=J k dk d, Vg n(R) L
| w5")

XG{I(R,R;E=K¥2)Vog(R'). (15 |wanty=¢ i WA= A ),

A

HereE is the total(conservel energy of the collision com- L i

plex and
Wy =slxm xm - xm)» (17)

GIV(RRE)=(RI(E-Ty=V,+in R) (16

whereA is the operator of antisymmetrizatiom,is the gen-
denotes the Green’s function for nuclear motion in the targe€ralized index of a molecular basis functiopy, denotes an
state| ). 7 is the usual positive infinitesimal. electronlf: wave function of a monoatomic partieleand the

It should be emphasized that the nonlocal complex poteneperators makes a linear combination of wave functions to

tial is completely determined by the functiong,(R),  obtain spin-adopted states. It should be pointed out that
V4(R), and Vg (R).> The explicit construction of within the DIM method the basis sets are restricted to wave
VeH(R,R’;E) by ab initio methods has been achieved for afunctions of electronically bound states only.
few diatomic molecules, e.g., Hand HCI[74,75, for the The essence of the DIM method is the fragmentational
case of electronically elastic scattering. Recently, discretéepresentation of thél-atomic (N=3) Hamiltonian via di-
electronic potential¥4(R) and discrete-continuum coupling atomic (H*#) and atomic H®) Hamiltonians[29],
elements also have been obtained for a few polyatomic mol-
ecules, but only as a function of a single selected nuclear

coordinate 76]. ﬂe=EB H*—(N-2)X A°, (18
. THE DIATOMICS-IN-MOLECULES METHOD where the summation is carried out over all possible frag-

mentations. Note that the atomic wave functidng,) are

~ Let us briefly describe the DIM method for the construc-eigenfunctions of the corresponding atomic Hamiltorfréth
tion of potential-energy surfaces and nonadiabatic coupling The construction of the Hamiltonian matrix can be per-
matrix elements for electronically bound states of polyatomiGormed via the operation of the Hamiltonidh, on the basis

molecules. Within the DIM method, the potential-energy SUr-get|wanty According to Eq.(18) this can be expressed via
faces are obtained by the diagonalization of the Hamiltonian

matrix calculated with a chosen basis set. The construction (}Pe operations of the diatomiei*” and the_ atqmch“

the Hamiltonian matrix is based on the representation of qullton_lans_on the same set. Thesg Ha_rmltomans can be
polyatomic Hamiltonian via atomic and diatomic Hamilto- written via adiabatic pot_entlals and adiabatic wave functlon_s
nians. Detailed descriptions of the standard DIM approac;f‘?f bo.th bound and CO”"”““”."' St"’.‘tes- For example, for a di-
can be found, for example, ifil8,29-31. As has been atomic fragmentr 3, the Hamiltonian has the form

shown by numerous examples, this approach provides reli-

able potential-energy surfaces and nonadiabatic couplings for QB E |¢45>V_aﬁ< |

neutral molecules and positive ions. In order to derive in the T T T

following section the generalized DIM method applicable for

a description of both bound and quasistationary states of @ « @

polyatomﬁc anions, as well as forqtreating quassi/stationary +§n: Jkdkmk|¢”'§>(vnﬁ+ Ek)<¢”'§|’ (19
states of neutral and positively charged polyatomic systems,

let us derive in this section a new formulation of the DIM
method.

In the framework of the DIM method, the basis many-
electron functions |[¥2") of an N-atomic molecule
AB---Z are taken as superpositions of antisymmetrize
products of atomic wave functiohs

where |¢j’ﬁ> denotes a diatomic adiabatic wave function
(eigenfunction of a bound stat¢ with a corresponding adia-
batic potential-energy functioR[*(R,), |$nf) is a con-
(}inuum state associated with the target statg”) with a
corresponding potentiaVﬁB(Raﬁ), andR,z is an internu-
clear separation of the fragmenisand 8. Taking into ac-
count Eq.(19), the commutation of the electronic Hamil-
tonian with the operator of antisymmetrization, the fact that
also depend on the electron energy via the continuous ikdex gﬁﬁ basis set is constructed from Wave_functlons °f_b°“r_‘d
sftates only, and the mutual orthogonality of the adiabatic

2In general, basis functions can be taken as simple products f ’ h . f the di ic Hamiltoni
atomic wave functions, but in practice it is more convenient toVAva‘Ve unctions, the operation of the diatomic Hamiltonian

choose basis functions as linear combinations of such products iH*# on a basis wave functiof3™') can be written as
order to describe spin-adopted states. follows:

INote that as mentioned above the discrete-continuum couplin
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Haﬁlq,anti>:Aﬂa,B|\I, ) wave functions. These data can be calculated separately for
m m each atomic and diatomic fragment. Couplings of mono-

« BB g atomic bound states with continua are not considered within
:AEJ_: |WIEIVHWE W ). (20 the conventional DIM method.

Here the wave functionlslffﬁ> of the whole polyatomic an- V. COMBINATION OF THE PROJECTION-OPERATOR
ion are constructed from products of the diatomic wave func- APPROACH AND THE DIATOMICS-IN-MOLECULES

tions |¢¥) multiplied by wave functions of electrons that METHOD
are not included irH*#, Let us consider aiN-atomic anion =3). The basis set
wBr 21 B Y of the antisymmetrized many-electron functionsa™") of
| WPy =slg ) XD - - - Ixi7)- (21 the anion is taken in the form of E¢L7), but includes con-

, ) i tinuum wave functions as well. In the spirit of the PO ap-
The overlap integrals in the E420) represent matrix ele- hr5ch, the basis set of nonantisymmetrized basis functions
ments of a transformation operatBf# for the construction |W ..y consists of two subset§) a set of discrete-state wave
of the functions|¥*#) from the basis sef¥). The corre- functions [ W4 ) (all electrons are boundand (i) a set of

sponding matrix representatidf” links these two sets continuum-state functionsb, )= )[k) (one electron is
|\I,aﬁ>:§aﬁlqj>_ (22) unbound,

In practice, the elements of the mat¢# are obtained as )= N’_‘D (26)

overlap integrals calculated with the wave functions of the L]

electrons that are included in the diatomic fragmet that

is, as overlap integrals between the eigenfunct|mﬁ4§> and |\I’nf) denotes an electronic state of the target molecule.

the parts of the basis functiof¥ ), which depend on the From here on, the Latin indicdsj stand for discrete states

electrons treated. Taking this into account, the operation ofvith corresponding potentialgy;, while the Greek indices

the diatomic Hamiltonia “# on the whole basis s¢®2"")y  7,\ stand for electronic ground and excited states of the

can be written in matrix form neutral molecule with the potentials, , V, , respectively;

the Greek superscripis, 8,y label nuclei. The generalized

I:I‘“Blllfa”“):AIg“BT\:/“ﬂ‘P"ﬂ) = @“BTyaﬁl§“ﬁ|‘Pa”“>. indexmruns over(i) an indexi (or j) of discrete states of an

(23) anion, (i) an indexr (or A) of electronic states of a neutral

molecule, andiii) an electronic continuum variable

Here V*# is a diagonal matrix, whose elements are the di-

atomic adiabatic potentialé” of the fragmenta 3. tmp={{i}:{7k}}. 27
The operation of other fragment Hamiltonians in EL8) o . ]

on the basis séa" can be written in a way similar to Eq. [N the spirit of DIM, the basis functiongl' g ) and|¥, ) are

(23), and finally the operation of the total electronic Hamil- Chosen as superpositions of corresponding products of

tonianH, on the whole basis s¢#2") can be described by ato_lr_w::c vvlav? fupctli(')nﬁs.lttae E(}iln]f atomi o
means of the following Hamiltonian matrix®™: & eecionic namitoniaiie of & Poaiomic anion IS

represented in terms of diatonit*” and atomicH® Hamil-
H|Wwantly=HDIM antiy (24)  tonians by Eq(18). Each of the fragment Hamiltoniams*?

or H® can be written in the PO form as the generalization of
where Eq. (5). For the case of several discrete states of an anion
interacting with several electron-scattering continua one has,
for example,

I

DIM:EB gaBT\z/aﬁE,“ﬁ—(N—Z)E Ve (25

As continuum wave functions are not included and the basig|
set of bound-state wave functions in practice is truncated to a
finite number, the matribd®'™ is finite, and, hence, its di- aB e B\ |pa
o N . T2 | Kk POl ) k)

agonalization provides both the potential-energy surfaces and )
eigenfunctions of the polyatomic molecule under consider-
ation. The Hamiltonian matrix(25) coincides with the X (VP + Epap) (K| (2P| + f k“BdkBd () ap
Hamiltonian matrix obtained by using another approjdd]. ™ RPN

Thus, within the framework of the DIM approach, the apryjaf Bl paf
input data required are the diatomic adiabatic potentials, the X(Wd; >Vdj '”xk<k |<¢“>\|
atomic energies, and the matridg%ﬁ for the construction of @B\ [Laf\ysa B
diatomic eigenfunctions from products of single-atomic +|'/’”A>|k >Vn}\k'dj<1’/ldj - (28)

=2 WiV
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Note that the small lettergr and ¢ stand for diatomic wave the HamiltonianH,, on the basis set via the operation of the
functions, while the capital lettery” and ¢ are used for atomic and diatomic fragment Hamiltonians on a basis func-
polyatomic wave functions. The superscrig determines a  tion. Of course, in the present case the Hamiltonian matrix is
specified diatomic fraﬁgment with an internuclear distancenfinite dimensional. Taking into account that the operators
R.p- For example|y;”) stands for the wave function of 8 [ja# and A commute with each other, and adding the unit
discrete statgof a diatomic fragmen&8 with a correspond-  operator=,,, |V, (¥ | in each term in Eq(28), the op-
ing POtent"'ﬂ"ngﬁ(Raﬁ)’ and so on. eration ofA*# on the basis wave functid® 2" [similar to
According to the DIM philosophy one needs to constructthe operation on a single term in EQO)] can be written in
the Hamiltonian matrix. This can be done by the operation othe following form:

AP Wit = AP W )

=A

pY W i (W e [ GEWVEA TG W )

j.m’

+ 2| KPR A | W oy YW | W12 KB (VP + Epa) (KB (W 1P| W )
A,m’

# 3| [ KA ) W WGV (PP P10

iAm
+ f k“ﬁdkaﬁdﬂkaﬁ|\lfmf><\lfmf|~lfﬁf>|k“ﬁ>Vﬁfk,dj<*lf3f|\1fm>)]. (29)
|
Here, as well as in the preceding section, the transformation (W | W EPY | k*BY = (K| (W, | W &P)|kF) Sini k)
A T A

from the diatomic functionst:pgf) and |zpﬁf‘> to the poly-

—caB
atomic functionsi\lfgf) and|\Ifﬁf) was performed. The gen- = C ks, rk Fickees Omi i (32)
eralized indexm’ runs over both discrete and continuous
values, and, hence, the summation owgrin the last equa- The unitary operato€“? determines the construction of the
tion means the summation over the integer indiceand 7’ wave functions of a neutral diatomic fragment from the basis
of the anion discrete states and continuum states, reSpett:nctions|\IfnT>, and the construction of the continuum wave

tively, and the integration oves’ (k' dk’ d{),). Taking into  functions of an electron scattered on a diatomic fragraght
account the orthogonality of discrete and continuum statesrom the wave functionk) of the electron scattered on the
the summat|'on ovem’ in the flrst.and the thl_rd terms in thg whole anion(|qfﬁﬁ>|kaﬁ>:éaﬂ|q;n>|k>)_ As a result, the
right-hand side of the last equation results in the summation Map _ Aap
over the discrete state indék only, while in the second and operatprC is a product of two commuting operatofs

in the fourth terms it results in both the summation over the?P€rating on the wave functions of bound states of the neu-
index 7 and the integration ovet’ dk’ dQ,. . tral molecule(the target stat¢sand °C*# operating on the

electronically bound wave functions, the overlap integrals The Kronecker symbobys, being equal to
between|‘P§‘jB) and the wave function§¥ ) from the Q

subspace represent matrix elements of a unitary- Okkab = 5EkEkaﬁ5(Qk_Qk“5)’ (32)
transformation operatdd*? (|W5%)=D#|W,)), operating
in Q, - - selects continuum states of equal energy
« a @ E :E ag, 33
<‘I’m|‘1’dj'g>:(‘I’di|‘1'djﬁ>5m{i}:DjiB5m{i}- (30 k™ =kep (33

whereas the Kronecker symbé), ., selects the wave func-
Here the Kronecker symbdl,;, is nonzero only if the index  tions | W) from the P subspace.
m corresponds to a function from tt@@ subspace. In a simi- Taking Egs.(30)—(32) into account, Eq(29) can be re-
lar way in theP subspace one has written as
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Ha5|x1r;““>:A§ {; Dﬁf”am,{i,}vngﬁﬁfam{i}
+ ; f k dk d,Cy% 5kkm,5m'{r'kr}(fof+ EWCHT S Omirig
+% ( f k dk 0, D7 S iy VaP (2T S Omirig

j,n)\k

+f k dk d0,C{%, 5kkm,5m,{7,k,}Vﬁfk]de{}BTém{i})]|\Pm,>. (34)

Due to Egs(32) and(33), the integration in the last equation method,\in“/’ is a diagonal matrix, consisting of the poten-

is carried out ovek instead ofk*”. _ _ftials V¥ of the neutral diatomic molecule. | is the unit
Equatlpn(§4) shows that_ the operatlo_n of the diatomic matrix, and the matrice¥y, andV,4 are defined as

HamiltonianH“# on the basis wave functiol2"™) results — —

in the sum of some ternjén the curly brackets in Eq.34)],

multiplied by the basis wave functions. Therefore, it can be V= 2, DTV FCP—(N=2)> Vg*, (39

written in matrix-multiplication form similar to E¢(23). The - o o ‘o

operation of other fragment Hamiltonians in E8) on the

basis function| W2} can be written in a similar way. Fi-

nally, the operation of the total electronic Hamiltonidgon  The matrix H is infinite dimensional and exhibits block

the whole set of the basis functiop®2"") can be described structure as indicated in E¢36).

Via= \ng- (40)

by the Hamiltonian matrid, The diagonalization of the matridy defined by Eq(37)
R , , provides the matriXJ of the unitary transformation to the
HelWanthy=H |wanty, (35  orthogonal wave functions of the discrete states in Ghe
subspace,
where ~ .
[Wg)=U [WG™), (41)
id \g(l \g(/l . e _ -
Virg HptEpl 0 and the PES&Vdj of the discrete states of the polyatomic
H=| 5 i 36 i
=1 Vi 0 Ho+ Bl (36)  anion
; : Va=U HaU'. (42)
Here the matrix Note that the wave functiod@di> are not eigenfunctions of
the anion; they are coupled with continuum states.
Hq=>, DV *PD*B— (N-2)>, V4* (37) The diagonalization of the matrid,,, Eq. (38), gives the
= af = = = a = =

matrix W of the unitary transformation to the adiabatic wave

is the matrix for the calculation of the PESs of discrete state%:ngags]rfcggr:geofpgzaégw; t%ﬁ’;; mlc—)llae;lijllt%,n\ig:l(:h are the
for the polyatomic anion!daﬁ is a diagonal matrix, the el- 9 P 9 ’

ements of which are the discrete-state potenwjé of a [Ty =W [wanty (43)
corresponding diatomic anionB. The matrixHy is con-

structed in a way similar to the conventional DIM method, and the PESQnx of the neutral molecule

but in Eq.(37) the potentials of the discrete states are used

instead of the potentials of resonances for diatomic anions V,=WH, W'. (44
within the LCP approximation. By analogy, T

The matrixH defined by Eq(36) is nondiagonal within
H. = CcaBty aBoaB_ (N—2 V. @ 38 the _subbloc_ks, bei_ng_ constructed by means of nonorthogonal
= g/; = =" = ( )g - (38 basis functions within subsets. Performing block diagonal-
ization separately in th® andP subspaces, respectively, that
is the matrix for the calculation of the PESs of the neutralis, making the transformation from the nonorthogonal wave
polyatomic molecule, constructed within the standard DIMfunctions|\If§i““> and |Wa"") to the orthogonalwithin the
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subspace® and P) wave functions|¥y) and|¥, ), one
has the matrixd, which gives the representation of the
electronic Hamiltonian in orthogonal basis functions

[T i

(49)

The matriced/ andzn are the diagonal ones defined above,

and the matrices of couplings of discrete states with continu
are defined as

Vg=U EB D ATV *PCP— (N=2) 2 V| W,
(46)

Vo=V

(47)

It is seen that the Hamiltonian matrhlft of Eq. (45) has
the form of an arrow matrix like in Eq(6). The diagonal
matrix elements are the PES of discrete stgzgisand the

energies of continuum statéi/s,;L Ey; the off-diagonal ele-

PHYSICAL REVIEW A 65 012508

based on discrete-state potentials of diatomic and atomic an-
ions; the diagonalization of this matrix provides the PESs of

discrete stateQdi and the matrix of the unitary transforma-
tion Y; the matrixH, for the neutral polyatomic molecule is

constructed within the standard DIM method by means of
Eqg. (38), which gives the PESE’nT of the neutral molecule
and the transformation matrl/; continuum states are asso-
ciated with the PES§/nT; then couplings between discrete
states of a polyatomic anion and continua are calculated by
means of Eq(46); and finally, the fixed-nuclei Hamiltonian
%v4it8r)“n the projection-operator formalism is given by Eq.
It is worth pointing out that the coupling-matrix elements
of the diatomic discrete states with diatomic continua depend
on both the corresponding internuclear distaRgg and the
electron energy,: vgﬁnxkzvgﬁnxk(Raﬁ). As a result, the

matrix element&/, of the coupling between polyatomic dis-
crete states and polyatomic continua depend on the whole set
of internuclear distanceor example, three distances for a
triatomic anion:R,,, Rye, Rea) @and on an electron energy
Ex: Vg ni=Vg, n«(R). R stands for the set of coordinates
describing the nuclear configuration in a multidimensional
space(three dimensional for a triatomic anipn

As mentioned above, the PE§§i of the discrete states,

ments are nonzero only for couplings between discrete stat@fe neutral-molecule PES$, , and the discrete-continuum

and continua as defined by E@6). The matrixB has a
clear structure: the matri¥ is the matrix representation of
the operatof o in Eq. (5), which operates in th€ sub-
space, the matricegy, andV,q correspond to the operators
I:IPQ and I:|Qp couﬁng the_discrete and continuum states,

and the rest represents tl%la,p operator in theP subspace.

Taking into account the form of the Hamiltonian matrix,
Eqg. (45), the Hamiltonian operator can be written in the
projection-operator form

e S )V )
+ 3 [ Kk a0, Tl + EQKIT,

+ .2 k dk dy(| T ) Vg n T (K|

TV a (P, (48)

coupIingsVdi nk allow one to perform the dynamical treat-
ment of both electron-molecule scattering and negative-ion—
molecule collisional processes in the framework of the non-
local complex-potential formalism. In analogy to E¢k4)—
(16), the nonlocal complex effective potential for the
polyatomic collision complex is given by the nonlocal matrix
VE'(R,R";E)=V4(R)8;8(R—R") +F;;(R,R";E),
(49

Fi(RRE)=2 f kdk d2, Vg, o (R)

X égj>(R,R' E— kZ/Z)VnTk,dj(R’),
(50)

where

G\"(RRE)=(RI(E-Ty=V, +in) R’ (5)

is the Green’s function for nuclear motion in the target state
which is the natural generalization of E¢) for the case of 7. Equations(49—(51) make explicit that the polyatomic
several discrete states and several continua. The formulamnlocal complex-potential matrix is completely determined
(37), (38), (42), (44), (46), and(47) allow one to achieve the by the functionsVy (R), V,, (R), andVy , «(R).

PO description of the polyatomic anion from the correspond- - i yhe | cp approximation is used for the dynamical treat-
ing information of atomic and diatomic anions. ment, the LCPs can be derived within the present formalism
Thus, the generalized DIM method consists of the follow-, ihe pasis of Eq48) [or Eq.(45)]. As described in Sec. II,

ing: in the spirit of DIM, the matrixid for discrete states of o | cPs are defined as the poles of the corresporifliag
a polyatomic anion is constructed by means of Egj7) S matrices in the complek plane, and can be obtained by
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using the approach of Ref/2,77. The poles are the com- 1 5 B
plex solutions of the following equation, which is the gener- |\Pn2): — 2P XS = I B xE)
alization of Eq.(9): \/5

2

k= - -
SV -V(RI-ERK|=0, (52

—IXE XD IXED), (57)
de

where|x{) and|x{) (the superscripz=a, b, or c labels the

and the elements of the mat¥(R,k) are defined as nuclei A, B, or C) represent the hydrogen-atom ground
- states with positive and negative spin quantum number, re-
spectively. The matrice€?®, C"¢, and C®@ can easily be
obtained from the basi&7), e.g.,C3=1. The basis(57)
provides a X 2 matrixH,, in accordance with Eq38). The
Va niw RV, g (R) input information here are the diatomic adiabatic potentials

L 7———. (54  of the H(X'S]) and H(a®s]) states, which are known

Fi(Rk)=2> Fi(Rk), (53)

FiTj(R,k)=f k'dk' dQ,

2 12
kf_ k? with high accuracy79,80. The diagonalization of, gives
the matrixW [see Eq(44)] and the two lowest surfacé;su
The LCPs are then given by which are then replaced by tlab initio PESs[4]. The con-
5 struction of the continuum basis staﬂ@mk), required for
Ve R)= kfes+vn (R), (55) the total basis set of Ec{26) for the singlet states of H,
2 0 from the basis state&7) is straightforward.

) ) ) ) The minimum basis set for the low-lying singlet discrete
kres being the solution of Eq(52) associated with the giates of the i~ anion consists of the following three states:
ground-state potentia‘V of the neutral molecule. If the

state is bound, the potent‘xiﬂes is real. If Re(zk =o) >0, the
potential is complex and describes an electron-molecule

1 - -
Wy )= E|Xﬁ—>(|XH>|XCH>_ X xR,

resonance.

If the position of the resonance is defined as the singular- 1
ity of the K matrix, then its position is given by the solution Wy )= _|Xa—>(|;(f|>|)(ﬁ>_ X3 XEN), (58)
of the following equation for reak, : 22

defEil + Vo~ Vo(R) - A'REQ|=0,  (56)

1 ~ ~
t _ _ W a,)=—=lxp- ) ) =[x X)),
where Aj; (R,Ey) = ReF!, i(R,Ey). In this case the width of V2
the resonance is obtalned in a similar way as given by Eq.

(12). |xi;-) being the ground state of H This leads to easily
computable matriceD?”, D, D and finally to a %3

V. APPLICATION OF THE GENERALIZED DIM METHOD matrix Hy defined by Eq(37). The input information here is

TO H3™ the binding energy of H (the experimental value of 0.75 eV

Let us apply the formalism derived in the previous section[81] is used in the present calculatioras well as the di-

. . + 2 + .
to the H~ collisional complex. According to Eq48), the atomic potentials of théEu_and Eg_dlscrete states of §J1
. i S ; (see below and Appendix The difference between the
construction of the electronic Hamiltonian ofsH in the .
o o ~ present generalized DIM approach and the LCP DIM method
projection-operator form require§) the PESsV,, of the ¢, Hy~ [17,18 is that the diatomic potentialvgf and

neutral H molecule,(ii) the potential-energy surfac®¥ of  atomic energies/d for the discrete states are used in Eq.
discrete states of the 4 anion, and(iii) the couplings (37) instead of the positions of the resonances. The output is
Vg, nk between discrete states and continua. the potential energies of the discrete states instead of the real
The H; PESs can be taken fromb initio calculations parts of the LCP PESs. According to H¢2), the diagonal-
[3,4]. The construction of th&y , , matrix elements from ization of the matrixHy provides the PESY, of the three

diatomic information requires also the knowledge of thelowest singlet states of 11 and the matrixJ.
expansion-coefficient matrice8“? and W for Hs. In the At each energyEy the couplings between the three dis-
present work they are calculated with the conventional DIMcrete states of I and the continua associated with the two
method with the minimum basis set, which consists of onlylowest states of a neutralsHnolecule are determined by a
two stateq 78], matrix V4, defined by Eq(46). As follows from this equa-
tion, the following input is needed: the matricBs” and
C“# for the construction of the DIM Hamiltonian matrices

for both H;~ discrete states andstHbound states from di-

1 . -
W)= E(Ixﬁ)lxﬂ)- XD XN X5,
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diagonalization of the DIM matricelly andH,, [Egs. (42)
000 | r=t4an ] and (44)], respectively. o o

In contrast to the neutral hydrogen molecule, the data for
the bound and resonant states of the Hanion are not

S 005 F the excited state of H,” ] ) : ; .
s readily available. The potential-energy function of the
é - H, (%3 ) discrete state and the coupling between this dis-
z 010 Vabintio crete state and the X 125 ) p-wave continuun{as a func-
g — LCPDM tion of both the internuclear distand® and the electronic
.;i_; ots | 1 energy are known from theab initio calculation forR<3
_§ . the ground state of H, a.u.[74]. When combined wittab initio data for the bound
N A H, (%2)) state aR>3 a.u.[82], this information allows us
020 = 7 F— to construct the discrete-state potential and the corresponding
the ground state of H,~ coupling over the whole range of the internuclear distance
025 . . . . and electronic energy67]. Unfortunately, this information is
2 4 6 8 10 not available for the lzr(zig*) discrete state, which is
Jacobi collision coordinate R (a.u.)

coupled with the BH(X '= ) and H(a %) continua. There
FIG. 1. The real parts of the local complex potentials of theexist several calculat|ons of the LCP of thQHZE ) reso-
ground and the first excited states of thg"Hanion(solid lineg and  nance[83—8§, as well as empirical LCPs obtalned by fitting
the grqund -state PES of the neutre_g_hiolecule[4] (_dashed ling  of experimental datf89,90. In general, the LCP is not suf-
for collinear geometry at the Jacobi internal coordinatel.4 a.U. ficiant for the extraction of the complete information about
as a function of the Jacobi collision coordinate. The thick lines a@_‘e discrete-state potential and the couplings with the con-

the real parts of PESs calculated by means of the generalized D
method, the thin solid curves are the calculations within the LC Inua. Therefore, aab initio calculation of these data for the

DIM method. The symbols are tiz initio data for the ground state Hz (*2g) resonance is highly desirable. In the present
of Hy~ [16], which are in agreement with the results of otfaér work, the recent LCP obtained by d&matrix calculation
initio calculationg13— 15. [88] is used for the construction of a model potential for the
H,™ (22 ) discrete state and its couplings with the
atomic potential$Eqs. (37) and(38)], the matrices/3f and  Ha(X 12 ) and H(a®% ) continua. In order to avoid com-
V4, consisting of the coupling-matrix elements between d|sputat|onal problems, a new simplified model for the
crete states and continua for the diatomic and atomic anionlz (* ) resonance also has been derived based oafthe
and the transformation matricésandW, obtained from the initio calculat|on[74 82 and the model of Refl67]. The
B h nonlocal diatomic models used in the present work for both

-‘ operator form, Eq(48). As mentioned above, this form pro-
' vides the basis for a treatment of the nuclear dynamics be-
' i yond the LCP approximation. The same form of the
electronic Hamiltonian can be used for calculating the LCP
energy surfaces by means of E¢s2) or (56).

As an example, the calculated local complex potentials
for the two lowest singlet states of;H are shown in Figs. 1
and 2 for collinear geometry at the Jacobi internal coordinate

10 —— . . . the H," (2 ) and H,~(°X ) resonances are specified in the
- Appendix.
i ° The procedure described above allows us to obtain the
sl 1] r=1d4au electronic Hamiltonian of the & anion in the projection-

o o

Quasi-stationary widths (eV)
e

\ —— GDIM for the ground state r=1.4 a.u. as a function of the Jacobi collision coordirRate
2 v —— GDIM for the excited state 1 . . .
| -~~~ LCP DIM for the ground state The full three-dimensional surfaces obtained by the general-
\ ——~ LCP DIM for the excited state ized DIM method will be reported in a separate publication.
In the present calculations the real parts of the LQRs
0 P 4 6 8 10 positions of the resonangebave been determined as the
Jacobi collision coordinate R (a.u.) poles ofK matrix, that is, as the solutions of E&6) for real

FIG. 2. The width functions of the ground and the first excited E(R). The quaSIStatlonery WIdthEi(R) of the. resonances

- . - are obtained from the imaginary parts of diagonal matrix

states of H™ for collinear geometry at the Jacobi internal coordi-

nater =1.4 a.u. as a function of the Jacobi collision coordinate. The‘alemems,:ll(R Ei), the energiedsy (R) being given by the

thin and thick solid lines correspond to the widths of the ground andolution of Eq.(56): I'i(R) = —2 Im Fi(R.E(R)).

the first excited states obtained by means of the generalized DIM Figure 1 displays the real parts of the LCPs: the thick

method, respectively; the thin and thick dashed curves are the capolid lines are the results of the calculations carried out by

culations within the LCP DIM method for the ground and the first means of the generalized DIM method, while the thin solid

excited states. curves are the real PESs obtained within the LCP DIM
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method® The symbols are thab initio data[16] for the  obtained from the LCIP88], needs to be improved. In addi-
ground state of K, and the dashed line corresponds to thetion, it is pointed out in Ref{88] that there is nonadiabatic
ground state PES of H[4]. It is seen that there is good coupling between the Q—‘r(zEg) resonance and another
agreement between tlad initio and the present calculations higher-lying resonance. To obtain more accurate PES of
for the ground state of §, which asymptotically R— ) H; ™, an extension of the basis set and mabenitio data for
correlates to H+H,(X '3 ). The quasistationary widths of the H,~(°X4) resonance are required.

the LCPs of the same states are shown in Fig. 2; the thin and

thick solid lines correspond to widths of the ground and the

first excited states of §I obtained by means of the general- VI. CONCLUSIONS

ized DIM method, respectively, while the thin and thick o

dashed curves represent the calculations carried out within N the present paper the concept of the combination of the
the LCP DIM method for the ground and the first excited projection-operator approach and the dlat_omlcs-ln-mqlecules
states. The ground-state PES of Hiies mainly below the method has been developed. The result is a generalized for-

PES of the ground state of,Hit this geometry and, hence, is mulation of the diatomics-in-molecules method, which yields
real in the generalized DIM calculations except'for a s;”nalla description of potential-energy functions of both quasista-

region aroundR=2 a.u. where it is slightly above the tionary and bound states for polyatomic anions. The derived
Iy . his al licable f istati tates of neu-
ground-state Kl PES. Theab initio calculations[16] also approach is also applicable for quasistationary states of neu

- d o . tral and positively charged polyatomic systems. The pro-
exhibit a crossing of the §1 and H PESS in this region. It~ nseq theory allows one to caiculate potential-energy sur-

is seen from Fig. 1 that the LCP DIM potentials qualitatively t5.e5 of hoth discrete states and discrete-continuum coupling
reproduce the real parts of the LCPs, but the imaginary part§iements from the corresponding data of the atomic and di-
of the LCP'S obtained by means of _the LCP DIM method arg;;qm;c fragments, that is, to obtain the complete information

not correct: the ground-state LCP is complex x5 a.u., ¢ quasistationary and bound states of polyatomic anions.

although the state is bourfdee Fig. 2 In contrast to this, The ground as well as excited states of polyatomic anions
the generalized DIM method vyields automatically a.5q pe described with this approach.

potential-energy surface, which is real for a bound state and The extension of the projection-operator formalism to

complex for a resonance. An example of the latter case is thgo|y atomic systems obtained in this way provides the basis
PES of the first excited state Of3H7W2h'C+h asymptotically  for 3 rigorous treatment of the nuclear dynamics of electron-
(R—o) corresponds to the HH, (“%,) configuration  mojecule scattering, including resonance effects, and for ion-
(see Fig. 1 it is located above the ground-state PES of thempolecule collisions in terms of energy-dependent, complex,
neutral H molecule and has a nonzero imaginary part plot-and nonlocal effective potentials. More approximate local

ted in Fig. 2. Except for the asymptotic region, the magni-complex potential-energy surfaces of quasistationary states
tudes of the quasistationary widths calculated within the LCRyjso can be obtained with the generalized DIM method via

DIM method are much larger than the ones obtained byhe determination of the poles of the multichannel electron-
means of the generalized DIM method, even when the reafyolecule scattering matrix in the fixed-nuclei limit.

parts of the LCPs are close to each other. Thus, the LCP DIM |, previous calculations of the LCPs by means of the DIM
method does not provide reliable results for imaginary partgnethod, the LCP approximation has been used first, and then
of complex potentials. As mentioned above, the generalizeghe Hamiltonian matrix has been constructed with the con-
DIM method developed in the present work is reliable andyentional DIM method, based on the atomic and diatomic
free of such artifacts as a complex potential for a bound stat§.cps. This LCP DIM method cannot assure reliable LCP
It has recently been shown by classical-trajec{6 and  pgSs in the vicinity of thresholds. It may yield, for example,
wave-packef{65] calculations that the quasistationarity of nonzero imaginary parts of PESs for bound states. In the
the excited statéas well as the nonadiabatic transitions be'generalized DIM method, the Hamiltonian matrix as well as
tween the ground state and the first excited $tsteespon-  the projection-operator form of the Hamiltonian are con-
sible for the electron detachment process in low-energy H strycted first based on the DIM philosophy, and then the LCP
+ H2 collisions. While the calculation of the real part of the approximation is emp|0yed if the LCP PESs are desired. This
excited-state PES has been performed eafli,18 by  strategy leads to consistent potentials with proper threshold
means of the LCP DIM method, the present work representgehavior of the widths.
the first calculation of the imaginary part. The input data needed for the generalized DIM method
It should be pointed out that the,H(*X ;) resonance is are the adiabatic energies of neutral atomic and diatomic
short lived and the resonant electron energy is close to thfagments, the potential-energy functions of discrete states of
threshold with respect to the,ka 33, ) continuum. As men-  atomic and diatomic anions, as well as energy- and distance-
tioned above, the LCP approximation breaks down in thisdependent couplings between the discrete states and the
case. For this reason the model for thgléFE;) resonance, electron-molecule continua. This information is very limited
at present, and more data of this kind are highly desirable.
In order to illustrate the concepts derived, the generalized
3Note that in the present work different positions of the DIM method has been applied to the ground and the first
H, (X, ,) resonances are used than in the previous LCP DImexcited states of the $ anion, making use of information
calculationg17,18,54. that is available for the bound and resonance states of H
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TABLE I. The parameteb,(R) of the nonlocal model for the {1 (22 ,)) resonance at small internuclear

distancesR.

R(@u) b;(au) R(au) b;(dau) R(au) b;(@au) R(au) b;(au) R(au) b;(au)
0.2 2.280 0.7 3.137 14 3.569 2.4 4.707 4.0 6.253
0.3 2.399 0.8 3.060 1.6 3.897 2.6 4,763 45 6.977
0.4 2.536 0.9 3.031 1.8 4.220 2.8 4.884 5.0 7.798
0.5 2.688 1.0 3.071 2.0 4.485 3.0 5.101 5.5 8.486
0.6 2.834 1.2 3.275 2.2 4.641 35 5.639

and H,~. The LCP PES calculated in this way are physically
consistent and in reasonably good agreement withathe
initio calculations as far as the latter are availddla—14.
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APPENDIX

1. Nonlocal models for the I-i'(ZEIg) resonances

The description of resonances in electron-molecule scat-

tering requires the following functions to be knowsee, for
example[53)): (i) the potential energie¥, (R) of the con-

sidered states of the neutral molecuie), the potential ener-

giesVq (R) of the relevant discrete states of the anion, andy preliminary nonlocal model for the,H (23,

(iii) the discrete-continuum coupling elememg , «(R) as
functions of both nuclear configuration coordinatesand
continuum electron parameters. In the case of a diatomi
anion, the nuclear configuration is described by the internu
clear separatioR. For the I—L‘(ZEJ g) resonances, the target
states are the ground state; and the lowest triplet state
a®3; with the well-known potential energieg, (R) and

Vi, (R) [79,80. For the H~(22]) resonance, the discrete-

state potential, the quasistationary width, and the energy shi
have been calculated witdb initio methods as functions of
the electron kinetic energy=k>?/2 for a grid of seven inter-

nuclear distanceR, ranging from 1.4014 to 2.75 a.{i74].
Based on these data a short-range (1<aRk 3 a.u.) nonlo-
cal model has been obtaing@l], that is, analytic fits have
been obtained for the discrete-state poter\[@( R) and for
the matrix elemer¥y , «(R), which couples the b (*2 )
discrete state with the X ') continuum. By a combi-
nation with ab initio calculations of the bound H (23
potential for R>3 a.u. [82], a nonlocal model for the

H, (%X, resonance over the whole range of the internu-
clear separation and the electronic energy has been obtained

rr¥67]' In both modelg67,91], thele'nlk(R) coupling is rep-

resented by a sum of three terms, which leads to six terms for
the energy shiffsee Eq(8)]. In order to simplify the calcu-
lations, a new nonlocal model for the,H(?2) resonance
based on theab initio calculations[74,82,9] and on the
model of Ref.[67] has been developed in the present work.
In the new model described below, the discrete-continuum
coupling element consists of a single, albeit nonseparable,
term.
In contrast to the IzI’(ZEJ ) resonance, few calculations
have been performed for the,H(*%,) resonance. Only
LCP information is availablg83—90, which is not sufficient
for the construction of a nonlocal model. In the present work,
¢) resonance is
obtained, based on a recd®imatrix calculation of the short-
range (from 0.8 to 4 a.u. local complex potential88] as
well as on the long-rangeR>4 a.u) empirical LCP[90]
obtained by the fitting of experimental data.

Atomic units are assumed in all formulas given in the
following.

2. The H,” (2 }) resonance

ft The discrete-state potentimdl(R) for the p-wave 23

resonance in electron-Hscattering is taken from the model
of Ref.[67]. The analytic form of the potential is

94.4e225R
1747 23R~ 5 S+E” for R<10.6 a.u.,
((R—2.542%+3.11)
Vg, (R)= (A1)
oam 225 97 . 06
—0.0084%Re™ ™ —?—$+E or R>10.6 a.u.,
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TABLE II. The short-range part of the potenchz(R) for the I-b‘(ZEg) discrete state as a function of
the internuclear distande.

R (a.u) Va, (a.u) R(a.u) Va, (a.u) R (a.u) Va, (a.u) R(awu) Va, (a.u) R (a.u) Va, (a.u)

0.20 2.25000 2.00 0.19822 3.80 0.01890 5.40-0.01137 8.01 —0.02348
0.40 1.10000 2.20 0.15600 4.00 0.01347 5.60-0.01369 8.40 —0.02407
0.60 0.70500 2.40 0.12128 4.20 0.00911 5.86-0.01601 8.74 —0.02449
0.80 0.50167 2.60 0.09042 4.40 0.00506 6.12-0.01783 9.11 —0.02486
1.00 0.38683 2.80 0.06828 4.50 0.00306 6.40-0.01925 9.50 —0.02519
1.20 0.33322 3.00 0.05367 4.70 —0.00006 6.71 —0.02046 10.0 —0.02554
1.40 0.29433 3.20 0.04287 4.84 —0.00311 7.03 -—-0.02143 10.5 -—0.02582
1.60 0.26658 3.40 0.03366 5.00 —0.00580 7.38 —0.02229 11.2 —0.02615
1.80 0.23742 3.60 0.02556 5.17 —0.00843 7.68 —0.02290

whereE~=—0.0277 a.u. is the binding energy of H This discrete state is coupled with the(®{ "= ;) ground-
In order to be able to perform the calculation of the com-state and the lowest triplet-stata €. continua by the
plex level-shift [see Eq.(54)] analytically, the discrete- fg|lowing matrix elements:
continuum coupling is parametrized as
2

1 k
Vo, n(R)= —=E¥e ¥%gy(R), E=7. 1

2 Ve, nk(R)=
(AZ) d2, 1k( ) \/ﬂ

This ansatz fulfills the Wigner threshold law fpiwave scat-
tering[92]. The functiong,(R) is given by

2
g1(R)=3.5exg —0.0346R?). (A3) g2(R) =2, hiV exp —t[R-RM]?), (A7)
=1

To allow the approximation of the discrete-continuum cou-
pling by the single ternfA2), the coefficient, is chosen to

El4%e PEg,(R), (A6)

be R dependent. FoR<5.5 a.u., this dependence is given 1
numerically in Table I. Otherwise it has the analytic form Va, nk(R)= \/?E3/4e_b3Egg(R), (A8)
w
A~ Ay
bl(R):ﬁ'i'AZa R>5.5 a.u., (A4)
— o 2
1+ex;{
AR ga(R):;l hPexp —tP[R-R®1).  (A9)

whereA;=2.198,A,=10.654,R,=3.883, andAR=1.518.

3. The Hz-(229+) resonance The parameters of the model have the following values:
The short-range R<11.2 a.u) discrete-state potential =2.7212,b3=15.0, hi=0.33, h{V=0.22, t=1.2, t{M
Vq,(R) for the H,”(*X4) resonance has been obtained nu-t{)=0.7, R{M=1.85, R{"=4.0, h{?'=5.8, h?)=4.67, 1
merically and is given in Table Il. At long range, the poten—t(lz):j_.g, t(22)=0.15, R(12)=1.74, R(22)=3.1. The formulas

tial has the analytic form (A6) and (A8) fulfill the Wigner threshold law foris and p
o 225 97 waves, respectively.
Vg,(R)=0.008Re™ ™"~ R RTE The described nonlocal model yields both the position and

the width of the B~ (°X ) resonance in accordance with the
for R>11.2 a.u.(A5)  data of[88,90.
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