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Robustness of adiabatic quantum computation
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We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for
solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation
against two kinds of errors, unitary control errors and decoherence, and we study this robustness using
numerical simulations of the algorithm.
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I. INTRODUCTION

The method of quantum computation by adiabatic evo
tion has been proposed as a general way of solving com
natorial search problems on a quantum computer@1#.
Whereas a conventional quantum algorithm is implemen
as a sequence of discrete unitary transformations that for
quantum circuit involving many energy levels of the com
puter, the adiabatic algorithm works by keeping the state
the quantum computer close to the instantaneous gro
state of a Hamiltonian that varies continuously in tim
Therefore, an imperfect quantum computer implementin
conventional quantum algorithm might experience differ
sorts of errors than an imperfect adiabatic quantum co
puter. In fact, we claim that an adiabatic quantum compu
has an inherent robustness against errors that might enh
the usefulness of the adiabatic approach.

The adiabatic algorithm works by applying a tim
dependent Hamiltonian that interpolates smoothly from
initial Hamiltonian whose ground state is easily prepared t
final Hamiltonian whose ground state encodes the solutio
the problem. If the Hamiltonian varies sufficiently slowl
then the quantum adiabatic theorem guarantees that the
state of the quantum computer will be close to the grou
state of the final Hamiltonian, so a measurement of the fi
state will yield a solution of the problem with high probab
ity. This method will surely succeed if the Hamiltonia
changes slowly. But how slow is slow enough?

Unfortunately, this question has proved difficult to an
lyze in general. Some numerical evidence suggests the
sibility that the adiabatic algorithm might efficiently solv
computationally interesting instances of hard combinato
search problems, outperforming classical methods@1–4#.
Whether the adiabatic algorithm provides a definite spee
over classical methods remains an interesting open ques
As we will discuss in Sec. II, the time required by the alg
rithm for a particular instance can be related to the minim
gapD between the instantaneous ground state and the re
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the spectrum. Roughly speaking, the required time goes
D22. Thus, ifD22 increases only polynomially with the siz
of the problem, then so does the time required to run
algorithm. However, determiningD has not been possible i
general.

Our objective in this paper is not to explore the compu
tional power of the adiabatic model, but rather to investig
its intrinsic fault tolerance. Since quantum computers are f
more susceptible to making errors than classical digital co
puters, fault tolerant protocols will be necessary for the o
eration of large-scale quantum computers. General pro
dures have been developed that allow any quan
algorithm to be implemented fault tolerantly on a univers
quantum computer@5#, but these involve a substantial com
putational overhead. Therefore, it would be highly advan
geous to weave fault tolerance into the design of our qu
tum hardware.

We therefore will regard adiabatic quantum computat
not as a convenient language for describing a class of qu
tum circuits, but as a proposed physical implementation
quantum information processing. We do not cast the al
rithm into the conventional quantum computing paradigm
approximating it as a sequence of discrete unitary trans
mations acting on a few qubits at a time. Instead, suppose
can design a physical device that implements the requ
time-dependent Hamiltonian with reasonable accuracy.
then imagine implementing the algorithm by slowly chan
ing the parameters that control the physical Hamiltoni
How well does such a quantum computer resist decohere
and how well does it perform if the algorithm is imperfect
implemented?

Regarding resistance to decoherence, we can make a
simple observations. The phase of the ground state ha
effect on the efficacy of the algorithm, and therefore deph
ing in the energy eigenstate basis is presumably harml
Only the interactions with the environment that induce tra
sitions between eigenstates of the Hamiltonian might ca
trouble. In principle, these may be well controlled by runni
the algorithm at a temperature that is small compared to
minimum gapD. ~We use units in which Boltzmann’s con
stantkB51, so that temperature has units of energy.! If D
decreases slowly as the size of the problem increases,
the resources required to run at a sufficiently low tempe
©2001 The American Physical Society22-1
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ture may be reasonable. Since the adiabatic method is
efficient if D is not too small, we conclude that whenever t
method works on a perfectly functioning quantum compu
it is robust against decoherence.

In addition to environmental decoherence, we must a
consider the consequences of imperfect implementation.
chosen algorithm may call for the time-dependent Ham
tonian H(t), but when we run the algorithm, the actu
Hamiltonian will beH(t)1K(t), whereK(t) is an ‘‘error.’’
An interesting feature of adiabatic quantum computation
thatK(t) need not remain small during the evolution in ord
for the algorithm to work effectively. A reasonably large e
cursion away from the intended Hamiltonian is acceptab
as long asK(t) is slowly varying and has initial and fina
values that are not too large. A very rapidly fluctuatingK(t)
may also be acceptable, if the characteristic frequency of
fluctuations is large compared to the energy scale ofH(t).

In this paper, we use numerical simulations to investig
the sensitivity of an adiabatic computer to decohering tr
sitions and to a certain class of unitary perturbations indu
by a HamiltonianK(t). The results are consistent with th
idea that the algorithm remains robust as long as the t
perature of the environment is not too high andK(t) varies
either sufficiently slowly or sufficiently rapidly. Thus, th
adiabatic model illustrates the principle that when the ch
acteristics of the noise are reasonably well understood
may be possible to design suitable quantum hardware
effectively resists the noise. However, note that some of
effects of decoherence and unitary control error may no
significant for the small problems we are able to study
especially in the case of decoherence, where the time
quired by the simulation restricts us to systems with o
four qubits—and hence, our data may not be indicative of
performance of the algorithm working on larger inputs.

A technique closely related to adiabatic computation w
described by Kadowaki and Nishimori@6# and has been
tested experimentally~in conjunction with a cooling proce
dure! by Brookeet al. @7#. In a different guise, the principle
that make quantum adiabatic evolution robust also unde
the proposal by Kitaev@8# to employ nonabelian anyons fo
fault-tolerant quantum computation. The fact that adiaba
evolution incorporates a kind of intrinsic fault tolerance h
also been noted in@9–14#.

In Sec. II we review the adiabatic model of quantum co
putation, and in Sec. III we describe the specific combina
rial search problem~three-bit exact cover! that we use in our
simulations. Sections IV and V report our numerical resu
on decoherence and unitary control error, and Sec. VI s
marizes our conclusions.

II. ADIABATIC QUANTUM COMPUTATION

We briefly review the adiabatic model of quantum co
putation introduced in@1#. Let h(z) be a function ofn bits
z5(z1 ,z2 ,z3 , . . . ,zn), and consider the computational pro
lem of finding a value ofz that minimizesh(z). We will
typically be interested in the case where this value ofz is
unique. We may associate with this function the Hermit
operator
01232
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HP5 (
z50

2n21

h~z!uz&^zu, ~1!

so that the computational basis stateuz& is an eigenstate o
HP with eigenvalueh(z). Then the problem is to determin
which stateuz& is the ground state~eigenstate with lowes
eigenvalue! of HP . We refer toHP as theproblem Hamil-
tonian.

The strategy for finding the ground state ofHP is to pre-
pare the ground state of some otherbeginning Hamiltonian
HB and slowly interpolate toHP . A simple choice for the
interpolation is given by the one-parameter family of Ham
tonians

H̃~s!5~12s!HB1sHP ~2!

that interpolates betweenHB andHP ass varies from 0 to 1.
We prepare the ground state ofHB at timet50, and then the
state evolves fromt50 to T according to the Schro¨dinger
equation,

i
d

dt
uc~ t !&5H~ t !uc~ t !&, ~3!

where the Hamiltonian is

H~ t !5H̃~ t/T!. ~4!

At time T ~the run time of the algorithm!, we measure the
state in the computational basis. If we letuw& denote the
~unique! ground state ofHP for a given instance of the prob
lem, then thesuccess probabilityof the algorithm for this
instance is

Prob~T![u^wuc~T!&u2. ~5!

Does the algorithm work? According to the quantum ad
batic theorem@15,16#, if there is a nonzero gap between th
ground state and the first excited state ofH̃(s) for all
sP@0,1#, then Prob(T) approaches 1 in the limitT→`. Fur-
thermore, level crossings are nongeneric in the absenc
symmetries, so a nonvanishing gap is expected ifHB does
not commute with HP . Thus, the success probabilit
Prob(T) of the algorithm will be high if the evolution timeT
is large enough. The question is: how large aT is large
enough so that Prob(T) is larger than some fixed constant

We can reformulate this question in terms of

D5 min
sP[0,1]

@E1~s!2E0~s!# ~6!

and

E5 max
sP[0,1]

U^1,su
dH̃

ds
u0,s&U, ~7!

whereE0(s) is the lowest eigenvalue ofH̃(s), E1(s) is the
second-lowest eigenvalue, andu0,s&, u1,s& are the corre-
sponding eigenstates. By calculating the transition proba
2-2
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ROBUSTNESS OF ADIABATIC QUANTUM COMPUTATION PHYSICAL REVIEW A65 012322
ity to lowest order in the adiabatic expansion@16#, one finds
that the probability of a transition from ground state to fi
excited state is small provided that the run timeT satisfies

T@
E

D2
. ~8!

If the spectrum consists of only two levels, then this con
tion is sufficient to ensure that the system remains in
ground state with high probability. In general, the requir
run timeT will be bounded by a polynomial inn so long as
D andE are polynomially bounded. For the problems we a
interested in,E is polynomially bounded, so we only have
consider the behavior ofD.

By rescaling the time, we can think of the evolution
taking place in the unit time interval betweens50 and 1, but
in this case, the energy eigenvalues are rescaled by the f
T. Roughly speaking, we can think of dH̃(s)/ds as a pertur-
bation that couples the levels of the instantaneous Ha
tonianH̃(s), and has the potential to drive a transition fro
u0,s& to u1,s&. But if T is large, the effects of this perturbatio
are washed out by the rapid oscillations of the relative ph
exp$2iT*0

sds8@E1(s8)2E0(s8)#%.
Note that the Hamiltonian may be regarded as reason

only if it is ‘‘local,’’ that is, if it can be expressed as a sum
terms, where each term acts on a bounded number of qu
~a number that does not grow withn). Indeed, in this case
the Hamiltonian evolution may be accurately and efficien
simulated by a universal quantum computer@17#. Many com-
binatorial search problems~e.g., 3SAT! can be formulated as
a search for a minimum of a function that is local in th
sense. Along with a local choice ofHB , this results in a full
H(t) that is also local.

A direct physical implementation of the continuous
varying H(t) would presumably be possible only under
somewhat stronger locality condition. We might require th
each qubit is coupled to only a few other qubits, or perh
that the qubits can be physically arranged in such a way
the interactions are spatially local. Fortunately, there are
teresting computational problems that have such forms, s
as 3SAT restricted to having each bit involved in only thr
clauses or the problem of finding the ground state of a s
glass on a cubic lattice@18#. However, for the purposes o
our simulation, we will only consider small instances, a
since we do not have a specific physical implementation
mind, we will not concern ourselves with the spatial arran
ment of the qubits.

III. AN EXAMPLE: THE EXACT COVER PROBLEM

For definiteness, we study the robustness of the adiab
algorithm via its performance on the problem known
‘‘three-bit exact cover’’~EC3!. An n-bit instance of EC3 con-
sists of a set of clauses, each of which specifies three of
n bits. A clause is said to be satisfied if and only if exac
one of its bits has the value 1. The problem is to determin
any of the 2n assignments of then bits satisfies all of the
clauses.
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For this problem, the functionh(z) is a sum

h~z!5(
C

hC~zi C
,zj C

,zkC
! ~9!

of three-bit clauses, where

hC~zi C
,zj C

,zkC
!5H 0, ~zi C

,zj C
,zkC

! satisfies clauseC

1, ~zi C
,zj C

,zkC
! violates clauseC.

~10!

The value of the functionh(z) is the number of clauses tha
are violated; in particular,h(z)50 if and only if z is an
assignment that satisfies all the clauses.

To solve EC3 by the adiabatic algorithm, a sensib
choice for the beginning Hamiltonian is

HB5(
C

HB,C , ~11!

where

HB,C5
1

2
~12sx

( i C)
!1

1

2
~12sx

( j C)
!1

1

2
~12sx

(kC)
!,

~12!

which has the ground-state

uc~0!&5
1

2n/2 (
z50

2n21

uz&. ~13!

The resultingH(t) is local in the sense that it is a sum o
terms, each of which acts on only a few qubits. A strong
kind of locality may be imposed by restricting the instanc
so that each bit is involved in at most a fixed number
clauses. The computational complexity of the problem is
changed by this restriction.

Numerical studies of the adiabatic algorithm applied
this problem were reported in@2,4#. Instances of EC3 withn
bits were generated by adding random clauses until there
a unique satisfying assignment, giving a distribution of
stances that one might expect to be computationally diffic
to solve. The results for a small number of bits (n<20) were
consistent with the possibility that the adiabatic algorith
requires a time that grows only as a polynomial inn for
typical instances drawn from this distribution. If this is th
case, then the gapD does not shrink exponentially. Althoug
the typical spacing between levels must be exponenti
small, since there are an exponential number of levels i
polynomial range of energies, it is possible that the gap at
bottom is larger. For example, Fig. 1 shows the spectrum
a randomly generated seven-bit instance of EC3. The ga
the bottom of the spectrum is reasonably large compare
the typical spacing. This feature is not specific to this o
instance, but is characteristic of randomly generated
stances, at least forn&10, beyond which the repeated matr
diagonalization required to create a picture of the spectr
becomes computationally costly. A large gap makes an
2-3
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ANDREW M. CHILDS, EDWARD FARHI, AND JOHN PRESKILL PHYSICAL REVIEW A65 012322
stance readily solvable by the adiabatic algorithm, and a
provides robustness against thermal transitions out of
ground state.

IV. DECOHERENCE

Perhaps the most significant impediment to building
large-scale quantum computer is the problem of deco
ence. No quantum device may be perfectly isolated from
environment, and interactions between a device and its e
ronment will inevitably introduce noise. Fortunately, su
effects can be countered using fault-tolerant protocols, bu
we have already mentioned, these protocols may be co
Therefore, we would like to consider quantum systems w
inherent resistance to decohering effects. If the ground s
of our adiabatic quantum computer is separated from
excited states by a sizable energy gap, then we expect
exhibit such robustness. Here, we consider how the adiab
algorithm for EC3 is affected by decoherence.

First, we briefly review the master equation formalism f
describing the decohering effects of an environment o
quantum system. Suppose that our quantum computer
collection of spin-1/2 particles interacting with each oth
according to the HamiltonianHS and weakly coupled to a
large bath of photons. The total Hamiltonian of the quant
computer and its environment is

H5HS1HE1lV, ~14!

where HE is the Hamiltonian of its environment,V is an
interaction that couples the quantum computer and the p
ton bath, andl is a coupling constant. We may describe t
state of the quantum computer alone by the density matrr
found by tracing over the environmental degrees of freed
In general, the time evolution ofr is complicated, but unde

FIG. 1. Spectrum of a randomly generatedn57 bit instance of
EC3 with a unique satisfying assignment. Note that the energy
between the ground state and the first excited state is significa
larger than all other gaps. An expanded view would show that th
are no level crossings anywhere in the spectrum~except for the
degeneracies ats50 and 1!.
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reasonable assumptions, we may approximate its evolu
using a Markovian master equation.

One way of deriving such a master equation is to consi
the weak coupling limit, in whichl!1 @19#. If the environ-
ment is very large and only weakly coupled to the quant
computer, it will be essentially unchanged by the interacti
Furthermore, in this limit, we expect the evolution of th
quantum computer to be Markovian, or local in time, if w
filter out high-frequency fluctuations by some coars
graining procedure. Assuming that the combined state of
quantum computer and its environment begins in a prod
stater(0)^ rE , Davies derives the master equation

dr

dt
52 i @HS ,r#1l2K\r, ~15!

where

Kr52E
0

`

dx TrE†U~2x!VU~x!,@V,r ^ rE#‡, ~16!

K\r5 lim
x→`

1

xE0

x

dyU~2y!$K@U~y!rU~2y!#%U~y!,

~17!

with

U~x!5e2 ix(HS1HE), ~18!

where we have~temporarily! assumed thatHS is time inde-
pendent. Although the\ operation defined by Eq.~17! does
not appear in some formulations of the Markovian mas
equation, it appears to be essential for the equation to p
erly describe the weak-coupling limit@20#, and in particular,
for it to capture the physics of relaxation to thermal equil
rium. The master equation~15! has the property that if the
environment is in thermal equilibrium at a given tempe
ture, then the decohering transitions drive the quantum c
puter towards the Gibbs state ofHS at that temperature
While not an exact description of the dynamics, Eq.~15!
should provide a reasonable caricature of a quantum c
puter in a thermal environment.

Note that Eq.~15! is derived assuming a time-independe
HamiltonianHS ; with a time-varyingHS(t), we should ex-
pect the generator of time evolution at any particular time
depend on the Hamiltonian at all previous times@21#. How-
ever, if HS(t) is slowly varying, then it is a good approxi
mation to imagine that the generator at any particular ti
depends only onHS at that time@22#. In particular, since we
are interested in nearly adiabatic evolution,HS(t) varies
slowly, so Eq.~15! remains a good approximation, where
any given timet we computeK\ using onlyHS(t). Note that
with HS(t) time dependent,U(x) defined by Eq.~18! is not
the time evolution operator; it depends on the timet only
implicitly through HS(t).

For a system of spins coupled to photons, we choose
interaction

p
tly
re
2-4
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V5(
i
E

0

`

dv@g~v!avs1
( i )1g* ~v!av

† s2
( i )#, ~19!

where( i is a sum over the spins,s6
( i ) are raising and low-

ering operators for thei th spin,av is the annihilation opera
tor for the photon mode with frequencyv, andlg(v) is the
product of the coupling strength and spectral density for t
mode. Note that if the coupling strength is frequency dep
dent, we may absorb that dependence intog(v), leavingl
as a frequency-independent parameter. With this spe
choice forV, we can perform the integrals and trace in E
~15–18!. If we assume that all spacings between eigenval
of HS are distinct, the resulting expression simplifies cons
erably, and we find

dr

dt
52 i @HS ,r#2 (

i ,a,b
@Nbaugbau2^aus2

( i )ub&^bus1
( i )ua&

1~Nab11!ugabu2^bus2
( i )ua&^aus1

( i )ub&#$~ ua&^aur!

1~rua&^au!22ub&^aurua&^bu%, ~20!

where the statesua& are the time-dependent instantaneo
eigenstates ofHS with energy eigenvaluesva ,

Nba5
1

exp@b~vb2va!#21
~21!

is the Bose-Einstein distribution at temperature 1/b, and

gba5H lg~vb2va!, vb.va ,

0, vb<va .
~22!

We simulated the effect of thermal noise by numerically
tegrating the master Eq.~20! with a HamiltonianHS given
by Eq. ~4! and with the initial pure state density matr
r(0)5uc(0)&^c(0)u given by Eq.~13!. For simplicity, we
choseg(v)51 for v>0 and zero otherwise. Although w
would expect thatg(v)→0 asv→`, for the small systems
we are able to simulate, it should be a reasonable appr
mation to treatg(v) as constant and tune the overall co
pling strength usingl2.

How should we expect the success probabi
^wur(T)uw&, whereuw& is the ground state ofHP , to depend
on the run timeT and the temperature? If the run timeT is
sufficiently long, then regardless of its initial state, the qu
tum computer will come to thermal equilibrium. At the tim
of the final readout, it will be close to the Gibbs state

lim
T→`

r~T!5
e2bHP

Tr e2bHP
[rP ~23!

of the problem HamiltonianHP , and the success probabilit
will be approximately^wurPuw&. This probability may be
appreciable if the temperature is small compared to the
between the ground state and first excited state ofHP . Thus,
one way to find the ground state ofHP is to prepare the
computer in any initial state, put it in a cold environme
wait a long time, and measure. However, this thermal rel
01232
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ation method is not an efficient way to solve hard optimiz
tion problems. Although it may work well on some instanc
of a given problem, this method will not work in cases whe
the computer gets stuck in local minima from which dow
ward transitions are unlikely. In such cases, the time
equilibration is expected to be exponentially large inn.

Consider an instance with a long equilibration time so t
cooling alone is not an efficient way to find the ground st
of HP . It is possible that the minimum gapD associated
with the quantum algorithm is not small, and the idealiz
quantum computer, running without decohering effec
would find the ground state ofHP in a short time. In this
situation, if we include the coupling of the system to t
environment and we run at a temperature much belowD,
then thermal transitions are never likely, and the adiab
algorithm should perform nearly as well as in the absence
decoherence. But if the temperature is comparable toD, then
the performance may be significantly degraded.

On the other hand, consider an instance for which
equilibration time is short, so that cooling alone is a go
algorithm. Furthermore, suppose that the adiabatic algori
would find the ground state ofHP in a short time in the
absence of decohering effects. In this case, the comb
effects of cooling and adiabatic evolution will surely find th
ground state ofHP in a short time. But note thatD alone
does not control the success of the algorithm. Even ifH(t)
changes too quickly for the evolution to be truly adiabatic
that a transition occurs where the gap is smallest, the sys
may be cooled back into its ground state at a later time.

Typical results of the simulation are shown in Fig. 2 f
two n54 bit instances of EC3 with unique satisfying assig
ments. These two instances have minimum gaps ofD
'0.301 andD'0.425. For each instance, we plot the su
cess probability as a function of the run timeT. With l2

50.1, we consider five temperatures: 1/10, 1/2, 1, 2, and
We also present the data with no decoherence (l250) for
comparison.

Unfortunately, the time required to integrate Eq.~20!
grows very rapidly withn. Whereas a state vector contain
2n entries, the density matrix contains 4n entries; and in
addition, calculating dr/dt at each timestep requires evalua
ing a double sum over 2n energy eigenstates. For this reaso
we were only able to consider instances withn<4.

The results are consistent with our general expectatio
In the absence of decoherence, the success probability
comes appreciable for sufficiently long run times. This pro
ability rises faster for the problem with a larger gap. Wh
we add decoherence at high temperature, the success
ability never becomes very large~note the lowest curves in
Fig. 2!. As the temperature is decreased to a value of or
one, the presence of decoherence has a less significant e
on the success probability. In fact, for sufficiently low tem
peratures, the success probability may actually be highe
the presence of decoherence than when there is no dec
ence. This is because the primary effect of decoherenc
low temperature is to drive transitions towards the grou
state, improving performance.

However, these results do not illustrate a definitive co
nection between the minimum gapD and the temperature
2-5
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FIG. 2. The success probability as a function of run timeT for two instances of EC3 withn54 bits. The instance on the left has a ga
of D1'0.301 and the instance on the right has a gap ofD2'0.425. The dotted line shows the behavior of the algorithm with no decohere
i.e., l250. Note that in the figure on the right, the dotted curve is partially obscured but can be seen slightly above the topmost so
The solid lines show the behavior of the algorithm in the presence of decoherence withl250.1 for five different temperatures. The triangle
at the far right show the thermal success probabilities^wurPuw& at each of these temperatures. From top to bottom, the temperatures are
1/2, 1, 2, and 10.
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above which the algorithm no longer works. These sim
n54 bit instances fall into the second category discus
above: the equilibration time is short, so cooling alone i
good algorithm. In other words, no sharp distinction can
drawn between the run time required for the adiabatic al
rithm to perform well in the absence of decoherence and
run time required for equilibration. Accordingly, the depe
dence of the success probability on temperature and run
is similar for the two instances shown in Fig. 2, even thou
the minimum gaps for these instances are somewhat di
ent.

V. UNITARY CONTROL ERROR

We now consider how the performance of the adiaba
algorithm for EC3 is affected by adding three different kin
of perturbations to the Hamiltonian. Each perturbation
consider is a sum of single-qubit terms, where each term
be interpreted as a magnetic field pointing in a random
rection. To simplify our analysis, we assume that the mag
tude of the magnetic field is the same for all qubits, but
direction varies randomly from qubit to qubit. The perturb
tions we consider are

K̃1~s!5C1s(
i 51

n

m̂i•sW ( i ), ~24!

K̃2~s!5C2sin~ps!(
i 51

n

m̂i•sW ( i ), ~25!

K̃3~s!5
1

2
sin~C3ps!(

i 51

n

m̂i•sW ( i ), ~26!
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which are added to Eq.~2! and give a time-dependent Hami

tonian according to Eq.~4!. Eachm̂i is a randomly generated
real three-component vector with unit length,C1 andC2 are
real numbers, andC3 is a nonnegative integer.

The adiabatic algorithm was simulated by numerica
solving the time-dependent Schro¨dinger equation with initial
state uc(0)& given by Eq. ~13! and HamiltonianH̃(t/T)
1K̃ j (t/T) for a given j P$1,2,3%. As in @2–4#, we used a
fifth-order Runge-Kutta method with variable step size, a
checked the accuracy by verifying that the norm of the st
was maintained to one part in a thousand. For a speci
value ofn, we randomly generated an instance of EC3 wit
unique satisfying assignment. Then we randomly genera
several different values of the magnetic field directions$m̂i%.
For each instance of the problem and the magnetic field,
run time was chosen so that the success probability with
the perturbation was reasonably high. With this run tim
fixed, we then determined the success probability for vary
values of the relevantCj .

First, we consider the perturbationK1. Since it turns on at
a constant rate, this perturbation can be thought of as an e
in HP . Note that withC1Þ0, the final Hamiltonian is not
simply HP , so the algorithm will not work exactly even in
the adiabatic limitT→`. This perturbation is potentially
dangerous because of the way its effect scales with the n
ber of bits n. Indeed, consider the case whereHP can be
separated into a sum of Hamiltonians acting separately
each qubit. If addingK1 reduces the overlap of the ground
state uw& of HP with the perturbed ground-stateuw8& by
some fixed valuee for each of then qubits, then the total
overlap is (12e)n, which is exponentially small in the num
ber of bits. Thus, the algorithm clearly fails in this factorize
case. In general, if the magnitude ofK1 is independent ofn,
then we expect the algorithm to fail. However, if the mag
2-6



ROBUSTNESS OF ADIABATIC QUANTUM COMPUTATION PHYSICAL REVIEW A65 012322
FIG. 3. ~Top! The success probability of the adiabatic algorithm for two randomly generated instances of EC3 withn57 bits ~left! and
n510 bits~right! under the perturbationK1 defined by Eq.~24! for four different sets of magnetic-field directions. For eachn, the run time
is the same for each random perturbation.~Bottom! The corresponding overlapsu^wuw8&u2 of the ground-stateuw& of HP with the perturbed
ground-stateuw8& at s51.
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tude ofK1 falls as 1/n or faster, then the shift of the groun
state may be small enough~as it would be in the factorized
case! that the algorithm is not significantly affected. No
that for anyn there is some value ofC1 that is small enough
that the disadvantage of reduced overlap with the gro
state ofHP may be overcome if the perturbation happens
increase the minimum gapD. For this reason, we expect t
sometimes see an increase in success probability for s
C1 that goes away asC1 is increased.

The effect of the perturbationK1 is shown in Fig. 3 for
n57 and 10 bit instances of EC3, with four different ra
domly generated sets of magnetic-field directions for e
instance. The run time is chosen such that forC150, the
success probability is around 1/2. The top plots show that
small C1, the success probability is not strongly suppress
in fact, in some cases it is significantly enhanced. For la
enoughC1, the success probability is heavily suppress
The bottom plots show the overlapu^wuw8&u2 between the
ground state ofHP and the actual ground state in the pre
ence of the perturbation. As we expect, the suppressio
the success probability is correlated with the amount of ov
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lap. We also studied a similar perturbation in whichs is
replaced by 12s, which may be thought of as an error i
HB . Unsurprisingly, the results were qualitatively similar.

Next, we consider the low-frequency perturbationK2. The
period of oscillation is chosen such that the perturbation v
ishes att50 andT, so the perturbation does not affect th
algorithm in the adiabatic limit. Since the success probabi
is quite sensitive to the value of the minimum gapD, and it
is not a priori obvious whether a perturbation will increas
or decreaseD, we can guess that turning on a nonzero va
of C2 may either increase the success probability or decre
it. In fact, it would be surprising ifD decreased for all per

turbationsK2. The HamiltonianH̃(s)1K̃2(s) is another way
to interpolate fromHB to HP , and we know of no reason
why the choiceK̃250 should always be optimal, even whe
the number of bits is large andC2 is not decreasing withn.

Figure 4 shows the effect of the perturbationK2, using the
same instances, magnetic field directions, and run times a
Fig. 3. The top plots show the success probability as a fu
tion of C2. As in the case ofK1, some perturbations ma
2-7
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FIG. 4. ~Top! The success probability of the adiabatic algorithm for the same instances used in Fig. 3 under the perturbationK2 defined
by Eq. ~25!. The four different magnetic field directions for each instance are also the same as in Fig. 3.~Bottom! The minimum gapD in
the perturbed problem.
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raise the success probability and some suppress it. Per
unsurprisingly, a particular set of magnetic field directio
that raises the success probability underK1 is also likely to
help whenK2 is applied. But unlikeK1 , K2 may improve
the success probability even withC2.2, where the size of
the perturbation is comparable to the size of the unpertur
Hamiltonian. The bottom plots show the minimum gapD
when the perturbation is added. Note that there is a str
correlation between the success probability andD.

For both perturbationsK1 and K2, similar results have
been observed~with fewer data points! for instances with as
many asn514 bits. Figures 3 and 4 present typical data. F
example, for a given instance, typically one or two out
four sets of randomly chosen magnetic-field directions led
an improvement in the success probability for some value
C1 andC2, compared to the unperturbed case.

Finally, we consider the perturbationK3, in which the
magnitude of the oscillating component is fixed, but we m
vary its frequency by varyingC3. As for K2, the frequency is
chosen so that the perturbation vanishes att50 andT. We
01232
aps
s

d

g

r
f
o
of

y

expect that forC3 of order one, the perturbation will be
likely to excite a transition, and that the success probabi
will be small. But since bothHB andHP have a maximum
eigenvalue of ordern, we may anticipate that for

C3@
nT

p
, ~27!

the perturbation will be far from any resonance. Then
probability that the perturbation drives a transition will b
low, and the success probability should be comparable to
case where the perturbation vanishes.

Some representative plots of the dependence of the
cess probability onC3 are shown in Fig. 5. Each plot corre
sponds to a particular randomly generated instance of E
~with eithern58 bits orn510 bits! and a randomly gener
ated set of magnetic field directions. In the top row of plo
the run time is chosen so that the success probability
around 1/8 with the perturbation absent~i.e., C350). In the
bottom row, the run time is doubled. All of the data exhib
2-8
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ROBUSTNESS OF ADIABATIC QUANTUM COMPUTATION PHYSICAL REVIEW A65 012322
FIG. 5. The success probability as a function of the frequencyC3 of the perturbationK3 defined in Eq.~26!. The data in each plot were
obtained for a randomly generated instance of EC3 with randomly generated magnetic-field directions. The data in the left colum
two instances withn58 bits, and the data in the right column are for two instances withn510 bits. For the top row, the run time is chose
so that the success probability is around 1/8 forC350, and for the bottom row, the run time is twice as long. The leftmost points in e
plot correspond toC350, so the perturbation is absent for allt. C3 takes integer values, so the lines are included only to guide the e
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the expected qualitative trend. The leftmost point cor
sponds toC350. For the smallest values ofC3.0, the suc-
cess probability may not be too badly damaged; for som
what larger values ofC3, it is heavily suppressed; and fo
sufficiently largeC3, it recovers to a value near the succe
probability in the absence of the perturbation. The value
nT/p is around 19 and 39 for the upper and lowern58
plots and is around 38 and 76 for the upper and lowen
510 plots, so the estimate~27! turns out to be reasonable.

Another conspicuous feature of the plots in Fig. 5 is th
the success probability tends to oscillate between even
odd values ofC3, though whether even or odd values a
favored varies from case to case. This occurs because
perturbation’s time average vanishes forC3 even, so that its
integrated effect is weaker than forC3 odd. Since a smal
perturbation might either help or hurt, the success probab
is slightly enhanced for oddC3 in some cases, and is slightl
suppressed in other cases.
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VI. CONCLUSIONS

We have conducted numerical simulations to investig
the fault tolerance of adiabatic quantum computation, a
our results are consistent with the claim that this algorithm
robust against decoherence and certain kinds of random
tary perturbations. Thus, if a physical system could be en
neered with interactions reasonably well described by
Hamiltonian that smoothly interpolates from an initialHB to
a final HP corresponding to an interesting combinator
search problem, and if the gap remains large throughout
interpolation, that system might be a powerful computatio
device.

Although we have viewed unitary perturbations as noi
the fact that they sometimes raise the success probab
suggests a possible way to speed up the adiabatic algori
The algorithm finds the ground state ofHP by starting the
system in the ground state ofHB . The quantum state evolve
2-9
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as the system Hamiltonian smoothly interpolates fromHB to
HP . However, there are many possible choices forHB and
many smooth paths from a givenHB to HP . The choices
~11! and ~2! are convenient but arbitrary, so choosing
alternate route toHP might speed up the algorithm. An ex
ample of this is seen in@23#, where it is shown that optimiz
ing the time-dependent coefficients ofHB andHP allows the
adiabatic algorithm to achieve a square-root speedup fo
unordered search problem. More generally, the interpola
Hamiltonian might involve terms that have nothing to
with HB or HP , but that increaseD and therefore improve
performance. For example, the perturbationK2 sometimes
increases the success probability, as seen in Fig. 4. Ra
than being thought of as a source of error, such a pertu
tion could be applied intentionally and might sometimes
hance the effectiveness of the adiabatic algorithm.
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