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Robustness of adiabatic quantum computation
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We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for
solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation
against two kinds of errors, unitary control errors and decoherence, and we study this robustness using
numerical simulations of the algorithm.
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[. INTRODUCTION the spectrum. Roughly speaking, the required time goes like
A2, Thus, if A~ 2 increases only polynomially with the size

The method of quantum computation by adiabatic evolu-of the problem, then so does the time required to run the
tion has been proposed as a general way of solving combalgorithm. However, determining has not been possible in
natorial search problems on a quantum computg}. general.

Whereas a conventional quantum algorithm is implemented Our objective in this paper is not to explore the computa-
as a sequence of discrete unitary transformations that form tional power of the adiabatic model, but rather to investigate
quantum circuit involving many energy levels of the com-its intrinsic fault tolerance Since quantum computers are far
puter, the adiabatic algorithm works by keeping the state omore susceptible to making errors than classical digital com-
the quantum computer close to the instantaneous groungluters, fault tolerant protocols will be necessary for the op-
state of a Hamiltonian that varies continuously in time.eration of large-scale quantum computers. General proce-
Therefore, an imperfect quantum computer implementing alures have been developed that allow any quantum
conventional quantum algorithm might experience differentalgorithm to be implemented fault tolerantly on a universal
sorts of errors than an imperfect adiabatic quantum comguantum computel5], but these involve a substantial com-
puter. In fact, we claim that an adiabatic quantum computeputational overhead. Therefore, it would be highly advanta-
has an inherent robustness against errors that might enhangeous to weave fault tolerance into the design of our quan-
the usefulness of the adiabatic approach. tum hardware.

The adiabatic algorithm works by applying a time-  We therefore will regard adiabatic quantum computation
dependent Hamiltonian that interpolates smoothly from amot as a convenient language for describing a class of quan-
initial Hamiltonian whose ground state is easily prepared to aum circuits, but as a proposed physical implementation of
final Hamiltonian whose ground state encodes the solution tquantum information processing. We do not cast the algo-
the problem. If the Hamiltonian varies sufficiently slowly, rithm into the conventional guantum computing paradigm by
then the quantum adiabatic theorem guarantees that the finabproximating it as a sequence of discrete unitary transfor-
state of the quantum computer will be close to the groundnations acting on a few qubits at a time. Instead, suppose we
state of the final Hamiltonian, so a measurement of the finatan design a physical device that implements the required
state will yield a solution of the problem with high probabil- time-dependent Hamiltonian with reasonable accuracy. We
ity. This method will surely succeed if the Hamiltonian then imagine implementing the algorithm by slowly chang-
changes slowly. But how slow is slow enough? ing the parameters that control the physical Hamiltonian.

Unfortunately, this question has proved difficult to ana-How well does such a quantum computer resist decoherence,
lyze in general. Some numerical evidence suggests the poand how well does it perform if the algorithm is imperfectly
sibility that the adiabatic algorithm might efficiently solve implemented?
computationally interesting instances of hard combinatorial Regarding resistance to decoherence, we can make a few
search problems, outperforming classical methftis4]. simple observations. The phase of the ground state has no
Whether the adiabatic algorithm provides a definite speedupffect on the efficacy of the algorithm, and therefore dephas-
over classical methods remains an interesting open questioimg in the energy eigenstate basis is presumably harmless.
As we will discuss in Sec. Il, the time required by the algo-Only the interactions with the environment that induce tran-
rithm for a particular instance can be related to the minimurrsitions between eigenstates of the Hamiltonian might cause
gapA between the instantaneous ground state and the rest trbuble. In principle, these may be well controlled by running

the algorithm at a temperature that is small compared to the
minimum gapA. (We use units in which Boltzmann’s con-
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ture may be reasonable. Since the adiabatic method is only 2"-1
efficient if A is not too small, we conclude that whenever the Hp= >, h(2)|2)(z, (1)
method works on a perfectly functioning quantum computer, z=0

it is robust against decoherence. _ ) _ _

In addition to environmental decoherence, we must als§© that the computational basis sté is an eigenstate of
consider the consequences of imperfect implementation. Odit P With eigenvaluen(z). Then the problem is to determine
chosen algorithm may call for the time-dependent Hamil-\Which state|z) is the ground statéeigenstate with lowest
tonian H(t), but when we run the algorithm, the actual €i9envalug of Hp. We refer toHp as theproblem Hamil-
Hamiltonian will beH (t) +K(t), whereK(t) is an “error.”  tonian o _

An interesting feature of adiabatic quantum computation is TNe strategy for finding the ground statetdp is to pre-
thatK (t) need not remain small during the evolution in orderPare the ground state of some ottiginning Hamiltonian
for the algorithm to work effectively. A reasonably large ex- He @nd slowly interpolate tdp. A simple choice for the
cursion away from the intended Hamiltonian is acceptableintérpolation is given by the one-parameter family of Hamil-
as long ask(t) is slowly varying and has initial and final tonians

values that are not too large. A very rapidly fluctuatiét) ~

may also be acceptable, if the characteristic frequency of the H(s)=(1—-s)Hg+sHp 2

fluctuations is large compared to the energy scalel . that interpolates betwedtg andHp ass varies from 0 to 1.

n th|s. paper, we use ““”?e“ca' simulations to 'nYeSt'gat%e prepare the ground stateldf at timet=0, and then the
the sensitivity of an adiabatic computer to decohering tran-

sitions and to a certain class of unitary perturbations induceatate _evolves from=0 to T according to the Schicinger
by a HamiltonianK (t). The results are consistent with the equation,

idea that the algorithm remains robust as long as the tem- d

perature of the environment is not too high akt) varies ia|¢,//(t)):H(t)|w(t)>, 3
either sufficiently slowly or sufficiently rapidly. Thus, the
adiabatic model illustrates the principle that when the charWhere the Hamiltonian is
acteristics of the noise are reasonably well understood, it

may be possible to design suitable quantum hardware that H(t)=Ht/T). ()
effectively resists the noise. However, note that some of the

effects of decoherence and unitary control error may not bet time T (the run time of the algorithm), we measure the
significant for the small problems we are able to study—state in the computational basis. If we let) denote the
especially in the case of decoherence, where the time rqunique ground state oHp for a given instance of the prob-

quired by the simulation restricts us to systems with onlylem, then thesuccess probabilitypf the algorithm for this
four qubits—and hence, our data may not be indicative of thgnstance is

performance of the algorithm working on larger inputs.

A technique closely related to adiabatic computation was Prot(T)=|{¢| (T))|?. (5)
described by Kadowaki and Nishimof6] and has been _ _ _
tested experimentalljin conjunction with a cooling proce- Does the algorithm work? According to the quantum adia-

dure by Brookeet al.[7]. In a different guise, the principles batic theoren{15,16, if there is a nonzero gap between the
that make quantum adiabatic evolution robust also underliground state and the first excited state téts) for all
the proposal by Kitae{8] to employ nonabelian anyons for se[0,1], then Prob{) approaches 1 in the limi— . Fur-
fault-tolerant quantum computation. The fact that adiabatichermore, level crossings are nongeneric in the absence of
evolution incorporates a kind of intrinsic fault tolerance hassymmetries, so a nonvanishing gap is expecteld gfdoes
also been noted if9—-14]. not commute withHp. Thus, the success probability
In Sec. Il we review the adiabatic model of quantum com-Prob(T) of the algorithm will be high if the evolution tim&
putation, and in Sec. Il we describe the specific combinatois large enough. The question is: how largeTds large
rial search problenithree-bit exact coverthat we use in our  enough so that Prof is larger than some fixed constant?
simulations. Sections IV and V report our numerical results We can reformulate this question in terms of
on decoherence and unitary control error, and Sec. VI sum-

marizes our conclusions. A= min [Ey(s)—Ey(s)] (6)
se[0,1]

II. ADIABATIC QUANTUM COMPUTATION and

We briefly review the adiabatic model of quantum com- df
putation introduced iri1]. Let h(z) be a function ofn bits E= max|{1,s|——]0s)|, (7)
z2=(24,25,23, . . . ,Z,), and consider the computational prob- se[0,1] ds

lem of finding a value ofz that minimizesh(z). We will ~

typically be interested in the case where this valuezi§  whereEy(s) is the lowest eigenvalue d¢i(s), E(s) is the
unique. We may associate with this function the Hermitiansecond-lowest eigenvalue, an@,s), |1,s) are the corre-
operator sponding eigenstates. By calculating the transition probabil-
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ity to lowest order in the adiabatic expansidr6], one finds For this problem, the functioh(z) is a sum
that the probability of a transition from ground state to first

excited state is small provided that the run timeatisfies
P h@)=3 he(z.2.2) ©

™ Az (8)  of three-bit clauses, where

. . . 0, (zi.,z_.2.) satisfies clauseC
If the spectrum consists of only two levels, then this condi- he(z 'c*flertke

tion is sufficient to ensure that the system remains in the 1, (zi.zj.2.) violates clauseC.
ground state with high probability. In general, the required (10
run time T will be bounded by a polynomial in so long as
A andé& are polynomially bounded. For the problems we areThe value of the functiom(z) is the number of clauses that
interested ing is polynomially bounded, so we only have to are violated; in particularh(z)=0 if and only if z is an
consider the behavior af. assignment that satisfies all the clauses.
By rescaling the time, we can think of the evolution as To solve EC3 by the adiabatic algorithm, a sensible
taking place in the unit time interval betwess 0 and 1, but  choice for the beginning Hamiltonian is
in this case, the energy eigenvalues are rescaled by the factor
T. Roughly speaking, we can think of-kq_s)/ds as a pertur- HBZE Hgc, (11)
bation that couples the levels of the instantaneous Hamil- C
tonianH(s), and has the potential to drive a transition from
|0,s) to|1,s). Butif Tis large, the effects of this perturbation
are washed out by the rapid oscillations of the relative phase 1 _ 1 _ 1
exp{—iT/5ds'[Eq(s') — Eo(s) ]} Hpc=5(1—0'9)+ > (1- V) + > (1- 09,
Note that the Hamiltonian may be regarded as reasonable T2 2 2

'c’zjc’zkc) -

where

only if it is “local,” that is, if it can be expressed as a sum of (12)
terms, where each term acts on a bounded number of qubi{Si-h has the ground-state

(a number that does not grow wit). Indeed, in this case,

the Hamiltonian evolution may be accurately and efficiently N1

simulated by a universal quantum compytef]. Many com- |(0)) = 1 > |2). (13)
binatorial search probleng.g., 3SAT can be formulated as 22 7=0

a search for a minimum of a function that is local in this
sense. Along with a local choice éfg, this results in a full  The resultingH(t) is local in the sense that it is a sum of
H(t) that is also local. terms, each of which acts on only a few qubits. A stronger
A direct physical implementation of the continuously kind of locality may be imposed by restricting the instances
varying H(t) would presumably be possible only under aso that each bit is involved in at most a fixed number of
somewhat stronger locality condition. We might require thatclauses. The computational complexity of the problem is un-
each qubit is coupled to only a few other qubits, or perhapshanged by this restriction.
that the qubits can be physically arranged in such a way that Numerical studies of the adiabatic algorithm applied to
the interactions are spatially local. Fortunately, there are inthis problem were reported i2,4]. Instances of EC3 with
teresting computational problems that have such forms, sudbits were generated by adding random clauses until there was
as 3SAT restricted to having each bit involved in only threea unique satisfying assignment, giving a distribution of in-
clauses or the problem of finding the ground state of a spistances that one might expect to be computationally difficult
glass on a cubic latticgl8]. However, for the purposes of to solve. The results for a small number of bits(20) were
our simulation, we will only consider small instances, andconsistent with the possibility that the adiabatic algorithm
since we do not have a specific physical implementation irrequires a time that grows only as a polynomialnirfor
mind, we will not concern ourselves with the spatial arrangetypical instances drawn from this distribution. If this is the
ment of the qubits. case, then the gap does not shrink exponentially. Although
the typical spacing between levels must be exponentially
small, since there are an exponential number of levels in a
polynomial range of energies, it is possible that the gap at the
For definiteness, we study the robustness of the adiabatleottom is larger. For example, Fig. 1 shows the spectrum of
algorithm via its performance on the problem known asa randomly generated seven-bit instance of EC3. The gap at
“three-hit exact cover(EC3). An n-bit instance of EC3 con- the bottom of the spectrum is reasonably large compared to
sists of a set of clauses, each of which specifies three of thine typical spacing. This feature is not specific to this one
n bits. A clause is said to be satisfied if and only if exactlyinstance, but is characteristic of randomly generated in-
one of its bits has the value 1. The problem is to determine istances, at least for< 10, beyond which the repeated matrix
any of the 2 assignments of the bits satisfies all of the diagonalization required to create a picture of the spectrum
clauses. becomes computationally costly. A large gap makes an in-

Ill. AN EXAMPLE: THE EXACT COVER PROBLEM
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18 ' ' ' ' reasonable assumptions, we may approximate its evolution
using a Markovian master equation.

16 | One way of deriving such a master equation is to consider
14 | the weak coupling limit, in whicth <1 [19]. If the environ-
ment is very large and only weakly coupled to the quantum
12 1 computer, it will be essentially unchanged by the interaction.
Furthermore, in this limit, we expect the evolution of the
510 1 quantum computer to be Markovian, or local in time, if we
% 8 i fiter out high-frequency fluctuations by some coarse-

graining procedure. Assuming that the combined state of the
6 quantum computer and its environment begins in a product
statep(0)® pg, Davies derives the master equation

4
d

2 & = —i[Hs.p] 22K, (15

O0 0i2 0i4 0i6 0i8 1

s where

FIG. 1. Spectrum of a randomly generated 7 bit instance of
EC3 with a unique satisfying assignment. Note that the energy gap Kp=— fwder U(=x)VU(x) [V 16
between the ground state and the first excited state is significantly P 0 elU(=)VUX),[V.p®pell, (16
larger than all other gaps. An expanded view would show that there
are no level crossings anywhere in the spectri@xcept for the

. 1(x
degeneracies &=0 and 3. Kfp=lim f dyU(=y){K[U(y)pU(=)]}U(Y),
X—00 0
stance readily solvable by the adiabatic algorithm, and also a7
provides robustness against thermal transitions out of the
ground state. with
IV. DECOHERENCE U(x)=e X(HstHe), (18)

Perhaps the most significant impediment to building a . L
large-scale quantum computer is the problem of decohethere we havetemporarily assumed thakls is time inde-

ence. No quantum device may be perfectly isolated from it9€ndent. Although thé operation defined by Eq17) does

environment, and interactions between a device and its env[lot @ppear in some formulations of the Markovian master
ronment will inevitably introduce noise. Fortunately, such®duation, it appears to be essential for the equation to prop-

effects can be countered using fault-tolerant protocols, but a&'Y describe the weak-coupling linfi20], and in particular,
r it to capture the physics of relaxation to thermal equilib-

we have already mentioned, these protocols may be cost#}? > -
Therefore, we would like to consider quantum systems wit!UM- The master equatiofis) has the property that if the

inherent resistance to decohering effects. If the ground stafghvironment is in thermal equilibrium at a given tempera-

of our adiabatic quantum computer is separated from th&ure, then the decohe_ring transitions drive the quantum com-
excited states by a sizable energy gap, then we expect it f3Uter towards the Gibbs state &fs at that temperature.
exhibit such robustness. Here, we consider how the adiabatif/Nilé not an exact description of the dynamics, ELS)
algorithm for EC3 is affected by decoherence. should provide a reasonable caricature of a quantum com-

First, we briefly review the master equation formalism for PUter in a thermal environment. o
describing the decohering effects of an environment on a NOte that Eq(15) is derived assuming a time-independent

quantum system. Suppose that our quantum computer is @@MmiltonianHs; with a time-varyingHg(t), we should ex-
collection of spin-1/2 particles interacting with each otherP€Ct the generator of time evolution at any particular time to
according to the Hamiltoniakis and weakly coupled to a depend on the Hamiltonian at all previous tinj@s]. How-

large bath of photons. The total Hamiltonian of the quanturEVel if Hs(t) is slowly varying, then it is a good approxi-
computer and its environment is mation to imagine that the generator at any particular time

depends only o g at that time[22]. In particular, since we

H=Hg+Hg+\V, (14) are interested in nearly adiabatic evolutiddg(t) varies
slowly, so Eqg.(15) remains a good approximation, where at

where Hg is the Hamiltonian of its environmen¥ is an  any given timet we computeK * using onlyHg(t). Note that

interaction that couples the quantum computer and the phawith Hg(t) time dependentJ(x) defined by Eq(18) is not

ton bath, and\ is a coupling constant. We may describe thethe time evolution operator; it depends on the timenly

state of the quantum computer alone by the density matrix implicitly through Hg(t).

found by tracing over the environmental degrees of freedom. For a system of spins coupled to photons, we choose the

In general, the time evolution ¢f is complicated, but under interaction
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o A N, ation method is not an efficient way to solve hard optimiza-

v=> fo do[g(w)a,c)+g* (w)ale®], (19  tion problems. Although it may work well on some instances

' of a given problem, this method will not work in cases where

where3; is a sum over the sping;) are raising and low- the computer gets stuck in local minima from which down-

ering operators for thth spin,a,, is the annihilation opera- Ward transitions are unlikely. In such cases, the time for
tor for the photon mode with frequenay, andxg(w) is the ~ eduilibration is expected to be exponentially largenin
product of the coupling strength and spectral density for that COnsider an instance with a long equilibration time so that
mode. Note that if the coupling strength is frequency depen¢©0ling alone is not an efficient way to find the ground state
dent, we may absorb that dependence ite), leavingx ~ ©Of He. It is possible that the minimum gap associated
as a frequency-independent parameter. With this specifi?ith the quantum algorithm is not small, and the idealized
choice forV, we can perform the integrals and trace in Egs.duantum computer, running without decohering effects,
(15-18. If we assume that all spacings between eigenvalue¥/uld find the ground state dfip in a short time. In this

of Hs are distinct, the resulting expression simplifies consid-Situation, if we include the coupling of the system to the
erably, and we find environment and we run at a temperature much belgw

then thermal transitions are never likely, and the adiabatic

p _ 5 0 0 algorithm should perform nearly as well as in the absence of
i —I[Hsyp]—igb [Npal9bal (@l e’ |b)(b|o%’|a) decoherence. But if the temperature is comparabl, tihen
- the performance may be significantly degraded.
+(Nap+ 1)|ganlX(blaea)(a oV |b)1{(|a)(al p) On the other hand, consider an instance for which the
equilibration time is short, so that cooling alone is a good
+(pla)(al) —2|b)(alp|a)(bl}, (200 algorithm. Furthermore, suppose that the adiabatic algorithm

, , would find the ground state dfl, in a short time in the
where the stateiaa_) are the time-dependent instantaneousapsence of decohering effects. In this case, the combined
eigenstates offs with energy eigenvalues,, effects of cooling and adiabatic evolution will surely find the
ground state oHp in a short time. But note thak alone
= (21)  does not control the success of the algorithm. Evel (if)

exd B(wp—wa)]—1 changes too quickly for the evolution to be truly adiabatic so
that a transition occurs where the gap is smallest, the system
may be cooled back into its ground state at a later time.
Typical results of the simulation are shown in Fig. 2 for
(22)  twon=4 bit instances of EC3 with unique satisfying assign-
0, WpS g - ments. These two instances have minimum gapsAof
~0.301 andA~0.425. For each instance, we plot the suc-
cess probability as a function of the run tirffe With \?
=0.1, we consider five temperatures: 1/10, 1/2, 1, 2, and 10.
We also present the data with no decoherence=(0) for
comparison.
Unfortunately, the time required to integrate EQO)
rows very rapidly withn. Whereas a state vector contains
" entries, the density matrix containg' #ntries; and in
addition, calculating g/dt at each timestep requires evaluat-
ing a double sum over™energy eigenstates. For this reason,
we were only able to consider instances witis 4.
The results are consistent with our general expectations.
In the absence of decoherence, the success probability be-
‘comes appreciable for sufficiently long run times. This prob-
ability rises faster for the problem with a larger gap. When
we add decoherence at high temperature, the success prob-

1

Nba

is the Bose-Einstein distribution at temperaturg,land

N(wp—wy), @p>w,,
Oba™

We simulated the effect of thermal noise by numerically in-
tegrating the master Eq20) with a HamiltonianH g given

by Eq. (4) and with the initial pure state density matrix
p(0)=|(0)){(0)| given by Eq.(13). For simplicity, we
choseg(w)=1 for =0 and zero otherwise. Although we
would expect thag(w)—0 asw—oe, for the small systems
we are able to simulate, it should be a reasonable approxg
mation to treaty(w) as constant and tune the overall cou-
pling strength using.?.

How should we expect the success probability
(¢|p(T)|®), where|¢) is the ground state dfi, to depend
on the run timeT and the temperature? If the run tirteis
sufficiently long, then regardless of its initial state, the quan
tum computer will come to thermal equilibrium. At the time
of the final readout, it will be close to the Gibbs state

—gH ability never becomes very largeote the lowest curves in
e Prp : :
lim p(T)= ———=pp (23 Fig. 2. As the temperature is decreased to a value of order
Too Tre AHe one, the presence of decoherence has a less significant effect

on the success probability. In fact, for sufficiently low tem-
of the problem Hamiltoniaip, and the success probability peratures, the success probability may actually be higher in
will be approximately({¢|pp|®). This probability may be the presence of decoherence than when there is no decoher-
appreciable if the temperature is small compared to the gapnce. This is because the primary effect of decoherence at
between the ground state and first excited staté©f Thus, low temperature is to drive transitions towards the ground
one way to find the ground state éfp is to prepare the state, improving performance.
computer in any initial state, put it in a cold environment, However, these results do not illustrate a definitive con-
wait a long time, and measure. However, this thermal relaxnection between the minimum gap and the temperature
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FIG. 2. The success probability as a function of run tif®r two instances of EC3 with=4 bits. The instance on the left has a gap
of A;~0.301 and the instance on the right has a gafp £ 0.425. The dotted line shows the behavior of the algorithm with no decoherence,
i.e.,A2=0. Note that in the figure on the right, the dotted curve is partially obscured but can be seen slightly above the topmost solid curve.
The solid lines show the behavior of the algorithm in the presence of decohereno€withl for five different temperatures. The triangles

at the far right show the thermal success probabilitige | ¢) at each of these temperatures. From top to bottom, the temperatures are 1/10,
1/2, 1, 2, and 10.

above which the algorithm no longer works. These simplevhich are added to E@2) and give a time-dependent Hamil-

n=4 bit instances fall into the second category discussegynian according to Eq4). Eachm, is a randomly generated
above: the equilibration time is short, so cooling alone is ggg) three-component vector with unit leng@, andC, are
good algorithm. In other words, no sharp distinction can bgqg numbers, an€5 is a nonnegative integer.

d_rawn between the run time required for the adiabatic algo- The adiabatic algorithm was simulated by numerically
;Err:n:irfepr?aréiri:ggvfeo"r '2;33ggzeorr‘lcigig%?ﬁg@reiﬂzedig‘lrt]hgolving the time-dependent Sckiinger equation with initial
dence of the success probability on temperature and run timyate [4(0)) given by Eq. (13 and HamiltonianH (t/T)

is similar for the two instances shown in Fig. 2, even though' Kj(t/T) for a givenje{1,2,3. As in [2-4], we used a
the minimum gaps for these instances are somewhat diffefifth-order Runge-Kutta method with variable step size, and
ent. checked the accuracy by verifying that the norm of the state
was maintained to one part in a thousand. For a specified
value ofn, we randomly generated an instance of EC3 with a
unique satisfying assignment. Then we randomly generated

We now consider how the performance of the adiabaticseveral different values of the magnetic field directioms}.
algorithm for EC3 is affected by adding three different kindsFor each instance of the problem and the magnetic field, the
of perturbations to the Hamiltonian. Each perturbation wefun time was chosen so that the success probability without
consider is a sum of single-qubit terms, where each term cafl€ perturbation was reasonably high. With this run time
be interpreted as a magnetic field pointing in a random di.ﬁxed, we then determined the success probablllty for Varying
rection. To simplify our analysis, we assume that the magnivalues of the relevarg; .
tude of the magnetic field is the same for all qubits, but its  First, we consider the perturbatiéty. Since it turns on at
direction varies randomly from qubit to qubit. The perturba-a constant rate, this perturbation can be thought of as an error

V. UNITARY CONTROL ERROR

tions we consider are in Hp. Note that withC,+ 0, the final Hamiltonian is not
simply Hp, so the algorithm will not work exactly even in
n the adiabatic limitT—. This perturbation is potentially
R1(5)=Clsz m; - PO} (24) dangeroys because of the way its effect scales with the num-
=1 ber of bitsn. Indeed, consider the case whefg can be

separated into a sum of Hamiltonians acting separately on
n each qubit. If addind; reduces the overlap of the ground-
K ,(s)=C,sin(ms) D - ¢, (25) state |¢) of Hp with the perturbed ground-state’) by
i=1 some fixed values for each of then qubits, then the total
overlap is (I-€)", which is exponentially small in the num-
1 h ber of bits. Thus, the algorithm clearly fails in this factorized
7 — e () case. In general, if the magnitude Kf is independent of,
Ks(s) 25|n(C37rs);1 M- (26) then we expect the algorithm to fail. However, if the magni-
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FIG. 3. (Top) The success probability of the adiabatic algorithm for two randomly generated instances of E@3-withits (left) and
n=10 bits(right) under the perturbatiok, defined by Eq(24) for four different sets of magnetic-field directions. For eaclhe run time
is the same for each random perturbati@ottorr) The corresponding overlapée| ¢’ )|? of the ground-statép) of Hp with the perturbed
ground-statee’) ats=1.

tude ofK; falls as 1h or faster, then the shift of the ground lap. We also studied a similar perturbation in whishis
state may be small enoudhs it would be in the factorized replaced by s, which may be thought of as an error in
casg that the algorithm is not significantly affected. Note H,. Unsurprisingly, the results were qualitatively similar.
that for anyn there is some value @, that is small enough Next, we consider the low-frequency perturbation The
that the disadvantage of reduced overlap with the groungeriod of oscillation is chosen such that the perturbation van-
state ofHp may be overcome if the perturbation happens tojshes att=0 andT, so the perturbation does not affect the
increase the minimum gaf. For this reason, we expect to gigorithm in the adiabatic limit. Since the success probability
sometimes see an increase in success probability for smay quite sensitive to the value of the minimum gapand it
C, that goes away a6, is increased. o is nota priori obvious whether a perturbation will increase
The effect of the perturbatiol, is shown in Fig. 3 for . yecrease, we can guess that turning on a nonzero value

n=7 and 10 bit instances of EC:.;’ V.V'th fqur d.|fferent ran- C, may either increase the success probability or decrease
domly generated sets of magnetic-field directions for each | “ract it would be surprising if\ decreased for all per-
instance. The run time is chosen such that @r=0, the ' ’ P g P

success probability is around 1/2. The top plots show that fofurbationsk. The HamiltoniarH(s) +K(s) is another way
small C4, the success probability is not strongly suppressedt© interpolate fromHg to Hp, and we know of no reason

in fact, in some cases it is significantly enhanced. For largavhy the choiceK,=0 should always be optimal, even when
enoughC,, the success probability is heavily suppressedthe number of bits is large ard, is not decreasing witin.

The bottom plots show the overldpe|¢’)|? between the Figure 4 shows the effect of the perturbatiég, using the
ground state oH, and the actual ground state in the pres-same instances, magnetic field directions, and run times as in
ence of the perturbation. As we expect, the suppression dfig. 3. The top plots show the success probability as a func-
the success probability is correlated with the amount of overtion of C,. As in the case oK, some perturbations may
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FIG. 4. (Top) The success probability of the adiabatic algorithm for the same instances used in Fig. 3 under the pert(lufored
by Eq.(25). The four different magnetic field directions for each instance are also the same as in(Bigtt@m) The minimum gap\ in
the perturbed problem.

raise the success probability and some suppress it. Perhapgpect that forC; of order one, the perturbation will be
unsurprisingly, a particular set of magnetic field directionslikely to excite a transition, and that the success probability
that raises the success probability unégris also likely to  will be small. But since botliHg andHp have a maximum
help whenK, is applied. But unlikeK;, K, may improve eigenvalue of orden, we may anticipate that for
the success probability even wit,=2, where the size of
the perturbation is comparable to the size of the unperturbed
Hamiltonian. The bottom plots show the minimum gAp
when the perturbation is added. Note that there is a strong
correlation between the success probability and the perturbation will be far from any resonance. Then the
For both perturbation&; and K,, similar results have probability that the perturbation drives a transition will be
been observedwith fewer data pointsfor instances with as low, and the success probability should be comparable to the
many asn= 14 bits. Figures 3 and 4 present typical data. Forcase where the perturbation vanishes.
example, for a given instance, typically one or two out of Some representative plots of the dependence of the suc-
four sets of randomly chosen magnetic-field directions led taess probability orfC5 are shown in Fig. 5. Each plot corre-
an improvement in the success probability for some values aponds to a particular randomly generated instance of EC3
C, andC,, compared to the unperturbed case. (with eithern=38 bits orn=10 bitg and a randomly gener-
Finally, we consider the perturbatiof;, in which the ated set of magnetic field directions. In the top row of plots,
magnitude of the oscillating component is fixed, but we maythe run time is chosen so that the success probability is
vary its frequency by varyin@,. As for K,, the frequency is  around 1/8 with the perturbation abséné., C3=0). In the
chosen so that the perturbation vanishes=a® andT. We  bottom row, the run time is doubled. All of the data exhibit

nT
Cy> —, (27)
aa
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FIG. 5. The success probability as a function of the frequehicyf the perturbatiorkK ; defined in Eq(26). The data in each plot were
obtained for a randomly generated instance of EC3 with randomly generated magnetic-field directions. The data in the left column are for
two instances witin=_8 bits, and the data in the right column are for two instances m4tt10 bits. For the top row, the run time is chosen
so that the success probability is around 1/8@gr=0, and for the bottom row, the run time is twice as long. The leftmost points in each
plot correspond t&C;=0, so the perturbation is absent for &liC; takes integer values, so the lines are included only to guide the eye.

the expected qualitative trend. The leftmost point corre- VI. CONCLUSIONS
sponds taC3=0. For the smallest values @f;>0, the suc- We have conducted numerical simulations to investigate
cess probability may not be too badly damaged; for some- . . estig
what larger values o€, it is heavily suppressed; and for the fault tolerance ,Of adlapatlc quaqtum computaﬂqn, and
sufficiently largeCs, it recovers to a value near the successPUr resultslare consistent with the clalm thgt this algorithm is
probability in the absence of the perturbation. The value ofOPUSt against decoherence and certain kinds of random uni-
nT/# is around 19 and 39 for the upper and lower 8 tary pertur_batl_ons. Thus, if a physical system coul_d be engi-
plots and is around 38 and 76 for the upper and lower neered with interactions reasonably well described by a
=10 plots, so the estimat@7) turns out to be reasonable. Hamiltonian that smoothly interpolates from an initié to
Another conspicuous feature of the plots in Fig. 5 is that? final Hp corresponding to an interesting combinatorial
the success probability tends to oscillate between even arggarch problem, and if the gap remains large throughout the
odd values ofC3, though whether even or odd values areinterpolation, that system might be a powerful computational
favored varies from case to case. This occurs because tlatevice.
perturbation’s time average vanishes @y even, so that its Although we have viewed unitary perturbations as noise,
integrated effect is weaker than f@; odd. Since a small the fact that they sometimes raise the success probability
perturbation might either help or hurt, the success probabilitysuggests a possible way to speed up the adiabatic algorithm.
is slightly enhanced for od@5 in some cases, and is slightly The algorithm finds the ground state lf by starting the
suppressed in other cases. system in the ground state Hf;. The quantum state evolves

012322-9



ANDREW M. CHILDS, EDWARD FARHI, AND JOHN PRESKILL PHYSICAL REVIEW A65 012322

as the system Hamiltonian smoothly interpolates fidgto ACKNOWLEDGMENTS
Hp. However, there are many possible choicesHegr and
many smooth paths from a giverg to Hp. The choices
(1) and (2) are convenient but arbitrary, so choosing an
alternate route tédp might speed up the algorithm. An ex-

We thank Todd Brun, Evan Fortunato, Jeffrey Goldstone,
Sam Gutmann, Jeff Kimble, Alesha Kitaev, and Seth Lloyd

ample of this is seen if23], where it is shown that optimiz- for helpful d|scu55|qns. A.M.C. gratefully ackngwledgfes the
ing the time-dependent coefficientstef, andH p allows the support of the Fannie and John Hertz Foundation. This work

adiabatic algorithm to achieve a square-root speedup for ajfas supported in part by the Department of Energy under
unordered search problem. More generally, the interpolatin§?@nt No. DE-FG03-92-ER40701 and Grant No. DE-FCO02-

Hamiltonian might involve terms that have nothing to do 4-ER40818, by the National Science Foundation under
with Hg or Hp, but that increasé and therefore improve Grant No. EIA-0086038, by the Caltech MURI Center for
performance. For example, the perturbatiép sometimes ~Quantum Networks under ARO Grant No. DAAD19-00-1-
increases the success probability, as seen in Fig. 4. Rath@874, by the National Security Agen¢¥SA) and Advanced
than being thought of as a source of error, such a perturbd?esearch and Development ActivitARDA) under Army
tion could be applied intentionally and might sometimes enResearch Officd ARO) Contract No. DAAD19-01-1-0656,
hance the effectiveness of the adiabatic algorithm. and by an IBM Faculty Partnership Award.

[1] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, e-print (1999.

quant-ph/0001106. [11] P. Zanardi and M. Rasetti, Phys. Lett.284, 94 (1999.
[2] E. Farhi, J. Goldstone, and S. Gutmann, e-print[12] A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones,
quant-ph/0007071. D.K.L. Oi, and V. Vedral, e-print quant-ph/0004015.
[3] A.M. Childs, E. Farhi, J. Goldstone, and S. Gutmann, e-print[13] S. Lloyd, e-print quant-ph/0004010.
quant-ph/0012104. [14] M.H. Freedman, A. Kitaev, M.J. Larsen, and Z. Wang, e-print
[4] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, quant-ph/0101025.
and D. Preda, Scien&92, 472 (2001). [15] T. Kato, Phys. Soc. Jap, 435(1950.
[5] P. W. Shor, inProceedings of the 37th Annual Symposium on[16] A. Messiah,Quantum Mechanic&North-Holland, Amsterdam,
Foundations of Computer Sciend&EE Press, Los Alamitos, 1961, Vol. Il.
CA, 1996, pp. 56—65. [17] S. Lloyd, Science273 1073(1996.

[6] T. Kadowaki and H. Nishimori, Phys. Rev.48, 5355(1998. [18] F. Barahona, J. Phys. 25, 3241(1982.

[7] J. Brooke, D. Bitko, T.F. Rosenbaum, and G. Aeppli, Science[19] E.B. Davies, Commun. Math. Phy39, 91 (1974.

284, 779(1999. [20] R. Dumcke and H. Spohn, Z. Phys. B: Condens. Ma&éy

[8] A.Yu. Kitaev, e-print quant-ph/9707021. 419(1979.

[9] J. Preskill, inintroduction to Quantum Computation and Infor- [21] E.B. Davies and H. Spohn, J. Stat. Ph¥8, 511 (1978.
mation edited by H.-K. Lo, S. Popescu, and T. Spiligvorld [22] G. Lindblad,Non-Equilibrium Entropy and IrreversibilityRe-
Scien tific, Singapore, 1998 idel, Dordrecht, 1988 pp. 65-71.

[10] W. Ogburn and J. Preskill, Lect. Notes Comput. 8609 341  [23] J. Roland and N.J. Cerf, e-print quant-ph/0107015.

012322-10



