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Feasible quantum communication complexity protocol
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~Received 6 September 2001; published 13 December 2001!

I show that a simple multiparty communication task can be performed more efficiently with quantum
communication than with classical communication, even with low detection efficiencyh. The task is a com-
munication complexity problem in which distant parties need to compute a function of the distributed inputs,
while minimizing the amount of communication between them. A realistic quantum optical setup is suggested
that can demonstrate a five-party quantum protocol with higher-than-classical performance, providedh.0.33.
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In theory, quantum communication is better than class
communication. Experimentalists, on the other hand, kn
that even the simplest quantum communication protocols
volve inefficiencies in state preparation, manipulation, a
measurement. It is, therefore, important to study suffici
experimental conditions for unambiguous demonstration
the advantages of quantum communication. Some tasks
only possible with quantum communication, such as unc
ditionally secure cryptographic key distribution@1–3#. Many
authors have analyzed the experimental requirements fo
security of these protocols@4–6#. For other tasks quantum
communication offers an improvement of efficiency, a
such is the case of communication complexity proble
@7,8#, one of which will be analyzed in this paper. In the
problems, many distant parties need to compute a functio
the distributed inputs, while trying to minimize the amou
of communication between them. This abstract problem
numerous practical applications, for example in compu
networks, VLSI circuits, and data structures~see@8# for a
survey of the field!.

Quantum mechanics can enhance the performance
communication complexity protocols in two different wa
@9#. The first approach is theentanglement-basedmodel of
communication complexity@10–13#, where in addition to the
classical communication we allow the parties to do meas
ments on previously shared multiparty entangled states.
perimental requirements for some protocols of this kind h
been studied in@14,15#, and it turns out that the high detec
tion efficiency needed could be achieved in ion trap exp
ments @16#. The second way to obtain a genuine quant
advantage is to allow the parties to exchange qubits ins
of classical bits@17–20#. That such aquantum communica
tion model may be superior to the classical case is surpris
given the results of Holevo@21# and Nielsen@19,22#, which
state that no more thann bits of expected information can b
transmitted byn qubits if the parties start off unentangle
Despite the many theoretical results obtained by differ
authors@9#, to date no experiment has been performed
demonstrate the superiority of quantum communication
this kind of distributed computation task. In this paper
propose a feasible quantum optical experiment which imp
ments a quantum protocol with higher-than-classical per
mance for a specific communication complexity task. T
quantum advantage is shown to arise from the use of a q
tum phase to encode information. A realistic estimate of
1050-2947/2001/65~1!/012318~4!/$20.00 65 0123
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experimental limitations shows that it is sufficient to have
single-photon detection efficiencyh*0.33 for the quantum
protocol to outperform any classical protocol for the sa
problem.

The communication complexity problem we will tackle
the modulo-4 sumproblem defined for three parties by Bu
hrman, Cleve, and van Dam@12#, and later generalized toN
parties (N>3) in @13#. The problem can be stated as follow
Each partyPi receives a two-bit string inputxi , subject to
the constraint

S (
i 51

N

xi D mod 250. ~1!

The strings are chosen randomly with a uniform probabi
distribution among those combinations that satisfy Eq.~1!
above. After some communication between the parties,
of them~say the last one,PN! must compute the value of th
Boolean function

F~xW !5
1

2 F S (
i 51

N

xi D mod 4G . ~2!

In other words, each party is given a numberxiP$0,1,2,3%,
subject to the constraint that the sum of allxi is even. After
some communication the last party must decide whether
sum modulo-4 is equal to 0 or 2.

References @12,13# dealt with this problem in the
entanglement-based model of communication complex
showing that the amount of classical communication nec
sary to computeF @on inputs constrained by Eq.~1!# can be
decreased if the parties are allowed to do local measurem
on N-party Greenberger-Horne-Zeilinger~GHZ! states

uGHZ&5
1

A2
~ u0102•••0N&1eifu1112•••1N&). ~3!

When considering the quantum communication mod
we must limit the amount of bits~qubits! to be exchanged
between the parties and compare the success rates obt
by the optimal classical and the quantum protocols. The
terion for a successful demonstration of better-than-class
©2001 The American Physical Society18-1
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communication is simple: we just need to obtain an exp
mental quantum success rate which is better than that o
optimal classical protocol.

Let us limit the amount of communication to (N21) bits
~or qubits!. Another constraint we impose is that the comm
nication must besequential, in which partyP1 can only send
information to partyP2, who in turn can only send a mes
sage to partyP3 and so on until partyPN , who then com-
putesF. The decision to demand sequential communicat
is related to the fact that the sequential quantum comm
cation necessary to solve this problem can be convenie
realized by sending a single photon through a series of o
cal elements representing the parties.

First, let us obtain the optimal classical success rate
the modulo-4 sum problem, with only (N21) bits of se-
quential classical communication. We start by noting tha
one of the parties~say partyPj ) sends no information to
party Pj 11, then partyPN cannot computeF correctly with
probability pc.1/2. This is so because such a break in
communication flow would leave partyPN with no informa-
tion about the numbersx1,x2 , . . . ,xj , and there are as man
allowed j-tuples (x1 ,x2, , . . . ,xj ) resulting inF(xW )51 as in
F(xW )50. Therefore, in order to obtain a performance wh
is better than a random guess, each partyPj must send ex-
actly one bit to the next partyPj 11.

For the moment let us consider only deterministic pro
cols. The first partyP1 has access only to her two-bit strin
x1, and so can choose between 24 protocols. These can b
represented by the four-bit stringp1, whose nth (n
50,1,2,3) bit encodes the messagem1 to be sent toP2 if
x15n. The other partiesPj ( j 52, . . . ,N21) can choose
among 28 protocols that take into consideration bothxj and
the messagemj 21 received from the previous party. Each
these protocols can be represented by an eight-bit stringpj ,
whosenth (n50,1, . . . ,7) bitencodes the message to
sent when 2xj1mj 215n.

Each possible deterministic protocol can then be rep
sented by the (N21)-tuple pW5(p1 ,p2 , . . . ,pN21). Finding
the probability of success of a given protocolpW is a straight-
forward computation. We start by producing a list of all po
sible input data$x1 ,x2 , . . . ,xN21% compatible withxN50,
computing the messagesmN21 corresponding to each, an
finding the fraction of cases in whichPN’s most likely guess
about F would in fact be correct. This is repeated forxN
51, 2, and 3, and the results averaged to obtain the ove
probability of successpc . The optimal deterministic protoco
can then be found by a computer search over
24(28)N2252(8N212) protocols.

For the number of partiesN53, 4, and 5, I obtained the
optimal classical probability of success

pc
N5353/4,

pc
N5453/4,

pc
N5555/8. ~4!
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A limited search over protocols for larger number of part
yields some lower bounds forpc :

pc
N56>5/8,

pc
N57>9/16,

pc
N58>9/16.

Sincepc is a nonincreasing function ofN, the result forN
56 is actually an equality:pc

N5655/8. The optimalpc for
N53, 4, 5, and 6 is attained by many protocols, for exam
the one consisting ofp050011 and all the otherpj
5010 110 10. The same protocol yields the lower bounds
the optimal probabilities of success presented above foN
57 and 8. Checking that these lower bounds are tight wo
involve a very long exhaustive search over all protocols. F
the purpose of comparison with the quantum protocol giv
below, it would be desirable to obtain at least an analyti
upper bound forpc

N that decreases withN. Unfortunately I
could not prove such a general result, despite the symme
of the problem.

Up to now we have been computing the probability
success for deterministic protocols. In a probabilistic pro
col, each partyPj implements her own protocol by probab
listically picking a deterministic protocolpj from some set of
protocols, according to probabilities obtained from a list
random numbers. Since this list of numbers could have b
shared beforehand between the parties, the last partyPN can
know exactly which protocols were chosen by each of
other parties for each run of the probabilistic protocol. Th
means that each run of the probabilistic protocol is eff
tively a deterministic one, with a probability of succe
bounded by the optimal deterministicpc derived above. The
relation between deterministic and probabilistic protocols
communication complexity tasks is further discussed
Chap. 3 of the book by Kushilevitz and Nisan@8#.

We have seen that the modulo-4 sum problem gets ha
and harder to solve classically, as the number of parties
creases. There is, however, a simple quantum protocol w
sequential qubit communication that has a probability of s
cesspq51 independentlyof the number of parties involved
The idea is to start with the qubit in state

uc i&5
1

A2
~ u0&1u1&)

and send it flying by all the parties, from first to last. Ea
party need only act upon the qubit with a phase opera
f(xj ), defined as

f~xj !5H u0&→u0&

u1&→ei (p/2)xj u1&, xj5$0,1,2,3%.
~5!

After going through theN phase operations, the qubit sta
will be
8-2
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uc f&5
1

A2
@ u0&1~21!F(xW )u1&],

due to the constraint given by Eq.~1! on the possible inputs
xj . The last party can then measureuc f& in the $(1/A2)
3(u0&1u1&),(1/A2)(u0&2u1&% basis, obtainingF with prob-
ability pq51.

The protocol above is an adaptation of the entanglem
based protocol presented in@13# to the qubit-communication
setting. In the entanglement-based protocol each party
forms a phase operation and measurement on her qubit o
N-party GHZ state they share. The value of the functionF is
encoded in the quantum phasef @see Eq.~3!#, by individual
phase shifts applied by each party on her particle. The
party PN obtains the value ofF from the results of theN
measurements~hers plus theN21 broadcast to her by th
other parties!. The probability of success ispq51 only when
all the N detections are successful, hence the high detec
efficiencies required for a higher-than-classical performa
@15#. Here we obtain the same performance by using
phase of asinglequbit to acquire information onF as it flies
by the parties towards the last partyPN , where a single
detection reveals the result.

The detection efficiencyh must still be taken into ac
count, as it lowers the probability of success of the quant
protocol. For the moment, let us assume that the only li
tation in implementing the protocol ish,1 ~we will deal
with the more realistic case below!. In case of a successfu
detection~which occurs with probabilityh), the probability
of success is equal to 1. In case the detection fails~probabil-
ity 12h), the last partyPN has to make a random gue
about the value ofF, succeeding only with probability 1/2
Thus for a higher-than-classical performance we need
implement the quantum protocol with a detection efficien
h such that

h1~12h!
1

2
.pc . ~6!

Thus, it is sufficient to haveh.2pc21. We have seen tha
the optimal classical protocol forN55 parties has a succes
ratepc

N5555/8, and therefore can be beaten by the quan
protocol if the detection efficiencyh.0.25, in the absence
of other experimental losses.

For a more realistic grasp of the experimental difficultie
let us examine a simple quantum optical setup that imp
ments the quantum protocol for this problem. The flying q
bit is encoded in the polarization state of a single photon.
a fair comparison with the classical protocol, it is importa
to allow only a single photon per run to pass by the par
and arrive atPN . One way to achieve this is to use a par
metric down-conversion crystal pumped by a laser. Detec
of one of the twin photons generated can then be used
trigger to let the second photon go towards the parties.
the triggering mechanism to work we need to introduce
delay for the second photon, which can be easily achieve
coupling it to a few meters of optical fiber. Upon detection
the first photon, the second photon is allowed to co
01231
t-

r-
he

st

n
e
e

m
i-

to
y

m

,
-

-
r

t
s
-
n
a

or
a
by
f
e

through theN parties. Each party consists of an optical e
ment using birefringent materials to perform the phase s
given by Eq.~5!. In the end, the last partyPN must also
detect the photon in the proper basis.

Such a setup has other imperfections that must be con
ered, besides the limited detection efficiencyh. The first is
the finite transmissivityt of the combination ofN birefrin-
gent plates used to introduce the phase shiftsf(xj ). Another
problem is the fractionm of detected events which are due
detector dark counts. Finally, even if the detected photon
signal photon, the success rates of the quantum protocol can
be less than perfect, because of imperfections and misa
ment of the optical elements that produce the initial sta
introduce the phase shifts, and measure the final polariza
Taking all these limitations into account, for a higher-tha
classical probability of success we would need

pq
eff5~12m!hts1@12~12m!ht#

1

2
.pc . ~7!

Now let us make some realistic estimates for these par
eters for the protocol withN55 parties. By using quartz
plates with antireflection coating, it is possible to obta
transmission of a fraction 0.995 of the incident photons
plate, which in the case of five parties would result int
5(0.995)5.0.975. It is relatively straightforward to bring
dark count rates below the 1% level@23#, so let us takem
50.01. Good alignment of the optical elements should
able a success rate ofs.0.90 whenever a signal photon
detected; for example, visibilities of up to 96% in simp
Bell tests using entangled photons have been reported@23#.
Plugging these estimates fort, m, ands in inequality~7!, we
see that in order to obtain a better-than-classical probab
of success it is sufficient to have a detection efficiencyh
*0.33, which is within reach of current technology@23#. It is
reasonable to conjecture that the optimalpc

N continues to
decrease forN>7, in which case the sufficient detectio
efficiency could be dramatically lower. In principle, one wa
to calculatepc

N for N>7 is through an exhaustive searc
over all deterministic protocols, as was done here forN
53, 4, and 5.

It is clear that essentially the same setup can be use
solve the modulo-4 sum problem using classical polariz
light. In common with a qubit, classical light has a contin
ous variable~the phase! that can be manipulated, as oppos
to classical bits that can only assume two discrete valu
The counterintuitive quantum feature that helps in comm
nication complexity is the fact that even single photons s
retain the continuous description of the classical electrom
netic field. More generally, ad-dimensional pure quantum
state is characterized by 2(d21) real parameters that can b
used for communication purposes, as opposed to thed dis-
crete states available to a classical system of the same dim
sionality. Defining exactly for which communication task
such a different resource can be used to advantage is a
tral research problem in quantum information theory.

In summary, I have shown that an experimental dem
stration of a quantum communication complexity protocol
feasible using a realistic quantum optical setup with a pho
8-3
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detection efficiency of at least 33%. By increasing the nu
ber of partiesN it should be possible to reduce the minimu
detection efficiency required dramatically, provided we c
compute the corresponding optimal classical probability
successpc

N . This can in principle be achieved by the met
ods employed here, or possibly by other, simpler argume
The higher-than-classical performance of the quantu
communication protocol arises directly from the use o
quantum phase to encode information. If implemented,
would be the first experiment to demonstrate the superio
of quantum communication over classical communicat
for distributed computation tasks.
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Note added. Recently, it came to my attention that th
three-party qubit communication protocol has recently be
discussed in Ref.@24#, which is an extended version of Re
@12#.
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