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Feasible quantum communication complexity protocol
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| show that a simple multiparty communication task can be performed more efficiently with quantum
communication than with classical communication, even with low detection efficigndje task is a com-
munication complexity problem in which distant parties need to compute a function of the distributed inputs,
while minimizing the amount of communication between them. A realistic quantum optical setup is suggested
that can demonstrate a five-party quantum protocol with higher-than-classical performance, providaa.

DOI: 10.1103/PhysRevA.65.012318 PACS nuntber03.67.Hk, 03.67.Lx

In theory, quantum communication is better than classicaéxperimental limitations shows that it is sufficient to have a
communication. Experimentalists, on the other hand, knowsingle-photon detection efficiency=0.33 for the quantum
that even the simplest quantum communication protocols inprotocol to outperform any classical protocol for the same
volve inefficiencies in state preparation, manipulation, andoroblem.
measurement. It is, therefore, important to study sufficient The communication complexity problem we will tackle is
experimental conditions for unambiguous demonstration ofh€ modulo-4 sunproblem defined for three parties by Bu-
the advantages of quantum communication. Some tasks aféman, Cleve, and van Dafi2], and later generalized t§
only possible with quantum communication, such as unconParties N\=3) in[13]. The problem can be stated as follows.
ditionally secure cryptographic key distributiph—3]. Many ~ Each partyP; receives a two-bit string input;, subject to
authors have analyzed the experimental requirements for tH8€ constraint
security of these protocolgt—6]. For other tasks quantum
communication offers an improvement of efficiency, and N
such is the case of communication complexity problems (2 Xi) mod 2=0. 1)
[7,8], one of which will be analyzed in this paper. In these =1
problems, many distant parties need to compute a function of ) ) . -
the distributed inputs, while trying to minimize the amount The strings are chosen randomly with a uniform probability
of communication between them. This abstract problem hadistribution among those combinations that satisfy Eq.
numerous practical applications, for example in computefibOVe- After some communication between the parties, one
networks, VLSI circuits, and data structuresee[8] for a  Of them(say the last onePy) must compute the value of the
survey of the fieldl Boolean function

Quantum mechanics can enhance the performance of
communication complexity protocols in two different ways 1[N
[9]. The first approach is thentanglement-baseshodel of FO)=5 (2 Xi) mod 4. 2
communication complexitj10—13, where in addition to the =1
classical communication we allow the parties to do measure-
ments on previously shared multiparty entangled states. EXn other words, each party is given a numhee {0,1,2,3,
perimental requirements for some protocols of this kind havéubject to the constraint that the sum ofgliis even. After
been studied ifi14,15, and it turns out that the high detec- some communication the last party must decide whether the
tion efficiency needed could be achieved in ion trap experisum modulo-4 is equal to O or 2.
ments[16]. The second way to obtain a genuine quantum References[12,13 dealt with this problem in the
advantage is to allow the parties to exchange qubits instea@ntanglement-based model of communication complexity,
of classical bit17—-20. That such ajuantum communica- showing that the amount of classical communication neces-
tion model may be superior to the classical case is surprisingsary to computé= [on inputs constrained by E¢l)] can be
given the results of Holevf21] and Nielser{19,27, which ~ decreased if the parties are allowed to do local measurements
state that no more thambits of expected information can be on N-party Greenberger-Horne-ZeilingeBHZ) states
transmitted byn qubits if the parties start off unentangled.

Despite the many theoretical results obtained by different 1
authors[9], to date no experiment has been performed to |GHZ)= —
demonstrate the superiority of quantum communication for V2
this kind of distributed computation task. In this paper, |

propose a feasible quantum optical experiment which imple- When considering the quantum communication model,
ments a quantum protocol with higher-than-classical perforwe must limit the amount of bitéqubits to be exchanged
mance for a specific communication complexity task. Thebetween the parties and compare the success rates obtained
guantum advantage is shown to arise from the use of a quaiy the optimal classical and the quantum protocols. The cri-
tum phase to encode information. A realistic estimate of alkerion for a successful demonstration of better-than-classical

(1010, - -O\) +€' 1515 - - 1y)).  (3)
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communication is simple: we just need to obtain an experiA limited search over protocols for larger number of parties
mental quantum success rate which is better than that of thgelds some lower bounds fqr; :
optimal classical protocol.

Let us limit the amount of communication td(-1) bits pg:fi; 5/8,
(or qubitg. Another constraint we impose is that the commu-
nication must besequentiglin which partyP, can only send
information to partyP,, who in turn can only send a mes-
sage to partyP; and so on until party?y, who then com-
putesF. The decision to demand sequential communication Py~ 8=9/16.
is related to the fact that the sequential quantum communi-
cation necessary to solve this problem can be convenientlgincep, is a nonincreasing function df, the result forN
realized by sending a single photon through a series of opti= g is actually an equalityp)=6=5/8. The optimalp, for

pN=7=9/16,

cal elements representing the parties. N=3, 4, 5, and 6 is attained by many protocols, for example
First, let us obtain the optimal classical success rate fofhe one consisting 0§=0011 and all the othey,
the modulo-4 sum problem, with onlyN(-1) bits of se-  _(1011010. The same protocol yields the lower bounds for

quential classicr_sll communication. We start_by notin_g that ifye optimal probabilities of success presented aboveNfor
one of the partiegsay partyP;) sends no information to  —7 and 8. Checking that these lower bounds are tight would
party P;., then partyPy cannot computé correctly with  ihyolve a very long exhaustive search over all protocols. For
probability p;>1/2. This is so because such a break in thethe purpose of comparison with the quantum protocol given
communication flow would leave parfyy with no informa-  pelow, it would be desirable to obtain at least an analytical
tion about the numbers, x,, . .. X;, and there are as many ypper bound fop! that decreases with. Unfortunately |
allowedj-tuples &;,x,, ... x;) resulting inF(x)=1 asin  could not prove such a general result, despite the symmetries
F(x)=0. Therefore, in order to obtain a performance whichof the problem.
is better than a random guess, each p&tymust send ex- Up to now we have been computing the probability of
actly one bit to the next part®; ;. success for deterministic protocols. In a probabilistic proto-
For the moment let us consider only deterministic proto-col, each partyP; implements her own protocol by probabi-
cols. The first partyP; has access only to her two-bit string listically picking a deterministic protocg); from some set of
X1, and so can choose betweef rotocols. These can be protocols, according to probabilities obtained from a list of
represented by the four-bit string;, whose nth (n random numbers. Since this list of numbers could have been
=0,1,2,3) bit encodes the messamg to be sent toP, if shared beforehand between the parties, the last pPastyan
x;=n. The other partie®; (j=2,... N—1) can choose know exactly which protocols were chosen by each of the
among 2 protocols that take into consideration bothand other parties for each run of the probabilistic protocol. This
the messagen, _; received from the previous party. Each of means that eac_h_ru_n of the probablllstlc pr_otocol is effec-
these protocols can be represented by an eight-bit sging tively a deterministic one, with a probability of success
whosenth (n=0,1,...,7) bitencodes the message to be bounded by the optimal determinisfic derived above. The
sent when &;+m;_,=n. relation between deterministic and probabilistic protocols for
Each possible deterministic protocol can then be reprecOmmunication complexity tasks is further discussed in
sented by the N— 1)-tuple/;= (1,02, - - - y—1). Finding Chap. 3 of the book by Kushilevitz and Nisg8.

. ; a . We have seen that the modulo-4 sum problem gets harder
the probability of success of a given protogais a straight-

; : _ and harder to solve classically, as the number of parties in-
forward computation. We start by producing a list of all pos-¢reases. There is, however, a simple quantum protocol with
sible input data{x;,X,, ... Xy_1} compatible withxy=0,

J k sequential qubit communication that has a probability of suc-
computing the messagesy_, corresponding to each, and

o . ] . ) cesspgy=1 independentlyf the number of parties involved.
finding the fraction of cases in whidPy's most likely guess  The idea is to start with the qubit in state

aboutF would in fact be correct. This is repeated fry
=1, 2, and 3, and the results averaged to obtain the overall
probability of succesp.. The optimal deterministic protocol i) = i(|0>+|1>)
can then be found by a computer search over all ! J2
24(28)N=2=2(8N"12) protocols.
For the number of partie=3, 4, and 5, | obtained the anq send it flying by all the parties, from first to last. Each
optimal classical probability of success party need only act upon the qubit with a phase operator
#(x;), defined as

py~3=3/4,
po)=| 2719 ©)
pY=4=3/4, D)), x={01.23.
_ After going through theN phase operations, the qubit state
pe °=5/8. @ will be
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1 R through theN parties. Each party consists of an optical ele-
|y =—=[|0)+ (—1)F™|1)], ment using birefringent materials to perform the phase shift
V2 given by Eq.(5). In the end, the last part{?y must also

) ) o detect the photon in the proper basis.

due to the constraint given by E€l) on the possible inputs  gych a setup has other imperfections that must be consid-
x;. The last party can then measurg) in the {(1/V2)  ered, besides the limited detection efficiengyThe first is
X(]0)+[1)),(1/2)(]0)—|1)} basis, obtaining" with prob-  the finite transmissivityt of the combination oN birefrin-
ability py=1. gent plates used to introduce the phase skifts;). Another

The protocol above is an adaptation of the entanglemeniproblem is the fractiop. of detected events which are due to
based protocol presented|ib3] to the qubit-communication  detector dark counts. Finally, even if the detected photon is a
setting. In the entanglement-based protocol each party pesignal photon, the success ratef the quantum protocol can
forms a phase operation and measurement on her qubit of th |ess than perfect, because of imperfections and misalign-
N-party GHZ state they share. The value of the funco8  ment of the optical elements that produce the initial state,
encoded in the quantum phaggsee Eq(3)], by individual  introduce the phase shifts, and measure the final polarization.
phase shifts applied by each party on her particle. The lasfaking all these limitations into account, for a higher-than-
party Py obtains the value oF from the results of theN  classical probability of success we would need
measurementghers plus theN—1 broadcast to her by the
other parties The probability of success &,=1 only when 1
all thepN detectionz are sucycessful, hent@ the higyh detection p§ﬁ=(1—,u)17ts+[1—(1—,u)1;t]§> Pc- @
efficiencies required for a higher-than-classical performance
[15]. Here we obtain the same performance by using théNow let us make some realistic estimates for these param-
phase of ainglequbit to acquire information of as it flies  eters for the protocol witiN=5 parties. By using quartz
by the parties towards the last pamy, where a single plates with antireflection coating, it is possible to obtain
detection reveals the result. transmission of a fraction 0.995 of the incident photons per

The detection efficiencyy must still be taken into ac- plate, which in the case of five parties would resulttin
count, as it lowers the probability of success of the quantum= (0.995P=0.975. It is relatively straightforward to bring
protocol. For the moment, let us assume that the only limi-dark count rates below the 1% le&3], so let us takeu
tation in implementing the protocol ig<1 (we will deal =0.01. Good alignment of the optical elements should en-
with the more realistic case belpwin case of a successful able a success rate 8=0.90 whenever a signal photon is
detection(which occurs with probability;), the probability — detected; for example, visibilities of up to 96% in simple
of success is equal to 1. In case the detection fpilsbabil-  Bell tests using entangled photons have been repdeald
ity 1—7), the last partyPy has to make a random guess Plugging these estimates foru, ands in inequality (7), we
about the value oF, succeeding only with probability 1/2. see that in order to obtain a better-than-classical probability
Thus for a higher-than-classical performance we need tof success it is sufficient to have a detection efficiengy
implement the quantum protocol with a detection efficiency=0.33, which is within reach of current technold@g]. It is
7 such that reasonable to conjecture that the optinpdl continues to
decrease foN=7, in which case the sufficient detection
efficiency could be dramatically lower. In principle, one way
to calculatep? for N=7 is through an exhaustive search
over all deterministic protocols, as was done here Nor
Thus, it is sufficient to havey>2p.—1. We have seen that =3, 4, and 5.
the optimal classical protocol fdd=5 parties has a success It is clear that essentially the same setup can be used to
ratepy >=5/8, and therefore can be beaten by the quantunsolve the modulo-4 sum problem using classical polarized
protocol if the detection efficiencyy>0.25, in the absence light. In common with a qubit, classical light has a continu-
of other experimental losses. ous variablgthe phasgthat can be manipulated, as opposed

For a more realistic grasp of the experimental difficulties,to classical bits that can only assume two discrete values.
let us examine a simple quantum optical setup that impleThe counterintuitive quantum feature that helps in commu-
ments the quantum protocol for this problem. The flying qu-nication complexity is the fact that even single photons still
bit is encoded in the polarization state of a single photon. Foretain the continuous description of the classical electromag-
a fair comparison with the classical protocol, it is importantnetic field. More generally, a-dimensional pure quantum
to allow only a single photon per run to pass by the partiestate is characterized by @ 1) real parameters that can be
and arrive atPy . One way to achieve this is to use a para-used for communication purposes, as opposed tadtts-
metric down-conversion crystal pumped by a laser. Detectiorrete states available to a classical system of the same dimen-
of one of the twin photons generated can then be used assionality. Defining exactly for which communication tasks
trigger to let the second photon go towards the parties. Fosuch a different resource can be used to advantage is a cen-
the triggering mechanism to work we need to introduce dral research problem in quantum information theory.
delay for the second photon, which can be easily achieved by In summary, | have shown that an experimental demon-
coupling it to a few meters of optical fiber. Upon detection of stration of a quantum communication complexity protocol is
the first photon, the second photon is allowed to comdeasible using a realistic quantum optical setup with a photon

1
7+ (1= 1) 5>Pe. ®)
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detection efficiency of at least 33%. By increasing the num- Note added Recently, it came to my attention that the
ber of partiesN it should be possible to reduce the minimum three-party qubit communication protocol has recently been
detection efficiency required dramatically, provided we candiscussed in Ref24], which is an extended version of Ref.
compute the corresponding optimal classical probability of12].

successpQ‘. This can in principle be achieved by the meth-

ods employed here, or possibly by other, simpler arguments. | would like to thank Lucien Hardy for fruitful discus-
The higher-than-classical performance of the quantumsions and for his support and encouragement. | also thank
communication protocol arises directly from the use of aAntia Lamas-Linares for helpful discussions about quantum
guantum phase to encode information. If implemented, thi®ptics experiments. | acknowledge support from the U.K.
would be the first experiment to demonstrate the superioritfpverseas Research Studentships scheme and from the Bra-
of quantum communication over classical communicatiorzilian agency Coordenao de Aperfejoamento de Pessoal
for distributed computation tasks. de Nivel SuperioflCAPES.

[1] C. H. Bennett and G. Brassard, Rroceedings of the IEEE [16] M. A. Rowe et al, Nature(London 409, 791 (200J).
International Conference on Computers, Systems and SigndlL7] A. C. Yao, inProceedings of the 34th Annual IEEE Symposium

Processing, Bangalore, IndidEEE Computer Society Press, on Foundations of Computer SciendEEE Computer Society
New York, 1984, pp. 175-179. Press, Los Alamitos, CA, 1993pp. 353—-361.
[2] A. K. Ekert, Phys. Rev. Lett67, 661 (1991). [18] H. Buhrman, R. Cleve, and A. Wigderson, Broceedings of
[3] C. H. Bennett, Phys. Rev. Le#8, 3121(1992. the 30th Annual ACM Symposium on Theory of Computing
[4] H.-K. Lo and H. F. Chau, Scienc83, 2050(1999. (The Association for Computing Machinery, New York, 1998
[5] P. W. Shor and J. Preskill, Phys. Rev. L&, 441 (2000. pp. 63-68.

[19] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp,Quantum
Computing and Quantum Communication: Proceedings of The
First NASA International Conferencedited by C. P. Williams,
Lecture Notes in Computer Science Vol. 1508pringer-
Verlag, Berlin, 1999 pp. 61-74.

R. Raz, inProceedings of the 31st Annual ACM Symposium on
Theory of ComputingThe Association for Computing Ma-

[6] H. Aschauer and H. J. Briegel, e-print quant-ph/0008051.

[7] A. C. Yao, inProceedings in the 11th Annual ACM Symposium
on Theory of ComputingThe Association for Computing Ma-
chinery, New York, 1979 pp. 209-213.

[8] E. Kushilevitz and N. Nisan,Communication Complexity

: S : [20]
(Cambridge University Press, Cambridge, U.K., 1997

[9] G. Brassard, e-print quant-ph/0101005. chinery, New York, 1998 pp. 358—-367.
[10] R. Cleve and H. Buhrman, Phys. Rev58, 1201(1997. [21] A. Holevo, Prob. Peredachi InB(3), 3 (1973 [Probl. Inf.
[11] L. K. Grover, e-print quant-ph/9704012. Transm.9, 177 (1973].
[12] H. Buhrman, R. Cleve, and W. van Dam, e-print [22] M. A. Nielsen, Ph.D. thesis, Department of Physics, University
quant-ph/9705033. of New Mexico, 1998, available as e-print quant-ph/0011036.
[13] H. Buhrmanet al, Phys. Rev. A60, 2737(1999. [23] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, Phys. Rev.
[14] W. van Dam, Ph.D. thesis, Department of Physics, University A 64, 023802(2001).
of Oxford, 1999. [24] H. Buhrman, R. Cleve, and W. van Dam, SIAM J. Com@3.
[15] E. F. Galva, e-print quant-ph/0009014. 1829(2002.

012318-4



